Note

Secorubenine, a Monoterpenoid Indole Alkaloid Glycoside from Adina rubescens: Isolation, Structure Elucidation, and Enantioselective Total Synthesis

Nanako Nakashima, ${ }^{a}$ Jukiya Sakamoto, ${ }^{b}$ Kenta Rakumitsu, ${ }^{a}$ Mariko Kitajima, ${ }^{b}$ Lia Dewi Juliawaty, ${ }^{c}$ and Hayato Ishikawa*, ${ }^{\text {b }}$
${ }^{a}$ Graduate School of Science and Technology, Kumamoto University; 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan: ${ }^{b}$ Graduate School of Pharmaceutical Sciences, Chiba University; 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan: and ${ }^{\text {c Organic Chemistry Division, Institut Teknologi Bandung; Jalan Ganesha 10, Bandung, 40132, }}$ Indonesia.
Received October 28, 2021; accepted November 25, 2021

Abstract

A new pentacyclic monoterpenoid indole alkaloid glycoside named secorubenine (1) was isolated from the heartwood of Adina rubescens, collected in Indonesia. The structure was elucidated by spectroscopic analysis and chemical modification of isolated secorubenine (1). The bioinspired enantioselective total synthesis of 1 was accomplished in 12 steps, whereafter its structure was determined and the absolute stereochemistry was confirmed.

Key words secorubenine; Adina rubescens; monoterpenoid indole alkaloid; bioinspired total synthesis; alkaloid glycoside; structure elucidation

Introduction

Adina rubescens Hemsl. is a species of plant belonging to the Adina genus and Rubiaceae family. This species has the following synonym names: Adina eurhyncha, Nauclea oxyphylla, Pertusadina eurhyncha, and Uncaria eurhyncha. ${ }^{1-3)}$ It distributes in Sumatra, East Kalimantan, Sabah, Sarawak, Brunei, and Malay Peninsula. The main use of this species is as timber because of the good quality and durability of its wood. In South Sumatra, the stem bark has been used by the Daya tribe to treat jaundice. ${ }^{3)}$
In the 1970 s, Brown et al. conducted intensive research into the components of this interesting plant and discovered monoterpenoid indole glycosides such as 5-carboxystrictosidine (2), rubenine (3), and macrolidine ${ }^{4-14)}$ (Fig. 1). More recently, the divergent and bioinspired total syntheses of these alkaloids, including 5-carboxystrictosidine (2), rubenine (3), and others, have been achieved. ${ }^{15,16)}$

We carried out investigations into new alkaloid glycosides from the heartwood of Adina rubescens, followed by their rapid total synthesis. Herein, we report the discovery of a new pentacyclic indole alkaloid glycoside, secorubenine (1), and the subsequent determination of its structure, including its absolute configuration, by spectroscopic analysis and enantioselective total synthesis.

Results and Discussion

From the methanolic extract of the heartwood of A. rubescens collected in Indonesia, a new monoterpenoid indole alkaloid glycoside, named secorubenine (1), was isolated as a minor component together with known glycosylated indoles, iridoids, and chromones: 5-carboxystrictosidine (2), vincoside lactam, ${ }^{17)}$ sweroside, ${ }^{18)}$ grandifloroside, ${ }^{19)}$ undulatoside $\mathrm{A},{ }^{20}$ and 5,7 -dihydroxy-2-methylchromone-7- $O-\beta$-D-apiosyl (16)- β-D-glucoside. ${ }^{21)}$

