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Sammanfattning

Under de senaste årtiondena har användningen av trådlösa nätverk för digital kom-
munikation ökat avsevärt. Ett karaktärsdrag i trådlösa nätverk är att kommuni-
kationen mellan två användare avläsas av en tredje (eller fler) användare. Detta
leder till två koncept: samarbete och sekretess. En vänligt inställd tredje användare
kan förbättra kommunikationen genom att samarbeta med de två första, medans
en skadligt inställd tredje användare kan komma över potentiellt hemlig informa-
tion. Hur samarbete kan modelleras mellan användarnoder har formaliserats i flera
nätverksmodeller, till exempel i kognitiva radionät (CRN, för engelskans cognitive
radio networks). I CRN har primära användare juridisk rätt till licensierat spekt-
rum, men sekundära användare tillåts använda outnyttjat spektrum så länge de
inte försämrar prestandan för de primära användarna. I den här avhandlingen stu-
derar vi hur samarbete mellan användare (både primära och sekundära) i CRN kan
förbättra säkerheten i nätverket. Vi riktar framförallt in oss på kognitiva nätverk
där vi antar att det finns fientligt inställda sekundära avlyssnare (dvs passiva an-
vändare). För att lösa detta säkerhetsproblem, tillåter vi samarbete mellan primära
och sekundära vänligt inställda sändare (dvs aktiva användare) eftersom detta kan
förbättra säkerheten för det primära systemet, samtidigt som de sekundära sändar-
na gynnas genom att de får använda primära nätet för sin kommunikation. Baserat
på den här nya kommunikatonsmodellen, studerar vi ett antal specialfall.

Först härleder vi uppnåeliga datatakter för ett antal system där det sekundä-
ra systemet antingen har, eller inte har, kunskap om meddelandet i det primära
systemet. Vi tillhandahåller även insikter om effektallokering för dessa två fall. Vi
formulerar och löser tre relevanta effektallokeringsproblem: maximering av data-
takten hos primära och sekundära systemet samt minimering av sändareffekt av
det sekundära systemet. Med Stackelbergs spelmodell analyserar vi en realistisk
effektallokering som motsvarar en optimering av båda sändarnas resurser. Vi in-
troducerar sedan ett multi-fas system som vi kallar clean relaying (CR) till CRN
scenariot, och vi härleder uppnåeliga datatakter för detta system. En automatisk
meddelande-lärning av den primära datan utförs hos de sekundära sändarna vid
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design av systemet. Dessutom jämför vi CR med andra signalleringsstrategier, till
exempel dirty paper coding och interference neutralization. Vi utökar sedan vår mo-
dell till fall där multipla sekundära sändar-/mottagarpar vill använda det primära
spektrumet. För detta fall studerar vi flera typer av spelstrategier mellan primära
och sekundära kommunikationspar, till exempel Stackelbergspel, effektkontrollspel
och auktionsspel. För att återkoppla till ursprungsmodellen undersöker vi energi-
effektiviteten (EE) i nätverket och optimal effektallokering och effektmaximering
för att maximera sekundära sändarnas energieffektivitet. Vi härleder ett viktigt
EE Stackelberg-spel mellan två sändare, och inverkan av den spelteoretiska inter-
aktionen analyseras. Vi motiverar och undersöker informationsteoretisk säkerhet
med hjälp av tekniker för nyckel-överrenskommelse i trådlösa nätverk. Framförallt
härleder vi uppnåeliga datatakter där hemliga nycklar kan genereras för två olika
nyckelöverenskommelsestrategier i Gaussiska kanaler, där olika transmissionsstrate-
gier används, till exempel effektkontroll och gemensam störning. Samspelet mellan
sändande användare analyseras från ett spelteoretiskt perspektiv med hjälp av icke-
kooperativ spelteori. För varje aspekt analyserad i avhandlingen illustrerar vi våra
resultat genom numeriska exempel baserade på en geometrisk modell, där vi följan-
de: inverkan av nodgeometrin för uppnåbara datatakter, optimala strategier, och
inverkan av spelteoretisk interaktion mellan användare.



Abstract

With the considerable growth of wireless networks in recent years, the issue of net-
work security has taken an important role in the design of communication devices
and protocols. Indeed, due to the broadcast nature of these networks, communica-
tions can potentially be attacked by malicious parties, and therefore, the protection
of transmitted data has become a main concern in today’s communications. On the
other hand the cooperation of nodes overhearing the transmission may potentially
lead to a better performance. In this thesis we combine both fundamental concepts
of cooperation and secrecy in wireless networks. In particular we investigate the
cooperation between transmitters in a cognitive radio network where the secondary
receiver is treated as a potential eavesdropper to the primary transmission. We
study this novel model focusing on several fundamental aspects.

First we derive achievable rate regions for different transmission schemes, such
as cooperative jamming and relaying, with and without primary message knowl-
edge at the secondary transmitter. For these schemes, we formulate and solve three
relevant power allocation problems: the maximization of the achievable primary
and secondary rates, and the minimization of the secondary transmitting power.
We model the interaction between the transmitting users as a Stackelberg game
corresponding to a more realistic power allocation problem. We solve the game and
illustrate its impact on the achievable rates.

Secondly we generalize our system model by introducing the multi-phase clean
relaying (CR) scheme, which takes into account the message-learning constraint at
the secondary transmitter, and we derive the achievable rate region for this scheme.
We compare our CR scheme to other transmission strategies such as dirty paper
coding, interference neutralization, and pure cooperative jamming.

Thirdly we extend our model to the generalized scenario where multiple sec-
ondary transmitter-receiver pairs wish to access the spectrum. For this scenario, we
define and study several types of games between the primary network and the sec-
ondary pairs, such as Stackelberg games, power control games, and auction games.
We derive the equilibrium of each game considered, which allows us to predict the
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behavior of the users in the cognitive radio network with multiple secondary pairs.
Moreover we consider the important concept of energy efficiency (EE) for the

performance of the cognitive radio network and we derive the power allocation and
power splitting maximizing the secondary transmitter’s energy efficiency. An im-
portant EE Stackelberg game between the two transmitters is formulated, and the
impact of the game theoretic interaction is analyzed.

Finally we motivate and investigate information theoretic secrecy using key
agreement techniques in wireless networks. In particular we derive achievable se-
cret key rate regions for two different key agreement schemes in Gaussian channels
using several transmission strategies such as power control and cooperative jam-
ming. The interaction between transmitting users is analyzed from a game theoretic
perspective using non-cooperative game theory.

For every fundamental perspective considered for the analysis of the model stud-
ied in the thesis, our results are illustrated through numerical examples based on
a geometrical setup, highlighting the impact of the node geometry on the achiev-
able rates, the optimal strategies, the games’ equilibria and the impact of the game
theoretic interaction between transmitters on the system performance.
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Chapter 1

Introduction

1.1 Background and Motivation

Wireless networks have developed considerably over the last few decades. As a con-
sequence of the broadcast nature of these networks, transmissions can potentially
be intercepted by malicious parties, and therefore, security plays a fundamental
role in today’s communications. Security issues in communication networks are
usually addressed in layers above the physical layer (PHY), using cryptography
methods [MvOV96]. However there are several shortcomings to relying exclusively
on cryptography techniques for the security of wireless systems, such as the diffi-
culty of key distribution in decentralized networks, the cost of key management in
dynamic topologies, or the lack of security metrics to compare protocols. Other
weaknesses are also inherent to the wireless nature of the transmission medium as
keys or messages can be intercepted, potentially making cryptographic methods
inadequate. In addition to the traditional cryptographic approaches, there exists
a way to implement security protocols directly at the physical layer, possibly in
conjunction with existing protocols at the above layers. This promising direction
towards achieving secure communications is named information theoretic secrecy.

Information Theoretic Secrecy in Wireless Networks The information the-
oretic secrecy approach, initiated by Shannon [Sha49] and later developed by Wyner
[Wyn75], exploits the randomness of the communication channels to ensure the se-
crecy of the transmitted messages. In [Wyn75], Wyner introduced the wiretap
channel depicted in Figure 1.1, which is the simplest model to study secrecy in
communications. In this figure, Alice aims at transmitting a message to Bob while
keeping it secret from Eve. The information theoretic secrecy framework allows us
to define formally security measures in this model and characterize the secrecy per-
formance of the system in terms of secrecy capacity, representing the highest rates
at which the message can be transmitted both reliably and securely, according to
the defined secrecy measures [BB11]. Advanced channel coding techniques, e.g.,
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2 Introduction

Eve

Alice

Channel

Bob

Figure 1.1: The wiretap channel.

in [And14], have recently been proposed to construct codes achieving secrecy ca-
pacity. However, similarly to communication networks without secrecy constraints,
the overall performance is limited by the channels’ conditions. In particular, to
guarantee secure communications, Alice and Bob need to have some kind of ad-
vantage over Eve, e.g., a better channel quality or access to a feedback channel.
Many techniques have been proposed to overcome this limitation, such as the use
of multiple antenna systems, e.g., multiple-input multiple-output (MIMO) nodes
in [OH08], [SLU09], [LS09]. Recently, there has been a substantial interest in the
secrecy of multi-users systems [LPSS09], with a particular emphasis on a potential
cooperation between users to enhance the secrecy of communications [EHT+13].

Cooperative Communications Improving the reliability of wireless communi-
cation systems can be achieved through cooperation, which involves multiple parties
assisting each other in the transmission and decoding of messages. Indeed, albeit
the broadcast nature of wireless communications leads to security issues, the co-
operation of nodes overhearing the transmission may potentially lead to a better
performance. Since the introduction of the relay channel in [vdM71], depicted in
Figure 1.2, which is the simplest form of a cooperative communication network, co-
operation in multi-node channel models and cooperative strategies have been deeply
investigated in a tremendous number of works, e.g., in [LTW04], [KGG05]. Com-
prehensive reviews of the advances, ideas, and techniques related to the cooperative
communications in wireless networks can be found in [EGK12], [KMY07].
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Figure 1.2: The relay channel.

Cooperation for Secrecy in Wireless Networks Combining the fundamental
concepts of secrecy and cooperation in wireless networks leads to the new paradigm
of cooperation for secrecy in wireless networks, described in its canonical form in
Figure 1.3. There exist several cooperative strategies to improve the secrecy of le-
gitimate transmissions in wireless networks. These strategies can be classified into
two types. In the first type, cooperative parties improve the secrecy performance
of the system by weakening the eavesdropping link. Hence, in contrast to wireless
communications without secrecy where interference is considered as an undesired
effect, interference can potentially be a beneficial phenomenon for secure commu-
nications. Many works have considered the impact of different variants of interfer-
ence injection, under names such as noise-forwarding [LEG08], cooperative jamming
[TY08b], [EHT+13], or interference assisted secret communication [TLSP11]. The
second type corresponds to the classical sense of cooperation, where the cooperating
nodes strengthen the main transmission by using common relaying techniques such
as decode-and-forward, amplify-and-forward [DHPP10], or compress-and-forward
[KP11]. These techniques are applicable to more general multi-user cooperative
networks with secrecy [LPSS09]. One should note however that although informa-
tion theoretic secrecy for wireless networks has been studied extensively, there is
a type of network for which the interest in the security at the physical layer has
grown only recently: cognitive radio networks.
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Figure 1.3: Cooperation for secrecy.

