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Abstract: Large intelligent surfaces (LIS) are a new trend to achieve higher spectral efficiency and

signal-to-noise ratio in mobile communications. For this reason, this paper proposes metrics to

analyze the performance of systems with multiple antennas aided by LIS and derive the spectral

efficiency, secrecy outage probability, and bit error probability in an environment with Nakagami-

m distributed fading. In addition to an eavesdropper, there is a single-antenna user, an array of

antennas at the transmitter side and the possibility of a direct link between transmitter and receiver.

This study assumes that the LIS performs non-ideal phase cancellation leading to a residual phase

error that follows a Von Mises distribution, and shows that the resulting channel can be accurately

approximated by a Gamma distributed SNR whose parameters are analytically derived. From these

formulas, it is possible to evaluate the effect of the strength of the line-of-sight link by varying the

Nakagami parameter, m.

Keywords: large intelligent surfaces; 6G; bit error and secrecy outage probability; Nakagami fading;

Von Mises distribution

1. Introduction

Large Intelligent surfaces (LIS) are a promising technology for beyond fifth-generation
(B5G) systems, given the number of papers emphasizing their advantages, whether com-
pared to relays [1] or even when used to enhance the power of millimeter wave tech-
nologies [2]. Furthermore, reflecting signals with extreme precision and without power
consumption can reduce the interference and improve the signal-to-noise ratio at the re-
ceiver, especially when the direct path between transmitter and destination is weak and
needs to be strengthened.

In addition, known as large reflecting surfaces, they have recently been studied as a so-
lution for different modulation schemes and communication channels. Their performance
metrics show their significant potential for mobile communications. For example, Yang
et al. [3] proposed a transmission protocol to reduce the channel estimation overhead when
adjacent cells share the same reflection coefficients. In addition, optimization methods are
used to allocate the transmit power and maximize the achievable rate in an orthogonal
frequency division multiplexing (OFDM) scheme under frequency-selective channels.

In [4], Basar presented a mathematical framework to obtain the signal-to-noise ratio
and derive the symbol error probability of an LIS-aided communication system, with
or without knowledge of the channel phases. The author also proposed an access point
sending signals directly to the users aided by a LIS system. Wymeersch et al. [2] emphasized
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that, although there are already other techniques for high frequencies (0.1 to 1 THz),
these technologies are limited by multipath propagation and obstacles presented in the
environment. In this case, LIS can control the physical propagation environment, decrease
energy consumption, and simplify location and mapping systems, creating a line-of-sight
(LoS) path between transmitter and receiver.

In [5], the authors presented solutions for the adjustment of the LIS elements’ phases,
which optimizes the channel capacity and the precoder applied on the transmitter side.
Elbir et al. [6] developed a deep learning framework to obtain the channel state information
(CSI) in a massive multiuser MIMO system aided by a LIS. The authors estimated each
user’s composite channel and the direct path through a convolutional neural network
whose inputs are the received pilot signals. Lin et al. [7] performed channel estimation
by applying Lagrange multipliers and a dual ascent-based scheme iteratively. They also
found a closed-form solution for Cramer–Rao lower bounds and proposed a method that
improves the accuracy of the classical least-square method. Taha et al. [8] presented
an energy-efficient architecture where all the LIS’s elements are passive except for a few
distributed active elements that are arranged in a non-uniform manner. The reflector array
applies deep learning models to obtain the optimal matrices of phase shifts.

Although an LIS is usually a panel of reflectors physically organized in planar shapes,
Hu et al. [9] proposed alternative structures with a three-dimensional spatial configuration
with spherical surfaces. In addition to broader coverage, they have a more straightforward
positioning system when compared to the conventional planar arrays.

LIS must be large in far-field communications to compete with classic massive MIMO
systems and compensate for multipath propagation and electromagnetic interference.
Besides that, optimizing the phase shifts associated with each element of the LIS is a great
challenge. Therefore, in [10], Najafi et al. proposed an optimization method based on
the physical modeling of the propagation and clusterization of a thousand reflectors into
small subsets, also known as tiles. Based on concepts from radar communications, they
modeled the impact of each tile on the overall channel, calculated the associated electric
and magnetic fields, and showed that it is possible to optimize the operation of the LIS to
maximize some quality of service (QoS) criteria.

On the other hand, Garcia et al. [11] focused on near-field environments and estab-
lished a relation between the array size and the Fresnel zones. The punctual approximation
of the scattering characterization presented dependence on the second and third-order
moments of the distance. On the contrary, for far-field, the dependence is given for the
fourth power. Kishk et al. [12] employed some stochastic geometry tools to analyze the
effect of the large-scale deployment of LIS on the performance of cellular networks in the
presence of blockages surfaces. They established a relation between the density of LIS
panels and blockages.

Mukherjee [13] explores the idea of integrating LIS with mobile edge computing
(MEC) technology that intends to leave computing involved in processing the received
signal to a cloud server and describes how these technologies can mutually benefit and
create a framework competitive for 6G. Finally, Malandrino et al. [14] analyze the possible
benefits of using intelligent and reflective surfaces to increase the privacy and security of
mobile communications through secrecy rate, considering that passive eavesdroppers are
involved in the system, in addition to legitimate users.

