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Abstract—In this work, we study the secrecy capacity of the
classic Wyner’s model over theα− µ fading channels, whereα
and µ specify the nonlinearity and clustering of fading channels,
respectively. The average secrecy capacity (ASC) is derived in
closed-form by using the extended generalized bivariate Fox’s H-
function (EGBFHF). Moreover, the asymptotic analysis of ASC
in high signal-to-noise ratio (SNR) regime is conducted. The
asymptotic results unveil that the ASC follows the scaling law
of Θ(ln ρ), where ρ stands for the ratio between the average
powers of main channels and eavesdropping channels. Moreover,
the ASC can be enhanced by increasing the transmit SNR, while
there exists a ceiling of ASC as the SNRs at both sides are
improved simultaneously. The accuracy of the analytical results
is validated by Monte-Carlo simulations. The numerical results
show that rigorous fading channels are beneficial to the secrecy
performance, that is, serious nonlinearity (smallα) and sparse
clustering (small µ) will lead to the improvement of ASC.

Index Terms—Physical layer security, average secrecy capacity,
α − µ fading channel, extended generalized bivariate Fox’s H-
function.

I. I NTRODUCTION

RECENTLY, the secrecy performance analysis of digital
systems over fading channels has become a research fo-

cus. Considering the effect of outdated channel state informa-
tion (CSI), the secrecy performance of multiple-input multiple-
output (MIMO) wiretap channels with multiple eavesdroppers
over non-identical Nakagami-m fading was investigated and
the closed-form expressions for the exact and asymptotic
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secrecy outage probability (SOP) and average secrecy capacity
(ASC) were derived in [1]. The closed-form expressions for
the probability of zero secrecy capacity with three differ-
ent transmit antenna selection schemes were derived under
Rayleigh fading environments in [2].

So far, most of the open literature on the secrecy perfor-
mance analysis focused on particular fading channels, such as
Rayleigh [3], [4], Nakagami-m [1], [5], [6], Weibull [7], [8], or
log-normal [9]. Few works focus on the secrecy performance
over generalized fading channels, except [10], [11], [12].
The secrecy outage performance of single-input single-output
(SISO) and single-input multiple-output (SIMO) system were
investigated in [10], [11], respectively, in which the channels
were assumed as generalized-K fading channels.

The α-µ fading channel accounts for the nonlinearity of a
propagation medium as well as clusters of multipath waves
with two physical fading parametersα and µ reflecting the
nonlinearity and clustering, respectively [13]. Most of the
small-scale fading channels are special cases ofα-µ distri-
bution, such as exponential, Rayleigh, Nakagami-m, Gamma,
and Weibull. Furthermore, the probability density function
(PDF) of some large-scale fading channels (such as log-normal
channels) and composite fading channels (such as generalized-
K channels) also can be approximated by the PDF of anα-
µ distribution with the methods proposed in [14] and [15],
respectively.

Although the SOP overα-µ fading channels was studied in
[12] and the expressions for the SOP bound and the strictly
positive secrecy capacity (SPSC) were derived, notice that
the SOP and the SPSC are fundamental metrics to evaluate
the secrecy performance of passive eavesdropping scenarios
[1], [5] wherein the CSI of the eavesdropper’s channel is not
available at the source node. ASC is a metric to evaluate
the secrecy performance of active eavesdropping scenarios
wherein the transmitter is aware of the CSI of eavesdropper’s
channel [1], [3], [5]. Technically speaking, it is much more
challenging to obtain a closed-form expression for the ASC
relative to that of the SOP or SPSC, especially applicable to
generalized fading channels.

Based on the open literature and to the best of the authors’
knowledge, it is still an open area to study the secrecy capacity
overα-µ fading channels. The main contributions of our work
are listed as follows:

1) The secrecy capacity of the classic Wyner’s model over
α-µ fading channels is derived in closed-form, which
enables the performance evaluation. Specifically, the
numerical results unveil more secrecy capacity can be
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achieved under rigorous fading channels, that is, serious
nonlinearity (smallα) and sparse clustering (smallµ)
will lead to the improvement of ASC.

