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Abstract
Motivation: Several results in the literature suggest that
biologically interesting RNAs have secondary structures
that are more stable than expected by chance. Based on
these observations, we developed a scanning algorithm
for detecting noncoding RNA genes in genome sequences,
using a fully probabilistic version of the Zuker minimum-
energy folding algorithm.
Results: Preliminary results were encouraging, but
certain anomalies led us to do a carefully controlled
investigation of this class of methods. Ultimately, our re-
sults argue that for the probabilistic model there is indeed
a statistical effect, but it comes mostly from local base-
composition bias and not from RNA secondary structure.
For the thermodynamic implementation (which evaluates
statistical significance by doing Monte Carlo shuffling
in fixed-length sequence windows, thus eliminating the
base-composition effect) the signals for noncoding RNAs
are still usually indistinguishable from noise, especially
when certain statistical artifacts resulting from local
base-composition inhomogeneity are taken into account.
We conclude that although a distinct, stable secondary
structure is undoubtedly important in most noncoding
RNAs, the stability of most noncoding RNA secondary
structures is not sufficiently different from the predicted
stability of a random sequence to be useful as a general
genefinding approach.
Contact: eddy@genetics.wustl.edu

Introduction
One objective of genome sequencing projects is the
identification of the complete set of genes contained
in the DNA sequence. Traditionally, most efforts have
been focused on the detection of protein-coding genes.
However, there are an unknown—and possibly large—
number of genes that produce functional noncoding
RNAs (ncRNAs) (Olivas et al., 1997). Known ncRNAs
include transfer and ribosomal RNAs (tRNAs, rRNAs)
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(Soll and RajBhandary, 1995; Zimmerman and Dahlberg,
1996), many small nuclear and small nucleolar RNAs
(Bachellerie et al., 1995; Maxwell and Fournier, 1995;
Nilsen, 1998; Tollervey, 1997), and many other RNAs
of diverse functions (Baserga and Steitz, 1993; Bovia
and Strub, 1996; Brockdorff et al., 1992; Brown et al.,
1992; Cech, 1993; Delihas, 1995; Greider and Blackburn,
1996; Muto et al., 1998; Watanabe and Yamamoto, 1994;
Willard and Salz, 1997).

To date, most novel ncRNAs have been found by
biochemical means. Noncoding RNA genes are typically
small and make poor targets for genetic screens. Mature
ncRNAs are often not polyadenylated, so they will be
underrepresented in polyA-selected, cDNA-based gene
expression surveys, such as expressed sequence tag se-
quencing (Marra et al., 1998). Even in extensively studied
organisms such as Saccharomyces cerevisiae, ncRNA
genes have escaped detection (Olivas et al., 1997). Given
the availability of complete genome sequences for a va-
riety of genomes, a computational approach to screening
genome sequences for ncRNAs could be advantageous.

Current computational approaches for ncRNA iden-
tification are essentially similarity-search algorithms
(Dandekar and Hentze, 1995; Lowe and Eddy, 1997,
1999; Woese and Pace, 1993). The advantage of a RNA
genefinder algorithm over a similarity-search algorithm
is that a genefinder is the appropriate tool to detect novel
RNA gene families. A genefinder looks for genes without
using homology information.

Genes that produce ncRNAs cannot be detected by
protein genefinding algorithms. Noncoding RNA genes
carry a much smaller amount of statistical information
than protein-coding genes. There is nothing in RNA genes
as strong as the codon bias, hexamer frequency, and open
reading frame signals exploited by protein genefinders. A
RNA genefinder remains elusive because it is difficult to
find a statistically significant signal for ncRNA detection.

In a pioneering RNA genefinder attempt, Maizel’s group
(Chen et al., 1990; Le et al., 1988, 1989, 1990) proposed
the use of secondary structure as a statistical signal for
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ncRNA gene detection. They proposed that interesting
RNAs will have a more stable secondary structure than
expected by chance. They designed an algorithm that uses
the MFOLD RNA secondary structure prediction program
(Zuker and Stiegler, 1981) to calculate the energy of a
RNA segment, and then performed a large number of
shufflings and recomputations of the energy in order to
calculate the statistical significance of the MFOLD energy
for the given segment. Others have followed the same
approach (Seffens and Digby, 1999).

Following Maizel’s work, we decided to explore further
the use of RNA secondary structure as a statistical signal
to detect ncRNA genes. We made two significant mod-
ifications to Maizel’s approach. First, we implemented
an algorithm for smoothly scanning a long genome
sequence with a RNA secondary structure prediction
algorithm, without having to partition the genome into
overlapping windows. Second, instead of using an energy
minimization model, we use a stochastic (probabilis-
tic) context-free grammar (SCFG) for RNA secondary
structure prediction. In combination with our scanning
algorithm, the probabilistic approach has a pleasing
advantage; an expected log-odds score gets worse as the
length of a scored subsequence increases, so, in a log-odds
scoring system, one can do ‘local alignment’ and identify
high-scoring subsequences under a certain maximum
target length. The same is not true for free energies
because expected thermodynamic stabilities get better
with subsequence length; the best-scoring subsequence
will always tend to be the longest one, making it difficult
to identify meaningful high-scoring subsequences unless
one repeats the search with multiple different fixed-length
window sizes. In the long run, a probabilistic model
should also permit us to include statistical biases that are
known to occur in biological RNA structures but are not
well described in the current thermodynamic model for
RNA structure stability (Ortoleva-Donnelly et al., 1998).

Although our intention is to use these algorithms to
detect novel ncRNA genes, they are actually scanning
for any significant structured RNA. The genefinder could,
for instance, detect cis-regulatory regions in mRNAs
that involve a significant RNA structure. We use the
term ‘ncRNA gene’ throughout the paper, but it should
be understood that this is shorthand for ‘a significantly
folded subsequence.’ It would involve further analysis to
distinguish between ncRNA genes and other structural
RNA features detected by any algorithm of this type.