Secorubenine (1) was obtained as a pale yellow amorphous
powder. High-resolution electrospray ionization MS (HR ESIMS) analysis gave $m / z 591.2172[\mathrm{M}+\mathrm{H}]^{+}(\Delta-1.8 \mathrm{mmu})$ and established the molecular formula as $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{12}$. The presence of an indole ring was suggested by the four aromatic protons in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (Table 1), which resonated at $\delta_{\mathrm{H}} 7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 7.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 7.01(\mathrm{dd}, J=7.5$, 7.5 Hz), 6.94 (dd, $J=7.5,7.5 \mathrm{~Hz}$), and UV absorptions at 290.5 , $281.5,223.5 \mathrm{~nm} .{ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra showed signals assignable to one methyl β-alkoxy acrylic ester residue $\left[\delta_{\mathrm{H}} 7.37\right.$ (s, H-17), $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{C}} 167.1\left(\mathrm{CO}_{2} \mathrm{Me}\right), 151.8(\mathrm{C}-17)$, $111.7(\mathrm{C}-16), 51.4\left(\mathrm{CO}_{2} \mathrm{Me}\right)$], one acetal group $\left[\delta_{\mathrm{H}} 5.69\right.$ (brd, $\left.J=4.5 \mathrm{~Hz}, \mathrm{H}-21), \delta_{\mathrm{C}} 96.9(\mathrm{C}-21)\right]$, and one β-linked glucose unit $\left[\delta_{\mathrm{H}} 4.53\right.$ (d, $\left.J=10.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 3.60-2.90$ ($6 \mathrm{H}, \mathrm{H}-2^{\prime}$ to 6^{\prime}); $\delta_{\mathrm{C}} 98.8\left(\mathrm{C}-1^{\prime}\right), 77.4\left(\mathrm{C}-5^{\prime}\right), 76.6\left(\mathrm{C}-3^{\prime}\right), 73.1$ ($\left.\mathrm{C}-2^{\prime}\right), 70.0\left(\mathrm{C}-4^{\prime}\right)$, $61.0\left(\mathrm{C}-6^{\prime}\right)$], revealing that 1 contained a secologanin unit-a biosynthetic precursor for monoterpenoid indole alkaloids. In addition, a carboxyl carbon signal at $\delta_{\mathrm{C}} 174.8\left(\mathrm{CO}_{2} \mathrm{H}\right)$ was observed in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum. The data suggested that 1 was a derivative of 5 -carboxystrictosidine (2). In the NMR spectra, the obvious difference between 1 and 2 was the absence of signals assignable to a double bond between the 18 and 19 positions of the secologanin part in $\mathbf{1}$. The presence of a signal assignable to an additional oxymethine carbon at $\delta_{\mathrm{C}} 69.5$ in the ${ }^{13} \mathrm{C}$-NMR spectrum and the molecular formula predicted that the double bond of the secologanin part was oxidized in 1. The two dimensional (2D) NMR data supported that $\mathbf{1}$ was a derivative of $\mathbf{2}$ (Fig. 2). The heteronuclear multiple bond connectivity (HMBC) correlations between the proton at $\delta_{\mathrm{H}} 2.90(\mathrm{H}-18)$ and carbons at $\delta_{\mathrm{C}} 58.4(\mathrm{C}-3)$ and 69.5 (C-19) revealed the presence of a D-ring that consisted of the seven-membered ring structure containing a hydroxy group at C-19. From the above data, the planar structure of secorubenine was deduced to be that shown as formula 1.
Next, we turned our attention to determining the stereochemistry of $\mathbf{1}$ by nuclear Overhauser effect (NOE) experi-

[^0](a)

vincoside lactam
sweroside
undulatoside A

(b)

Fig. 1. (a) Compounds Isolated from Adina rubescens in This Study; (b) Indole Glycosides Previously Isolated by Brown et al.
ments. The hydroxy groups of $\mathbf{1}$ were acetylated to improve the solubility in organic solvents. Thus, $\mathbf{1}$ was treated with acetic anhydride in pyridine $(2.7 \mathrm{mg}$ of $\mathbf{1}$, room temperature (r.t.), 2 h). Unexpectedly, only four of the five hydroxy groups were acetylated. The resulting compound was a rubenine tetraacetate (4), which we had previously synthesized (Eq. 1). ${ }^{15}$) Hence, as this product 4 might be formed by intramolecular lactonization via a carboxylic anhydride, the stereochemistry of $\mathbf{1}$, including that of the hydroxy group at $\mathrm{C}-19$, was estimated at this stage.

To then confirm the structure, including the absolute stereochemistry, we attempted the enantioselective total synthesis of secorubenine (1) (Chart 1).

In 2019, our group accomplished the biogenetically inspired total synthesis of monoterpenoid indole alkaloid glycosides, including rubenine. ${ }^{15)}$ Following the protocols, secorubenine (1) was synthesized. Thus, the secologanin derivative 5, which was synthesized in 10 steps from commercially available materials, and the L-tryptophan methyl ester 6, were

Selected COSY spectrum

Selected HMBC spectrum

Fig. 2. Selected COSY and HMBC Correlations of Secorubenine (1)

Table 1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR Data for Secorubenine (1) in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$