2) The asymptotic analysis of ASC in high signal-to-noise
ratio (SNR) regime is further performed to extract more
insightful results. It is found that the ASC follows the
scaling law of Θ(ln ρ), where ρ is the ratio of the
average power gains of the main channel to that of
the eavesdropping channel. In addition, although ASC
can be enhanced by increasing the transmit SNR, the
asymptotic analysis proves that ASC is upper bounded
as the transmit SNR approaches to infinity.

II. SYSTEM MODEL

We consider the classic Wyner’s wiretap model, as assumed
in [9], [10], [12]. It is assumed that all the channels experience
independentα-µ fading and the CSI of all the channels is
available atS since active eavesdropping is considered in our
work.

The PDF of SNR forα-µ fading channels is expressed as
[12],

fk (γ) = ηkγ
αkµk

2
−1e−λkγ

αk
2 , (1)

wherek ∈ {D,E}, ηk =
αkµ

µk
k

2Γ(µk)
γ̄
−

αkµk
2

k , λk = µkγ̄
−

αk
2

k , αk

and µk are the two physical fading parameters that reflect the
nonlinearity and clustering.Γ (c) =

∫

∞

0
tc−1e−tdt is the well-

known Gamma function,̄γk = γtȲk are the average SNRs,γt
are transmit SNRs, and̄Yk are the average power gains. This
model is one of the most general fading model and can span
a wide range of multipath fading models, such as Rayleigh
(αk = 2, µk = 1), Nakagami-m (αk = 2, µk = m), and
Weibull (µk = 1) fading [12], [13].

III. AVERAGE SECRECY CAPACITY ANALYSIS

In active eavesdropping scenarios,S can transmit confiden-
tial messages to guarantee perfect secrecy at an achievable rate
since the CSI of the eavesdropper’s channel is available, which
is a fundamental assumption in physical layer security [1], [3],
[5], [10]. The secrecy capacity, which is the maximum achiev-
able secrecy rate, is essentially a fundamental secrecy perfor-
mance metric. According to [3], the instantaneous secrecy ca-
pacity is defined asCs = [ln (1 + γD)− ln (1 + γE)]

+, where
ln (1 + γD) and ln (1 + γE) are the capacity of the main and
eavesdropper channels, respectively, and[x]

+
= max {x, 0}.

According to [10], ASC can be given asCs = I1+ I2− I3,
where I1 =

∫

∞

0
ln (1 + γD) fD (γD)FE (γD) dγD,

I2 =
∫

∞

0
ln (1 + γE) fE (γE)FD (γE) dγE ,

I3 =
∫

∞

0
ln (1 + γE) fE (γE) dγE , Fk (γ) =

1
Γ(µk)

Υ
(

µk, λkγ
αk
2

)

(k ∈ {D,E}) is the cumulative
distribution function (CDF) of the SNR, and
Υ(α, x) =

∫ x

0
e−ttα−1dt is the lower incomplete Gamma

function (defined by eq. (8.350.1) of [16]).
Substituting (1) andFE (γ) into I1, and making use of (8)

and (9) of [12], (11) of [17], we obtain

I1 =
ηD

Γ (µE)

∫

∞

0

γD
αDµD

2
−1G1,2

2,2

[

γD

∣

∣

∣

1,1
1,0

]

×G1,0
0,1

[

λDγD
αD
2

∣
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−

0

]

G1,1
1,2

[

λEγD
αE
2

∣

∣

1
µE ,0

]

dγD,

(2)

where Gm,n
p,q [·] is Meijer’s G-function, as defined by eq.

(9.301) of [16].
By making use of (6.2.8) of [18] and (2.3) of [19], the

closed-form ofI1 is obtained as (3), shown at the top of next
page, whereHm,n

p,q [·] is the Fox’sH-function, as defined by
eq. (1.2) of [20] andHm1,n1:m2,n2:m3,n3

p1,q1:p2,q2:p3,q3 [·] is the EGBFHF
function1, as defined by eq. (2.57) of [20].