In addition to the works related to optimal estimation and power control in transmis-
sion systems aided by LIS, it has become a trend to compute the channel’s capacity in the
face of eavesdroppers. The question to answer is: “Does such a system offer the physical
layer security that prevents an intruder from receiving a signal not intended for him?” The
secrecy outage probability metric can answer this question since it means the probability
that the instantaneous secrecy capacity is less than or equal to a given capacity threshold.
Below are some works that, like ours, are concerned with information security in systems
assisted by LIS.
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Related Works

For the case of Gaussian distributed channels and considering parameters such as
the distances between devices and the number of LIS elements, Yang et al. [15] derived
closed-form expression for the secrecy outage probability (SOP) assuming that the LIS
uses CSI to implement the phase shifting perfectly. In its turn, Trigui et al. [16] assumed
a more realistic model in which there are errors caused by phase quantization. By lever-
aging Fox’s H transforms, they obtained exact SOP expression under the assumption
that many reconfigurable elements of LIS and channels were distributed according to the
Rayleigh distribution.

On the other hand, Ai et al. [17] demonstrated the potential of improving secrecy with
LIS aid under different scenarios where a passive eavesdropper is attempting to retrieve
the transmitted information: a vehicular-to-vehicular and a vehicular-to-infrastructure.
Makarfi et al. [18] showed how the source power, eavesdropper distance, the number
of LIS elements, the source-to-relay distance, and the secrecy threshold affect the secrecy
capacity and SOP when the vehicular source uses an LIS as an access point.

Following the perspective of the physical layer security, this paper analyzes the
secrecy outage probability of a LIS-assisted system in which K antennas at BS transmit
simultaneous signals to only one user. As shown in [19], the overall fading coefficient
is approximately gamma distributed, even for small values of N and K, but only when
the Nakagami-m fading channels have m = 1 (Rayleigh distribution). The reasoning is
extended here to more general scenarios in which m assumes arbitrary values. To the
best of the authors’ knowledge, this is the first analysis covering both channels with and
without a line of sight. The derived closed-expressions for bit error probability (BER) and
SOP allow us to conclude that it is possible to evaluate the system performance and design
it without performing several Monte Carlo simulations that would be computationally
costly in a scenario with multiple antennas and multiple reflectors. The use of the gamma
approximation is investigated for a more general scenario, in which it is possible for a line
of sight path to exist or not in each one of the intermediate channels (i.e., paths between
the transmitter and the LIS, and between the LIS and the user).

In contrary to our previous work [19], this study focuses on secrecy analysis and ex-
tends the system model to near-field scenarios. The presence of an unwanted eavesdropper
link is a realistic consideration since the information leakage becomes increasingly worri-
some, especially for banking, corporate, and government communications in addition to
demonstrating the validity of the proposed bit error probability approach when analyzing
environments with Nakagami-m fading.

The paper is organized as follows: Section 2 presents the system model and the
initial equations that based the formulation of the problem, while Section 3 presents
the closed-form expressions for spectral efficiency, BER, upper bound, and SOP. Finally,
Section 4 demonstrates the validity of the proposed analytical expressions through Monte
Carlo simulations and Section 5 presents the final considerations. Demonstrations and
mathematical deductions are presented in Appendix A.

2. System Model

As shown in Figure 1, this study considers a base station (BS) equipped with an
antenna array of K antennas transmitting the same signal to a unique single antenna
user, the destination. Additionally, a large intelligent surface system with N reflecting
elements aids the system. Both channels BS to LIS and LIS to the user are modeled by the
Nakagami-m distribution. There is a direct link between the user and the BS and between
an eavesdropper and the BS whose channel is also Nakagami-m distributed. The signal
that arrives at the destination antenna is given by

r = (hH
SLΦ

HhH
LD + hH

SD)Ψ + η, (1)

where hSL ∈ CN×1 is the link between the source and the LIS, hLD ∈ CK×N is the link
between the LIS and the destination and hSD ∈ CK×1 is the direct link between the source
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and the destination. The term Φ ∈ CN×N is a diagonal matrix, whose elements are the
phase shifts e−jφ1 . . . e−jφN applied by the LIS to the incident electromagnetic waves. The
LIS’s phases, φn ∀n, are assumed continuous in the interval of 0 to 2π radians. The term
Ψ = vs represents the precoded signal, where the data symbol is s ∼ CN (0, 1) and
the optimal precoding vector is applied by BS, according to the MRT (maximum ratio
transmission) criterion, i.e.,

v =
hH

‖h‖ . (2)

...

...

...

...

BS equipped 
with K antennas

(source)

Eavesdropper

LIS equipped with N elements

��� ∈ ℂ�×�
⋮ ⋮ ⋮ ⋮

��� ∈ ℂ�×� Destination

��� ∈ ℂ�×�
��� ∈ ℂ�×�

…

Figure 1. System model with eavesdropper link.