Cognitive Radio Networks Cognitive radio technology, introduced by Mitola
in [Mit00], proposes an efficient way to sense the spectrum, decode information
from detected signals, and use this knowledge to improve the overall performance
of communication systems. In cognitive radio networks, secondary users are allowed
to use the licensed spectrum as long as they do not degrade the data transmission
of the primary users, which are the legacy owners of the spectrum. Therefore, the
cognitive radio system is aware of its surroundings and dynamically adapts its trans-
mission parameters, e.g., its frequency bands and coding schemes, to the changes of
its environment. When both the primary and secondary networks consist of a single
transmitter-receiver pair as depicted in Figure 1.4, the cognitive radio scenario can
be investigated from an information theoretic perspective, as in [GJMS09], since it
is captured by the interference channel model with some additional assumptions.
In recent years, numerous cognitive radio techniques have been proposed for spec-
trum sharing, sensing, and management [ALVM06], which are based on the tools of
multiple theoretical fields such as graph theory, linear programming, etc. [TZFS13].
One theoretical framework to analyze users’ behavior in cognitive radio networks
has received considerable attention in the last decades: game theory.

Game Theory in Communication Networks Game theory is a formal frame-
work with a set of mathematical tools to study the complex interactions among in-
terdependent rational players [HNS+12]. There has recently been a growing interest
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Figure 1.4: Cognitive radio networks.

in using game theoretical approaches to model and study communication systems
as game theory provides indeed the mathematical tools to analyze the interactions
between selfish users in networks. In particular, game theory has been applied to
solve problems in many communication networks, as described in Figure 1.5, as
well as several other fields such as political sciences or economics. In the figure, we
highlight in blue the application areas that are related to those investigated in this
thesis, e.g., cognitive radio as in [SHD+09], cooperative networks as in [HL08], and
power control as in [HL05]. Many other applications of game theory in communica-
tion networks exist [HNS+12], since the new challenges emerging from the growth
of decentralized wireless networks call for game theoretic solutions. Challenges for
the design of the future generation of cognitive radio networks which can be ana-
lyzed through a game theoretic perspective include users’ selfish behavior, energy
efficiency, and the central topic of this thesis: secrecy.

Cooperation for Secrecy in Cognitive Radio Networks In recent years, due
to the growth of cognitive radio networks (CRN), security issues have been the sub-
ject of increasing attention for these networks. While traditional security threats
such as jamming and media access control layer (MAC-layer) attacks exist, CRN-
specific threats such as exogenous attackers or selfish/intruding nodes exploiting the
vulnerability of ad hoc cognitive networks must be considered. For eavesdropping
attacks, the concept of information theoretic secrecy and the corresponding coop-
erative techniques for secrecy can naturally be applied to cognitive radio networks.
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Figure 1.6: Cooperation for secrecy in cognitive radio networks.

As represented in Figure 1.6, which combines both models of Figure 1.3 and Figure
1.4, the traditional Alice-Bob-Eve channel with an external eavesdropper can be
applied to cognitive radio channels where the secondary receiver is treated as a
potential eavesdropper to the primary transmission. The primary transmitter is
assisted in this model by the trustworthy secondary transmitter if the cooperation
could improve the secrecy performance, while the secondary transmitter benefits by
being awarded a share of the spectrum for its data transmission. Therefore secrecy
concerns lay the foundation of mutual cooperation between primary and secondary
transmitters. This novel and fundamental model is carefully studied throughout
this thesis.

1.2 Outline and Contributions

This section outlines the thesis and summarizes the main contributions along with
references to the corresponding publications. In this thesis we introduce the novel
cognitive radio model with secrecy constraints depicted in Figure 1.6. This model
allows us to utilize the advantages of cooperative techniques for secrecy in wireless
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networks, while alleviating some common weaknesses in the system assumptions
for wiretap-based models, such as the knowledge of the external eavesdropper’s
channel state information (CSI), or the unconditional cooperation of a trustable
helper. The aim of this thesis is to investigate this model thoroughly focusing on
different fundamental aspects. In order to do so, several important concepts are put
into practice in this thesis, as described in Figure 1.7, to analyze the key problems
described in the following outline.

Chapter 2

In this chapter we give a review of the theoretical foundations of the work presented
in this thesis. In particular we review fundamental notions of communication,
information and game theory that will be put into practice later in the thesis. We
introduce the concept of cooperation for secrecy in communication networks, which
we investigate in particular through a case study in wireless networks. This study
allows us to motivate the main model investigated in the thesis: the cognitive radio
channel with secrecy constraints.

The material in this chapter is based on the following published papers and
monographs:

• [Gab12] F. Gabry “Cooperation for Secrecy in Wireless Networks”,
Licentiate Thesis, KTH, September 2012.

• [GTS11c]: F. Gabry, R. Thobaben, and M. Skoglund, “Outage Perfor-
mance for Amplify-and-Forward, Decode-and-Forward and Coop-
erative Jamming Strategies for the Wiretap Channel”, in Proceedings
of the IEEE Wireless Communications & Networking Conference (WCNC),
Cancún, Mexico, March 2011.

• [GTS11b]: F. Gabry, R. Thobaben, and M. Skoglund, “Outage Perfor-
mance and Power Allocation for Decode-and-Forward Relaying and
Cooperative Jamming for the Wiretap Channel”, in Proceedings of the
IEEE Conference on Communications Workshops (ICC), Kyoto, Japan, June
2011.

• [GSTS13] F. Gabry, S. Salimi, R. Thobaben, and M. Skoglund, “High SNR
Performance of Amplify-and-Forward Relaying in Rayleigh Fading
Wiretap Channels”, in Proc. 2013 Iran Workshop on Communication and
Information Theory (IWCIT 2013), Tehran, Iran, May 2013.

Chapter 3

In this chapter we investigate the cognitive radio channel with secrecy constraints
on the primary message. This chapter constitutes the reference model for the work
in this thesis. We describe first how a cognitive transmitter can improve the se-
crecy of primary transmissions in cognitive radio networks. We then derive the
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achievable rate regions with secrecy constraints for the additive white Gaussian
noise (AWGN) cognitive radio channel model with and without primary message
knowledge at the secondary transmitter and provide insights on the power alloca-
tion strategies for the two scenarios. We formulate and solve three relevant power
allocation problems: the maximization of both rates and the minimization of the
transmitting power. We analyze using Stackelberg game model a realistic power
allocation problem corresponding to an optimization of both transmitters’ utilities.
Finally we illustrate our results through numerical examples based on a geometrical
setup, highlighting the impact of the node geometry on the achievable rates and
on the optimal strategy of the secondary transmitter, and compare those results to
the game theoretic interaction.

The material in this chapter is based on the following published papers:

• [GSG+12] F. Gabry, N. Schrammar, M. Girnyk, N. Li, R. Thobaben, and
L. K. Rasmussen, “Cooperation for secure broadcasting in cognitive
radio networks”, in Proc. of IEEE International Conference of Communi-
cations (ICC 2012), Ottawa, Canada, June 2012.

• [GLS+12] F. Gabry, N. Li, N. Schrammar, M. Girnyk, E. Karipidis, R. Thob-
aben, L. K. Rasmussen, and M. Skoglund, “Secure Broadcasting in Co-
operative Cognitive Radio Networks”, in Proc. of Future Networking
and Mobile Summit (FNMS 2012), Berlin, Germany, July 2012.

• [GLG+14] F. Gabry, N. Li, N. Schrammar, M. Girnyk, L. K. Rasmussen and
M. Skoglund, “On the Optimization of the Secondary Transmitter’s
Strategy in Cognitive Radio Channels with Secrecy”, IEEE Journal
on Selected Areas in Communications, (JSAC), Cognitive Radio Series Issue,
March 2014.

Chapter 4

In this chapter we investigate clean relaying (CR) for secrecy in cognitive radio
channels. The goal of this chapter is to generalize the results of Chapter 3 in
three main directions: analyzing the impact of the learning phase at the secondary
transmitter for the primary message, considering the cognitive scenario where the
primary user does not have multi-user decoding capabilities, and using a stronger
secrecy measure for the primary message. To that aim we introduce the CR scheme
for our cognitive radio scenario with secrecy constraints. We derive the achievable
rate region for the multi-phase scheme investigated in this chapter and compare the
CR scheme to other signalling strategies: dirty paper coding (DPC), cooperative
jamming (CJ), and interference neutralization (IN). Finally we use the geometrical
model developed in previous chapters to numerically compare the secrecy perfor-
mance of the schemes.

The material in this chapter is based on the following published or submitted
papers:
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• [LGT+14a] P.-H. Lin, F. Gabry, R. Thobaben, E. Jorswieck and M. Skoglund,
“Clean Relaying in Cognitive Radio Networks with Variational Dis-
tance Secrecy Constraint”, in Proc. IEEE Global Conference on Commu-
nications (GLOBECOM 2014), Austin, U.S.A, December 2014.

• [LGT+14b] P.-H. Lin, F. Gabry, R. Thobaben, E. Jorswieck and M. Skoglund,
“Clean Relaying in Cognitive Radio Networks with Variational Dis-
tance Secrecy Constraint”, Submitted to IEEE Transactions on Wireless
Communications (TWC), November 2014.

Chapter 5

In this chapter we extend the cognitive channel model from previous chapters to
larger cognitive radio networks with multiple secondary pairs. We investigate the
spectrum sharing mechanisms using several game theoretic models, such as single-
leader multiple-follower Stackelberg games, non-cooperative power control games
and auction games. We illustrate through numerical simulations the equilibrium
outcomes of the analyzed games and the impact of the competition between sec-
ondary transmitters on the secrecy performance of the primary transmission in the
cognitive radio network.

The material in this chapter is based on the following submitted paper:

• [GTS14] F. Gabry, R. Thobaben and M. Skoglund, “Secrecy Games in
Cognitive Radio Networks with Multiple Secondary Users”, Submit-
ted to IEEE Transactions on Communications, November 2014.

Chapter 6

In this chapter we investigate energy efficiency (EE) for cognitive radio channels
with secrecy. After introducing the EE performance measure for cognitive radio
networks with secrecy constraints. We investigate the optimal power allocation
and power splitting at the secondary transmitter in terms of energy efficiency for
our cognitive model under secrecy constraints for the primary message. We then
formulate and analyze an important EE Stackelberg game between the two trans-
mitters aiming at maximizing their utilities. Our analytical results are illustrated
through our geometrical model highlighting the EE performance of the system as
well as the role of the optimization parameters and the impact of the Stackelberg
game on the overall performance and strategies.

The material in this chapter is based on the following submitted paper:

• [GZJS14] F. Gabry, A. Zappone, E. Jorswieck and M. Skoglund “Energy
Efficiency Analysis of Cognitive Radio Networks with Secrecy Con-
straints”, Submitted to IEEE Communications Letters, November 2014.
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Chapter 7

In this chapter we investigate information theoretic secrecy using key agreement
techniques in wireless networks. We motivate this study by highlighting the impor-
tance of secret key agreement in the overall architecture of secure wireless systems
and by establishing the connection to CRNs. We then derive achievable secret
key rate regions for two different key agreement schemes in Gaussian channels us-
ing several transmission strategies such as power control and cooperative jamming.
The complex interaction between both transmitting users is analyzed from a game
theoretic perspective using non-cooperative games. We finally illustrate our results
to characterize the performance of the key agreement schemes and to evaluate the
impact of the game between both users.

The material in this chapter is based on the following published paper:

• [SGS13] S. Salimi, F. Gabry, and M. Skoglund “Pairwise Key agreement
over a Generalized Multiple Access Channel: Capacity Bounds and
Game-Theoretic Analysis”, in Proceedings of the IEEE International Sym-
posium on Wireless Communication Systems (ISWCS), Paris, France, August
2013.

In addition to this published contribution, two journal manuscripts are in prepara-
tion for a submission.

Chapter 8

In this chapter we conclude the thesis by summarizing the main contributions of
our work and by suggesting future promising research directions.

Contributions not Included in This Thesis

The following publications are closely related to the study in this thesis, as they
investigate information theoretic secrecy problems. However, the models in these
works differ from this thesis for two fundamental assumptions made in this thesis,
classified as follows.