We tested the RNA maximum-likelihood scanning
algorithm in genomic sequences with known RNA genes.
Our algorithm finds significant signals for structured
RNA genes, such as tRNAs in Caenorhabditis elegans.
However, those RNA genes also have a strong base-
composition bias with respect to the background C.
elegans base frequencies. To test how much of a given

signal is truly due to secondary structure, instead of just
being due to base-composition bias, we also constructed
a simple scanning algorithm that only searches for
base-composition biases. We have also implemented a
scanning algorithm that essentially reproduces the Le
and Maizel thermodynamic approach (Le et al., 1988),
and systematically evaluated whether it could detect
ncRNA genes. The study presented here addresses an
important concern affecting secondary structure screening
algorithms in general: Does biological RNA secondary
structure carry enough statistical signal for that to be a
useful ncRNA genefinder?

Methods: three scanning algorithms
Here we describe the different scanning algorithms used
in this paper. We start with the probabilistic model
for RNA folding that we implement in our maximum
likelihood algorithm. Subsequently, we also describe
our reimplementation of the thermodynamic scanning
algorithm first introduced by (Le et al., 1988), with some
attention to the statistical significance of Z-scores. Finally
we describe the base-composition scanning algorithm
used to compare the two previous structural algorithms.

The probabilistic model of RNA folding
To date, the most accurate algorithms for single-sequence
RNA folding—implemented in the programs MFOLD
(Zuker and Stiegler, 1981), ViennaRNA (Schuster et
al., 1994), and (with pseudoknots) in Rivas and Eddy
(1999)—use thermodynamic parameters (Freier et al.,
1986; Turner et al., 1987) to describe the different
elements of RNA secondary structure. These algorithms
calculate the free energy �G associated with a given
folding structure. However, folding free energies are
not good signals for the detection of highly structured
RNAs since expected free energies for random sequence
generally decrease linearly with the size of the sequence,
so it is difficult to find optimal substructures within a
longer sequence (such as a genome).

In the search for a statistical signal for RNA structure
we turned towards a probabilistic model. There is a cor-
respondence between probabilistic approaches described
by SCFGs and the Turner/Zuker thermodynamic model
for RNA folding (Durbin et al., 1998), and we have a
special interest in the application of probabilistic mod-
eling to biological sequence analysis. Additionally, the
scoring system used with probabilistic methods (log-odds
scores) is suitable for finding suboptimal sequences
within a larger region. Log-odds scores—which compare
the likelihood of a sequence being generated by the
model versus the likelihood of being generated by a null
model—have the power to determine whether a local
region fits the model (i.e. has a ‘good’ folding) or fits
better to the null model (i.e. has no significant folding).
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A scanning implementation of log-odds scores works in
much the same way as Smith–Waterman algorithm scores
do for local sequence alignment, where both are able to
single out local regions that score better than random
expectation.

We have, therefore, implemented a probabilistic model
for RNA folding using a stochastic context-free grammar
that closely reproduces the main features of the current
Turner/Zuker thermodynamic model of RNA folding.
The main difference is that here we have replaced the
thermodynamic scores with probabilistically determined
parameters. The model (which has been trained on tRNAs
and rRNAs) incorporates some small variations with
respect to MFOLD, so we give the exact description of
the model below.

Description of the model. To understand this section you
should be familiar with context-free grammars (CFGs)
(Durbin et al., 1998). These are good models for de-
scribing RNA folding (Durbin et al., 1998; Eddy and
Durbin, 1994; Lefebvre, 1996; Sakakibara et al., 1994;
Searls, 1992), because they allow the correlated emission
of two residues. You should also be familiar with the
Zuker algorithm (Zuker and Stiegler, 1981)—which is
identical to a CFG parsing algorithm—because our model
is going to closely reproduce the same folding features.
Finally, you should be familiar with the diagrammatic
representation introduced in Rivas and Eddy (1999),
which gives a convenient visualization of CFGs.

The states of the grammar are labeled W , WB , V ab.
They correspond to the non-gapped matrices wx , wbx and
vx of the diagrammatic representation described in Rivas
and Eddy (1999). These diagrams constitute a convenient
visual representation to enumerate which configurations
we take into account in the model. States W and WB
represent a fragment in which the ends (i, j) are either
paired or unpaired. State V ab on the other hand, represent
a fragment in which the ends (represented by nucleotide
a at position i , and nucleotide b at position j) are
paired.

Here we provide the grammar rules, together with their
equivalent diagrammatic representation. The diagrams
(one for every transition of the grammar) are a convenient
way to enumerate the different configuration to be taken
into account. A wavy line represents a simultaneous
pairwise emission of two bases. A dashed line represents
the unknown state of i, j . Lower case letters, i, j, k,

represent positions, and si , s j , sk, stand for the terminal
(i.e. nucleotide) emitted at those positions.

W acts as the starting state. W and WB are formally
equivalents, but WB is used exclusively for starting
multiloops. The production rules for W are (for WB ,
replace W by WB everywhere in the recursion),

The V ab are the paired states, that is, the states we are
in after emitting a pair a, b ∈ alphabet. We therefore
have 16 paired states, one for each pair of possibly
emitted nucleotides. This allows us to retain information
about a neighboring pair when another one is to be
emitted, as in stacking correlations. The recursion for state
V ab is (without including hairpin mismatches, which are
included in the program),

Here the first transition corresponds to hairpin loops,
and is equivalent to function F H(i, j) in Zuker and
Stiegler (1981); the second transition corresponds to
stems, bulges, and internal loops, and is equivalent to
function F L(i, j, k, l) in Zuker and Stiegler (1981); the
last transition corresponds to multiloops, that is, loops
closed by more than two hydrogen bonds.

