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Abstract—In this work, we study the secrecy capacity of the secrecy outage probability (SOP) and average secrecy capacity
classic Wyner's model over thea — 1 fading channels, wherea:  (ASC) were derived in [1]. The closed-form expressions for
and . specify the nonlinearity and clustering of fading channels, the probability of zero secrecy capacity with three differ-

respectively. The average secrecy capacity (ASC) is derived in tt it ant lecti h derived d
closed-form by using the extended generalized bivariate Fox's H- €Mt ransmit antenna selection schemes were derived under

function (EGBFHF). Moreover, the asymptotic analysis of ASC Rayleigh fading environments in [2].

in high signal-to-noise ratio (SNR) regime is conducted. The So far, most of the open literature on the secrecy perfor-
asymptotic results unveil that the ASC follows the scaling law mance analysis focused on particular fading channels, such as
of © (Inp), where p stands for the ratio between the average Rayleigh [3], [4], Nakagamin [1], [5], [6], Weibull [7], [8], or

powers of main channels and eavesdropping channels. Moreover,  __~
the ASC can be enhanced by increasing the transmit SNR, while log-normal [9]. Few works focus on the secrecy performance

there exists a ceiling of ASC as the SNRs at both sides areOver generalized fading channels, except [10], [11], [12].
improved simultaneously. The accuracy of the analytical results The secrecy outage performance of single-input single-output
is validated by Monte-Carlo simulations. The numerical results (SISO) and single-input multiple-output (SIMO) system were
Sg?f"c‘)’r;:‘;‘;gago{ﬁ;tsi;adsigﬁoclj‘sarr‘]gﬁ:f‘ngfritbeg“:nﬁg:f‘| )toamje Sse;rfgy investigated in [10], [11], respectively, in which the channels
Elustering (srlnall D) \;vill lead to the impro)(/ement(zé)f ASC. P were assumeq as generalizidfading channels. . .

The a-. fading channel accounts for the nonlinearity of a
propagation medium as well as clusters of multipath waves
with two physical fading parameters and y reflecting the
nonlinearity and clustering, respectively [13]. Most of the
small-scale fading channels are special cases-pf distri-

I. INTRODUCTION bution, such as exponential, Rayleigh, NakagamiGamma,

ECENTLY, the secrecy performance analysis of digita"f}”d Weibull. Furthermore, th_e probability density function
R systems over fading channels has become a research(fg2F) of some large-scale fading channels (such as log-normal
cus. Considering the effect of outdated channel state infornf4l2nnels) and composite fading channels (such as generalized-
tion (CSI), the secrecy performance of multiple-input multiple’ channels) also can be approximated by the PDF of-an
output (MIMO) wiretap channels with multiple eavesdropperé distribution with the methods proposed in [14] and [15],

over non-identical Nakagami» fading was investigated and"€SPectively.

the closed-form expressions for the exact and asymptotic'(though the SOP over-u fading channels was studied in
[12] and the expressions for the SOP bound and the strictly
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achieved under rigorous fading channels, that is, seriousere G}';" [-] is Meijer's G-function, as defined by eq.

nonlinearity (smalle)) and sparse clustering (smal) (9.301) of [16].

will lead to the improvement of ASC. By making use of (6.2.8) of [18] and (2.3) of [19], the
2) The asymptotic analysis of ASC in high signal-to-noiselosed-form of/; is obtained as (3), shown at the top of next

ratio (SNR) regime is further performed to extract morpage, wheref?";" || is the Fox's H-function, as defined by

insightful results. It is found that the ASC follows theeq. (1.2) of [20] andH ;' "2 n20s:ms ] is the EGBFHF

scaling law of © (In p), where p is the ratio of the functiont, as defined by eq. (2.57) of [20].

average power gains of the main channel to that of Similar to I;, the closed-form expression &f is obtained

the eavesdropping channel. In addition, although AS&s (4), shown at the top of next page.

can be enhanced by increasing the transmit SNR, theNow, on utilizing egs. (11) and (21) of [17];3 is obtained

asymptotic analysis proves that ASC is upper bounded

as the transmit SNR approaches to infinity.

0.5 —1 2
_ nE2™ag 24 2am,am [)\E
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Il. SYSTEM MODEL (2m) " 05 “2ap,24+2a8 | "4 [A(2,0)xx o
We consider the classic Wyner’s wiretap model, as assume - s ~
in [9], [10], [12]. It is assumed that all the channels experienc\i\éﬁ(irf1 X atm_1 A(QE’f 2 ) and  A(m.a) =
independent.-y. fading and the CSI of all the channels 1™  fb i ing" (3), (4), and (5) intdC., the closed-form
available atS since active eavesdropping is considered in our . ; .
work. expression of ASC is obtained.
The PDF of SNR fora-p fading channels is expressed as
[12] IV. ASYMPTOTIC AVERAGE SECRECY CAPACITY
“hik on
e (0) = 5 e @ pracres
e g . Although we have obtained the exact closed-form expres-
wherek € {D,E}, np = %’_yk_ > Xk =y, 2, ai  sion for ASC in section Il it is difficult to achieve more