Similar to I1, the closed-form expression ofI2 is obtained
as (4), shown at the top of next page.

Now, on utilizing eqs. (11) and (21) of [17],I3 is obtained
as

I3 =
ηE2

0.5αE
−1

(2π)αE−0.5 G2+2αE ,αE

2αE ,2+2αE

[

λE
2

4

∣

∣

∣

∣

χ,∆(αE ,1−
αEµE

2 )
∆(2,0),χ,χ

]

,

(5)
where χ = ∆

(

αE ,−
αEµE

2

)

and ∆(m, a) =
a
m , a+1

m , ..., a+m−1
m .

Substituting (3), (4), and (5) intoCs, the closed-form
expression of ASC is obtained.

IV. A SYMPTOTIC AVERAGE SECRECY CAPACITY

ANALYSIS

Although we have obtained the exact closed-form expres-
sion for ASC in section III, it is difficult to achieve more
insights from the results. In order to get more insights, we
analysis the secrecy capacity performance in the high transmit
SNR regime, which impliesγt → ∞ in this section. The
asymptotic expression ASC is given inLemma 1.

Lemma 1: When γt → ∞, we have Cs ≈

1
Γ(µD)Γ(µE)

N
∑

i=1

ωig (ti), where ωi and ti are the

abscissas and weight factors for the Gaussian-Laguerre
integration [21, eq. (25.4.45)],ρ = ȲD/ȲE , g (t) =

tµD−1 ln
(

(t/µD)
2/αD ȲD

)

Υ

(

µE , µEρ
αE
2

(

t
µD

)αE/αD

)

−

tµE−1 ln
(

ȲE(t/µE)
2/αE

)

Γ
(

µD, µDρ−αD/2(t/µE)
αD/αE

)

,

andΓ (α, x) =
∫

∞

x
e−ttα−1dt is the upper incomplete Gamma

function (defined by eq. (8.350.2) of [16]).
Proof: Based on the definition of ASC, we have

Cs =

∫

∞

0

fE (γE) dγE

∫

∞

γE

ln

(

1 + γD
1 + γE

)

fD (γD) dγD.

(6)
SubstitutingγD = γtYD = γtȲDx, γE = γtYE = γtȲEy,

and (1) into (6), and after some algebra, we obtain

Cs = Ξ

∫

∞

0

∫

∞

y/ρ

ln

(

1 +
ȲDx− ȲEy

1
γt

+ ȲEy

)

ϕ (x, y) dxdy

γt→∞

≈ Ξ

∫

∞

0

∫

∞

y/ρ

ln

(

xȲD

yȲE

)

ϕ (x, y) dxdy

= Ξ(H1 −H2) .

(7)

where ϕ (x, y) = x
αDµD

2
−1y

αEµE
2

−1e−µDx
αD
2 e−µEy

αE
2 ,

Ξ =
αDαEµ

µD
D

µ
µE
E

4Γ(µD)Γ(µE) , H1 =
∫

∞

0

∫

∞

y/ρ ln
(

xȲD

)

ϕ (x, y) dxdy,
andH2 =

∫

∞

0

∫

∞

y/ρ ln
(

yȲE

)

ϕ (x, y) dxdy.

1The EGBFHF function can be easily realized by utilizing the MATLABR©
(see [22]) or with the MATHEMATICAR© (see Table 1).
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I1 =
ηDλD

−µD

αDΓ (µE)
H1,0:1,2:1,1

1,0:2,2:1,2

[
(

1−µD : 2

αD
,
αE
αD

)

−

∣

∣

∣

∣

(1,1),(1,1)
(1,1),(0,1)

∣

∣

∣

(1,1)
(µE ,1),(0,1)

∣

∣

∣
λD

−
2

αD , λEλD
−

αE
αD

]

, (3)

I2 =
ηEλE

−µE

αEΓ (µD)
H1,0:1,2:1,1

1,0:2,2:1,2

[
(

1−µE : 2

αE
,
αD
αE

)

