SecPAL: Design and Semantics of a
Decentralized Authorization Language

Moritz Y. Becker Cédric Fournet Andrew D. Gordon

Speaker: Brian Wongchaowart
September 16, 2009

SecPAL versus Cassandra

SecPAL can be described as a successor to Cassandra, but there
are important differences between the two.

e Cassandra supports distributed query evaluation with
automated credential retrieval, while a SecPAL query is
evaluated against a local assertion context (authorization
policy and imported credentials).

e The answer to a Cassandra query is a set of constraints, while
a SecPAL query returns a finite set of substitutions of
constants for variables.

Discussion: Why do you think that the designers of SecPAL chose
not to support these Cassandra features?

Facets

of SecPAL

SecPAL provides a readable, English-like language for policy
assertions and authorization queries. (Note that assertions
and authorization queries have different syntaxes with
different expressive power.)

SecPAL provides a set of safety conditions that guarantee that
query evaluation will be sound, complete, and tractable.

SecPAL specifies a deterministic evaluation algorithm for
queries based on translation into Datalog with constraints.

Syntax of SecPAL Policy Assertions

A SecPAL policy is a set of assertions of the form A says :
fact if facty, ..., fact, where c.

The issuer A must be a constant.
Each fact consists of a subject and a verb phrase.

Verb phrases use application-specific predicates written in infix
notation.

The only requirement on constraints is that the validity of
ground constraints must be decidable in polynomial time.

An assertion is either locally defined by the policy or can be
imported in a credential.

Grammar for Facts

&

pred

verbphrase

fact

X (variables)
A (constants)
can read [-] (predicates)

has access from [-] till [-]

0 (no re-delegation)
oo (with re-delegation)
pred ey ... e, for n = Aritv(pred)
can say, fact (delegation)
can act as ¢ (principal aliasing)

¢ verbphrase

Delegation

The special verb phrases “can say.,,” “can sayp,” and “can
act as” have built-in semantics.

They allow one principal to delegate authority to another
principal and export this delegation as a credential.

If A says B can says, fact and B says fact are deducible, then
A says fact is deducible.

B can redelegate with B says C can say,, fact. This means
that A says fact if C says fact.

If A says B can sayg fact, then B is not allowed to redelegate.

A says B can act as C means that whenever A says
C verbphrase, then A says B verbphrase.

Semantics of SecPAL Policy Assertions

(A says fact if fact,....facty.c) € AC
AC,D = A says fact;® forallis {1.k}
= b vars(factf) =0

cond)
o AC.D = A says fact®
AC, = A says B can say, fact
AC.D = B says fact
{can say)

AC, e = A says fact

AC,D = A says Bcanactas C
AC.D = A says C verbphrase

AC.D = A says B verbphrase

{can act as)

Translation into Datalog

Example 7.3. For example, the assertion
A says [can say,, v can say, C can read z if v can read Foc

is translated into

A says; Bcan say,, v can say, C canread 7 — A says, v can read Foo

A says,, vcan say, C canread ; —
X says,, vcansay, Ccanreadz,

A says,, v can say,, v can say, C canread z
A says,. Ccanread z -
xsays, Ccanread 7,

A says,. x can say, C can read 7

SecPAL Assertion Safety

e Recall that the only requirement on the constraint domain is
that the validity of a ground constraint must be decidable in
polynomial time.

e The goal of SecPAL'’s assertion safety rules is to ensure that
constraints are ground at runtime when they have to be
evaluated.

e A ground constraint is simply equivalent to true or false.

SecPAL Assertion Safety

A fact that includes “can say” is nested, otherwise, it is flat.
An assertion A says : fact if facty, ..., fact, where c is safe if:
e the conditional facts facty, ..., fact, are flat
e all variables in ¢ also occur somewhere else in the assertion

e if fact is flat, all variables in fact also occur in a conditional
fact

Authorization Queries

e Upon receiving an access request, a service using SecPAL
looks up an authorization query in an authorization query
table and then executes this query against the local assertion
context.

e The assertion context must include all credentials required to
support the request (e.g., credentials submitted by the
requester).

e The result of query evaluation is a set of substitutions that
map variables in the query to constants.

Syntax of SecPAL Authorization Queries

g = esaysfact (atomic query)
| 491, 92 (conjunction)
| ¢, 0rgs (disjunction)
| not(q) (negation)
| & (constraint)
| 3xlg) (existential quantification)

e Conjunctions, disjunctions, negations, constraints, and
existential quantification are permitted.

e Discussion: what about universal quantification?