2r

and uy, are the two physicai fading parameters that reflect thesights from the results. In order to get more insights, we

nonlinearity and clustering: (¢) = fOOO tle~tdt is the well- analysis the secrecy capacity performance in the high transmit

known Gamma functiony, = v,Y;. are the average SNRs, SNR regime, which implies; — oo in this section. The

are transmit SNRs, and, are the average power gains. Thigisymptotic expression ASC is given liemma 1. _

model is one of the most general fading model and can spatemma 1. When 7, — oo, we have Oy =~

a wide range of multipath fading models, such as Rayleigh 1 N
= — i _ _ o)) 2 wid (ti),

(ax = 2, = 1), Nakagamim (ox = 2,p = m), and " #P)7E) i

Weibull (1, = 1) fading [12], [13]. abscissas and weight factors for the Gaussian-Laguerre

integration [21, eq. (25.4.45)p = Yp/Yg, g(t) =
IIl. AVERAGE SECRECY CAPACITY ANALYSIS

o —11n ((t/u )2/eny, ) Y <u e E (L)“E/“D) _
In active eavesdropping scenarigscan transmit confiden- b P S mp
tial messages to guarantee perfect secrecy at an achievableuate! 1n (YE(t/ME)z/aE T (HD, qu_aDm(t/ME)aD/aE),

since the CSlI of the eavesdropper’s channel is available, whighy (a,z) = [ e~tt>~Ldt is the upper incomplete Gamma
is a fundamental assumption in physical layer security [1], [%nctionv(definexd by eq. (8.350.2) of [16]).

[5], [10]. The secrecy capacity, which is the maximum achiev-  poof- Based on the definition of ASC, we have
able secrecy rate, is essentially a fundamental secrecy perfor-

where w; and ¢; are the

mance metric. According to [3], the instantaneous secrecy cagy_ _ = f d /"o1 (1 + VD)

S \ s = YE)dYy n Ip (vp) dyp.
pacity is defined a€’s = [In (1 4+ vp) — In (1 + vg)]*, where o 7 (1) s Ve I+7E (1)
In(1+~p) andln (1 4 vg) are the capacity of the main and o _ _(6)
eavesdropper channels, respectively, ad = max {z, 0}. Substitutingyp = 7:Yp = %Yoz, & = %:Ye = 1VEy,

According to [10], ASC can be given &, = I, + I, — I;, @nd (1) into (6), and after some algebra, we obtain
where I = J (1 +~p) fo (vp) F& (vp) dvp, 00 oo v, Y
0 = = pr —Ygy
L o= fwOemisenbeds  C=2[ [ w (HT) o (2. y) ddy
I3 = Jo (1 +98) fe(ve)dye, Fi(y) = 0 Ju/e e By e
o . , ,—00 Rl e Y
@T (Nk; )\kfy—zh). (ke {D,E}) is the cumulative "3 E/ / In (ZTD) o (,y) dzdy
distribution  function (CDF) of the SNR, and 0 Jy/p Y¥e
T (o,x) = [ e 't*"'dt is the lower incomplete Gamma =Z(H, — Ha).
function (defined by eq. (8.350.1) of [16]). . —pn ep ag
Substituting (1) andF (7) into 71, and making use of (8) Where ¢ (z,y) = w— = ~ly~= TleThpT T eThey E
1 —_— ap & " " o0 o0 <
and (9) of [12],0211) of [17], we obtain = = #%, H; = IN fy/p In (mYD) ¢ (z,y) dzdy,
I = > / R € [VD ‘}’H and s = [," [, n (yVk) ¢ (x,y) dedy.
I (ue) Jo ’ ’ )
1,0 ap | _ 1,1 B 1The EGBFHF function can be easily realized by utilizing the MATLAB
x Gy [ADVD el } G [Amp > | ME,()} dvp, (see [22]) or with the MATHEMATICAR) (see Table 1).
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Now altering the order of integration, making use of MATHEMATICA®IMPLEMEN-I'-I"?\A'IB'ILOEI\JIOFEXTENDEDGENERALIZED
(3.351.1) of [16], and with some algebraic manipulations, BIVARIATE BIVARIATE FOX'SH-FUNCTION

N
. 4y~ HD g ME
we Obta|nH1 = % Z w;g1 (tl), Wherewi a.nd Clear All; Clear[H];

boE Hi:InconsistentCoeffs = "Inconsistent coefficients!";