Cooperation Against an Active Eavesdropper In this thesis we will as-
sume that Eve is a passive attacker ; i.e., Eve is restricted to passive eavesdropping
strategies and does not attempt to temper with the communication channels. In
the following publication, we studied a model where Eve also includes jamming as a
strategy to decrease the secrecy performance of the legitimate parties, as depicted
in Figure 1.8. We refer the interested reader to [Ama09] and [MS10] for details on
active eavesdropping strategies in wireless channels.

• [GTS11a] F. Gabry, R. Thobaben, and M. Skoglund, “Cooperation for Se-
crecy in Presence of an Active Eavesdropper: A Game-Theoretic
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Figure 1.8: The wiretap channel with an active eavesdropper.

Perspective”, in Proceedings of the IEEE International Symposium on Wire-
less Communication Systems (ISWCS), Aachen, Germany, November 2011.

Large System Analysis for MIMO Wiretap Channels In this thesis we
will assume that the users in the networks are equipped with single antenna nodes,
i.e., they cannot benefit from the advantages of multi-antenna transmission such as
for MIMO channels. The wiretap channel and other multi-user wiretap scenarios
have been generalized to their MIMO counterpart where all nodes are equipped
with multiple antennas and extensively studied in the literature. In particular, the
secrecy capacity of the MIMO wiretap channel has been characterized in [KW10],
[LS09], [SLU09], and [OH08]. In [Gir14], powerful large-system analysis tools are
applied to MIMO wiretap channels. However we will consider single antenna nodes
in the remainder of this thesis, and therefore we must find a different manner to
overcome the channels’ limitations, e.g., by a cooperation between nodes for secrecy.

• [GGM+13a] M. Girnyk, F. Gabry, M. Vehkaperä, L. K. Rasmussen and M.
Skoglund, “On the Transmit Beamforming for MIMO Wiretap Chan-
nels: Large-System Analysis”, in Proc. International Conference on In-
formation Theoretic Security (ICITS 2013), Singapore, November 2013.
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Figure 1.9: The MIMO wiretap channel.

• [GGM+13b] M. Girnyk, F. Gabry, M. Vehkaperä, L. K. Rasmussen and M.
Skoglund, “Large-system analysis of MIMO wire-tap channels with
randomly located eavesdroppers”, in Proc. IEEE International Sym-
posium on Wireless Communication Systems (ISWCS 2013), Illmenau, Ger-
many, August 2013.

• [GGV+15] M. Girnyk, F. Gabry, M. Vehkaperä, L. K. Rasmussen and M.
Skoglund, “MIMO Wiretap Channels with Randomly Located Eaves-
droppers: Large-System Analysis”, submitted to IEEE International
Conference on Communications (ICC 2015), London, United Kingdom.

Contributions Outside the Scope of This Thesis In addition to the material
covered in this thesis and the related papers not included in the thesis, a final
contribution by the author is the following publication:

• [GBGO14] O. Goubet, G. Baudic, F. Gabry, and T.J. Oechtering, “Low
Complexity Scalable Iterative Algorithms for IEEE 802.11p Re-
ceivers”, accepted for publication in IEEE Transactions on Vehicular Tech-
nology, (TVT), October 2014.

This work is the result of a collaboration with two supervised Master thesis students
on the topic of iterative algorithms for estimation and decoding at IEEE 802.11p
receivers.
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Copyright Notice

Parts of the material presented in this thesis are based on the author’s joint works,
which are previously published or submitted to conferences and journals held by
or sponsored by the Institute of Electrical and Electronics Engineer (IEEE). IEEE
holds the copyright of the published papers and will hold the copyright of the
submitted papers if they are accepted for publication. Materials (e.g., figure, graph,
table, or textual material) are reused in this thesis with permission.

1.3 Notation and Acronyms

In this section we describe the notation, the nomenclature and the acronyms used
in the thesis.

Notation

We will use the following notation throughout this thesis.

Information Measures

X random variable
X alphabet or set

X × Y Cartesian product of sets X and Y
|X | cardinality of a set X
x realization of X

PX or PX(x) or p(x) probability mass function (pmf) of X
X ∼ p(x) random variable X with pmf p
PX,Y joint probability mass function of X and Y

X − Y − Z Markov Chain
H(X) entropy of the discrete random variable X
h(X) differential entropy of the continuous

random variable X
H(Y |X) conditional entropy of Y given X

EX expected value over random variable X
I(X;Y ) mutual information between X and Y

I(X;Y |Z) conditional mutual information between random
variables X and Y conditioned on Z

Xn vector of n random variables X1, . . . , Xn

xn vector of n realizations x1, . . . , xn

W message

Ŵ estimate of message W
P{X} probability of event X
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Functions and Operators

N (µ, σ2) normal distribution with mean µ and variance σ2

CN (µ, σ2) complex normal distribution with mean µ and variance σ2

|x| absolute value of a complex number x
x+ positive part of x, i.e., x+ = max(x, 0)
⌈x⌉ unique n ∈ N such that x ≤ n < x+ 1

[x]xmax
xmin

min{xmin,max{xmax, x}}
log logarithm to the base 2
C(·) 1

2 log(1 + ·)
K1 (·) first order modified Bessel function of the second kind
E1 (·) exponential integral, defined in Theorem 2.13

Game Theory Basics

G game
Si set of strategies for player i
si strategy of player i
s−i vector of strategies of all players except i
Ui utility of player i

Communication Channels

Ri achievable rate for node i
Pi transmission power at node i
xi transmitted signal from node i
yi received signal at node i
hij channel coefficient between node i and node j
cij |hij |2
dij Euclidian distance between node i and node j
α path-loss exponent
γij instantaneous SNR between node i and node j
γ̄ij average instantaneous SNR between node i and node j

Case Study in Section 2.6

D Destination
E Eavesdropper
S Source
H Helper
R target secrecy rate

R
(i)
s achievable secrecy rate with strategy i at the relay

P
(sH)
out (R) secrecy outage probability with strategy sH
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and secrecy rate R

P
(sH)
out,c(R) conditional secrecy outage probability with strategy sH

and secrecy rate R
Ts secure throughput

CH1
, CH2

, and CH3
Helper in (0.1, 0.1), (0.5, 0.1), and (0.9, 0.1), respectively

Cognitive Radio Channel with Secrecy

T1 primary transmitter
T2 secondary transmitter
U1 primary receiver
U2 secondary receiver
w1 primary secret message
w2 secondary message

RWT
1 wiretap rate without T2

S1 scenario with message knowledge
S2 scenario without message knowledge
ρ jamming parameter
β common message parameter
γ relaying parameter

PR1
maximization of secondary rate

PR2
maximization of primary rate

PP2 minimization of secondary power
ηj time splitting parameter for phase j for the CR scheme

x
(j)
i transmitted signal by Ti during phase j for the CR scheme

EE2 secondary energy efficiency

CRNs with Multiple Secondary Networks

T2,k secondary transmitter k
U2,k secondary receiver k
w2,k message of T2,k

(SF-SG) single-follower Stackelberg game
(MF-SG) multiple-follower Stackelberg game
(PC-G) power control game
(VA) Vickrey auction

Secret Key Agreement

Kij key to be shared between User i and User j
Rij secret key rate of Kij

γi power control parameter of User i
ηi jamming parameter of User i
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Nomenclature

In this thesis we use colored boxes for a better readability of the concepts and re-
sults. In particular we will use the following nomenclature: Proposition , Theorem ,

Lemma , Remark , Definition , Example .

List of Acronyms

AF Amplify-and-forward relaying
AWGN Additive white Gaussian noise
BC-CM Broadcast channel with confidential messages
cdf Cumulative distribution function
CF Compress-and-forward relaying
CJ Cooperative jamming
CR Clean relaying
CRN Cognitive Radio Network
CSI Channel state information
CSOP Conditional secrecy outage probability
DF Decode-and-forward relaying
DMC Discrete memoryless channel
DPC Dirty paper coding
DT Direct transmission
EE Energy efficiency
IN Interference neutralization
MAC-layer Media access control layer
MAC Multiple-access channel
MAC-WTC Multiple-access wiretap channel
MF-SG Multi-follower Stackelberg game
MIMO Multiple-input and multiple-output
MRC Maximum ratio combining
NE Nash equilibrium
pdf Probability density function
PHY Physical layer
pmf Probability mass function
RC Relay channel
SE Stackelberg equilibrium
SINR Signal to interference plus noise ratio
SNR Signal-to-noise ratio
SOP Secrecy outage probability
WTC Wiretap channel



Chapter 2

Review

In this chapter we give a review of the theoretical foundations of the work presented
in the thesis. As for every chapter, we elaborate the list of the chapter’s goals.

• Establish the notation and common expressions used throughout the
thesis.

• Provide the necessary fundamentals in communication, information,
and game theory for the understanding of the thesis.

• Introduce the notions of cooperation and secrecy in wireless networks,
and connect both through the concept of cooperation for secrecy.

• Motivate the communication network model investigated throughout
the thesis, i.e., the cognitive radio channel with secrecy constraints.

Objectives of the Chapter.

Organization of the Chapter This chapter consists of six sections. In Section
2.1 we review fundamental notions of communication and information theory and
we introduce cooperative communication. Section 2.2 is devoted to an example of
cooperative networks, namely cognitive radio networks. In Section 2.3 we intro-
duce fundamental tools of game theory that will be put into practice later in the
thesis. In Section 2.4 we introduce the concept and the motivation for informa-
tion theoretic secrecy, and we give an overview of the main results for secrecy in
wireless networks. In Section 2.5 we discuss the interactions between cooperation
and secrecy in communication networks. In Section 2.6 we investigate a case study
of cooperation for secrecy in wireless networks in order to introduce the model
considered in this thesis.

19
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2.1 Fundamentals of Communication Theory

In this section we summarize some of the most fundamental results in communica-
tion and information theory. In Section 2.1.1 we introduce the basic definitions of
information theory used throughout this thesis. In Section 2.1.2 we investigate the
point-to-point communication channel introduced by Shannon [Sha48]; in particu-
lar, we define the notion of channel capacity. Finally, in Section 2.1.3, we introduce
the relay channel, which is the simplest model of a cooperative network.

2.1.1 Information Measures

In this section we introduce the most important definitions in the field of informa-
tion theory required for the understanding of this thesis, namely the entropy and
the mutual information. We refer the reader to [CT06] and [EGK12] for a more
comprehensive introduction to the fundamental concepts of information theory.

Discrete Random Variables Let X be a discrete random variable with finite
alphabet X . We write its probability mass function (pmf) as PX(x) or more con-
veniently PX or p(x) which we denote as X ∼ p(x). If X and Y are two discrete
random variables, we denote similarly their joint pmf PX,Y , PX,Y (x, y) or p(x, y).
We define first some necessary concepts in probability theory, namely independence,
the Markov chain, and the total variation distance.

Let (X,Y ) ∼ PX,Y (x, y) with X ∈ X and Y ∈ Y. X and Y are called
independent if

PX,Y (x, y) = PX(x)PY (y). (2.1)

Definition 2.1 (Independence).

Let (X,Y, Z) ∼ PX,Y,Z(x, y, z) with X ∈ X , Y ∈ Y and Z ∈ Z. X, Y and
Z form a Markov chain, which we denote by X − Y − Z if

PX,Y,Z(x, y, z) = PX,Y (x, y)PZ|Y (z|y). (2.2)

Definition 2.2 (Markov Chain).
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The total variation distance between the probability distributions PX and
PX′ defined on the same alphabet X is

V (PX , PX′) ,
1

2

∑

x∈X
|PX(x)− PX′(x)|. (2.3)

Definition 2.3 (Total Variation Distance).

Entropy We define the entropy, which is a measure of the uncertainty of a random
variable.

The entropy of the discrete random variable X ∼ PX(x) is defined as

H(X) = −
∑

x∈X
PX(x) logPX(x). (2.4)

Definition 2.4 (Entropy).

In the remainder of this thesis, the entropy is measured in bits, and we use the
convention 0 log 0 = 0, where log(·) is the binary logarithm.