The context-free grammar for RNA folding described by
the previous production rules is independent of whether
we are doing a Turner/Zuker thermodynamic implemen-
tation (non-stochastic) or a probabilistic (stochastic) im-
plementation. Each production rule has associated a score
in the non-stochastic implementation (the energy ‘cost’ in
the Zuker implementation) that corresponds to a probabil-
ity in the stochastic counterpart. For example, a stacking
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of two pairs (a-b and c-d) is represented by the transition

V ab −→ cV cdd. (1)

This production can be interpreted either thermodynami-
cally or stochastically by

−�G[F L(ab, cd)] + V cd(i + 1, j − 1), (2)

or

log
P[F L(ab, cd)]
P N (c)P N (d)

+ V cd(i + 1, j − 1). (3)

Where �G[F L(ab, cd)] and P[F L(ab, cd)] stand for
the free energy and probability respectively of the stem
F L(ab, cd). P N (c) is the probability of nucleotide c
being generated by the null model, and V cd(i, j) is the
dynamic programming matrix for state V cd . Note the
correspondence between ‘negenergy’ scores (−�G)
and ‘log-odds’ scores. For instance, we can compare
the scores assigned by the two models for one un-
favorable stacking F L(AU, GG), and one favorable
stacking F L(AU, GC). While the first has a negenergy
of −�G[F L(AU, GG)] = −0.4 kcal/mol, the second
stacking has a negenergy of −�G[F L(AU, GC)] =
+1.7 kcal/mol. Similarly, the unfavorable stacking
F L(AU, GG) has a worse log-odds score than the
favorable stacking F L(AU, GC) (−3.0 versus +2.1, in
bit units, using a C.elegans background null model).

The scanning algorithm. For a given formal context-free
grammar, such as the one presented here for RNA fold-
ing, we can implement different dynamic programming
algorithms. For instance, MFOLD uses the non-stochastic
implementation of the grammar to calculate, for a given
RNA fragment, the free energy corresponding to the best
folding. The equivalent of this MFOLD calculation, using
the stochastic version of the RNA folding grammar, is re-
ferred to as the Cocke–Younger–Kasami (CYK) algorithm
(Durbin et al., 1998).

Similarly, the partition function calculations introduced
by McCaskill (1990) to be used in the thermodynamic
implementation (in which all possible folding configura-
tions are taken into account) have their counterpart in the
Inside algorithm for a SCFG (Durbin et al., 1998). The
Inside algorithm calculates the probability of a RNA se-
quence given a SCFG by summing over all possible fold-
ings (paths) that the model allows:

P(sequence | SCFG) =
∑
paths

P(sequence, path | SCFG).

(4)
We have implemented the genefinder as an Inside algo-
rithm. In this way we are taking into account suboptimal
foldings that could contribute to the stability of the struc-
ture almost as much as the ‘best path’ or optimal folding
calculated by the CYK algorithm.

Because we want the algorithm to scan over a large
genome of length L , we apply the algorithm to a sub-
sequence of maximum target length w, and we sweep
this maximum target window across the whole genome.
The algorithm is not limited to scoring regions of fixed
length w. The algorithm looks at all subsequences of
length ≤ w, so that it can find the exact 3′ and 5′ ends
of a high-scoring subsequence (potentially, an interesting
RNA) embedded in a given region.

The scanning algorithm requires as many dynamic
programming matrices as the grammar has states. The
matrices are W , WB , and V a,b. For a given position j in
the genome, and a given window size d up to a maximum
target length w, we scan from positions i ≡ j − d
to j . The ( j, d) coordinate system allows us a smooth
implementation of the dynamic programming recursions
using matrices that have dimension w×w, independent of
the target sequence length L .

The recursion for state W is

W ( j, d) = pW [s j−d W ] · W ( j, d − 1) left
+pW [W s j ] · W ( j − 1, d − 1) right
+pW [V s j−d s j ] · V s j−d s j ( j, d) pair

+pW [s j−d V s j−d+1s j ] · V s j−d+1s j ( j, d − 1)

left dangling
+pW [V s j−d s j−1s j ] · V s j−d s j−1( j − 1, d − 1)

right dangling
+pW [s j−d V s j−d+1s j−1s j ] · V s j−d+1s j−1( j − 1, d − 2)

left-right dangling
+pW [W W ] · ∑

d1

W ( j − d + d1, d1) · W ( j, d − d1 − 1).

bifurcation.

(5)
For paired state V s j−d s j we have

V s j−d s j ( j, d) = pV
s j−d ,s j

[F H(s j−d+1 · · · s j−1)]
hairpin loops

+ ∑
d1,d2

pV
s j−d ,s j

[F L(s j−d+1 · · · s j−d+d1s j−d2 · · · s j−1)]·
V s j−d+d1 s j−d2 ( j − d2, d − d1 − d2)

stems, bulges, internal loops
+pV

s j−d ,s j
[WB WB]·∑

d1
WB( j − d + d1 + 1, d1)·

WB( j − 1, d − d1 − 3),

multiloops,
(6)

for 1 ≤ j ≤ L , 0 ≤ d ≤ min( j, w − 1),

0 ≤ d1 ≤ d, 0 ≤ d1 + d2 ≤ d.

The symbols pstate[trans] represent the transition prob-
abilities. They are the parameters that characterize the
SCFG. For example, pW [aW ] is the transition probability
from state W to state W after emitting left nucleotide a.
The transition probabilities are calculated as the observed
frequencies of the different transitions in a training set of
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known structured RNAs, with the conditions∑
trans∈state

pstate[trans] = 1, ∀ state. (7)

We use this model for discrimination between structured
and not structured regions by calculating log-odds scores,
that is, we compare the likelihood that the sequence has
been generated by the folding model with the likelihood
of being generated by a null model that emits the sequence
without structure. The LOD score of a sequence fragment
(s1 . . . sn) with n ≤ w is given by,

LOD(s1, sn) = log2
P(s1 . . . sn | SCFG)

P(s1 . . . sn | Null)

= log2
W (n, n − 1)

P(s1 . . . sn | Null)
, (8)

The null model (N ) emits the sequence nucleotides
according to an estimated ncRNA base composition
(P N

A = P N
U = 0.33, P N

C = P N
G = 0.17 throughout

this paper, which is the background base composition
for C.elegans and also for the noncoding regions of
S.cerevisiae). Finally, W (n, n − 1) is given by (5).

Thus the null model is simple enough that the previ-
ous quotient (8) can be factored by substituting every
transition probability that emits a number of nucleotides
(a1 . . . an) by the probability quotient

Pstate[trans(a1 . . . an)] −→
Pstate[trans(a1 . . . an)]/P N (a1) . . . P N (an). (9)

The training set and parsing algorithm. To train the
probabilistic model we have used a set of structural
RNAs whose secondary structure is already known by
comparative analysis. In the best current implementation,
the training set includes 1415 tRNAs from the Sprinzl
tRNA database (Steinberg et al., 1993), and 208 small
subunit ribosomal RNAs from the de Wachter rRNA
structural database (Van de Peer et al., 1994).