. i=1 .
t; are the abscissas and weight factors for the Gaussiamtess—, bse. tas boy, (e, bt} (zs, ze] o= Module[ (),

as =

Laguerre integration [21’ eq_ (25445)], arm (t) = Function[u, Product [Gamma[l-as[[1, n, 1]] -uas[[1, n, 2]]], {n, 1, Length[as[[1]]1]}]];
P an/o | 20 Qas = Function[u, Product [Gamma[as[[2, n, 1]] + uas[[2, n, 2111,
aE E/QD wp— D (n, 1, Length[as[[2]]]}]];
T gMEa HEP (t/:u’D) ) t In ((t/MD) Yp ). Pbs = Function[u, Product [Gamma[bs[[1, n, 1]] + ubs[[1, n, 2]1],
imilarly, making use of (3.351.2) of [16], we have tn 3 engthibe[ (111117
N Qbs = Function[u, Product [Gamma[l-bs[[2, n, 1]] -ubs[[2, n, 2111,
—up —uE {n, 1, Length[bs[[2]]1]1}1];
Hg — 4pp aDag; Z w;igo (tz.), where go (t) — ::t::‘unction[u, Pas[u] Pbs[u] / (Qas[u] Qbs[u])];
i=1 Function[u, Product [Gamma[l-at[[1, n, 1]] -uat[[1, n, 2111, {n, 1, Length[at[[1]1]1}]];

ap /OLE _ ;
—an/2 t 1 2/ap Qat = Function([u, Product [Gamma[at[[2, n, 1]] + uwat([[2, n, 2]]],
I UD, UWDpP p/ (—) tHEe In (t//,LE) YE . {n, 1, Length[at[[2]11}]];
rE Pbt = Function[u, Product[Gamma[bt[[1, n, 1]] + ubt[[1, n, 2]11,

SubstitutingH; and H into (7), the upper bound expression {n, 1, Length(bt (11111}

Qbt = Function[u, Product[Gamma[l-bt[[2, n, 1]] -ubt[[2, n, 2]]],
for ASC IS denved. ] {n, 1, Length[bt[[2]]1}]1];

Mt = Function[u, Pat[u] Pbt[u] / (Qat[u] Qbt[u])];

Remark 1. Obviously, one can find that the ASC will be  east - runctionitu, v, proauct (Gammal

1-ast[[1, n, 1]] -uast[[1, n, 2]] -vast[[1, n, 3]]], {n, 1, Length[ast[[1]]1]}]];

improved asy; increases as indicated by (7) Qast = Function[{u, v}, Product[Gamma[ast[[2, n, 1]] + uast[[2, n, 2]] +vast[[2, n, 3]1],
. n, 1, Length[ast[[2 ;
Remark 2: We rewrite eq. (7) as follows ghat « Punettont (o ), Paadues (Gamma 1 - et (2, m, 11] - ubst((2, n, 21] -
vbst[[2, n, 3]]1], {n, 1, Length[bst[[2]]]}]];
_ o0 o0 Mst = Func(.:ion[(u, v}, Past[u, v]/ (Qast[u, v] Qbst[u, v])];
Co= [ [ i) Zotay) dady i et
0 y/pOO 00 (8) value = 2 1)2 NInteg:ate[MT[s, t] zs™° Zt"", {s, Rs-IW, Rs+IW}, {t, Rt -IW, RC+IW)];
+ h’lp/ / E(,O (l‘, y) dl‘dy Return[value];];
0 y/p
Note that both integrals in (8) are consistent, so it can be 15 ‘ :
: ; © Simulation 5
concluded that the ASC follows the scaling law@®fln p) in Analysis

high SNR regime.

In the Section V, one will find that the ASC can be improved
with ~;, which means the transmitting power gtincreases.
From Lemma 1, it can be found that there exists a ceiling for O
the ASC when in the high; region since the SNR at both 05
and £/ are improved simultaneously.

- * - Asymptotic

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical and Monte-carlo simulations v (dB)
results are presented to verify our analytical results. Further-
more, the impact of both the fading parameters and the aver&igel. ASC for variousx.
SNRs on the secrecy performance are demonstrated. To the
authors’ best knowledge, the EGBFHF is not available in ) ) ) )
standard mathematical packages and MATI@Bibrary. As In Figs. 1-3, simulation _and analytical re_sults are compared
the implementation in [22] is not a common case to evalud@ the ASC overa-u fading channels. It is clear that our
EGBFHF function, an efficient Mathemati@ implementa- a_nalytlcal results have been verified by the s!mulatlon results.
tion of this function is offered for any general case (hence figs- 1 and 2 present the ASC vs; for various o or p.
also fits for the numerical evaluation of egs. (3) and (4)), 45 €an be observed from Figs. 1 and 2 that the ASC for

shown in Table 1 The main parameters used in simulationd !0Wer a or . outperforms the one for a higher or .,
and analysis are set as = ax = o and up = pp = p. reflecting the nonlinearity and clustering, respectively. This is

The curves are examined for varioasand i for comparison Pecause lowy and . means serious nonlinearity and sparse
purposes while varying;. plustenng (|.g., worse channel cpndltlons)_. It justifies that the
inherent nonlinearity and clustering of fading channels can be

2The EGBMGF code given in [23] is a special case of this. exploited to prevent the information being overheared by the
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(such as log-normal), and composite fading channels (such as

0.7f :
generalizedk).
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