Finally, the term η ∼ CN (0, 1) is additive white Gaussian noise (AWGN) with zero
mean and unit variance. Suppose that there is no LoS in the direct link and that it is modeled
as a complex normal random variable, with zero mean and variance σ2

SD. Additionally, the
magnitude of the channels hi = |hi|ejφi with i ∈ {SL, LD} are Nakagami-m distributed
with probability density function (PDF) given by

fX(x) =
2m

mi
i

Γ(mi)Ω
mi
i

x2mi−1e
− mi

Ωi
x2

. (3)

In this work, the parameters mi and Ωi refer to the shape and spread of the Nakagami-
m PDF, respectively. The distribution of the phases is not specified since, for this model,
these phases are not relevant. Then, the overall channel, including the LIS and the antenna
array, can be defined as

h = hH
SLΦ

HhH
LD + hH

SD, (4)

whose representation in scalar form is

hk =
N

∑
i=1

|hLD
ki |

∣

∣

∣
hSL

i

∣

∣

∣
ej(φi−φSL

i −φLD
ki ) + hk

SD. k ∈ N (5)

Perfect phase cancelling occurs when φi − φSL
i − φLD

ki = 0. Therefore, in this scenario,
it follows that φi = φSL

i + φLD
ki . However, the task of removing the overall channel phase

is unfeasible. Some residual phase noise is left behind, in this case, φi − φSL
i − φLD

ki = θki,
where θki is the phase noise, which, in this work, is modeled as a Von Mises random
variable with concentration parameter κ. Therefore, the overall channel can be written as

hk =
N

∑
i=1

|hLD
ki |

∣

∣

∣
hSL

i

∣

∣

∣
ejθki + hSD

k . (6)
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It is expected that there is no phase error in the best case analysis, but this situation
is entirely unfeasible. However, it is possible to estimate an optimal phase adjustment
matrix that provides a performance as good as possible, so it is expected that, on average,
the phase errors are zero. The zero mean Von Mises circular distribution can be proper to
model the phases of each antenna’s fading coefficients [20]. It has nonzero support in the
interval −π and π and a concentration parameter κ associated with the quality of the phase
adjustment promoted by the LIS and the efficiency of the channel estimation method.

The moment-generating function (MGF) of the Von Mises distribution is useful since
a complex exponential represents the phase adjustments. With the MGF, it is possible to
calculate the statistical moments associated with the channel coefficients.

Let X be a Von Mises random variable; therefore, its MGF is given by ϕp = E[e−jpX ] =
αp + jβp. Since the zero mean Von Mises distribution is symmetric about zero, then the

imaginary part of the MGF βp = E[sin pX] = 0, and the real part is αp =
Ip(κ)

I0(κ)
, where Ip(κ)

is the modified Bessel function of first kind and order p.
Considering that the precoder is the normalized hermitian of the overall channel, the

SNR of the desired link is

γD = (hH
SLΦ

HhH
LD + hH

SD)v = ‖h‖2. (7)

Assuming, as an approximation that γD is Gamma distributed, then its statistical
moments, α and β can be estimated as

α =
E[γD]

2

var(γD)
, β =

E[γD]

var(γD)
, (8)

where α and β are the shape and rate parameters, while E[γD] and var(γD) are the expected
value and variance of γD, respectively, as shown throughout Appendix A.

The assumption that the distribution of γD is Gamma distributed can be assessed
using the Hellinger distance. According to Beran [21], the Hellinger distance between two
arbitrary discrete probability distributions pk and qk can be obtained as

DHL =
1√
2

√

√

√

√

Np−1

∑
k=0

(
√

pk −
√

qk)2, (9)

where Np is the number of samples available to calculate the distance. The Hellinger
distance is limited in the interval 0 ≤ DHL ≤ 1 and can be considered as an absolute metric.

In Figure 2, the realizations of a Monte Carlo simulation of the channels involved in the
system are used to compose a histogram that approximates the PDF of the overall channel
that is compared to the Gamma distribution predicted by the approximation proposed
in this study. To perform the analysis, 106 iterations were performed with unit variance
for all channels, Von Mises concentration parameter κ = 2 and the Nakagami parameter
m = 2. The results show that the Hellinger distance decreases when N and K increase. In
the last case, for K = 16, the decrease is even more pronounced. Therefore, this accurate
approximation motivates us to formulate the problem further.
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Figure 2. Hellinger distance.

3. Problem Formulation

Knowing that the SNR can be approximated by a Gamma random variable, closed-form
expressions for spectral efficiency, BER and SOP are derived in the following subsections.

3.1. Spectral Efficiency

The average spectral efficiency of the system can be defined as

C = E[log2(1 + γ)] =
∞
∫

0

log2(1 + γ) βα

Γ(α)
γα−1e−βγdγ, (10)

whose approximated solution is given by

C = (−1)−α β
log(2)Γ(α)

[(−1)α(Γ(α − 1) 2F2(1, 1; 2, 2 − α; β) +
Γ(α)(ψ(0)(α)−log(β))

β ) + πβ csc(πα)(Γ(α)− Γ(α,−β))], (11)

where ψ(0)(.) is the digamma function, Γ(.) is the gamma function, Γ(., .) is the incomplete
gamma function, and 2F2(a, b; c, d; e) is the generalized hypergeometric function. It is
noteworthy that, although this study did not find an explicit solution for the spectral
efficiency, it does present a more generic solution for the integral in the reference [22].