From (2.4), we observe that the entropy of X can be interpreted as the
expected value of the random variable − logPX(X), with X ∼ PX(x).
Therefore,

H(X) = −EX(logPX(x)).

Remark 2.1.

Let X and Y be two discrete random variables with joint pmf PX,Y (x, y) and
marginal pmf’s PX(x) and PY (y). We define the conditional entropy of Y given X
as follows.

The conditional entropy H(Y |X) for (X,Y ) ∼ PX,Y (x, y) is defined as

H(Y |X) =
∑

x,y∈X×Y
PX,Y (x, y) logPY |X(y|x). (2.5)

Definition 2.5 (Conditional Entropy).
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Differential Entropy Similarly, we define the differential entropy for X a con-
tinuous random variable defined over X and with probability density function (pdf)
f(x) as follows.

The differential entropy of the continuous random variable X ∼ f(x) is
defined as

h(X) = −
∫

x∈X
f(x) log f(x) = −EX(log f(x)). (2.6)

Definition 2.6.

Mutual Information We now introduce the mutual information, which is a
measure of the amount of information that one random variable contains about
another random variable.

The mutual information I(X;Y ) between the random variables X and Y
is defined as

I(X;Y ) =
∑

(x,y)∈X×Y
PX,Y (x, y) log

PX,Y (x, y)

PX(x)PY (y)
. (2.7)

Definition 2.7.

Relation Between Entropy and Mutual Information From (2.4), (2.5) and
(2.7), we deduce the following equality:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.8)

Therefore, the mutual information I(X;Y ) corresponds to the reduction in the un-
certainty of X with the knowledge of Y , or equivalently, to the reduction in the
uncertainty of Y with the knowledge of X. A similar interpretation of the rela-
tion between differential entropy and mutual information also holds for continuous
random variables.

2.1.2 Point-to-Point Communication

In this section we consider the communication model depicted in Figure 2.1. This
communication system model has been introduced by Claude E. Shannon in the
paper [Sha48] which laid the foundations to the field of information theory. In this
model, the transmitter wishes to send the message W to the receiver. This message
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W

Transmitter

Encoder p(y|x)

Channel

Decoder Ŵ

Receiver

Xn Y n

Figure 2.1: Communication model.

has to be sent through a communication channel, which is a representation of the
physical medium shared by the transmitter and the receiver. Shannon introduced
a probabilistic approach to model the communication channel which he represented
as a discrete memoryless channel (DMC), defined by two finite sets X and Y and
a collection of conditional pmf’s p(y|x). The collection of transition probabilities
p(y|x) describes the behavior of the channel, i.e., the response of the channel when
it is fed by a given input. The memoryless property signifies that if Xn is trans-
mitted over n channel uses, then the output Yi at time i ∈ {1, . . . , n} is distributed
according to p(yi|xi, yi−1) = p(yi|xi). In other words, the output of the channel at
time i only depends of the input at the time i via the transition probability p(yi|xi).
The memoryless property implies that, if there is no feedback,

p(yn|xn) =

n
∏

i=1

p(yi|xi). (2.9)

Channel Capacity An essential parameter of the communication system is the
communication rate, which roughly characterizes the proportion of information that
the transmitter can convey through the channel to the receiver. Formally, we can
define the communication rate as follows.

• The message W is chosen uniformly from a finite set W of size M .

• The encoder assigns a codeword xn(w) ∈ Xn to each message w ∈ W.

• The decoder assigns an estimate Ŵ or an error message to each re-
ceived sequence yn ∈ Yn.

Then the communication rate is given by

R =
log(M)

n
bits per transmission, (2.10)

and we call the corresponding code a (2nR, n) code.

Definition 2.8 (Communication Rate).
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One crucial question arises: What is the maximum rate R at which we can
reliably transmit W? In order to rigorously answer this question, we first need to
define formally a measure of reliability and the concept of achievability.

We define the average probability of error of a (2nR, n) code as

P (n)
e = P{Ŵ 6= W} =

1

|W|
∑

w∈W
P{ŵ 6= w}. (2.11)

A rate R is then said to be achievable if there exists a sequence of (2nR, n)

codes such that P
(n)
e → 0 as n → ∞.

Definition 2.9 (Reliability and Achievability).

Based on the two previous definitions, we introduce a fundamental quantity for the
communication channel, the channel capacity, which represents a rigorous definition
of the answer of our question.

The capacity C of the DMC is then defined as the supremum of all achiev-
able rates. That is, for any rate R < C, the transmission of W with an
arbitrarily low average probability of error is possible.

Definition 2.10 (Capacity).

In his original work [Sha48], Shannon established the following fundamental
theorem:

The capacity of the DMC (X ,Y, p(y|x)) is given by

C = max
p(x)

I(X;Y ). (2.12)

Theorem 2.1 (Channel Coding Theorem [Sha48]).

The capacity of the DMC can consequently be derived by solving a maximization
problem over all possible input distributions. This optimization can be arduous for
certain channels, but one can alternatively look for lower and upper bounds on the
capacity. If these bounds happen to coincide, then the capacity is found.
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Figure 2.2: The AWGN channel.

We consider the real-valued additive white-noise Gaussian (AWGN) chan-
nel depicted in Figure 2.2 as follows:

yi = hxi + n, with n ∼ N (0, N), (2.13)

where h represents the constant real-valued channel coefficient, and with
the average power constraint

1

n

∑

i

|xi|2 ≤ Ps, (2.14)

for every codeword xn = [x1, . . . , xn]. For this AWGN channel, the capacity
is known and is given in the following theorem

The capacity of the AWGN channel with average power constraint
Ps is given by

C =
1

2
log

(

1 +
h2Ps

N

)

, C
(

h2Ps

N

)

. (2.15)

Theorem 2.2 (AWGN Capacity [Sha48]).

Example 2.1 (The Gaussian Channel).

Fading Channels The model of Example 2.1 can be generalized to wireless chan-
nels. Wireless communication channels are usually modeled as fading channels,
which implies that the channel coefficients are randomly distributed. We restrict
ourselves in this thesis to the quasi-static fading model, i.e., the fading coefficients
remain constant over the transmission of an entire codeword, and only change inde-
pently from one codeword to another. One example of quasi-static fading channel
is the Rayleigh fading channel. For quasi-static Rayleigh fading channels, we note
hij the fading coefficient between node i and node j. From a codeword to another
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the fading coefficients hij change randomly with some variance αij according to a
complex Gaussian distribution, i.e., we have hij ∼ CN (0, αij). A way to connect
the behavior of the Rayleigh fading channel to the geometry of the communication
system is by using a path-loss model.

If we denote the Euclidian distance between node i and node j by dij , then
we have

hij ∼ CN (0, 1/dαij), (2.16)

where α represents the path-loss exponent. Furthermore, we define the

instantaneous signal-to-noise ratio (SNR) as γij =
Pi|hij |2

σ2
i

, where Pi is the

transmission power of node i, and σ2
i represents the variance of the thermal

noise. We assume in the remainder of the thesis the thermal noise to be
the same for every node, i.e., σ2

i = σ2, ∀i. The random variable γij is
exponentially distributed, with mean γ̄ij . That is, its probability density
function is given by:

fγ(x) =

{

1
γ̄ij

exp (−x/γ̄ij), if x ≥ 0

0, if x < 0

with

γ̄ij =
Pi

dαijσ
2
. (2.17)

Example 2.2 (Geometrical Model for Rayleigh Fading Channels).

Outage Probability For fading channels, an outage event happens when the
chosen communication rate R exceeds the capacity of the channel. If that event
occurs, reliable communication is no longer possible according to the definition of
the channel capacity. The outage probability is then naturally defined as the prob-
ability of such an event. For a fading channel between a source and a destination
with instantaneous SNR γsd between the source and the destination, the outage
probability is defined as [TV10]:

Pout (R) = P {log (1 + γsd) < R} . (2.18)

If the transmitter knows perfectly the channel coefficient, and thus γsd, it can
accordingly design R such that an outage never occurs. However, if the channel
realization is unknown, an outage occurs with a probability as in (2.18), which
depends on the probability distribution of the channel coefficient.

While the capacity for the point-to-point communication model of Figure 2.1
has already been derived by Shannon in [Sha48], for many other communication
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networks of interest, the problem stays open. In the following section we introduce
cooperative communications and in particular the relay channel, a 3-node network
whose capacity is still unknown, in spite of its apparent simplicity.

2.1.3 Cooperative Communications

Cooperation in communication networks is an emerging technique to improve the
reliability of wireless communication systems, and it involves multiple parties as-
sisting each other in the transmission and decoding of messages. Due to their
broadcast nature, wireless communications from a source to destination can indeed
potentially benefit from the cooperation of nodes that overhear the transmission.
Since the introduction of the relay channel in [vdM71], which is the simplest form
of cooperative communication network, fundamental multi-node channel models
have been thoroughly investigated using results from network information theory.
We refer the reader to [EGK12] for an overview of existing results for important
multi-node networks and to [KMY07] for a comprehensive summary of cooperative
communications. In order to illustrate cooperative transmission strategies in wire-
less networks, we introduce the simplest cooperative network: the relay channel.

Fundamental Example: The Relay Channel

Relay Encoder

W Encoder p(y, yr|x, xr)

Channel

Decoder Ŵ
Xn Y n

Y n
r Xn

r

Figure 2.3: The relay channel.

The relay channel was introduced more than three decades ago in [vdM71].
This network, depicted in Figure 2.3, consists of three nodes: a transmitter, a
relay, and a receiver. The sole purpose of the relay node is to help increase the rate
of communication between the transmitter and the receiver.

Despite the simplicity of this model, the capacity of the general relay channel
is still unknown. In their fundamental work [CEG79], Cover and El Gamal derived
the cut-set upper-bound on the capacity. They also proposed achievable schemes,
namely decode-and-forward (DF) relaying and compress-and-forward (CF) relaying,
which result in lower bounds on the capacity of the general relay channel. Since
then, the relay channel has been thoroughly investigated, and a comprehensive
review of the advances, ideas, and techniques related to the relay channel can be
found in [EGK12].
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Figure 2.4: The orthogonal Gaussian relay channel.

The Orthogonal Gaussian Relay Channel We consider a special case of the
relay channel, namely the Gaussian relay channel with orthogonal receivers, as
shown in Figure 2.4. This model takes into account some practical constraints
for wireless transceivers; specifically, the relay node cannot receive and transmit
simultaneously on the same frequency channel. The relay is then said to operate
in a half-duplex mode, in opposition to the full-duplex mode. Every relay node
considered in this thesis is assumed to be half-duplex unless mentioned otherwise.

By definition, the relay channel is said to have orthogonal receivers if the des-
tination receives Y ≡ (Y1, Y2) with Y1 and Y2 respectively received from the source
and the relay. The channel pmf simplifies as

p(y, yr|x, xr) = p(y1, yr|x)p(y2|xr) = p(y1|x)(yr|x)p(y2|xr), (2.19)

where the second equality results from the independence of the channels in the
scenario of Figure 2.4. The received signal at the relay yr, and the received signals
at the destination y1 and y2 are then given by:

yr = hsrx+ nr,

y1 = hsdx+ nd,

y2 = hsdxr + nd.

The thermal noises Nd at the destination and Nr at the relay are zero-mean AWGNs
with unit variance, i.e., Nd ∼ N (0, 1) and Nr ∼ N (0, 1). Finally, we assume the
following average power constraints on the transmitted signals:

E[X2] ≤ Ps and E[X2
r ] ≤ Pr. (2.20)

This model has been extensively investigated, e.g., in [EGMZ06], [HMZ05]. In
particular, upper and lower bounds on the capacity of this channel have been found.
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Furthermore, achievable rates have been derived for several relaying protocols, e.g.,
decode-and-forward and amplify-and-forward (AF). We describe these strategies
briefly in the following, and we give their achievable rates for the orthogonal Gaus-
sian relay channel.