Position	1	
	$\delta_{\text {H }}$	$\delta_{\text {C }}$
2	-	134.9
3	4.15 (m)	58.4
5	3.59 (overlapped)	63.9
6 a	2.81 (overlapped)	22.7
6 b	2.81 (overlapped)	
7	-	106.4
8	-	126.6
9	7.36 (d, 7.5)	117.8
10	6.94 (dd, 7.5, 7.5)	118.7
11	7.01 (dd, 7.5, 7.5)	120.9
12	7.29 (d, 7.5)	111.4
13	-	136.3
14a	1.75 (ddd, 12.0, 12.0 12.0)	34.4
14 b	2.55 (overlapped)	
15	3.08-2.90 (overlapped)	29.9
16	-	111.7
17	7.37 (s)	151.8
18a	2.81 (overlapped)	53.0
18 b	2.90 (m)	
19	4.20 (m)	69.5
20	2.55 (overlapped)	41.9
21	5.69 (brd, 4.5)	96.9
$\mathrm{CO}_{2} \mathrm{H}$	-	174.8
$\mathrm{CO}_{2} \mathrm{Me}$	-	167.1
$\mathrm{CO}_{2} \mathrm{Me}$	3.68 (3H, s)	51.4
1^{\prime}	4.53 (d, 10.0)	98.8
2^{\prime}	3.08-2.90 (overlapped)	73.1
3^{\prime}	3.18-3.15 (overlapped)	76.6
4^{\prime}	3.08-2.90 (overlapped)	70.0
$5 '$	3.18-3.15 (overlapped)	77.4
6^{\prime} a	3.45 (m)	61.0
$6^{\prime} \mathrm{b}$	3.59 (overlapped)	

subjected to the Pictet-Spengler reaction in the presence of trifluoroacetic acid, to achieve stereoselective construction of the C-ring. This was followed by D-ring construction, with ring-opening of an epoxide, by treatment with silica gel, to obtain the pentacyclic compound $8(60 \%$ yield over two steps, details in ref. 15). The structure of 8 , including the unique seven-membered ring, was determined by 2D-NMR analysis, including HMBC and correlation spectroscopy (COSY) spectra. This seven-membered ring structure also occurs in dihydrocadambines, ${ }^{22,23)}$ which belong to the same class of monoterpenoid indole alkaloids. Finally, the hydrolysis of $\mathbf{8}$ proceeded smoothly to afford secorubenine (1) in 74% yield. All analytical data, including NMR spectra and the optical

rotation of 1 obtained by synthesis, were in full agreement with data of $\mathbf{1}$ obtained from plant source. The structure and the absolute configuration of $\mathbf{1}$ was successfully determined.

Conclusion

In conclusion, we isolated secorubenine (1), a new pentacyclic alkaloid, from the heartwood of Adina rubescens, a plant used as a traditional medicine in Southeast Asia. The structure of secorubenine (1) was determined by various spectral analyses. Its complete structure, including the absolute stereochemistry, was determined by derivatization from isolated $\mathbf{1}$ and enantioselective total synthesis. We consider this work as serving as a good example that the chemical supply through biogenetically inspired total syntheses greatly facilitates the structure determination of isolated natural products. Biological evaluation of the secorubenine (1) and other isolated compounds, and further exploratory studies on new alkaloids from other Adina plants, are currently in progress.

Experimental

General Experimental Procedures All reactions were monitored by TLC using Merck 60 F254 precoated silica gel plates $(0.25 \mathrm{~mm}$ thickness). UV spectra were recorded in MeOH on a JASCO V-560 instrument. Specific optical rotations were measured using a JASCO P-2200 and P-1020 polarimeter. Circular dichroism (CD) spectra were recorded on a JASCO J-1100 spectrometer. Fourier transform (FT)IR spectra were recorded on a JASCO FT/IR-4700 and SHIMADZU IR Affinity-IS. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were recorded on an ECX $500\left(500 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}, 125 \mathrm{MHz}$ for $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ and an ECZ $600\left(600 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}, 150 \mathrm{MHz}$ for $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right)$ FT-NMR spectrometer. Data for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ are reported as chemical shifts ($\delta \mathrm{ppm}$), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ double doublet, $\mathrm{ddd}=$ double double doublet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad $)$, coupling constant (Hz), integration, and assignment. Data for ${ }^{13} \mathrm{C}-\mathrm{NMR}$ are reported as chemical shifts. The HR mass spectra were recorded on a JEOL AccuTOF LC-plus JMS-T100LP and BRUKER impact II. HPLC was performed on a Shimadzu LC-20AT system coupled with an SPD M20A photodiode array detector (Shimadzu Co., Kyoto, Japan), using a CAPCELLPAK C18 ($5 \mu \mathrm{~m}$, $250 \times 20.0 \mathrm{~mm}$ i.d., SHISEIDO Inc., Tokyo, Japan). Recycle HPLC was performed on a Japan Analytical Industry LC-9225 NEXT SERIES system coupled with a UV-600 NEXT detec-