3.2. Bit Error Probability

The error probability for the M-QAM modulation can be approximately obtained
by [23]

PQAM
e (γ) = 1 − (1 − 2(1 − 1√

M
)Q[

√

3γlog2M
(M− 1)

])2. (12)

Assuming, as an approximation that γ is Gamma distributed, the mean bit error

probability P̄QAM
e can be calculated by

P̄QAM
e (γ) =

∞
∫

0

PQAM
e (γv) f‖w‖2(v)dv, (13)

where f‖w‖2(v) is the pdf of ‖w‖2 as a function of an independent variable v.
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Ferreira et al. [19] derived a close upper bound for the mean error probability of an
M-QAM schema under Gamma fading by using the approximation

P̄QAM
e (γ) ≈ 4

log2 M
Q(

√

3γlog2M

M − 1
). (14)

From the Chernoff bound Q(x) ≤ 1
2 e−

1
2 x2

, they obtained the following upper bound
for BER

P̄QAM
e (γ) <

1.38629(
2.16404γ log(M)

(M−1)β
+ 1)−α

log(M)
, (15)

which is close to the exact solution.

3.3. Secrecy Outage Probability

Considering that an eavesdropper has access to the signal provided by the source
and according to [24], the secrecy capacity associated with the two fading channels can be
obtained as

C =

{

ln (1 + γD)− ln (1 + γE) γD > γE

0 γD ≤ γE

, (16)

where γE is the SNR of the link between the source and the eavesdropper. Therefore, the
SOP is defined as the probability that the instantaneous secrecy capacity, C, be less than or
equal to a given capacity threshold, ln (1 + γth), which is expressed as

SOP = Pr[ln
(1 + γD)

(1 + γE)
≤ ln (1 + γth)] =

∫ ∞

0

∫ (1+γE)(1+γD)−1

0
fγE

(w) fγD
(u)dudw, (17)

where Pr[.] denotes the probability of a random event.
Considering a Nakagami-m distributed eavesdropper channel, the SOP can be ob-

tained as follows:

SOP =
∫ ∞

0

∫ (γth+1)(x+1)−1

0

βα(2mmx2m−1)yα−1 exp(−βy) exp(−mx2

Ω
)

Γ(α)(ΩmΓ(m))
dydx (18)

Solving the first integral, the remaining expression becomes

SOP =

∞
∫

0

2e−
mx2

Ω mmx2m−1Ω−m[Γ(α)− Γ(α, β(x + γth(1 + x)))]

Γ(m)Γ(α)
dx, (19)

where the term Γ(α)− Γ(α, β(x + γth(1 + x))) can be rewritten as function of the lower
incomplete gamma function

γ(s, x) ,

x
∫

0

ts−1e−tdt, (20)

considering that Γ(s) = γ(s, x) + Γ(s, x).
Representing the exponential in terms of power series, it follows that the incomplete

Gamma function can be written as

x
∫

0

ts−1e−tdt =

x
∫

0

∞

∑
k=0

(−1)k ts+k−1

k!
dt = xs

∞

∑
k=0

(−x)k

k!(s + k)
. (21)

Applying the expansion (21) in (19), and using the result obtained by the reference [22]

in its table of integrals for integrands of type xae−px2
γ(ν, cx), the SOP can be rewritten

as (22), where p F̃q is the regularized pFq hypergeometric function and v = 1+γth
γth

. Although
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this expression is an infinite sum, it is possible to verify, in Section 4, that the error is small
if only the first term is considered to compute the SOP:

SOP =
∞

∑
k=0

(−1)k βα+kγα+k
th

Γ(α)Γ(k+1)

×(
πmm2−α−kv−2mΩ−mΓ(m+ 1

2 ) csc(π(α+k+2m)) 2 F̃2(m,m+ 1
2 ; 1

2 (k+2m+α+1), 1
2 (k+2m+α+2);− m

v2Ω
)

Γ(−k−α+1)

+π3/2Ω
α+k

2 m
1
2 (−α−k)vα+k

2Γ(m)
(

2 csc( 1
2 π(α+k+2m)) 2 F̃2(

1
2 (−k−α), 1

2 (−k−α+1); 1
2 , 1

2 (−k−2m−α+2);− m
v2Ω

)

α+k

−
√

m sec( 1
2 π(α+k+2m)) 2 F̃2(

1
2 (−k−α+1), 1

2 (−k−α+2); 3
2 , 1

2 (−k−2m−α+3);− m
v2Ω

)

v
√

Ω
)),

(22)

4. Numerical Results

This section analyzes the accuracy of the proposed approximations and discusses the
improvements in capacity provided by LIS. In unspecified cases, this study adopts, by
default, the Nakagami-m shape parameters mSL = mLD = m = 2. The spread parameters
ΩSL = ΩLD = Ω were chosen to make the variances σ2

SL = σ2
LD = 1, the Von Mises

concentration parameter κ = 2, K = 16 antennas at the source, the size of the M-QAM
constellation is M = 16, and the number of iterations is 106 for each Monte Carlo simulation.

For each iteration of the Monte Carlo method, we generate the coefficients hk of (6),
the magnitudes are generated using the Nakagami-m distribution and the phase errors
with the Von Mises distribution. Given the coefficients, it is easy to estimate the bit error
rate, spectral efficiency, and the SOP in each realization of the random variables and
approximating the simulated results by the mean value of these quantities. We compare
each of the simulated results in several iterations with the theoretical formulas described in
terms of channel parameters.