Decode-and-Forward Relaying In the DF scheme, the relay decodes the trans-
mission from the source and re-encodes the message before retransmitting it to the
destination.
The rate achieved by DF is given by [EGMZ06]:

R(DF ) = min
{

C(h2
srPr), C(h2

sdPs) + C(h2
rdPr)

}

. (2.21)

We observe that the rate achievable by the DF strategy is limited by the quality of
the source-relay link.

To achieve the rate of (2.21), the relay chooses codewords independent from
the source codewords to transmit the information.
If the relay uses the same codewords as the source, i.e., repetition coding,
C(h2

sdPs)+C(h2
rdPr) in (2.21) becomes C(h2

sdPs+h2
rdPr). Indeed, this simple

strategy for DF relaying is mathematically equivalent to a 1×2 single-input
multiple-output system, with maximum ratio combining (MRC) being per-
formed at the destination [EGK12]. This strategy is clearly suboptimal as
C(h2

sdPs + h2
rdPr) < C(h2

sdPs) + C(h2
rdPr). However it has the advantage of

simplicity regarding its implementation.

Remark 2.2.

Amplify-and-Forward Relaying In the AF scheme, the relay simply forwards
its received signal yr after a power scaling such that the transmitted signal satisfies
the relay power constraint Pr. Specifically, we have

xr =

√

Pr

1 + h2
srPs

yr.

The rate achieved by AF is then given by [EGMZ06]:

R(AF ) = C
(

hsdPs +
h2
srPsh

2
rdPr

1 + h2
srPs + h2

rdPs

)

. (2.22)
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Another representation of the half duplex constraint on the relay node
is captured in the time-division relaying model, where the relay receives
the source message during a fraction of the overall transmission window,
and transmits the rest of the time. Achievable rates for the time-division
relaying model are derived in [HMZ05] for different relaying strategies.

Remark 2.3.

We refer the interested reader to [EGK12] where specific code constructions and
transmission strategies for the different relaying protocols are detailed and alterna-
tive relaying strategies are also described.

2.2 Cognitive Radio Networks

In this section we discuss cognitive radio networks. In particular we introduce
the promising approach of cognitive radio techniques in Section 2.2.1. In Section
2.2.2 we describe the conventional information theoretic models to analyze cognitive
radio networks. Finally in Section 2.2.3 we briefly review existing approaches to
analyze the behavior of cognitive radio networks.

2.2.1 Introduction to Cognitive Radio Networks

Fixed spectrum assignment policies of governmental agencies result in wasting spec-
trum resources which are valuable due to their scarcity. Cognitive radio technology,
introduced by Mitola in [Mit00], proposes an efficient way to exploit the unused
spectrum in an opportunistic manner. As tentatively defined by the Federal Com-
munications Commission (FCC): “a cognitive radio is a radio that can change its
transmitter parameters based on its interaction with the environment in which it
operates. This interaction may involve active negotiation or communications with
other spectrum users and/or passive sensing and decision making within the ra-
dio.” CR devices have therefore the ability to interact with their environment and
react to modifications, e.g., channel variations, by adapting their communication
parameters such as coding schemes and frequency bands. In order to do so, CR
devices use their fundamental functionality, namely spectrum sensing which allows
them to monitor the spectrum bands, and consequently detect the available spec-
trum holes or the transmission of signals from other users. We refer the interested
reader to [ALVM06] for a comprehensive survey on existing cognitive radio tech-
niques for spectrum sharing, sensing, and management and a detailed description
of the architecture of cognitive radio networks. Based on this detection, CR users
decide whether to use the spectrum for their own transmission, according to several
criteria depending on cognitive paradigms described in the following.
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Cognitive radio networks are constituted of two types of networks, and thus two
types of users: primary networks and secondary networks. Primary users are usually
licensed users, i.e., the legacy owners of some spectrum bands, while secondary users
do not have licensed access to the spectrum. Example of primary networks include
existing wireless infrastructures, e.g., 3G networks or TV broadcast; see [TZFS13]
for further existing examples of cognitive radio networks. Since secondary users
are not licensed to access the spectrum bands, they use CR technology to detect
transmission opportunities and temporarily access the spectrum in an opportunistic
manner.

Cognitive radio systems are then usually classified into three main cognitive
paradigms depending on the criterion used to allow secondary users to use the
licensed spectrum:

Underlay Paradigm: The secondary transmitter knows the channels and can
transmit simultaneously with the primary user as long as the interference
caused is below a certain threshold. This corresponds, e.g., to secondary
spectrum usage in licensed bands without cooperation.

Overlay Paradigm: The secondary transmitter knows the channels as well as the
messages (and codebooks) of the primary user. It can transmit simultane-
ously with the primary user as long and the interference is mitigated by some
cooperation, for instance via relaying. This corresponds, e.g., to secondary
spectrum usage in licensed bands with cooperation.

Interweave Paradigm: The secondary transmitter uses the unused portions of
spectrum, named sprectum holes or white spaces, e.g., TV white spaces, to
transmit its messages.

2.2.2 Information Theoretic Models for Cognitive Radio

In the setting where both the primary and secondary networks consist of a single
transmitter-receiver pair, the cognitive radio scenario is captured by the interfer-
ence channel with some additional assumptions and constraints and hence it can be
analyzed from an information theoretic perspective [GJMS09]. The Gaussian cog-
nitive interference channel is depicted in Figure 2.5, both for the underlay and the
overlay paradigm, depending on whether w1 is available at the secondary cognitive
transmitter.

Underlay Cognitive Radio The underlay cognitive radio network with two
transmitters and two receivers is equivalent to the interference channel model, de-
scribed in Figure 2.5 where w1 is unknown at T2. Despite being introduced decades
ago, the capacity of the interference channel is still unknown. However in some in-
terference regimes the capacity can be characterized [GJMS09]. The main encoding
technique for the interference channel is rate-splitting, where the transmitters split
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Figure 2.5: Cognitive interference channel.

their messages into two parts, one of which can be decoded by the receiver of the
other user (e.g., U1 decodes a part of w2) and removed from the interference.

Overlay Cognitive Radio For the overlay cognitive radio network, the sec-
ondary transmitter may improve the primary transmission using different encoding
techniques using its knowledge of w1 in addition to rate-splitting. Such techniques
include [GJMS09]:

• Superposition coding: The rates at which the information is encoded de-
pends on the strength of the channels to the receivers. The messages destined
to worse receivers are encoded at a lower rate, while the signals for better
receivers (in terms of channel quality) are superimposed on the low rate mes-
sages. This ensures that better receivers can decode the low rate messages
first, thus eliminating their interfering effect.

• Gelfand-Pinsker binning: Since the cognitive transmitter knows the interfer-
ence caused by the primary transmission at the secondary receiver it can use
binning against w1 to improve its own rate. This technique is shown to be
optimal in certain regimes for Gaussian channels, in which case the technique
is labeled dirty paper coding (DPC), as introduced in [Cos83].

• Relaying: Since T2 knows the primary message, it can cooperate by superim-
posing the primary user’s message to its signal in order to increase the rate
of w1.

Recently, results on achievable rate regions and outer bounds for the Gaus-
sian cognitive interference channel using these encoding techniques were derived in
[RTD12].

Interweave Cognitive Radio The interweave paradigm can be described as the
interference channel with time sharing where the time sharing factor is due to the
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primary channel usage and the sensing/detection probability. In other terms, when
the cognitive transmitter detects a transmission from the primary transmitter, it is
not using the spectrum itself. When the spectrum is unused, the secondary trans-
mitter is allowed to opportunistically transmit its message. Spectrum sensing must
therefore be performed frequently, and the performance of interweave is limited by
the probability of false alarms and missed detections of spectrum use.

2.2.3 Challenges for Cognitive Radio Networks

A recent exhaustive survey on spectrum assignment techniques can be found in
[TZFS13] and the comprehensive list of references therein. Such techniques include
game theory, graph theory, linear programming. The overall performance of CRNs
can be evaluated through multiple criteria such as fairness, spectral efficiency, delay,
throughput and connectivity. Challenges for the design of the next generation of
cognitive radio networks are numerous. In particular they include users’ selfish
behavior [NH08], energy efficiency [sur14], and security concerns [ATV+12]. These
three fundamental challenges will be addressed in this thesis.

2.3 Fundamentals of Game Theory

In this section we introduce game theory tools that will be applied in this thesis.
Game theory can be defined as in [HNS+12] as: “a formal framework with a set
of mathematical tools to study the complex interactions among interdependent
rational players.” In particular, we will use in this thesis two important branches of
game theory, namely non-cooperative game theory and auction theory. Therefore,
the aim of this section is to provide the fundamental concepts of non-cooperative
game theory and auction theory used throughout this thesis. In Section 2.3.1 we
introduce some fundamentals of non-cooperative game theory. Then, in Section
2.3.2 we provide the necessary background on auction theory. Finally in Section
2.3.3 we discuss game theory applications in communications networks, with an
emphasis on cognitive radio networks applications.

2.3.1 Non-Cooperative Game Theory

In this section we introduce the basic concepts and terminology of non-cooperative
game theory, which is one of the most important fields of game theory. Non-
cooperative game theory provides a mathematical framework to analyze the decision-
making processes of rational player with competitive interests, and has been used
in numerous areas outside of communication networks, e.g., economics, political
sciences or sociology.
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Basics of Non-Cooperative Game Theory

As defined in [HNS+12], a non-cooperative game is a game describing a competitive
situation where each player needs to take its decision independently of the other
players, given the possible choices of the other players, and their effect on the
player’s objectives.

In order to describe a non-cooperative game, the concept of strategic form is
the most common representation. A strategic game is composed of a set of players,
their strategies, and their utilities, and is defined as follows:

A non-cooperative game in strategic form is a triplet G =
(N , (Si)i∈N , (Ui)i∈N ) where:

• N is a finite set of players, i.e., N = {1, . . . , N},

• Si is the set of available strategies for player i,

• Ui : S → R is the utility function (also called payoff) of player i, with
S , S1 × . . .× SN .

Definition 2.11.

Given this definition of a strategic game, we denote by s−i the vector of strate-
gies of all players except player i, and s = (si, s−i) ∈ S is then called a strategy
profile. For a game in strategic form, each player selects a strategy to optimize its
utility function, and when each player i chooses a strategy si with probability 1,
this strategy is said to be a pure strategy.

In wireless networks, a common way to model security games involving an at-
tacker and a defender is a zero-sum game, where the attacker’s gains correspond
to the defender’s losses [AB11]. However, many problems can also be modeled as
non-zero sum games, in which all players can be viewed as maximizers or minimiz-
ers without any constraint on the total sum of utilities. As an example of non-zero
sum game in wireless networks, we can consider the power-control non-cooperative
game, where the players are the users, their strategies are the chosen transmit
powers, and their utilities are the communication rates.

Static Non-Cooperative Games

In this section we consider static non-cooperative games in their strategic form. In
particular, we use two classic examples of non-cooperative games to illustrate some
fundamental concepts such as the Nash equilibrium (NE). A two-player static non-
cooperative game in strategic form is commonly represented in a matrix format,
where the rows and columns represent the strategies of the players and the entries of
the matrix give the utilities for the two players. The rows represent the strategies



2.3 Fundamentals of Game Theory 35

Table 2.1: Prisoner’s Dilemma.

Prisoner 2
Prisoner 1 Confess Not confess

Confess (−8,−8) (0,−10)
Not confess (−10, 0) (−4,−4)

Table 2.2: Matching Pennies.

Player 2
Player 1 Heads Tails

Heads (−1, 1) (1,−1)
Tails (1,−1) (−1, 1)

of Player 1 while the columns represent the strategies of Player 2 such that the
entry (x, y) in row i and column j show the utility x of Player 1 and the utility y
of Player 2 for the strategy profile (s1, s2) = (i, j).