When the training set is parsed according to the
grammar, it accounts for 231 796 transitions used to
estimate 1722 free parameters in the probabilistic model
(after some probabilities have been tied to each other;
refer to the source code for a detailed description of
the tied probabilities). In comparison, MFOLD has 986
free-energy parameters to take care of stacking energies,
terminal mismatches for hairpin and interior loops, dan-
glings and hairpin loop destabilizing energies, and some
miscellaneous energy parameters.

We estimate transition probabilities tα from the ob-
served frequencies in the training set. We use Laplace
priors, that is, if we find Cα counts for transition α

then we estimate the probability of this transition by
tα = (1 + Cα)/

∑
α′(1 + Cα′

). The absolute uncer-
tainty for a given tα , σ(tα) = √

Cα/
∑

α′(1 + Cα′
), is

never worse than 2%, which is similar to the estimated
error for free energy change in the thermodynamic
parameters (Freier et al., 1986). The relative uncer-
tainty, σ(tα)/tα = √

Cα/(1 + Cα), varies from 50%
for almost-forbidden transitions down to 1.2% for the
single-emission transitions in state WB . These variances
correspond to our sample of a database of RNAs (the
sample variance). How accurately this sample variance
estimates the variance of parameters estimated from all
structured RNAs (the parametric variance), depends on
how well rRNAs and tRNAs reflect general properties of
RNA folding, and that is generally unknown (Sokal and
Rohlf, 1981). (However we can safely assume that the
parametric variance is higher than the sample variance. It
would be desirable to train the model on a wider variety of
RNAs if secondary structure data were readily available.)

Tested on tRNAs, the accuracy of the folding corre-
sponding to the ‘best-path’ (CYK algorithm) is less good
than that of a thermodynamic implementation (Rivas
and Eddy, 1999; Zuker and Stiegler, 1981) (even though
tRNAs were part of the training set for the model), but
significantly better than a simple base-pair maximization
algorithm such as the original Nussinov algorithm (Nussi-
nov et al., 1978). This is an important caveat: our model
sacrifices accuracy in RNA folding prediction in return for
substantial advantages in the ability to scan a genome and
detect high-scoring (significantly folded) subsequences.
We may compensate somewhat for this weakness by our
choice of an inside algorithm, summing over all possible
structures in the region rather than relying on the single
maximum scoring structure.

The thermodynamic model of RNA folding
Description of the model. The model for the thermody-
namic implementation is the same as the one presented
for the probabilistic model, the only difference being that
transition scores are not probabilities, but are taken instead
from experimentally determined thermodynamic informa-
tion provided by the Turner group (Freier et al., 1986;
Turner et al., 1987).

The scanning algorithm. In terms of its implementation,
the thermodynamic algorithm is just a scanning version of
Zuker’s MFOLD (Zuker and Stiegler, 1981), implemented
including coaxial energies [as in Rivas and Eddy (1999)].
One of the differences is the fact that, while the probabilis-
tic model is an Inside algorithm, in the thermodynamic al-
gorithm the score assigned to a given window corresponds
to the score of the best possible folding—also referred to
as a CYK algorithm. In addition, while the probabilistic al-
gorithm looks at all subsequences of length ≤ w, the ther-
modynamic algorithm only scores regions of fixed length
w.

Another important difference is that statistical signifi-
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cance is evaluated using energy Z-scores. Le et al.’s (1988)
Z-score calculates the number of standard deviations by
which the energy of a fixed-window sequence is differ-
ent from the average energy of the shuffled sequences. For
a given quantity G (such as the free energy) that takes a
seq = {s1 . . . sN } as argument, we define the Z-score of G
for seq as,

Z-score(G; seq) = G(s1 . . . sN ) − G(si1 . . . siN )

σ [G(si1 . . . siN )] , (10)

where G(si1 . . . siN ) is the average of G over a large
number of permutations (shufflings) {si1 . . . siN } of the
sequence, and σ [G(si1 . . . siN )] is the standard deviation
of G over these permutations.

Our thermodynamic scanning algorithm is a close
re-implementation of Maizel’s RNA genefinder (Le et
al., 1988)—apart from a change in the sign in the
way we report Z-scores, since we calculate Z-scores of
‘negenergies’ (−�G).

Approximate estimate of the statistical significance of
Z-scores. Assuming that the distribution of negenergy
scores on randomized sequences is Gaussian (which is
approximately but not exactly true) Z-scores give a direct
measure of statistical significance: for example, a Z-
score ≥4 would only be expected to occur once in every
31 000 samples (i.e. subsequences from the genome that
fit the ‘random’ null hypothesis), according to a Gaussian
distribution.

We can also estimate the significance of Z-scores using a
second, less common statistical approach: the distribution
of extreme values for shuffled sequences. That is, how
likely is it that the given Z-score of a biological sequence
is larger than the maximum Z-score from a collection of
randomized versions of the same sequence? When that
likelihood is high (say, 99% or higher), the Z-score can
be considered significant.

Consider a sequence of length L that has an observed
Z-score (z) for which we want to estimate significance.
We can look at the distribution of the maximum of the Z-
scores of n random sequences

P(zmax
n > z∗), where zmax

n = max{z1, . . . , zn},
(11)

where the set of n random sequences was generated
by shuffling the original sequence—thus destroying the
secondary structure, but keeping the base composition
intact—and have Z-scores z1, . . . , zn . If the probability
of this maximum being greater than the Z-score of the
real sequence is small (such as 0.01 or smaller), then
the Z-score will be considered a significant measure of
secondary structure.