Figure 3 shows the simulated and theoretical BERs considering the Von Mises and
uniformly distributed phase errors. The theoretical BER is obtained assuming that the
overall fading channel has a Gamma distribution. Note that the larger the number of
reflectors, N, the smaller the error probability for any SNR value. When the phase errors
are uniformly distributed (κ = 0), the error probability is higher than in the Von Mises
scenario. This result shows the importance of accurately estimating the phases and channel
gains and choosing the optimization method to find the best LIS phase shifts. Uniformly
distributed phase noise indicates that the algorithm has equal chances to present significant
phase errors (close to ±π) or small phase errors (close to zero). That implies greater bit
error probabilities, which can be compensated only with a large number of antennas at the
transmitter or with a large number of reflectors at the LIS.

-44 -42 -40 -38 -36 -34 -32
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E
rr
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Figure 3. Bit error probability varying the SNR.

In its turn, Figure 4 confirms that large reflecting surfaces can produce an LoS link
between the transmitter and the user even in a far-field Rayleigh fading channel. However,
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in a near-field scenario, a stronger LoS link (higher Nakagami−m parameter) implies a
lower probability of error.
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Figure 4. Bit error probability varying the LoS strength.

Even in weak LoS scenarios, LIS can decrease the probability of bit error by creating
an LoS that is the result of beamforming toward the target user. Figure 3 shows that, for an
environment with a fixed value of m, the increase in the number of reflectors (N), or the
improvement of the phase adjustment performed by the LIS (related to the concentration
parameter κ) can reduce the bit error rate in an aided LIS system.

The upper bound (15) for the error probability proposed by Ferreira et al. [19] is
very close to the bit error rate as shown in Figure 5, even when the fading coefficients are
Nakagami-m distributed.
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Figure 5. Bit error probability upper bound.

Regarding spectral efficiency, this study considers two scenarios. The first one has
uniformly distributed phase noise, and the second one has a Von Mises distributed phase,
as shown in Figure 6. Notably, the spectral efficiency increases when the LIS has a more
significant number of reflectors, thus indicating a better sharing of the spectrum for the
transmission of signals for a multiuser scenario. Moreover, the efficiency is higher for the
case in which the phase errors have a Von Mises distribution and lower when the phase
errors are uniformly distributed, which means that the phase adjustment of the LIS is a
highly relevant factor in improving the spectral efficiency, reinforcing the importance of
channel estimation and choice of the phase correction applied to reflectors. When the phase
error distribution is more concentrated around zero (higher κ values), then the spectral
efficiency is higher. Using an array of antennas on the base station can be a good choice to
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achieve better spectrum sharing in diverse scenarios. It is also remarkable that the result
predicted by the formula proposed for the spectral efficiency is very close to the results
obtained by the Monte Carlo simulation.
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Figure 6. Spectral Efficiency varying M and N.

In Figure 7, the secrecy outage probability for a Nakagami−m eavesdropper link
with Ω = 1 and m = 1.4 is shown. The sum was truncated up to the index 1000, and
the number of iterations used was 106 to generate the Gamma distributed random SNR
with parameters α and β, the Von Mises concentration parameter κ = 2, K = 2 antennas,
unity variance, and Nakagami-m fading distribution for all channels between the antennas,
the LIS, and the user. The larger the number of reflectors or the SNR, then the greater is
the SOP.
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Figure 7. SOP for K = 2 antennas and different number of reflectors (N).

The first-order approximation of the SOP, considering that the Nakagami-m parame-
ters are m = 2.5 and Ω = 0.1 for all the channels in the system model, is also close to the
simulated result as shown in Figure 8.
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Figure 8. First order approximation of SOP for K = 2 antennas and different number of reflectors (N).

5. Final Considerations

This work has presented an in-depth analysis of the performance of systems aided
by large intelligent surfaces considering the existence of an eavesdropper link in generic
scenarios that contemplate channels with and without LoS links, employing the Nakagami-
m distribution, and channels with or without a direct link to the transmitter and the
user. This study derives very accurate analytical expressions from computing the secrecy
outage probability, bit error probability, and secrecy capacity, in addition to reasonable
approximations for estimating the equivalent channel parameters based on the central
limit theorem.
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Appendix A. Parameters of γD

It is possible to obtain the parameters of the γD distribution, following the steps below.

Appendix A.1. Expected Value of Each Fading Coefficient

Since the expected value is a linear operator, then

E[hk] = E[
N

∑
i=1

|hLD
ki |

∣

∣

∣
hSL

i

∣

∣

∣
ejθki + hSD

k ] = NE[
∣

∣

∣
hLD

ki hSL
i

∣

∣

∣
ejθki ] +E[hSD

k ]. (A1)
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Since the channels are independent and identically distributed, E[hSD
k ] = 0, and

E[ejθki ] = α1, thus
E[hk] = N µLD × µSL × α1, (A2)

where

µLD = E[
∣

∣

∣
hLD

ki

∣

∣

∣
] =

Γ(mLD + 0.5)

Γ(mLD)
(

ΩLD

mLD
)

1
2 , (A3)

and

µSL = E[
∣

∣

∣
hSL

i

∣

∣

∣
] =

Γ(mSL + 0.5)

Γ(mSL)
(

ΩSL

mSL
)