The classic prisoner’s dilemma is represented in matrix form in Table 2.1.
The players in the prisoner’s dilemma game are both suspects of a crime.
Each of the suspects can either confess and implicate the other, or not
confess. If both confess, they both go to jail for 8 years, while if they both
deny, they both go to jail for 4 years. If only one confesses while the other
denies, the one that did not confess will go 10 years in jail while the other
will be set free. This game is clearly a non-zero sum game.

Example 2.3 (Prisoner’s Dilemma).

In the game of matching pennies, represented in Table 2.2, both players
secretly choose to turn a penny to heads or tails. The outcome of the game
is the following: if both pennies match, Player 2 wins a Swedish krona
(SEK) from Player 1, while if the pennies show different sides, Player 1
wins a SEK from Player 2. This game is a two-player zero-sum game.

Example 2.4 (Matching Pennies).

For Examples 2.3 and 2.4, we have expressed the game in its matrix form. The
next step of the analysis is to solve the game, i.e., to predict the strategies that
the players will adopt, and hence to determine the corresponding outcome. In the
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following we discuss a fundamental solution concept for non-cooperative games: the
Nash equilibrium.

Nash Equilibrium The Nash equilibrium, introduced by Nash in [Nas50], is the
most accepted solution concept for non-cooperative games. Formally, it is defined
as follows:

A pure-strategy Nash equilibrium of a non cooperative game G =
(N , (Si)i∈N , (ui)i∈N ) is a strategy profile s∗ ∈ S, such that ∀i ∈ N , we
have:

Ui(s
∗
i , s

∗
−i) ≥ Ui(si, s

∗
−i) ∀si ∈ Si. (2.23)

Definition 2.12 (Nash Equilibrium).

Therefore, a strategy profile is a pure-strategy NE if no player can improve its
utility by unilaterally deviating to another strategy, given the other players’ fixed
strategies. To illustrate the NE concept, we use the two previous examples.

For Example 2.3, we find by inspection of Table 2.1 that {Confess,Confess} is
the unique NE of the game. Indeed, no player has an incentive to deviate from the
strategy “Confess” to the strategy “Not Confess”, when the other player does not
change its strategy, as the player deviating would in this case go to jail 10 years
instead of 8. Similarly, we can inspect Table 2.2 to conclude that there exists no
pure-strategy NE for Example 2.4, since we notice that for any entry in the matrix,
one of the players can increase its utility by changing its strategy.

Based on the two examples, we can make the following important remark:

The NE does not necessarily lead to the best outcome in terms of payoffs,
as we can deduce from Example 2.3. If both players choose “Not Confess”,
their utilities are larger than in the unique NE of the game. However the
strategy profile {Not Confess, Not Confess} is not a NE. In this thesis we
will not discuss the issue of the efficiency of the equilibrium. A discussion
on equilibrium selection based on efficiency criteria, such as the Pareto
optimality, can be found in [HNS+12].

Remark 2.4.

Dynamic Non-Cooperative Games

In this section we investigate dynamic non-cooperative games. In contrast to the
static games previously considered, in dynamic games players have some informa-
tion about the actions chosen by the others. In particular, we study in this section
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Figure 2.6: Extensive form representation for (a) the prisoner’s dilemma game in
Example 2.3 and (b) the matching pennies game in Example 2.4.

sequential games, in which the players take their actions (i.e., select their strategies)
in a definite order. Therefore, some players observe the actions of the players who
acted before them, and they can choose their strategy accordingly. For simplicity,
we will restrict the analysis of sequential games to sequential games with perfect
information, where each player knows perfectly the actions of the players moving
before itself.

Extensive Form Representation Dynamic sequential games are usually repre-
sented in their extensive form as a game tree, which depicts the order of the moves
of the players. The root node represents the initial decision to be made by one of
the players, and the edges show the moves made by a player at a certain node.

We represent the two examples of the previous section, the prisoner’s dilemma
and the matching pennies, in respectively Figure 2.6a and Figure 2.6b. For both
games, we assume that Player 1 acts first, and that Player 2 observes Player 1’s
move and accordingly chooses its best response.

The method to find equilibria in a dynamic game in extensive form with perfect
information is backward induction. The first step is to determine the optimal choice
of the last player acting for every possible previous move of the first player. Then,
the optimal action of the first player is determined, given the possible best responses
of the second player. For example, in Figure 2.6a, if the first player confesses (“C”),
then the second player will choose C, while if the first player does not confess
(“NC”), then the second player will choose C, each time to maximize its utility.
Finally, given those best responses of Player 2, Player 1 will choose C to maximize
its utility, and the equilibrium is given by (C,C).

For the zero-sum game of the matching pennies, depicted in Figure 2.6b, we ob-
serve that by choosing heads (H) when Player 1 chose H, and tails (T) when Player
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1 chose T, Player 2 maximizes its utility. This leads to two equilibria (H,H) and
(T,T). Thus, in a two player zero-sum game, acting last is an important advantage,
since maximizing its own payoff corresponds to minimizing the other’s utility.

Stackelberg Games The Stackelberg game is a game model where there exists a
hierarchy among the competing players. For instance, in economics, a Stackelberg
competition models the game between the leader firm which moves first and the
follower firms, which move after the leader [SC73]. The leader holds the best
position as it can impose its own strategy upon the followers.

We consider for the following definitions a two-player non-cooperative game
between a leader (Player 1) and a follower (Player 2), with respective strategy sets
S1 and S2. The optimal response set R2(s1) of Player 2 to the strategy s1 ∈ S1 of
Player 1 is defined as:

R2(s1) , {s2 ∈ S2 : U2(s1, s2) ≥ U2(s1, s), ∀s ∈ S2}. (2.24)

We are now able to define the Stackelberg equilibrium (SE) strategy as fol-
lows:

A strategy s∗1 ∈ S1 is called a Stackelberg equilibrium strategy for the
leader, if

min
s2∈R2(s∗1)

U1(s
∗
1, s2) = max

s1∈S1

min
s2∈R2(s1)

U1(s1, s2) , U∗
1 . (2.25)

Furthermore, if s∗1 ∈ S1 is a Stackelberg strategy for the leader, then any
strategy s∗2 ∈ R2(s

∗
1) that is in equilibrium with s∗1 is an optimal strategy

for the follower. The pair (s∗1, s
∗
2) is then called a Stackelberg solution for

the game, and the corresponding Stackelberg equilibrium outcome is given
by (U1(s

∗
1, s

∗
2),U2(s

∗
1, s

∗
2)).

Definition 2.13 (Stackelberg Equilibrium).

Given those definitions, we have the following important result [BO99]:

Every two-person finite game admits a Stackelberg strategy for the leader.
Moreover, let U∗

1 and UNE
1 be, respectively, the Stackelberg utility and the

Nash equilibrium utility for Player 1. If R2(s1) is a singleton set ∀s1 ∈ S1,
then

U∗
1 ≥ UNE

1 . (2.26)

Theorem 2.3 ([BO99]).
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Theorem 2.3 shows that the leader in the Stackelberg solution performs at least as
well as at the Nash equilibrium, if the follower has a single optimal response for
every strategy of the leader.

Finally, if we assume that the two-person Stackelberg game is also a zero-sum
game, we can make the following observation.

The Stackelberg solution of the game is the same as the solution of the
dynamic game where the follower acts first and the leader acts second after
observing the follower’s move.

Remark 2.5.

Remark 2.5 follows from the definition of a zero-sum game and Definition 2.13.
Therefore, in that case, we can visualize the advantage of being the leader in the
Stackelberg game, as it corresponds to acting last in the zero-sum dynamic sequen-
tial game.

2.3.2 Auction Theory

Auction theory is a branch of game theory which analyzes the behavior of players
in auction markets. There exist several types of auctions and manners to design
auctions, i.e., to fix the set of rules which define the outcome of a given auction. In
this section we define the basics of auction theory and we give some examples of
auction types.

Basics of Auction Theory We define here formally the term “auction” [HNS+12].

An auction is a market mechanism conducted by an auctioneer in which
an object or set of objects is exchanged on the basis of bids from potential
buyers, also called bidders. An auction provides a specific set of rules
that will determine the outcome of the auction, i.e., how the objects are
allocated and their corresponding prices.

Definition 2.14.

There are several ways to classify auctions, and we give in the following example
the 4 main types of auctions.
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The 4 traditional types of auctions can be defined as follows:

First-Price Auction: Simultaneous (sealed-bid) auction in which the
bidder who submits the highest bid is awarded the object for a price
equal to the value of its bid.

Second-Price Auction: Simultaneous (sealed-bid) auction in which the
bidder who submits the highest bid is awarded the object for a price
equal to the value of the second highest bid.

English Auction: Sequential auction for which the auctioneer asks bid-
ders to increase the current bid, by a predefined increment, at every
round starting from a low price. The auction ends when only one
bidder is left, who wins the object and pays its bid.

Dutch Auction: Sequential auction in which the price for the object is
higher than what any bidder is prepared to pay. The prize decreases
until a bidder accepts the price, and wins the object for its price of
acceptance.

Example 2.5.

We can notice some similarities between first-price and Dutch auctions, as well
as between second-price and English auctions. In fact these auctions are actually
equivalent under certain conditions stated by the revenue equivalence theorem. We
refer the interested reader to [HNS+12] for details on the equivalencies between
auction types.

Vickrey Auctions A Vickrey auction [Kri10] is a sealed-bid auction in which
bidders submit bids without knowing the bids of other players. The highest bidder
wins the auction and pays the second highest bid. This type of auction gives
bidders an incentive to bid their true value, since bidding the maximum amount they
would be willing to pay is optimal [Kri10]. Due to this truthful-bidding property,
Vickrey auctions have been widely used in wireless communication problems, e.g.,
in [HHCP08]. In the following section we will give further examples of applications
of auction theory in communication networks.

2.3.3 Game Theory Applications in Communication Networks

There has recently been a growing interest in using game theoretical approaches
to model and study communication systems. This surge of interest is due to game
theory being a particularly suitable framework to tackle fundamental problems in
communication networks. Game theory provides indeed the mathematical tools to
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Figure 2.7: Game theory concepts applied to communication networks.
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analyze the interactions between rational players, which can naturally be applied to
selfish users in networks. In Figure 2.7 we describe the use of game theoretic tools
in communication networks as we show the different branches of game theory, and
the corresponding game theory concepts applied to wireless networks problems. We
highlight the areas investigated throughout this thesis. We also refer to [HNS+12]
and references therein for the description of the game theory concepts applied to
the communication networks problems.

Game Theory Applications in CRNs In recent years game theory has been
applied to fundamental cognitive radio networks’ problems. Game theory solution
concepts allow for efficient distributed approaches for dynamic problems, e.g., spec-
trum sharing, and are therefore highly suitable to the analysis of CRNs. We refer
the interested reader to [WWL10] where the authors provide an overview of the
game theory tools already applied to CRNs and the corresponding references. A
chapter in [HNS+12] is devoted to applications of game theory for CRNs, e.g., coop-
erative spectrum sensing, power control, medium access control, spectrum access,
sharing and leasing. These problems are studied through various perspectives, such
as non-cooperative game theory, as in [NH08] and [SSS+08] and auction games for
spectrum allocation, as in [WLX+10]. Other methods not considered in this the-
sis include repeated games, cooperative game theory and mechanism designs for
auction-based spectrum allocation.

2.4 Information Theoretic Secrecy

In this section we introduce the notion of information theoretic secrecy. Compared
to conventional cryptographic techniques, information theoretic secrecy aims to se-
cure communication networks without using an encryption key. In Section 2.4.1 we
discuss the motivation for an information theoretic approach on security problems
in communication networks. In Section 2.4.2 we introduce the fundamental sim-
plest model of secrecy network, namely the wiretap channel. In Section 2.4.3 we
extend the wiretap channel discussion to the practical case of wireless channels.