Authorization Query Evaluation

AuthAns qole says fact) = Answersyple says,. fact. 0)
AuthAnsac(gy. g2) = {6102 8y € AuthAnsac{(q) and 81 € AuthAns a0,)}
AuthAnsq0(gy orga) = AwthAns g0 (g)V AurthAns 40(¢2)

1e} if vars(g) = 0 and AuthAns g-(g) =0

AuthAnsgo(notig)) — (] if vars(g) = 0 and AwrhAns q-(g) £ 0
undefined otherwise
1e} if Fe

AuthAnsg0(c) = (i} if vars(c) =@ and £L¢

undefined otherwise

AurhAnsg-(Zx(g)) 10_, | 0 = AuthAns a0(q)}

Authorization Query Safety

Jact s fat varsic) C 1
1 ¢ says fact : vars(e says fact) —1 IlIFc:0
Ieg 20 TlhEgy: O IlFg: 0 vars(g) 1
IlFgyorgs: O1M0s IlFnot(g): 0
Ihgr:01 TUO IFga:Os IFg:0 x&l
Tg1, g2: 0100 1=3x(g): O—{x}

e An authorization query g is safe if and only if there exists a
set of variables O such that § I g : O.

e Note that only flat facts can occur in an authorization query,
ensuring that “can say” goals are always ground at runtime.

Query Evaluation in Cassandra

Ef, - ORESOIVE-CLAUSE(E,y. root{ Py;cp))
foreach R = Py — P.c € P such that ¢y A ¢ is satisfiable do
if R is an aggregation rule then
E,:OAGGREGATE(E ¢y (Py.co). R)
elseif £,.;, = £}, then
E e OPROJECT(E,oq. body((Pg. co): Pco A €))
else

E}, OPROJECT(E,.q. body((Po. co): [canReqCred(E,.y. Po). P] cohe))

=l oy n B b =

Query Evaluation in Cassandra

Eo GPROJECT(E g, body((Po.co): ﬁ c1))

if P = [| then
foreach satisfiable c = 3 _p (¢) do
EegOPROCESS-ANSWER (ans((Py. ¢p):¢))

foreach satisfiable c € 3 p (¢1) do
E},-OPROPAGATE-ANSWER (E 0. goal ((Py. cy)i (P, ¢): Picy))

1
2
3
4 else
5
¢

Query Evaluation in Cassandra

E,,.OPrOCESS-ANSWER (ans(Py. ¢).¢)

1 if ¢ 1s not subsumed by a constraint in E;,, . ¢Ans(Py.co) then

2 E, - GAns(Py.cy) := Ep,-0Ans(Py.co) U icks

3 foreach (E,.C.q.goai([Qo.dn);{'_Pg.d_};Q;dl}) c Ep, O Tait(Py.co)
4 such that ¢ A d is satisfable do

b}

Eo OPROJECT(E g body((Qg. do); Osc A dy)

Query Evaluation in Cassandra

E}, OPROPAGATE-ANSWER(Eyey. goal ((Po. co): (Py.do): Picy))

1 if there exists (Py.d) € Dom(E;,.{Ans) such that dy = d, then
2 E;, OWair(Py.dy) ==

3 EocOWait(Py.dy) U (Eq.g0al((Po.cp): (Py.dy): P; c1));

4 foreach a € Ans(P.d) such that a A ¢ is satisfiable do

5 Ej, . OPROJECT(E ¢, body((Py, co); Pya Acy))

6 else

7 Ep, OAns(Py.dy) =0

8 Eo . OWait(Py.dp) = {(Eseq.goal((Py.co): (P1.do): Pici))):
9 Loc(Py.dy)QREsovE-CLAUSE(Ej, .. root(Py:idp))

Atomic Query Evaluation in SecPAL

RESOLVE-CLAUSE((P))
Ans(P):=0:
foreach (0 — 0.¢) = Pdo
if nd = resotve((P:Q = Qi Q[|:C13. P)
exists then
PrOCESS-NODE(nd)

PROCESS-ANSWER(nd)
match nd with (P:[]:c; 22) in
if nd 2 Ans(P) then
Ans(P) := Ans(P) U {nd}:
foreach nd' = Wait(P) do
if nd" = resolve(nd’ .nd) exists then
PROCESS-NODE(nd")

Atomic Query Evaluation in SecPAL

PROCESS-NODE(nd)
match nd with (P:0:c: : -) in
if O =[] then
PROCESS-ANSWER(nd)
else match Q with Qg = _in
if there exists @ < dom(Ans)
such that Qy < O, then
Wait{Qg) 1= Wait{Qy) U {nd }:
foreach nd’ = Ans(Qy) do
if ned” = resolve(nd. nd") exists then
PROCESS-NODE(nd")
else
Wait{Qn) = {nd }:
RESOILVE-CLAUSE({(g})