Assume that the distribution of Z-scores of random
sequences is normal with µ = 0 and standard deviation

σ 2 = 1 (N (0, 1)). The distribution of maximum Zmax
n

(known as the extreme value distribution) of a normal
distribution is known, in the limit of large n, and has the
form (Waterman, 1995)†

P(Zmax
n > Z∗) � 1−exp

(
−e−an(Z∗−bn)

)
, for n large,

(12)
with

an = √
2 ln n, (13)

bn = √
2 ln n − 1

2

ln ln n + ln 4π√
2 ln n

. (14)

Therefore, if we sample n = 100 random versions of
the original sequence at the time, and demand that the
probability that the maximum Z-score for the random set
exceeds the Z-score of the actual sequence is no bigger
than 0.01, then by (12) Z-score values have to be at least
of the order of 3.8 to be considered significant.‡

Operationally, therefore, we will use a threshold of Z=4
to define ‘significant’ hits.

The base-composition model
This is the simplest model able to detect relative CG-
biased regions in a genome. While structural RNAs are
about 50% CG rich on average, the C.elegans genome
is quite AT rich (66%). For that reason, the base-
composition model we designed—which formally is a
stochastic regular grammar with only one state—emits
nucleotides with an equally likely uniform distribution
(which is approximately the probability distribution of the
RNA training set used for the probabilistic model). On
the other hand, the null model used to calculate the LOD
scores favors AT-rich emissions, as the genomic C.elegans
background does.

In practice, the emission probabilities of the base-
composition model are 0.25 for any nucleotide, and the
emission probabilities of the null model are P N (A) =
P N (U ) = 0.33 and P N (C) = P N (G) = 0.17. As
a result, the model gives a log-odds score of −0.40
for any A or U found in the sequence, and a log-odds
score of +0.56 for any C or G. The LOD scores with
this base-composition model of a sequence containing ni

† It is often the case that the distribution of Z-scores of the random sequence
deviates from a normal distribution towards a larger positive tail (see further
results). Thus in these cases, the Z-score cut-off for significance provided
here is a lower bound of the actual threshold.
‡ The general result is this: if we sample n permuted sequences (with n large)
and demand that the probability that Zmax

n exceed Z be no more than P , then
we require that Z> Z∗ with

Z∗ = bn − ln(− ln(1 − P))/an . (15)
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nucleotides for i = {A, C, G, U } is given by,

LOD(seq) = −0.40×(n A+nU )+0.56×(nC +nG). (16)

The base-composition model is implemented in a scan-
ning version similar to that of the probabilistic structural
scanning algorithm: e.g. we detect maximum-scoring sub-
sequences with length ≤ w.

Implementation
The algorithms have been implemented in ANSI C on In-
tel/Linux and Silicon Graphics Origin200 platforms. The
probabilistic scanning algorithm has a time complexity of
O(Lw2) (after internal loops have been reduced in one
order) and a storage complexity of O(w2), for a genome
of length L , scanned with a maximum target length w;
on an SGI O200 R10K/180 it analyzes 40 bases per s,
for w = 100 bases, sliding one position at a time. It takes
about 87 h to process the whole S.cerevisiae genome
(12.5 Mb). As for the thermodynamic scanning algorithm,
the calculation of free energies has the same complexity
in time and memory as that of the maximum-likelihood
scanning algorithm; however, the calculation of Z-scores
has a worse-case time complexity of O(Lnw3) per chosen
window length, where n is the number of permutations
performed to evaluate Z-scores, and w is the fixed-length
scanning window. [In Le et al. (1988) and Chen et al.
(1990), Maizel’s group has used a precalculated look-up
table approach to remove the factor of n, but here we have
not done the necessary precalculations and curve fitting.]
In the results presented here we have used n = 100
permutations. The complexity in memory of the simple
base-composition scanning algorithm is O(Lw) while the
algorithm is linear in memory. The code is available from
http://www.genetics.wustl.edu/eddy/software/ncrnascan.

Results: probabilistic CFG model
Preliminary results
The structural probabilistic algorithm produces what at
first glance appear to be quite promising results when
applied to various biological sequences with known RNA
genes. Figure 1 gives an example for a fragment of
the C.elegans clone C28G1 which contains two tRNAs,
between positions 20130–20202 and 20346–20417. Other
C.elegans RNA genes such as SRP-RNA, U1, U6, etc. give
similarly strong scores.

To estimate the statistical significance of the log-odds
scores, we generated 10 megabases of random sequence
sampled uniformly from a equally likely distribution of
nucleotides. We observe that it requires log-odds larger
than 9.1 to observe no more than 10 false positives
per megabase scanning with a maximum window length
of 100 nucleotides, and discarding hits less than 25

nucleotides long. The hits in Figure 1, and for other tested
RNAs, are clearly above this significance threshold.

We also applied the structural scanning algorithm to
other genomes. In Methanococcus jannaschii, the signals
for tRNAs were stronger than in C. elegans. In S.
cerevisiae, the tRNA signals were weaker than in C.
elegans. In Escherichia coli, tRNAs did not produce,
in general, significant signals. These observations imply
a strong correlation between the strength of a tRNA
hit and the difference in CG base composition between
the tRNA and the background base composition of the
given organism. While tRNAs retain a similar CG-rich
base composition across species (ranging from 54% CG
in yeast to 67% CG in M. jannaschii), the organism
background base compositions vary tremendously: M.
jannaschii background is very AT rich (70%); C. elegans
background is quite AT rich (66%); S. cerevisiae is also
AT rich but to a lesser extent (61%); however, E. coli is
not AT rich at all (50%). In general we observe that the
larger the relative CG bias of the RNA genes, the stronger
the signals appear to be.

Comparison to a simple base-composition model
The strong correlation between RNA gene detectability
and the relative CG base-composition bias forced us
to carefully analyze the base-composition component
of the signals obtained with our algorithm. We con-
structed a scanning algorithm that only searches for
base-composition biases, looking for regions of relatively
high CG content. No structural information of any kind is
added to the model (see Section The base-composition
model).

When we apply the base-composition scanning algo-
rithm to the clone fragment C28G1 (see Figure 2), the
result is remarkably similar to those obtained with the
structural algorithm (cf. Figures 1 and 2). This observation
also holds for various other RNA genes.§

To elucidate how much of the signal we see with
the structural scanning algorithm is due to secondary
structure versus base composition (i.e. primary structure)
we performed two types of experiments which we describe
in the following subsections.