−

∣

∣

∣

∣

(1,1),(1,1)
(1,1),(0,1)

∣

∣

∣

(1,1)
(µD ,1),(0,1)

∣

∣

∣
λE

−
2

αE , λDλE
−

αD
αE

]

. (4)

Now altering the order of integration, making use of
(3.351.1) of [16], and with some algebraic manipulations,

we obtainH1 = 4µD
−µDµE

−µE

αDαE

N
∑

i=1

ωig1 (ti), whereωi and

ti are the abscissas and weight factors for the Gaussian-
Laguerre integration [21, eq. (25.4.45)], andg1 (t) =

Υ
(

µE , µEρ
αE/2(t/µD)

αE/αD

)

tµD−1 ln
(

(t/µD)
2/αD ȲD

)

.
Similarly, making use of (3.351.2) of [16], we have

H2 = 4µD
−µDµE

−µE

αDαE

N
∑

i=1

ωig2 (ti), where g2 (t) =

Γ

(

µD, µDρ−αD/2
(

t
µE

)αD/αE

)

tµE−1 ln
(

(t/µE)
2/αE ȲE

)

.

SubstitutingH1 andH2 into (7), the upper bound expression
for ASC is derived.

Remark 1: Obviously, one can find that the ASC will be
improved asγt increases as indicated by (7).

Remark 2: We rewrite eq. (7) as follows

C̄s =

∫

∞

0

∫

∞

y/ρ

ln (x/y) Ξϕ (x, y) dxdy

+ ln ρ

∫

∞

0

∫

∞

y/ρ

Ξϕ (x, y) dxdy.

(8)

Note that both integrals in (8) are consistent, so it can be
concluded that the ASC follows the scaling law ofΘ(ln ρ) in
high SNR regime.

In the Section V, one will find that the ASC can be improved
with γt, which means the transmitting power atS increases.
From Lemma 1, it can be found that there exists a ceiling for
the ASC when in the highγt region since the SNR at bothD
andE are improved simultaneously.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical and Monte-carlo simulations
results are presented to verify our analytical results. Further-
more, the impact of both the fading parameters and the average
SNRs on the secrecy performance are demonstrated. To the
authors’ best knowledge, the EGBFHF is not available in
standard mathematical packages and MATLABR© library. As
the implementation in [22] is not a common case to evaluate
EGBFHF function, an efficient MathematicaR© implementa-
tion of this function is offered for any general case (hence it
also fits for the numerical evaluation of eqs. (3) and (4)), as
shown in Table 12. The main parameters used in simulations
and analysis are set asαD = αE = α andµD = µE = µ.
The curves are examined for variousα andµ for comparison
purposes while varyingγt.

2The EGBMGF code given in [23] is a special case of this.

TABLE I
MATHEMATICA R© IMPLEMENTATION OF EXTENDED GENERALIZED

BIVARIATE BIVARIATE FOX’ S H-FUNCTION

Clear All; Clear@HD;
H::InconsistentCoeffs = "Inconsistent coefficients!";

H@8ast_, bst_<, 8as_, bs_<, 8at_, bt_<, 8zs_, zt_<D := ModuleA8<,
Pas =

Function@u, Product@Gamma@1 - as@@1, n, 1DD - u as@@1, n, 2DDD, 8n, 1, Length@as@@1DDD<DD;
Qas = Function@u, Product@Gamma@as@@2, n, 1DD + u as@@2, n, 2DD D,
8n, 1, Length@as@@2DDD<DD;

Pbs = Function@u, Product@Gamma@bs@@1, n, 1DD + u bs@@1, n, 2DDD,
8n, 1, Length@bs@@1DDD<DD;

Qbs = Function@u, Product@Gamma@1 - bs@@2, n, 1DD - u bs@@2, n, 2DDD,
8n, 1, Length@bs@@2DDD<DD;