Understanding Atomic Query Evaluation

ResolveClause

({{P)} & Nodes, Ans, Wait) (Nodes U Nodes', Aus[P — 0], Wait)
if Nodes'={nd : Cl=Q—Q.ccP,
nd = resolve((P;0 :: 0r¢: Q] :CI). P) exists |

PropageateAnsiver

({nd} ¥ Nodes. Ans, Wair) (Nodes U Nodes'. Ans[P — Ans(P)U {nd}]. Wait)
if nd={P;[]:True; -}

nd & Ans(P)

Nodes' = {nd" : nd' = Wait{P). nd" = resolve(nd' .nd) exists}

RecveleAnswers

({nd } = Nodes. Ans, Wair) {Nodes U Nodes', Ans, Wait][Q' — Wait(Q') U {nd }])
it =)
3Q edom{Ans) : @<= Q'

Nodes' = {nd" : nd’ = Ans(Q'), nd" = resolve(nd nd') exists}

SpawnRoo

[{nd } & Nodes, Ans. Wait) (Nodes'J{ (@) }. Ans[Q — 0], Wait[Q — {nd}])
it pd={i0358800

¥ edom{Ans) : Q# 0

Understanding Atomic Query Evaluation

Lemma A.11. (answer groundness) [I' (NVodes, Ans, Wait) s reachable rom some initial stale und

(P;| i Sind: €Y} = Nodes then § and ¢ are ground and ¢ is valid,

Lemma A.12. (node invariant) We write | Ans as short hand Cor |y oo Ans(P) 0 Nodes, Ans, Wail)
is reachable from some initial state and {P: Q: c‘:S:u_E?':C'.f:ZI & Nodes with C1 = R — R.d. then:

1. =P

(=]

B N i

3. ond) Ans:

there is some 8 such that B8 — 8, und B — '@ (where (0 are the answers in i), and dB is
equivalent 1o .

Strengths of SecPAL

e The SecPAL language was designed from the beginning to be
easy to read and understand for users unfamiliar with formal
logic.

e Usability is a critical part of security: a trust management
system can be considered a security weakness if policy authors
are not able to correctly express their intentions in the policy
language.

Strengths of SecPAL

e SecPAL'’s evaluation algorithm builds a proof tree for each
answer to a query, helping users and administrators
understand why an answer was returned.

e The Datalog proof graph is easily converted into a SecPAL
proof graph whose semantics may be more accessible.

(A says.. fisct 1) i]
1 farct \ . | ACow = A saysfact 8)
A says. fact 1= ; -
2 Y

x saysy fact | A says, B can sayy facr 0| /\
ket soyes = cenaey el €70 - - - -

\AC50 = A says B cansayn fact @) | ACD = Bsays facs d |
| &8 sayap fuct # |

Strengths of SecPAL

e SecPAL's simplicity was made possible by the insight that
authorization queries can have a more expressive syntax than
policy assertions without affecting the evaluation of atomic
queries.

e Since authorization queries can include negation and
existential quantification, policy idioms like separation of
duties can be written naturally when the underlying evaluation
model is just Datalog.

Limitations of SecPAL

e SecPAL has no support for automated credential retrieval, and
there is no way for a user to learn what set of credentials must
be submitted along with a request without knowing the details
of the service's policy.

e See Moritz Y. Becker, Jason F. Mackay, and Blair Dillaway,
“Abductive Authorization Credential Gathering,” |IEEE

International Symposium on Policies for Distributed Systems
and Networks, July 2009.

Limitations of SecPAL

e SecPAL has no explicit support for the role activations and
deactivations that are central to Cassandra policies.
DynPAL: Moritz Y. Becker, “Specification and Analysis of
Dynamic Authorisation Policies,” 22nd IEEE Computer
Security Foundations Symposium, July 2009.

e SecPAL’s query evaluation algorithm may not work well in a
distributed setting. In particular, the left-to-right tabling
resolution may exhibit poor performance if answers from
remote locations have to be waited for.

Summary

e The SecPAL language combines a readable, English-like
syntax and intuitive semantic rules with a translation into
Datalog with constraints for evaluation.

e Safety conditions on policy assertions and authorization
queries guarantee that query evaluation remains decidable
without restricting the choice of the constraint domain.

e Authorization queries are syntactically distinct from policy
assertions. Conjunctions, disjunctions, negations, constraints,
and existential quantification are supported without
compromising the tractability of the language.

Questions/Comments