$R=\beta-\mathrm{D}-\mathrm{Glc}(\mathrm{OAC}) 4$

Chart 1. Total Synthesis of Secorubenine
selected COSY spectrum of 8
selected HMBC spectrum of 8

Fig. 3. Selected COSY and HMBC Correlations of Compound $\mathbf{8}$
tor and RI-700 NEXT detector (Japan Analytical Industry Co., Tokyo, Japan), using an Asahipak GS-510 20G and Asahipak GS-310 20 G column $(500 \times 20.0 \mathrm{~mm}$ i.d., Shodex Inc., Tokyo, Japan). Preparative thin layer chromatography (PTLC) was performed using Merck 60 F254 precoated silica gel plates (0.25 mm thickness).

Plant Material The heartwood of Adina rubescens was collected in Bogor Botanical Garden, Indonesia, in February 2017.

Extraction and Isolation The powdered heartwood (1.6 kg dry weight) of Adina rubescens was macerated with MeOH (three times at room temperature for 24 h , total 12 L) to give the extract $(40 \mathrm{~g})$. A portion of the MeOH extract $(5.3 \mathrm{~g})$ was dissolved in water $(1.6 \mathrm{~L})$ and extracted with n hexane $(1.6 \mathrm{~L} \times 3)$, with $\operatorname{AcOEt}(1.6 \mathrm{~L} \times 3)$, and then with n - $\mathrm{BuOH}(1.6 \mathrm{~L} \times 3)$ to give the n-hexane extract (49.5 mg), AcOEt extract (901.8 mg), and $n-\mathrm{BuOH}$ extract $(2.288 \mathrm{~g})$, respectively. The $n-\mathrm{BuOH}$ extract $(2.288 \mathrm{~g})$ was separated by HPLC (column: SHISEIDO CAPCELL PAK C18) with a $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ gradient (20-60\%) to give 15 fractions (fr): fr 1 $(193.1 \mathrm{mg})$, fr $2(38.8 \mathrm{mg})$, fr $3(45.4 \mathrm{mg})$, fr $4(22.6 \mathrm{mg})$, fr 5 (72.1 mg), fr $6(60.4 \mathrm{mg})$, fr $7(25.1 \mathrm{mg})$, fr $8(31.3 \mathrm{mg})$, fr 9 $(51.5 \mathrm{mg})$, fr $10(78.1 \mathrm{mg})$, fr $11(35.2 \mathrm{mg})$, fr $12(61.0 \mathrm{mg})$, fr 13 (191.3 mg), fr 14 (36.6 mg), and fr 15 (87.1 mg). Fraction $11(35.2 \mathrm{mg})$ was purified by recycling SEC-HPLC (column: Asahipak GS-510 20G and GS-310 20G) with MeOH to afford secorubenine ($\mathbf{1}, 8.9 \mathrm{mg}$). The known compounds isolated from the $n-\mathrm{BuOH}$ extract were 5 -carboxystrictosidine
$(5.3 \mathrm{mg})$, vincoside lactam $(0.6 \mathrm{mg}),{ }^{17)}$ sweroside $(5.6 \mathrm{mg}){ }^{18)}$ grandifloroside $(27.5 \mathrm{mg}),{ }^{19)}$ undulatoside $\mathrm{A}(2.0 \mathrm{mg}),{ }^{20)}$ and 5,7-dihydroxy-2-methylchromone-7- O - β-D-apiosyl (16)- β-Dglucoside (15.3 mg). ${ }^{21}$)