1
2 , (A4)

are the expected values of each Nakagami-m channel. To obtain the variance of the overall
channel fading coefficient, the mean of ck = Re{hk} and sk = Im{hk} needs to be calculated,
i.e., the in-phase and quadrature components of the fading coefficient, respectively. The
in-phase component can be written as

ck =
N

∑
i=1

∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
cos θki + Re{hSD

k }, (A5)

while the quadrature component is

sk =
N

∑
i=1

∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
sin θki + Im{hSD

k }. (A6)

Then, the expected value of ck is

E[ck] =
N

∑
i=1

E[
∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
cos θki] +E[Re{hSD

k }]. (A7)

Since E[Re{hSD
k }] = 0 and all the summation terms are independent,

E[ck] = N ×E[
∣

∣

∣
hLD

ki

∣

∣

∣
]E[

∣

∣

∣
hSL

i

∣

∣

∣
]E[cos θki]N × µLD µSL α1, (A8)

as well as E[hk].
In its turn, the expected value of sk is given by

E[sk] =
N

∑
i=1

E[
∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
sin θki] +E[Im{hSD

k }]. (A9)

Since E[Im{hSD
k }] = 0 and all the summation terms are independent,

E[sk] = N ×E[
∣

∣

∣
hLD

ki

∣

∣

∣
]E[

∣

∣

∣
hSL

i

∣

∣

∣
]E[sin θki] = 0, (A10)

since E[sin θki] = 0.

Appendix A.2. Variance of the In-Phase and Quadrature Components of Each Fading Coefficient

The variance of the in-phase component is written as

var(ck) = var(
N

∑
i=1

∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
cos θki + Re{hSD

k }). (A11)
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Since var(hSD
k ) = σ2

SD, the summation terms and Re{hSD
k } are independent and the

hSD
k coefficient is zero mean, then

var(ck) = N × var(
∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
cos θki) +

σ2
SD

2
. (A12)

Next, the variance of the term
∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣ cos θki is needed, considering that the vari-
ance of the product of two random variables X and Y is var(XY) = var(X)var(Y) +
var(X)E[Y]2 + var(Y)E[X]2 and the phase noise is independent of the fading magni-
tudes. Thus,

var(
∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣ cos θki) = var(
∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣)var(cos θki) + . . . var(
∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣)(E[cos θki])
2 + var(cos θki)(E[

∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣])2. (A13)

Since
∣

∣hLD
ki

∣

∣ and
∣

∣hSL
i

∣

∣ are independents,

var(
∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣) = var(
∣

∣hLD
ki

∣

∣)var(
∣

∣hSL
i

∣

∣) + var(
∣

∣hLD
ki

∣

∣)(E[
∣

∣hSL
i

∣

∣])2 + . . . var(
∣

∣hSL
i

∣

∣)(E[
∣

∣hLD
ki

∣

∣])2 (A14)

and
E[

∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
] = µLD × µSL. (A15)

Next, considering that var(
∣

∣hSL
i

∣

∣) = σ2
SL and var(

∣

∣hLD
ki

∣

∣) = σ2
LD, then

var(
∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
) = σ2

LDσ2
SL + σ2

LDµ2
SL + σ2

SLµ2
LD. (A16)

By using (A16), (A13) can thus be evaluated as

var(
∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣ cos θki) = (σ2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD)× 1
2 (1 + α2) + (σ2

LDσ2
SL + σ2

LDµ2
SL + σ2

SLµ2
LD)α

2
1 +

1
2 (1 + α2)× µ2

SLµ2
LD, (A17)

which can be rewritten as

var(
∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
cos θki) =

1

2
(1 + α2)× µ2

SLµ2
LD + . . .

1

2
(σ2

LDσ2
SL + σ2

LDµ2
SL + σ2

SLµ2
LD)(1 + α2 + 2α2

1). (A18)

Therefore, the variance of the in-phase component is

var(ck) =
σ2

SD

2
+

N

2
× [(1 + α2)× µ2

SLµ2
LD + . . . (σ2

LDσ2
SL + σ2

LDµ2
SL + σ2

SLµ2
LD)(1 + α2 + 2α2

1)]. (A19)

On other hand, the variance of the quadrature component of each fading coefficient is
given by

var(sk) = var(
N

∑
i=1

∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
sin θki + Im{hSD

k }). (A20)

Considering that var(hSD
k ) = σ2

SD, the summation terms and Im{hSD
k } are indepen-

dent and the term hSD
k is zero mean, then

var(sk) = N × var(
∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
sin θki) +

σ2
SD

2
. (A21)

Next, for that reason,

var(
∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣ sin θki) = var(
∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣)var(sin θki) + . . . var(
∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣)(E[sin θki])
2 + var(sin θki)(E[

∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣])2. (A22)

Since E[sin θki] = 0, applying (A16) therefore

var(
∣

∣hLD
ki

∣

∣

∣

∣hSL
i

∣

∣ sin θki) =
1
2 (1 − α2)µ

2
SLµ2

LD + . . . 1
2 (1 − α2)(σ

2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD), (A23)

which can be rewritten as

var(
∣

∣

∣
hLD

ki

∣

∣

∣

∣

∣

∣
hSL

i

∣

∣

∣
sin θki) =

1

2
(1 − α2)(σ

2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD + µ2
SLµ2

LD). (A24)
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Therefore, the variance of the quadrature component is expressed by

var(sk) =
σ2

SD

2
+

N(1 − α2)(σ
2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD + µ2
SLµ2

LD)

2
. (A25)