2.4.1 Motivation for Information Theoretic Secrecy

With the considerable growth of wireless networks in recent years, the issue of net-
work security has taken an important role in the design of communication devices
and protocols. Indeed, due to the broadcast nature of these networks, communica-
tions can potentially be attacked by malicious parties, and therefore, the protection
of transmitted data has become a main concern in today’s communications. These
attacks are usually addressed in layers above the physical layer, using techniques
based on cryptography [MvOV96] for authentication and encryption. However, un-
til recently, not much attention was given to the possibility of implement security
protocols at the physical layer, possibly in conjunction with existing protocols at the
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Table 2.3: Comparison of information theoretic secrecy and traditional cryptogra-
phy.

Information Theoretic Secrecy Cryptography

• Technology not available

• No assumptions on the eaves-
dropper’s capabilities but passive
eavesdropper assumed

• Security metrics but based on av-
erage measures

• No key management needed:
lower complexity

• Assumptions on channels, such
as CSI or channel advantage over
Eve

• Adapted to the broadcast nature
of wireless networks, e.g., man in
the middle attack

• Technology already available

• Unproven complexity assump-
tions, protocols might not be se-
cure as technologies evolve

• No security metrics to compare
security protocols

• Difficult key distribution in de-
centralized networks, key man-
agement expensive in dynamic
topologies

• No assumptions on channels,

• Keys can be intercepted, e.g., for
public-key algorithms

above layers. This promising direction towards achieving secure communications is
labeled information theoretic secrecy. In Table 2.3, we highlight the advantages as
well as the shortcomings of the information theoretic approach to security compared
to traditional cryptographic schemes.

The information theoretic secrecy approach was initiated by Shannon [Sha49]
using a model where a transmitter attempts to conceal its message from a pas-
sive eavesdropper. The idea of Shannon consisted of using a secret key in order
to generate sufficient randomness to confuse the eavesdropper such that no secret
information could be obtained from its observations. The idea to exploit the ran-
domness of the communication channels to ensure the secrecy of the transmitted
messages was later developed by Wyner in his fundamental work [Wyn75]. We will
devote this section to describing Wyner’s wiretap channel model and the existing
information theoretic secrecy results, as well as their implication for the secrecy of
wireless networks.
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2.4.2 The Wiretap Channel

The information theoretic secrecy approach was introduced by Wyner in his fun-
damental work [Wyn75], in which he introduced the wiretap channel, which is the
simplest model to study secrecy in communications.

Eavesdropper H(W |Zn)

W Encoder p(y, z|x)

Channel

Decoder Ŵ
Xn Y n

Zn

Figure 2.8: The wiretap channel.

The wiretap channel (WTC) is a 3-node network depicted in Figure 2.8. As
for the point-to-point channel, the source message W is chosen uniformly from a
message set W. The encoder then assigns (stochastically) a codeword xn(w) ∈ Xn

to each message w ∈ W. xn is transmitted over the DMC channel with transition
probability pY Z|X(· |· ) and there are two output sequences yn and zn received at
the legitimate receiver and the eavesdropper, respectively. The decoder assigns an
estimate ŵ ∈ W of the message to each received sequence yn ∈ Yn.

This wiretap channel model generalizes the model introduced by Wyner in
[Wyn75], where it was assumed that the broadcast channel to the receiver and
the eavesdropper was physically degraded; i.e., the eavesdropper received a noisy
version of the channel output at the legitimate receiver. This more general model
was investigated by Csiszár and Körner in [CK78], in a work that establishes the
main results on the general WTC.

Secrecy Measures For the wiretap channel, we are interested in two perfor-
mance measures: reliability and secrecy, which we define as follows.
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For information theoretically secure communications, we use the following
two measures.

Reliability: The reliability is measured, as in Section 2.1.2, by the average
probability of error defined as

P (n)
e = P{Ŵ 6= W} =

1

|W|
∑

w∈W
P{ŵ 6= w}. (2.27)

Secrecy: Secrecy is measured by the equivocation rate R
(n)
e defined as

R(n)
e =

1

n
H(W |Zn). (2.28)

Definition 2.15.

The equivocation rate describes the level of confusion of the eavesdropper about the
message W , given its observations Zn. Therefore, the level of secrecy increases when
the equivocation rate increases. We then define an achievable rate-equivocation pair
(R,Re) as follows:

A rate-equivocation pair (R,Re) is achievable if there exists a sequence of
message sets Wn with |W| =

⌈

2nR
⌉

, and a sequence of encoder-decoder
pairs, such that

P (n)
e −−−−→

n→∞
0 (Reliability) (2.29)

Re ≤ lim
n→∞

inf R(n)
e . (Secrecy) (2.30)

The capacity-equivocation region C is then defined as the closure of all
achievable rate-equivocation pairs (R,Re).

Definition 2.16.

The rate-equivocation pair (R,Re) shows the confidential rate R achieved under a
secrecy level Re. Whenever Re < R, information is leaking to the eavesdropper.
When R = Re, we have perfect secrecy and R is called a perfect secrecy rate, or more
usually a secrecy rate. The notion of perfect secrecy is particularly important in this
thesis, as we will look for achievable perfect secrecy rates for different cooperative
network models.
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We note that a stronger notion of secrecy has also been considered, see e.g.,
[LPSS09], in which the condition (2.30) is replaced by:

nRe ≤ lim
n→∞

infH(W |Zn). (2.31)

This notion is called strong secrecy, in contrast with the weak secrecy constraint
in (2.30), which is the notion considered in this thesis, unless mentioned otherwise,
as e.g., in Chapter 4. Other secrecy measures exist, and we refer the reader to
[BL13] for a detailed characterization of the different security measures and their
interdependence.

As for the point-to-point channel without eavesdropper, the highest achievable
secrecy rate is a fundamental measure: this is the secrecy capacity.

The secrecy capacity Cs is the largest rate achievable with perfect secrecy,
i.e.,

Cs = max
(R,R)∈C

R. (2.32)

Definition 2.17.

For the wiretap channel described in Figure 2.8, the secrecy capacity is given
by the following theorem [CK78]:

The secrecy capacity of the wiretap channel is given by

Cs = max
pUXpY Z|X

[I(U ;Y )− I(U ;Z)]+, (2.33)

where the auxiliary random variable U satisfies the Markov chain U −X −
(Y, Z) and U is bounded in cardinality by |U| ≤ |X |+ 1.

Theorem 2.4 (Secrecy Capacity of the Wiretap Channel [CK78]).

Theorem 2.4 implies that for every rate R < Cs, the message W can be reliably
transmitted while being kept perfectly secret from the eavesdropper.

We should note that the expression of Theorem 2.4 for the secrecy capacity can
be simplified for several classes of wiretap channels [LPSS09]. The secrecy capacity
of the WTC was first derived in [CK78], by generalizing the WTC to a broadcast
channel with confidential messages. A rigorously detailed proof of the theorem can
be found in [BB11].
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2nR
′

codewords per subcode indexed by W
′

2nR subcodes
indexed by W

Figure 2.9: Wiretap coding with nested codes.

Coding for the Wiretap Channel In his original work [Wyn75], Wyner de-
scribes the basic strategy for designing practical codes to achieve secrecy for wire-
tap channels. This strategy can be interpreted with the notion of nested codes,
which we summarize here. In Figure 2.9 we depict the nested structure of wire-
tap codes. A wiretap code consists of all codewords contained in the table and it
has to be decodable by Bob. The wiretap code is split into subcodes and every
message is mapped to one subcode. For encoding, one codeword from the chosen
subcode is picked uniformly at random and transmitted. In other terms, for each se-

cret message W ∈ {1, 2nR}, there are 2nR
′

codewords X(W,W ′) chosen at random

(stochastic encoder) as W
′ ∈ {1, 2nR

′

}. Each set of codewords forms a bin, which is
a subcode of the wiretap code. It is shown that if each subcode is capacity-achieving
for Eve’s channel, i.e., R

′

is chosen as the capacity of Eve’s channel, then Eve is
unable to decode any information, and in particular, the index of the subcode that
contains the information about the source message. Hence, since we must choose
R+R

′

below the capacity of Bob’s channel from the channel coding Theorem 2.1,
we obtain the code design parameters R and R

′

by R + R
′

< Cb and R
′

< Ce

where Cb and Ce denote the capacity of the main and the eavesdropper’s channel
respectively. We refer the reader to [BB11] for a more detailed description of cod-
ing mechanisms for the wiretap channel. For examples of existing channel codes
achieving secrecy over certain classes of wiretap channels, we refer the interested
reader to [And14].

2.4.3 Secrecy in Wireless Networks

In this section we extend the secrecy capacity results of Section 2.4.2 to the case
of Gaussian and wireless channels. Gaussian channels are particularly important
since they represent a reasonable approximation of the effects on the channels at
the physical layer. Moreover, the analysis of Gaussian channels is fundamental for
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the study of more general wireless channels.
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Figure 2.10: The complex Gaussian wiretap channel.

The Gaussian Wiretap Channel The complex Gaussian WTC is depicted in
Figure 2.10. The source, commonly named Alice in the literature, transmits Xn over
the channel. The received signals at the destination (Bob) and the eavesdropper
(Eve) are Y n and Zn, respectively. For i ∈ {1, . . . , n}, we have:

yi = hsdxi + nd,i (2.34)

zi = hsexi + ne,i, (2.35)

where the noise sources are complex and circularly symmetric, i.e., nd,i ∼ CN (0, σ2
d)

and ne,i ∼ CN (0, σ2
d), hsd ∈ C and hse ∈ C are constant coefficients. Finally, we

assume the following average power constraint on the transmitted signal:

1

n

∑

i

|xi|2 ≤ Ps. (2.36)

For this complex Gaussian WTC, the secrecy capacity is known and given in the
following theorem [BB11]:

The secrecy capacity of the complex Gaussian WTC is

Cs =

(

log

(

1 +
|hsd|2Ps

σ2
d

)

− log

(

1 +
|hse|2Ps

σ2
e

))+

= (Cd−Ce)
+, (2.37)

where Cd , 2C( |hsd|2Ps

σ2
d

) is the capacity of the legitimate channel and Ce ,

2C( |hse|2Ps

σ2
e

) is the capacity of the eavesdropper’s channel.

Theorem 2.5 (Secrecy Capacity of the Complex Gaussian WTC [BB11]).
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We make several important observations here:

• Theorem 2.5 is a consequence of Theorem 2.4. In particular the achievability
follows from Theorem 2.4 with the choice of the auxiliary random variable
U ∼ CN (0, Ps), and X , U . A rigorous proof can be found in [BB11].

• Theorem 2.5 can be viewed as an extension of the secrecy capacity of the real
Gaussian WTC, found by Leung-Yan-Chong and Hellman in [LYCH78], by:

Cs =

(

1

2
log

(

1 +
Ps

σ2
d

)

− 1

2
log

(

1 +
Ps

σ2
e

))+

= (Cd − Ce)
+. (2.38)

The factor 2 results from the complex Gaussian WTC being equivalent to two
parallel real Gaussian WTCs.

• From (2.37), we deduce that secure communication is possible if and only if the
legitimate receiver has a better SNR than the eavesdropper. In practice, this
can be interpreted as the eavesdropper being further away from the legitimate
transmission.