Shuffled sequences
In this type of experiment we try to determine whether the
structural algorithm can distinguish a real RNA gene from
a shuffled version of that gene. We start with biological
sequences containing real known RNA genes for which we
find apparently significant hits, and recalculate the score

§ An estimation of the statistical significance of the log-odds generated by
this model, similar to the one used in Section Preliminary results, indicates
that for log-odds larger than 11 no more than 10 signals per megabase
(signals of at most 100 bases, and ≥66% CG rich) are generated by sampling
from an equally likely uniform distribution of nucleotides.
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Fig. 1. Results of applying the probabilistic model for the C.elegans clone C28G1 fragment (19877–21256). The ordinate represents LODs
in bits. This clone fragment contains two tRNAs represented under the abscissa by ‘****’ (local coordinates: 253–325 and 469–540). Scores
are represented by a dot placed at the end of the scoring segment. The scoring segment can be of variable length, up to a maximum target
length (100 nucleotides in this example). The horizontal bars represent the maximum score that includes a given position.

by shuffling the high-scoring sub-sequence.
The shuffling procedure we propose here is different

from the one described by Maizel to estimate statistical
significance of energies (Le et al., 1988). In their case,
because they work with a fixed scanning window, the
shuffling usually covers a region larger than the RNA
gene. Therefore, their shuffling procedure not only de-
stroys the secondary structure, it also potentially modifies
the base composition of the gene contained within the
larger window. Here, because we do not use a fixed
window length, we are able to shuffle the exact segment
that defines the RNA gene. In that way, our shuffling
process maintains the exact base composition of the RNA
gene.

If the score of the high-scoring sub-sequence is due
to secondary structure, our shuffling process will make
the significance of the hit diminish considerably—because
the pattern that presumably produced a particular stable
folding has been randomized. On the other hand, if the
score is merely due to a base-composition bias, there will
be little difference between the original score and the
shuffled one.

Figure 3 shows the results for the C.elegans clone

C28G1. As expected, the base-composition model retains
most of the scoring shape after the shuffling—after
all, base composition contains no structural information.
Surprisingly though, the structural algorithm also retains
the tRNA hits. This result, which has been reproduced for
other RNA genes present in other clones, indicates that
the regions of apparent significance are still significant
after shuffling and destroying the secondary structure. As
expected, the shuffled sequence scores tend to smear out as
we expand the shuffled region around the scoring regions
in Figures 1 and 2 (calculations not shown).

Chimeric sequences

The above experiments indicate that shuffling does not
destroy the statistical signal. However, the structure may
still be contributing a significant component of the score.
To test this hypothesis we have performed the inverse
experiment: embed a real RNA sequence in a random
sequence of identical base composition.

If the structural algorithm is able to detect the RNA
motifs above the background then we could say that
biological RNAs have enough secondary structure for it to
be used as a genefinder signal. Otherwise, we would have
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Fig. 2. Result of applying the base-composition model to the C.elegans clone C28G1, fragment (19877–21256). As in Figure 1, scores are
represented by a diamond placed at the end of the scoring segment, and the solid line represents the maximum score that includes a given
position.

to conclude that the secondary structure signal extracted
by the algorithm is not sufficient because we cannot
distinguish a real ncRNA from something that only shares
with it the same base composition. Unfortunately, the
latter scenario is the one that holds for most of the
examples we have tested, of which we show two examples
in Figures 4 and 5.

Results: thermodynamic CFG model
The previous experiments indicate that using the proba-
bilistic model we can detect ncRNAs in many genomes,
but simply as the result of base-composition bias and not
because of any statistical significance of their secondary
structures. We were concerned that our negative results
appeared to conflict with the results of Maizel’s thermo-
dynamic scanning algorithm. This led us to re-examine the
thermodynamic scanning algorithm.

In their thermodynamic implementation, Le et al. (1988)
used Z-scores to evaluate the significance of the free-
energy scores. The Z-score normalizes the sequence
energy over shuffled versions of the same sequence;
therefore, a Z-score should normalize relative to base-
composition content. Are Z-scores a reliable detector of
biologically relevant RNA secondary structures? That is,

how much secondary structure signal is left once we
control for base-composition effects?

In their work (Chen et al., 1990; Le et al., 1988, 1989,
1990) the authors did not provide any test study that
could allow us to evaluate whether biologically interest-
ing RNAs systematically have significant Z-scores; the
evidence they presented was anecdotal in nature. We have
re-implemented the Maizel algorithm (see Section The
thermodynamic model of RNA folding), analyzed the
behaviour of the algorithm for known RNA genes, and
studied the effect of base-composition bias.

Our results for Z-scores for retrovirus HIV-1 [isolate bh-
10, 9748 nucleotides long, Genbank accession: X01762,
(Ratner et al., 1985)] given in Figure 6 are similar to those
presented in (Le et al., 1990). The signal around position
500 corresponds to the cis-acting target sequence (referred
to as TAR, positions: 454–514) that interacts with Tat
protein. The signal around position 8000 corresponds to
the Rev responsive element (referred to as RRE, positions:
7789–8031) that interacts with the Rev protein (Rosen,
1991). The results for retrovirus HIV-1 using Z-scores
are comparable with those obtained using the probabilistic
scanning algorithm in Figure 7, and for that matter, with
those of the base-composition algorithm, Figure 8.
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Fig. 3. Results for the C28G1 fragment after shuffling the exact segment that generated every score in Figures 1 and 2. The disappearance
of the two tRNA signals would be an indication of secondary structure. The tRNA signals remain for both the base-composition model (top)
and the structural model (bottom) after altering the secondary structure pattern.
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Fig. 4. Chimeric sequence that contains tRNA DA0260 [an alanine coding tRNA from phage T5 from the Sprinzl database (Steinberg et al.,
1993)]. The DA0260 tRNA—75 nucleotides, %A = 21.6, %C = 24.4, %G = 32.4, %U = 21.6, and represented by ‘****’—is flanked at
both ends by 1000 nucleotides randomly generated with the same base composition as DA0260. The top figure indicates the base composition
of the chimeric sequence. The bottom graph shows the inability of the structural algorithm to distinguish the tRNA from the background.
Notice that the log-odds scores are consistently high due to the high CG content of the sequence.
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Fig. 5. Chimeric sequence that contains the soy bean mitochondrial small-subunit (SSU) rRNA (GlymaxMi.MPL from the De Wachter
database (Van de Peer et al., 1994)). This SSU—1990 nucleotides, %A = 24.4, %C = 23.3, %G = 31.5, %U = 20.8, and represented by
‘****’—is flanked at both ends by 1000 nucleotides randomly generated with the same base composition as the SSU. As in Figure 4, the
SSU signal generated by the structural algorithm is buried in the background.
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Fig. 6. Negenergy Z-score plot for HIV-1 retrovirus (isolate bh-10) generated using our implementation of the thermodynamic algorithm.
This figure closely reproduces the results presented in Le et al. (1990, Figure 1).