Secorubenine (1): Pale yellow amorphous powder; $[\alpha]_{\mathrm{D}}^{23}-62$ (c 0.34, MeOH); UV (MeOH) $\lambda_{\text {max }} \mathrm{nm} 290.5,281.5,223.5$; IR (attenuated total reflectance (ATR)) $\mathrm{cm}^{-1} 3282,2924,1627$, $1259 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \quad\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta: 7.37(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-17)$, $7.36(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-9), 7.29(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-12)$, $7.01(1 \mathrm{H}, \mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, \mathrm{H}-11), 6.94(1 \mathrm{H}, \mathrm{dd}, J=7.5$, $7.5 \mathrm{~Hz}, \mathrm{H}-10), 5.69(1 \mathrm{H}, \mathrm{brd}, J=4.5 \mathrm{~Hz}, \mathrm{H}-21), 4.53(1 \mathrm{H}, \mathrm{d}$, $\left.J=10.0 \mathrm{~Hz}, \mathrm{H}-\mathrm{l}^{\prime}\right), 4.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-19), 4.15(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3)$, $3.68\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.59(1 \mathrm{H}$, overlapped, $\mathrm{H}-5), 3.59(1 \mathrm{H}$, overlapped, H-6'), $3.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6^{\prime}\right), 3.18-3.15(2 \mathrm{H}$, overlapped, $\mathrm{H}-3^{\prime}, 5^{\prime}$), $3.08-2.90\left(3 \mathrm{H}\right.$, overlapped, $\left.\mathrm{H}-15,2^{\prime}, 4^{\prime}\right), 2.90$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-18), 2.81\left(3 \mathrm{H}\right.$, overlapped, $\left.\mathrm{H}_{2}-6, \mathrm{H}-18\right), 2.55(2 \mathrm{H}$, overlapped, H-14, 20), $1.75(1 \mathrm{H}$, ddd, $J=12.0,12.0,12.0 \mathrm{~Hz}$, $\mathrm{H}-14) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta: 174.8\left(\mathrm{CO}_{2} \mathrm{H}\right), 167.1$ $\left(\mathrm{CO}_{2} \mathrm{Me}\right), 151.8(\mathrm{C}-17), 136.3(\mathrm{C}-13), 134.9(\mathrm{C}-2), 126.6(\mathrm{C}-8)$, 120.9 (C-11), 118.7 (C-10), 117.8 (C-9), 111.7 (C-16), 111.4 (C-12), 106.4 (C-7), 98.8 (C-1'), 96.9 (C-21), 77.4 (C-5'), 76.6 (C-3'), 73.1 (C-2'), 70.0 (C-4'), 69.5 (C-19), 63.9 (C-5), 61.0 (C-6'), 58.4 (C-3), 53.0 (C-18), $51.4\left(\mathrm{CO}_{2} \mathrm{Me}\right), 41.9$ (C-20), 34.4 (C-14), 29.9 (C-15), 22.7 (C-6); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, at $\left.60^{\circ} \mathrm{C}\right) \delta: 7.56(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-17), 7.43(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-9), 7.35$ $(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H}-12), 7.11(1 \mathrm{H}, \mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, \mathrm{H}-11)$, $7.03(1 \mathrm{H}, \mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, \mathrm{H}-10), 5.64(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}$, $\mathrm{H}-21), 4.80\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.62(1 \mathrm{H}$, overlapped, $\mathrm{H}-19), 4.59(1 \mathrm{H}$, overlapped, $\mathrm{H}-3), 4.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5), 3.99$ $\left(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 3.86(1 \mathrm{H}$, overlapped, $\mathrm{H}-18), 3.79$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 3.68\left(1 \mathrm{H}, \mathrm{brdd}, J=12.0,4.2 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 3.47$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-18$), 3.36-3.25 (6H, overlapped, $\mathrm{H}_{2}-6, \mathrm{H}-2^{\prime}, 3^{\prime}, 4^{\prime}$, 5^{\prime}), 3.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-15$), 2.68 ($1 \mathrm{H}, \mathrm{d}, J=15.0 \mathrm{~Hz}, \mathrm{H}-14$), 2.30 (1 H , overlapped, H-20), $2.26(1 \mathrm{H}$, overlapped, $\mathrm{H}-14)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, at $\left.60^{\circ} \mathrm{C}\right) \delta: 175.1\left(\mathrm{CO}_{2} \mathrm{H}\right), 169.1\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 153.9 (C-17), 138.5 (C-13), 131.5 (C-2), 127.6 (C-8), 123.0 (C-11), 120.4 (C-10), 119.0 (C-9), 112.4 (C-12), 111.1 (C-16), 107.7 (C-7), 101.9 (C-1'), 98.3 (C-21), 78.4 (C-5'), 78.0 (C-3'), 74.7 (C-2'), 71.4 (C-4'), 69.5 (C-5), 66.2 (C-3), 64.5 (C-19), 62.4 (C-6'), 57.0 (C-18), 52.0 ($\mathrm{CO}_{2} \mathrm{Me}$), 44.3 (C-20), 34.9 (C-14), 33.8 (C-15), 25.9 (C-6); HRMS (ESI): found: 591.2172 $[\mathrm{M}+\mathrm{H}]^{+}$, calcd. for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{12}$: 591.2190.