Appendix A.3. Expected Value of γD

All the fading coefficients are independent and identically distributed and E[γD] =

E[‖h‖2]. Therefore,

E[γD] = E[
K

∑
k=1

|hk|2] = K ×E[|hk|2]. (A26)

Considering that E[|hk|2] = E[c2
k + s2

k ] = E[c2
k ] +E[s2

k ], then

E[c2
k ] = var(ck) + (E[ck])

2,

and, by using (A19) and (A25),

E[c2
k ] =

σ2
SD
2 + N2 × µ2

LD µ2
SL α2

1 +
N
2 × [(1 + α2)× µ2

SLµ2
LD + . . . (σ2

LDσ2
SL + σ2

LDµ2
SL + σ2

SLµ2
LD)(1 + α2 + 2α2

1)]. (A27)

For the quadrature component, consider that E[sk] = 0, and, consequently, E[s2
k ] =

var(sk). Then,

E[s2
k ] =

σ2
SD

2
+

N(1 − α2)(σ
2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD + µ2
SLµ2

LD)

2
. (A28)

and the mean value of the overall fading coefficient magnitude is given by

E[γD] =
K
2 × (2σ2

SD + 2N2 × µ2
LD µ2

SL α2
1N[(1 + α2)× µ2

SLµ2
LD + . . .

(σ2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD)(1 + α2 + 2α2
1)] + . . .

N(1 − α2)(σ
2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD + µ2
SLµ2

LD)).
(A29)

Appendix A.4. Variance of γD

Let Zi = |hi|2; then,

var(γD) = var(‖h‖2) = var(
M

∑
i=1

Zi). (A30)

Therefore, the variance of the sum of the terms Zi is given by

var(
M

∑
i=1

Zi) =
M

∑
i=1

var(Zi) + 2 ∑
1≤i<k≤M

cov(Zi, Zk), (A31)

whose magnitudes are equally distributed. Therefore,

var(
M

∑
i=1

Zi) = M var(Zi) + M(M − 1) cov(Zi, Zk). (A32)

The covariance can be obtained by

cov(Zi, Zk) = E[ZiZk]−E[Zi]E[Zk], (A33)

where
E[ZiZk] = E[c2

i c2
k ] + 2E[c2

i s2
k ] +E[s2

i s2
k ]. (A34)
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The expected value of the product of two different in-phase coefficients can be writ-
ten as

E[cick] = E[(
N

∑
l=1

∣

∣

∣
hLD

il

∣

∣

∣

∣

∣

∣
hSL

l

∣

∣

∣
cos θil + Re{hSD

i })× (
N

∑
m=1

∣

∣

∣
hLD

km

∣

∣

∣

∣

∣

∣
hSL

m

∣

∣

∣
cos θkm + Re{hSD

k })]. (A35)

By expanding the product,

E[cick] = E[Re{hSD
i }Re{hSD

k }] +
N

∑
l=1

N

∑
m=1

E[
∣

∣

∣
hLD

il

∣

∣

∣

∣

∣

∣
hLD

km

∣

∣

∣

∣

∣

∣
hSL

l

∣

∣

∣

∣

∣

∣
hSL

m

∣

∣

∣
cos θil cos θkm], (A36)

where the independent terms can be separated as

E[
∣

∣

∣
hLD

il

∣

∣

∣

∣

∣

∣
hLD

km

∣

∣

∣

∣

∣

∣
hSL

l

∣

∣

∣

∣

∣

∣
hSL

m

∣

∣

∣
cos θil cos θkm] = E[

∣

∣

∣
hLD

km

∣

∣

∣
]2E[

∣

∣

∣
hSL

m

∣

∣

∣
]2E[cos θkm]

2 = µ2
LDµ2

SLα2
1∀l 6= m, (A37)

and

E[
∣

∣hLD
il

∣

∣

∣

∣hLD
km

∣

∣

∣

∣hSL
l

∣

∣

∣

∣hSL
m

∣

∣ cos θil cos θkm] = E[
∣

∣hLD
km

∣

∣]2E[
∣

∣hSL
m

∣

∣

2
]E[cos θim]E[cos θkm] = µ2

LD(σ
2
SL + µ2

SL)α
2
1∀i 6= k, l = m, (A38)

where the term E[
∣

∣hSL
m

∣

∣

2
] = σ2

SL + µ2
SL and the variance of the Nakagami-m distributed

term is

σ2
SL = ΩSL(1 −

1

mSL
(

Γ(mSL + 0.5)

Γ(mSL)
)2). (A39)

For i = k,

E[
∣

∣hLD
il

∣

∣

∣

∣hLD
km

∣

∣

∣

∣hSL
l

∣

∣

∣

∣hSL
m

∣

∣ cos θil cos θkm] = E[
∣

∣hLD
km

∣

∣

2
]E[

∣

∣hSL
m

∣

∣

2
]E[cos2 θkm] =

1
2 (σ

2
LD + µ2

LD)(σ
2
SL + µ2

SL)(1 + α2)∀l = m, i = k, (A40)

where

σ2
LD = ΩLD(1 −

1

mLD
(

Γ(mLD + 0.5)

Γ(mLD)
)2). (A41)

To obtain the variance according to (A34), the term E[c2
i c2

k ] needs to be computed. The
terms are approximately correlated Gaussian random variables by the central limit theorem
(CLT), for large values of N, therefore

E[c2
i c2

k ] =

∞
∫

−∞

∞
∫

−∞

x2y2 fci ,ck
(x, y)dxdy, (A42)

where fci ,ck
(x, y) is the joint distribution of the two correlated Gaussian variables ci and ck.