Fig. 7. Log-odds scores plot for HIV-1 retrovirus (isolate bh-10) generated using our probabilistic algorithm for secondary structure. Results
are quite similar to those generated with the thermodynamic algorithm.
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Fig. 8. Log-odds scores plot for HIV-1 retrovirus (isolate bh-10) generated using the base-composition bias algorithm. Results are comparable
to those generated with either of the structural algorithms (Figs 6 and 7).

Fig. 9. Negenergy Z-scores for the C.elegans clone C28G1, fragment (19877–21256). The scanning window is 85 nucleotides, and we slide
one nucleotide at the time. The ‘****’ represent the location of the two tRNAs present in this clone fragment. We calculate Z-scores with
respect to ‘negenergies’ (−�G), so that a more positive Z-score indicates allegedly higher thermodynamic stability. Only the Z-score of the
second tRNA stands above the background, but the score is at best marginally significant.
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Fig. 10. Negenergy Z-score results for embedding RNA genes in random sequences of identical base composition. These two examples,
phage T5 tRNA DA0260 and soy bean mitochondrial SSU, correspond to the examples presented for the probabilistic model, also with
negative results.
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Fig. 11. Negenergy Z-score results for embedding the RNaseP-RNA in Agrobacterium tumefaciens—402 nucleotides, %A = 23.6, %C
= 27.6, %G = 35.5, %U = 13.4—in random sequence of identical base composition. This figure illustrates a case in which parts of the
embedded ncRNA produce Z-scores larger than 4 units, which can be detected above the background of the same base composition. This
result is consistent with our estimated lower limit of Z-score 4 units for significance.
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Fig. 12. Histogram of negenergy Z-scores for a collection of 1 415 tRNA genes [Sprinzl database (Steinberg et al., 1993)]. The distribution
has a median of � 1.65. Only 1.8% of the tRNAs have Z-scores larger than 4.0.
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Fig. 13. Histogram of negenergy Z-scores for a collection of 243 RNA genes other than tRNAs. The set includes: 67 SRPs, 18 group I introns,
36 U2s, 104 RNaseP-RNAs, and 18 telomerase RNAs. The density distribution has a median of � 3.35. In this case 29.7% of the RNA genes
have Z-scores larger than 4.0.

Z-scores for energies

Our tests seem to indicate that most biologically relevant
RNA structures are at best marginally detectable by energy
Z-scores. For instance, if we apply the thermodynamic
algorithm to the C.elegans clone C28G1, using a window
of 85 nucleotides, the two tRNAs (which have Z-scores
∼ 3–4) are hardly detected above the background signals
(see Figure 9). If we repeat the chimeric sequence
experiment of Section Chimeric sequences we observe
(similar to the probabilistic model) that relevant RNA
genes cannot be distinguished from a background of the
same base composition (see Figure 10). It requires Z-
scores of about 5 units, such as in the RNaseP-RNA of
Agrobacterium tumefaciens, for the real signal to start to
be reliably detected above the background (Figure 11).

An approximate statistical estimate of the significance
of Z-scores indicates that we should not trust any Z-
score that is lower that ∼4 (see Section Approximate
estimate of the statistical significance of Z-scores).
This conservative estimate of the Z-score cut-off is
consistent with the previous results, in which we could not
discriminate above background the negenergy Z-scores for
RNA genes that were below that lower limit of 4 units.

We have also calculated the Z-scores corresponding to
a collection of known RNA genes. Unfortunately, as we
observe in Figure 12, the majority of tRNA genes (∼98%)
have lower Z-scores than the cut-off. For a collection
of other ncRNAs, only 30% show significant secondary
structure above the cut-off (Figure 13). Similarly, results
presented for mRNA Z-scores (Seffens and Digby, 1999)
also fall for the most part below the significance cut-off
of Z-score 4 units. Therefore, although there seems to be
a slight bias towards real ncRNAs having somewhat more
stable structures than randomized sequences of the same
base composition, the effect is not strong enough for most
ncRNAs to be reliably distinguished from the background
of shuffled sequences.

In a real genome, our situation is probably even worse.
Using Z-scores as our measure of significance makes the
assumption that the genomic background behaves like
random sequence, giving Z-scores distributed normally
around zero. However, this does not have to be the
case. For example, in the course of our experiments
we had noticed that many RNA genes have a different
base composition than the surrounding genome (cf.
C28G1), which made us consider the following kind of
artifact: a small CG-rich island, positioned in a larger
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(otherwise AT-rich) window. This type of construct
(although created with no secondary structure) may have
a positive Z-score, just because a Monte Carlo shuffling
procedure will destroy the original base-composition
inhomogeneity. To test this hypothesis we have generated
a set of unstructured sequences with an inhomogeneous
base composition. The sequences of this experiment are
CG rich in their first half, and AT rich in their second
half. We observe in Figure 14 that while sequences with
homogeneous base composition (either CG rich or AT
rich) have a distribution of Z-scores centered around
zero, the set with inhomogeneous base composition is
skewed towards positive Z-scores (centered around 0.7).
An algorithm which has to use a fixed-length window
for a given calculation would be the most sensitive
to this heterogeneous base-composition effect (since
the ends of a gene are not properly calculated). This
fixed-length feature might artificially introduce inhomo-
geneities within the fixed window used to calculate the
Z-scores.