Chemical Modification and Total Synthesis

Acetylation of Secorubenine (1)
To a solution of secorubenine $(\mathbf{1}, 2.7 \mathrm{mg}, 0.00457 \mathrm{mmol})$ in pyridine $(30 \mu \mathrm{~L})$, an excess amount of acetic anhydride ($20 \mu \mathrm{~L}$) was added at r.t. under Ar atmosphere. The reaction mixture was stirred for 2 h at r.t. The resulting mixture was concentrated under reduced pressure. The crude materials were purified by PTLC ($70 \% \mathrm{AcOEt} / n$-hexane) to afford rubenine tetraacetate $(4,2.3 \mathrm{mg}, 68 \%)$ as a pale yellow amorphous powder. All spectral data were identified based on our previously synthesized 4.

Rubenine tetraacetate (4): Pale yellow amorphous powder; $[\alpha]_{\mathrm{D}}^{25}-30.0$ (c $0.12, \mathrm{CHCl}_{3}$); IR (neat) $v_{\max } \mathrm{cm}^{-1} 1745,1217$, 1036, 744; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\left[\mathrm{C}_{36} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{15}\right]^{+}$: 741.2507, Found: 741.2529; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: $7.48(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{s}), 7.27(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz})$, $7.13(1 \mathrm{H}, \mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{dd}, J=6.0,6.0 \mathrm{~Hz})$, $5.34(1 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}), 5.24(2 \mathrm{H}$, overlapped), $5.14(1 \mathrm{H}$, dd, $J=12.0,12.0 \mathrm{~Hz}), 5.08(1 \mathrm{H}, \mathrm{dd}, J=12.0,12.0 \mathrm{~Hz}), 4.98$
$(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 4.28(2 \mathrm{H}, \mathrm{m})$, $4.19(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{dd}$, $J=12.0,6.0 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 3.77(1 \mathrm{H}$, overlapped), $3.64(1 \mathrm{H}$, d, $J=18.0 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{d}, J=18.0 \mathrm{~Hz}), 3.24(1 \mathrm{H}, \mathrm{dd}, J=9.0$, $9.0 \mathrm{~Hz}), 3.04(1 \mathrm{H}, \mathrm{dd}, J=12.0,6.0 \mathrm{~Hz}), 2.07(1 \mathrm{H}$, overlapped $)$, $2.051(3 \mathrm{H}, \mathrm{s}), 2.047(3 \mathrm{H}, \mathrm{s}), 2.011(3 \mathrm{H}, \mathrm{s}), 2.007(3 \mathrm{H}, \mathrm{s}), 1.92$ $(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 170.9,170.3,169.8$, $169.60,169.59,167.5,152.1,136.3,133.2,126.8,122.1,119.5$, 118.7, 110.8, 109.2, 105.2, 99.1, 96.7, 72.8, 72.3, 71.2, 68.5, $62.0,58.9,55.8,51.7,50.1,43.9,37.9,32.5,29.8,20.9,20.8$, 20.73, 20.70, 20.2.

Preparation of Compound 8

To a solution of L-tryptophan methyl ester ($\mathbf{6}, 25.3 \mathrm{mg}$, $0.116 \mathrm{mmol})$ and secologanin derivative $5^{15)}(33.2 \mathrm{mg}$, $0.0580 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(966 \mu \mathrm{~L})$, powdered MS $4 \AA(66.4 \mathrm{mg})$ was added at r.t. under Ar atmosphere. The resulting mixture was stirred for 1 h at r.t., followed by the addition of trifluoroacetic acid $(22.2 \mu \mathrm{~L}, 0.290 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and then stirred for 1 h at this temperature. The resulting mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}(81.0 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ and filtered through a Celite pad, with CHCl_{3}. The filtrate was concentrated under reduced pressure. The Pictet-Spengler reaction afforded the desired $3 S$-isomer 7, predominantly in quantitative conversion ($\mathrm{C} 3 S: \mathrm{C} 3 R=2.5: 1$), as determined by the crude NMR. The crude materials of 7 were directly loaded on PTLC (Wakogel ${ }^{\circledR}$ B-5F), where any remaining solvent was removed by drying with a blower. After 6 h , the silica gel was eluted with $10 \% \mathrm{MeOH}^{2} \mathrm{CHCl}_{3}$. The resulting mixture was concentrated under reduced pressure and the resulting residue was purified by PTLC $\left(\mathrm{SiO}_{2}\right.$, $60 \% \mathrm{AcOEt} / n$-hexane) to afford the desired product $8(27.1 \mathrm{mg}$, 60% yield over two steps).