The result of the integral is

E[c2
i c2

k ] = µ4
ck
+ 2µ2

ck
(1 + 2ρci ,ck

)σ2
ck
+ (1 + 2ρ2

ci ,ck
)σ4

ck
, (A43)

where µck
= E[ck], σ2

ck
= var(ck), and since var(ci) = var(ck) and E[ci] = E[ck], the

correlation coefficient ρci ,ck
can be obtained as

ρci ,ck
=

E[cick]− µ2
ck

var(ck)
, (A44)

where E[cick] can be calculated by (A45) in the next page.

E[cick] =

{

N(N − 1)(µ2
LDµ2

SLα2
1) + N(µ2

LD(σ
2
SL + µ2

SL)α
2
1)i 6= k

N(N − 1)(µ2
LDµ2

SLα2
1) +

N
2 ((σ

2
LD + µ2

LD)(σ
2
SL + µ2

SL)(1 + α2)) +
1
2 σ2

SDi = k
(A45)

Since the moments of ck were previously calculated, ρci ,ck
can be obtained by

ρci ,ck
=

N(N − 1)(µ2
LDµ2

SLα2
1) + N(µ2

LD(σ
2
SL + µ2

SL)α
2
1)− (N µLD µSL α1)

2

σ2
SD
2 + N

2 [(1 + α2)× µ2
SLµ2

LD + (σ2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD)(1 + α2 + 2α2
1)]

i 6= k. (A46)
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In its turn, applying (A46) for the correlation coefficient ρci ,ck
in the definition of

E[c2
i c2

k ] in (A43), it is possible to find that (A47).

E[c2
i c2

k ] =











a4
1(1 − 4

N ) + a2
1(σ

2
SD + a4 + Na2a3 − 2

N + 4a5)2a5 +
1
4 (σ

2
SD + a4 + Na2a3)

2 i 6= k

a4
1 + 3a2

1(σ
2
SD + a4 + Na2a3) +

3
4 (σ

2
SD + a4 + Na2a3) i = k

(A47)

where a1 = NµSLµLDα1, a2 = σ2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD, a3 = 1 + α2 + 2α2
1,

a4 = Nµ2
SLµ2

LD(1 + α2), a5 = Nµ2
LDα2

1(σ
2
SL + µ2

SL). The term E[c2
i s2

k ] depends on two un-
correlated but not independent random variables ci and sk, the correlation is zero and, to
calculate the correlation of the squared product, it is necessary to expand the very definition
of the two terms as shown in

E[c2
i s2

k ] = E[(
N

∑
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∣
hLD

il
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k })2] (A48)

Expanding the product in (A48), it follows that

E[(
N
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(A49)

where the general and simplified result given in Ferreira et al. [19] as

E[c2
i s2

k ] = E[(
N

∑
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il
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(A50)

The in-phase term is

E[(
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1 (A51)

and the quadrature term is

E[(
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where

χLD = E[
∣

∣

∣
hLD

il

∣

∣

∣

2
] = ΩLD (A53)

χSL = E[
∣

∣

∣
hSL

d

∣

∣

∣

2
] = ΩSL (A54)

ξLD = E[
∣

∣

∣
hLD

il

∣

∣

∣

3
] =
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ΩLD
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(A55)

ξSL = E[
∣

∣

∣
hSL

d

∣

∣

∣

3
] =

Γ(1.5 + mSL)

(mSL
ΩSL

)Γ(mSL)
(A56)

τLD = E[
∣

∣

∣
hLD

il

∣

∣

∣

4
] =

(1 + mLD)Ω
2
LD

mLD
(A57)

τSL = E[
∣

∣

∣
hSL

d

∣

∣

∣

4
] =

(1 + mSL)Ω
2
SL

mSL
(A58)

The term E[s2
i s2

k ] can be easily obtained because si and sk are uncorrelated and zero
mean, then
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E[s2
i s2

k ] =

{

(E[s2
i ])

2 i 6= k

E[s4
k ] = 3(var(sk))

2 i = k
(A59)

and, by substituting the variances; consequently, (A60).

E[s2
i s2

k ] =











1
4 (σ

2
SD + N(1 − α2)(σ

2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD + µ2
SLµ2

LD))
2 i 6= k

3
4 (σ

2
SD + N(1 − α2)(σ

2
LDσ2

SL + σ2
LDµ2

SL + σ2
SLµ2

LD + µ2
SLµ2

LD))
2 i = k

(A60)

Finally, the term E[ZiZk] can be calculated by using the formulas of E[c2
i c2

k ], E[c
2
i s2

k ]
and E[s2

i s2
k ], resulting in (A61).
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(A61)

The covariance cov(ZiZk) can be calculated by (A62) using the result of (A61). Since
var(Zi) = cov(Zi, Zi), the variance of the overall fading coefficient can be easily obtained
by (A32) as shown in (A63):
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(A62)

var(γD) = M var(Zi) + M(M − 1) cov(Zi, Zk) (A63)
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