Furthermore, in another recent paper, a second type of
statistical artifact is suggested: Workman and Krogh argue
that most of the positive Z-scores observed in mRNA
stabilities disappear when they are compared with shuffled
sequences that preserve dinucleotide composition, rather
than simply preserving mononucleotide composition
(Workman and Krogh, 1999).

Z-scores for log-odds
After the experiments presented in Section Results:
Probabilistic CFG model for the probabilistic model,
it is clear that most of the signal provided by the
probabilistic structural model is due to base composition.
Our results indicate that a ‘significant’ log-odds score
(according to the empirical estimation of significance
given in Section Preliminary results) is only signaling
a region that has a base composition bias larger than
that expected by sampling from a uniform distribution of
nucleotides.

In order to extract any information about secondary
structure from log-odds, we have to be able to remove the
base-composition bias. A possible way of achieving that
goal is to calculate the Z-scores associated with the log-
odds scores provided by the model—in the same fashion
that we use (10) in the previous section to calculate Z-
scores of negenergies.

Similarly to what occurs for Z-scores of negenergies,
we observe that log-odds Z-scores of known structural
RNAs are only marginally significant (Figures 15 and 16).
Furthermore, it requires a Z-score of 5.05 for the CG-rich
unstructured sequences (3.45 for the AT-rich sequences) to
have only three (out of the 1400) unstructured sequences
scoring above that value. We also observe that base-
composition heterogeneities shift the curve of log-odds

Z-scores for unstructured sequences towards significant
values, and that this shift has nothing to do with secondary
structure (see Figure 17).

Discussion
Clearly, many functional and catalytic ncRNA genes as-
sume evolutionarily conserved, thermodynamically stable,
and well-defined secondary structures in order to fulfill
their roles in a cell. However, this is very different from the
question of whether these biologically meaningful RNA
secondary structures are distinguishable from those spuri-
ously predicted for other sequences (for instance, for ran-
domized sequences, or for nontranscribed sequences in a
genome). In this paper we have asked whether RNA sec-
ondary structure prediction algorithms could be used for
detecting novel noncoding RNA genes against the back-
ground of a large genome sequence. We have been reluc-
tantly forced to the general conclusion that, at least when
using the current state of the art in secondary structure
prediction algorithms, the real RNA secondary structures
do not appear to be significantly distinguishable from pre-
dicted structures for random sequences, neither by a ther-
modynamic nor a statistical approach—at least not enough
to construct a reliable ncRNA genefinding algorithm based
on this idea.

We observed (as had Maizel’s group) that base compo-
sition inhomogeneities in a genome were a confounding
factor in this kind of screen, and a source of artifactually
promising scores. Initially, we thought that the probabilis-
tic model would give us a direct measure of statistical sig-
nificance (the log-odds score), obviating the need for the
laborious Monte Carlo estimation of Z-scores in the ther-
modynamic approach, and thus greatly speeding the scans.
Instead, we observed that significant ‘RNA structure’ log-
odds scores resulted from local regions of high CG compo-
sition, and we still needed to perform Monte Carlo shuf-
flings to remove the effect of base composition from the
log-odds scores.

For both negenergy and log-odds Z-scores, we do
observe a slight bias towards positive scores in real
ncRNAs. However, the bias is slight, and is only sig-
nificant when the whole distribution is observed; it is
not enough that individual RNAs can be reliably distin-
guished from the background. Furthermore, in Workman
and Krogh (1999), it is argued that even this effect mostly
goes away when the sequence randomization procedure
preserves dinucleotide composition.

The most promising result we obtained is in Fig-
ure 13, which indicates that a fraction (about 30%) of
a sample of non-tRNA ncRNAs have predicted ther-
modynamic stabilities that are significant compared
to completely randomized sequences. However, our
significance threshold (Z = 4) is relatively soft; we
could expect somewhere around 1–10 false positives
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Fig. 14. Comparison of the negenergy Z-score histograms for unstructured sequences of different base compositions (filled area) versus
tRNA genes (discontinuous contour). All three cases include ∼ 1400 sequences of 100 nucleotides each. The sequences have been generated
as follows: top, 68% CG rich, homogeneously distributed; middle, first half is 68% CG rich, and the second half is 68% AT rich; bottom,
68% AT rich, homogeneously distributed. The distribution of Z-scores for unstructured sequences with homogeneous base composition (top
and bottom) is centered around 0 (shown fit to a normal N (0, 1) density distribution). In the presence of CG inhomogeneities (middle) the
Z-score distribution is shifted towards positive values (shown fit to a N (0.7, 1) density distribution).
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Fig. 17. Comparison of the log-odds Z-score histograms for unstructured sequences of different base compositions (filled area) versus tRNA
genes (discontinuous contour). All three cases are identical to the ones described in Figure 14. The distribution of Z-scores for unstructured
sequences with a homogeneous base composition (top and bottom) is centered around 0 (shown fit to a normal N (0, 1) density distribution).
In the presence of CG inhomogeneities (middle) the Z-score distribution is shifted towards positive values (shown fit to a N (1.15, 1) density
distribution).
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per megabase at this threshold, depending on how many
overlapping windows we examined in a genome scan.
Therefore, a Z-score type calculation might still be
used to weakly detect a small subset of ncRNAs or
other biologically interesting RNA structures, consis-
tent with the anecdotal results presented by the Maizel
group.

It will require additional sources of statistical informa-
tion to produce a reliable ncRNA genefinder. One such
source of information would be promoter consensus. Even
in eukaryotes, where pol II promoters for protein genes are
notoriously difficult to recognize, pol II and pol III ncRNA
gene promoters are fairly well conserved and information
rich. It should be possible to incorporate a probabilistic
model of promoter consensus into the our SCFG scanning
algorithm.

Ironically, our results suggest the RNA-genefinding
potential of simply scanning for CG-rich islands in an
AT-rich genome. For AT-rich biased genomes, such as
the nematode C.elegans, the archaeon M.jannaschii,
and especially in AT-rich extreme thermophiles, ncRNA
genes—probably for reasons of stability—tend to be quite
CG rich (Bult et al., 1996). A simple base-composition
model that searches for CG-rich regions might extract
considerable information about ncRNAs in these bi-
ased genomes. We are currently exploring this simple
approach.
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