Compound 8: Pale yellow amorphous powder; $[\alpha]_{D}^{24}-44.3$ (c $0.25, \mathrm{CHCl}_{3}$); IR (neat) $v_{\text {max }} \mathrm{cm}^{-1} 2922,1744,1705,1638,1435$, 1368, 1219, 1034, 772, 743; HRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\left[\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{16}\right]^{+}$: 773.2764, Found: 773.2728; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (500 MHz , benzene- d_{6}) $\delta: 7.53(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-17), 7.48-7.03(4 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-9,10,11,12), 6.23(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-21), 5.52(1 \mathrm{H}, \mathrm{dd}$, $\left.J=9.5,9.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.41\left(1 \mathrm{H}, \mathrm{dd}, J=9.5,8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.31$ ($\left.1 \mathrm{H}, \mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.13\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$, $4.31\left(1 \mathrm{H}, \mathrm{dd}, J=12.0,5.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.28$ (1 H, brs, H-19), 4.08 $\left(1 \mathrm{H}, \mathrm{dd}, J=12.0,2.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 3.58(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}, \mathrm{H}-3)$, $3.53-3.50\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 3.46\left(3 \mathrm{H}, \mathrm{s}, 22-\mathrm{CO}_{2} \mathrm{Me}\right), 3.44(1 \mathrm{H}$, dd, $J=10.0,4.5 \mathrm{~Hz}, \mathrm{H}-5), 3.30\left(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{CO}_{2} \mathrm{Me}\right), 3.01-2.93$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}-6,15$ and 18), $2.86(1 \mathrm{H}, \mathrm{dd}, J=15.0,3.5 \mathrm{~Hz}, \mathrm{H}-6)$, $2.69(1 \mathrm{H}, \mathrm{dd}, J=12.5,4.5 \mathrm{~Hz}, \mathrm{H}-18), 2.40(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}$, $\mathrm{H}-14), 2.33-2.30(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-20), 1.95-1.87(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-14)$, $1.80\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime}-\mathrm{OCOMe}\right), 1.73\left(3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{OCOMe}\right), 1.71(3 \mathrm{H}$, $\mathrm{s}, 3^{\prime}$-OCOMe), 1.66 (3H, s, 2'-OCOMe); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz , benzene- d_{6}) $\delta: 173.6$ ($\mathrm{CO}_{2} \mathrm{Me}$), 170.1 (6^{\prime}-OCOMe), 169.9 (4^{\prime}-OCOMe), 169.1 (3^{\prime} 'OCOMe), 169.1 (2^{\prime}-OCOMe), 167.2 (C-22), 152.1 (C-17), 136.8 (C-8), 134.1 (C-2), 127.2 (C-13), 122.1 (C-11), 120.0 (C-10), 118.4 (C-9), 112.0 (C-12), 111.4 (C-16), 106.9 (C-7), 99.3 (C-21), 98.9 (C-1'), 73.1 (C-2'), 72.6 (C-5'), 71.8 (C-3'), 69.0 (C-19), 68.7 (C-4'), 63.9 (C-5), 61.8 (C-6'), 58.2 (C-3), 56.6 (C-18), 51.6 (C-24), 51.0 (C-25), 45.2 (C-20), 39.2 (C-14), 33.2 (C-15), 25.2 (C-6), 20.4 (6'-OCOMe), 20.3 (4'-OCOMe), 20.2 (3^{\prime}-OCOMe), 20.2 (2^{\prime}-OCOMe).

To a solution of $\mathbf{8}(27.0 \mathrm{mg}, 0.0349 \mathrm{mmol})$ in MeOH ($700 \mu \mathrm{~L}$), 1 M aqueous NaOH solution $(700 \mu \mathrm{~L})$ was added at $0^{\circ} \mathrm{C}$ under Ar atmosphere. The reaction mixture was stirred
for 2 h at $0^{\circ} \mathrm{C}$. The resulting mixture was quenched with 1 M aqueous HCl solution $(700 \mu \mathrm{~L})$ and concentrated by lyophilization under reduced pressure. PTLC $\left(\mathrm{SiO}_{2}, 30 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$ followed by HPLC (CAPCELLPAK C18, $1.0 \mathrm{~mL} / \mathrm{min}, 20-70 \%$ $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ gradient) afforded (-)-secorubenine (1, 15.2 mg , 74%) as a pale yellow amorphous powder; $[\alpha]_{D}^{24}-91$ (c 0.049 , $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra were compared as HCl salt of $\mathbf{1}$; see details in supporting information.