Ms = Function@u, Pas@uD Pbs@uD � HQas@uD Qbs@uDLD;
Pat =

Function@u, Product@Gamma@1 - at@@1, n, 1DD - u at@@1, n, 2DDD, 8n, 1, Length@at@@1DDD<DD;
Qat = Function@u, Product@Gamma@at@@2, n, 1DD + u at@@2, n, 2DDD,
8n, 1, Length@at@@2DDD<DD;

Pbt = Function@u, Product@Gamma@bt@@1, n, 1DD + u bt@@1, n, 2DDD,
8n, 1, Length@bt@@1DDD<DD;

Qbt = Function@u, Product@Gamma@1 - bt@@2, n, 1DD - u bt@@2, n, 2DDD,
8n, 1, Length@bt@@2DDD<DD;

Mt = Function@u, Pat@uD Pbt@uD � HQat@uD Qbt@uDLD;
Past = Function@8u, v<, Product@Gamma@

1 - ast@@1, n, 1DD - u ast@@1, n, 2DD - v ast@@1, n, 3DDD, 8n, 1, Length@ast@@1DDD<DD;
Qast = Function@8u, v<, Product@Gamma@ast@@2, n, 1DD + u ast@@2, n, 2DD + v ast@@2, n, 3DDD,
8n, 1, Length@ast@@2DDD<DD;

Qbst = Function@8u, v<, Product@Gamma@1 - bst@@2, n, 1DD - u bst@@2, n, 2DD -
v bst@@2, n, 3DDD, 8n, 1, Length@bst@@2DDD<DD;

Mst = Function@8u, v<, Past@u, vD � HQast@u, vD Qbst@u, vDLD;
MT = Function@8u, v<, Ms@uD Mt@vD Mst@u, vDD;
Rs = -1 � 2; Rt = 1 � 2; Zs = zs; Zt = zt; W = 10;

value =
1

H2 Π IL2
NIntegrateAMT@s, tD Zs-s Zt-t, 8s, Rs - I W, Rs + I W<, 8t, Rt - I W, Rt + I W<E;

Return@valueD;E;
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Fig. 1. ASC for variousα.

In Figs. 1-3, simulation and analytical results are compared
for the ASC overα-µ fading channels. It is clear that our
analytical results have been verified by the simulation results.
Figs. 1 and 2 present the ASC vs.γt for variousα or µ.
It can be observed from Figs. 1 and 2 that the ASC for
a lower α or µ outperforms the one for a higherα or µ,
reflecting the nonlinearity and clustering, respectively. This is
because lowα andµ means serious nonlinearity and sparse
clustering (i.e., worse channel conditions). It justifies that the
inherent nonlinearity and clustering of fading channels can be
exploited to prevent the information being overheared by the
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Fig. 3. ASC for variousγt.

eavesdropper in physical layer security scheme. Furthermore,
it can be observed that the ASC can be improved while
increasingγt, which means improving the transmit SNR at
S can enhance the security performance. This is because the
appropriate code scheme can be utilized to widen the SNR gap
between the main and the wiretap channels when the perfect
CSI of the eavesdropping channel is available atS. When
αD = αE = 2, µD = µE = 1, our results match the results
in [3]. When αD = αE = 2, our results consistent with the
results in [6].

Fig. 3 presents the ASC vs.ρ for variousγt, while µ = 1
andα = 2. One can observe that ASC can be improved with
increasingρ due to a higherρ representing the quality of the
main channel superior than the eavesdropping channel. One
also can find from Fig. 3 that the ASC gradually approaches
to the upper bound asγt increases since the SNR at bothD
andE are improved simultaneously. Furthermore, we can find
that there is a linear relationship between the growth rate of
ASC and theρ in the highρ regime.

VI. CONCLUSION

In this work, the exact and asymptotic closed-form expres-
sions for the average secrecy capacity overα-µ fading channel
were derived and validated through simulations. The proposed
models can be used to analyze the secrecy performance over
small-scale fading channels (such as exponential, Rayleigh,
Gamma, Nakagami-m, Weibull), large-scale fading channels

(such as log-normal), and composite fading channels (such as
generalized-K).
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