Acknowledgments We gratefully acknowledge financial support through a Grant-in-Aid for Scientific Research (B) (21 H 02608 to H. I. and 20 H 03395 to M. K.) from JSPS, and a JSPS Research Fellowships for Young Scientists (21J20696) to J. S. We also thank Bogor Botanical Garden, Center for Plant Conservation, National Research and Innovation Agency, Bogor, West Java, Indonesia for collecting and identifying the plant sample.

Conflict of Interest The authors declare no conflict of interest.

Supplementary Materials This article contains supplementary materials.

References

1) Ridsdale C. E., Blumea, 24, 307-366 (1978).
2) Lofstrand S. D., Krüger Å., Razafimandimbison S. G., Bremer B., Syst. Bot., 39, 304-315 (2014).
3) Asmaliyah, Hadi E.E.W., Waluyo E.A., Muslimin I, Nopriansyah A., "Tumbuhan Obat dan Herbal dari Hutan untuk Penyakit Degeneratif Metabolik-Gaya Hidup Kembali Ke Alam," ed. by Turjaman M., Unsri Press, Sriwijaya University, Palembang, 2018, pp. 53-54.
4) Brown R. T., Blackstock W. P., Lee G. K., J. Chem. Soc. Chem. Comтип., 1971, 910-911 (1971).
5) Blackstock W. P., Brown R. T., Tetrahedron Lett., 12, 3727-3730 (1971).
6) Blackstock W. P., Brown R. T., Chapple C. L., Fraser S. B., J. Chem. Soc. Chem. Commun., 1972, 1006-1007 (1972).
7) Brown R. T., Chapple C. L., Lee G. K., J. Chem. Soc. Chem. Commuп., 1972, 1007-1008 (1972).
8) Brown R. T., Fraser S. B., Tetrahedron Lett., 14, 841-842 (1973).
9) Brown R. T., Charalambides A. A., J. Chem. Soc. Chem. Commun., 1973, 765-766 (1973).
10) Brown R. T., Charalambides A. A., Tetrahedron Lett., 15, 19491952 (1974).
11) Brown R. T., Charalambides A. A., J. Chem. Soc. Chem. Commun., 1974, 553b-554 (1974).
12) Brown R. T., Charalambides A. A., Tetrahedron Lett., 15, 34293430 (1974).
13) Brown R. T., Charalambides A. A., Phytochemistry, 14, 2527-2529 (1975).
14) Brown R. T., Warambwa B. F. M., Phytochemistry, 17, 1686-1687 (1978).
15) Rakumitsu K., Sakamoto J., Ishikawa H., Chem. Eur. J., 25, 89969000 (2019).
16) Sakamoto J., Umeda Y., Rakumitsu K., Sumimoto M., Ishikawa H., Angew. Chem. Int. Ed., 59, 13414-13422 (2020).
17) Erdelmeier C. A. J., Wright A. D., Orjala J., Baumgartner B., Rali T., Sticher O., Planta Med., 57, 149-152 (1991).
18) Cambie R. C., Lal A. R., Rickard C. E. F., Tanaka N., Chem. Pharm. Bull., 38, 1857-1861 (1990).
19) Ze-qing Z., Yan-fang S., Xiong H., Chin. Tradit. Herbal Drugs, 47, 1265-1268 (2016).
20) Hakki Z., Cao B., Heskes A. M., Goodger J. Q. D., Woodrow I. E., Williams S. J., Carbohydr. Res., 345, 2079-2084 (2010).
21) Abe F., Yamauchi T., Phytochemistry, 33, 1499-1501 (1993).
22) Brown R. T., Fraser S. B., Tetrahedron Lett., 15, 1957-1959 (1974).
23) Takayama H., Tsutsumi S., Kitajima M., Santiarworn D., Liawruangrath B., Aimi N., Chem. Pharm. Bull., 51, 232-233 (2003).

[^0]: *To whom correspondence should be addressed. e-mail: h_ishikawa@chiba-u.jp