The Quasi-Static Fading Wiretap Channel We generalize here the model
of Figure 2.10 to wireless channels. In particular, the communication channels are
now modeled as fading channels; i.e., hsd and hse are randomly distributed. We
restrict ourselves to the quasi-static fading model defined in Section 2.1.2. This
model differs from the ergodic-fading model and the block-fading model, which
have also been considered in the literature, e.g., in [BB11]. The model reduces to
a complex Gaussian WTC defined by (2.34) and (2.35) for each coherence interval.
Secure communication over quasi-static channels is therefore determined by the
instantaneous fading realization. Alice, Bob, and Eve are assumed to have perfect
knowledge of the instantaneous realizations of the fading coefficients (hsd, hse), such
that the wiretap code is chosen opportunistically for each realization of the fading.
The secure communications rate over a long period of time, i.e., the average secrecy
capacity, is then given in the following theorem [BBRM08]:
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With full channel state information, the average secrecy capacity of a quasi-
static fading wiretap channel is

Cavg
s = EHsd,Hse

[Cs(Hsd, Hse)], (2.39)

where Cs(hsd, hse) is the instantaneous secrecy capacity, defined as

Cs(hsd, hse) =

(

log

(

1 +
|hsd|2Ps

σ2
d

)

− log

(

1 +
|hse|2Ps

σ2
e

))+

. (2.40)

Theorem 2.6 ([BBRM08]).

The assumption of full channel state information in Theorem 2.6 is essential. As a
matter of fact, when the transmitter does not know the fading coefficient hse, the
average secrecy capacity for the quasi-static fading channel is 0 [BB11].

However, within each coherence interval, the transmitter can guarantee relia-
bility by adapting the rate of the code, but perfect secrecy cannot be assured, as
the realization hse is unknown. Consequently, one needs to adopt a probabilistic
view of security. In particular, the probability that information is leaked to the
eavesdropper for a chosen transmission rate should be considered. This leads to
the fundamental notion of secrecy outage probability.

Secrecy Outage Probability For wireless networks with secrecy constraints,
the assumption of perfect channel knowledge from the source to the eavesdropper
is commonly used for the computation of the secrecy capacity or achievable secrecy
rates. This limiting assumption can be justified in certain types of networks where
the eavesdropper is also part of the system; e.g., it can be a legitimate receiver
for the messages of certain users and simultaneously be viewed as an eavesdropper
for the messages of other users as in [LSBP+09], [WL11]. However, in the case
of a passive external eavesdropper, this assumption is far too optimistic and we
must assume that the transmitter has only limited channel state information on
the eavesdropper’s channel. A common assumption for this scenario is that only
the channel statistics, i.e., the average SNR, of the eavesdropper’s channel are
known, but not the instantaneous realizations of the channel. This corresponds
to the path-loss model for quasi-static Rayleigh fading channels scenario where
only the location of Eve is known. For that model, the secrecy outage probability
(SOP) is a suitable measure of the system performance. The notion of secrecy
outage probability was first introduced in [BBRM08], in the case of the quasi-static
Rayleigh fading wiretap channel. Similar to the outage probability without secrecy
constraint, it was defined as the probability that the instantaneous secrecy capacity
is less than a target secrecy rate. The meaning of the secrecy outage probability
can be explained as follows.
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Without the channel state information (CSI) on Eve’s channel, but with the
knowledge of the instantaneous capacity Cd of the main channel, Alice is forced to
choose a secrecy rate R. In some sense, Alice is assuming that the capacity of the
eavesdropper’s channel is Ce = Cd − R. As long as R ≤ Cs, i.e., the chosen rate
is below the instantaneous secrecy capacity, the assumption is optimistic as Eve’s
channel is worse than the source’s estimate and the wiretap codes ensure perfect
secrecy. However, if R > Cs, secrecy is compromised. We can also interpret the
secrecy outage in terms of wiretap code design. Optimally, the nested secure code
consists of the linear code pair (C0, Cs) where C0 is a linear code with rate Cd, and Cs
is a linear code with rate Cs = Cd − Ce. However, without CSI on Eve’s channels,
the source is forced to choose R , R̂s = Cd − Ĉe for the rate of the fine code, and
the secrecy constraint is violated when R̂s > Cs.

This analysis shows that the secrecy outage probability is a secrecy measure
particularly adapted to the situation where the legitimate nodes have limited CSI
about the eavesdropper’s channels, as the transmitter must choose the secrecy rate
R without the exact information on the eavesdropper’s channels. Formally, we can
then define the secrecy outage probability as follows:

The secrecy outage probability is defined as the probability that the chosen
transmission rate R exceeds the achievable instantaneous secrecy rate Cs:

Pout (R) = P {Cs < R} . (2.41)

Definition 2.18.

Alternative definitions of the secrecy outage probability exist, e.g., in [GSJ12].

2.5 Cooperation for Secrecy

In this section we investigate the interaction between cooperation, introduced in its
simplest form with the relay channel in Section 2.1.3, and secrecy in communication
networks. There has been a substantial interest in the secrecy of multi-user systems
[LPSS09], with a particular emphasis on potential cooperation between users to
enhance the secrecy of communications. We should note that, in this section, we
assume that the cooperative node(s) can be trusted and aim at increasing the
secrecy of the transmission in the presence of an external eavesdropper. A more
complex kind of interaction between cooperation and secrecy has been the subject
of several recent works, e.g., in [HY10] and [YLE11], in which the cooperative
nodes are also treated as potential eavesdroppers. In this model, it is not clear
whether cooperation can, in fact, improve secrecy, or whether there is a trade-
off between cooperation and secrecy. For instance, if the untrusted cooperative
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node performs a decode-and-forward strategy to convey the information to the
destination, cooperation and secrecy appear to be conflicting goals.

However, we focus here on achieving secrecy with a trusted cooperative node.
This scenario was first captured in [LEG08], by the relay-eavesdropper channel
model. We first introduce this model in Section 2.5.1. Several cooperative strate-
gies aiming at increasing the secrecy of the transmission in the presence of a possible
external eavesdropper have been proposed and they can be classified into two types.
For the strategies of the first type, the cooperating parties improve the secrecy per-
formance of the system by weakening the eavesdropping link. Hence, in contrast
to wireless communications without secrecy, where interference is considered as an
undesired effect, interference can potentially be a beneficial phenomenon for secure
communications. The second type corresponds to the classical sense of cooperation,
where the cooperating nodes strengthen the main transmission by using common
relaying techniques such as decode-and-forward or amplify-and-forward. We char-
acterize these two different types of cooperation, namely oblivious cooperation in
Section 2.5.2 and active cooperation in Section 2.5.3.

2.5.1 The Relay-Eavesdropper Channel

Relay

W Encoder p(y, yr, ye|x, xr) Decoder Ŵ

Eavesdropper

H(W |Y n
e )

Xn Y n

Y n
e

Y n
r Xn

r

Figure 2.11: The relay-eavesdropper channel.

We introduce first the relay-eavesdropper channel as the canonical example of
cooperation for secrecy. The relay-eavesdropper channel model is represented in
Figure 2.11. It was introduced and deeply investigated in [LEG08]. This 4-node
network is composed of a source, a relay, a destination and an eavesdropper. This
model combines to some extent the simplest cooperative network, namely the relay
channel, and the simplest network with secrecy constraints, namely the wiretap
channel.
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Figure 2.12: Cooperative jamming for the Gaussian relay-eavesdropper channel.

In [LEG08], achievable secrecy rates are derived for different strategies for the
relay. These strategies fall into two categories, as later characterized in [LT09,
Chapter 7]. In the first category, the relay attempts to confuse the eavesdropper
by sending codewords independent of the source’s message, this strategy is labeled
noise-forwarding (NF) in [LEG08]. In the other category, the relay implements
a classical relaying scheme; e.g., DF and CF are proposed in [LEG08]. In the
following, we describe the two types of cooperation in the case of Gaussian channels.

2.5.2 Oblivious Cooperation: Cooperative Jamming

In this section we discuss a cooperative strategy where the helper does not need
to have any information regarding the transmitted message, namely cooperative
jamming (CJ). This model is represented in Figure 2.12. We notice that this relay-
eavesdropper channel with a relay ignoring the transmitter’s message is equivalent
to a multiple-access wiretap channel (MAC-WTC), as in [TY08a].

Before describing the cooperative jamming strategy used throughout this thesis,
we should note that several implementations of cooperative jamming exist in the
literature. For instance, the noise forwarding scheme introduced in [LEG08] can
be interpreted as a form of a cooperative scheme although a fundamental different
exists. For NF, the helper sends dummy codewords from a codebook to confuse
the eavesdropper and increase the achievable secrecy rate. In particular, if the
helper-receiver link is stronger than the helper-eavesdropper link, the receiver is
able to decode the dummy codewords sent by the helper, while the eavesdropper
is not able to decode them. A similar scheme is coined interference assisted secret
communication in [TLSP11], where both NF and CJ are investigated.

Instead of the noise-forwarding strategy, the helper might instead explicitly
attack the eavesdropper. This is the main idea of cooperative jamming, introduced
in [TY08b] for the MAC-WTC, and later used for different channel models, e.g., the
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interference channel with secrecy constraints [TLSP11]. In Gaussian channels, this
attack is implemented by injecting additional Gaussian noise to the channel. Due
to the broadcast nature of the channels, this noise also hurts the legitimate receiver;
however, if the helper-eavesdropper link is stronger than the helper-receiver link,
the eavesdropper is more affected by the jamming.

To illustrate this mechanism, we consider Figure 2.12. If the helper is not
present, the following secrecy rate is achievable (this is the Gaussian WTC secrecy
capacity):

(log (1 + γsd)− log (1 + γse))
+
. (2.42)

Now, if the helper transmits Gaussian noise with power Pr, the following secrecy
rate is achievable

(

log

(

1 +
γsd

1 + γrd

)

− log

(

1 +
γse

1 + γre

))+

. (2.43)

From the expression of (2.43), we observe that CJ is making both channels nois-
ier than they actually are, resulting in a lower signal-to-interference ratio (SINR).
This strategy can thus be thought of as sending dummy codewords whose rate
is above the decoding capability of both the eavesdropper and the receiver. The
achievable secrecy rate of (2.43) might improve the secrecy capacity of the Gaus-
sian WTC in (2.42), if the helper-eavesdropper channel is strong enough, i.e., if
jamming hurts the eavesdropper more than the legitimate receiver.

While cooperative jamming with Gaussian noise has the advantage of simplicity,
the non-decodability of the noisy signals are always hurting the legitimate receiver.
Consequently, more elaborate cooperative jamming strategies have been recently
proposed in the literature to mitigate this negative effect, e.g., in [BU13] such as
cooperative jamming with structured codes, or cooperative jamming via alignment.
We refer the interested reader to [EHT+13] for a survey of existing jamming tech-
niques for secrecy.

2.5.3 Active Cooperation: Relaying Schemes

In the previous section, the helper helped the main receiver by weakening the
eavesdropping link without using any knowledge of the message being transmitted.
In this section we review cooperative schemes where the helper helps the main
receiver by strengthening the main link, i.e., by acting as a relay.

Active cooperation was first considered for the relay-eavesdropper channel in
[LEG08]. We show the model for Gaussian channels in Figure 2.13. In [LEG08],
inner bounds on the secrecy capacity, i.e., achievable secrecy rates, are given for
different relaying strategies for the general discrete memoryless relay-eavesdropper
channel of Figure 2.11. In particular, DF and CF strategies in the presence of an
eavesdropper are investigated. In [DHPP10], DF and AF are compared to CJ for
Gaussian channels, and achievable secrecy rates are derived. In [Yuk08], achievable
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Figure 2.13: Active cooperation for the Gaussian relay-eavesdropper channel.

secrecy rates are also given for CF in the case of Gaussian channels and time-
division relaying. More recently, DF strategies in multiple relay networks with
secrecy constraints were investigated in [BU12]. As for the relay channel without
an eavesdropper, the performance of DF depends on the quality of the transmitter-
relay link as the overall rate is limited by the rate of this link. Moreover, in the
relay-eavesdropper channel, the relative strengths of the relay-receiver and the relay-
eavesdropper links become critical. For example, if the relay-eavesdropper link is
stronger than the relay-receiver link, then all of the information sent by the relay
will be decodable by the eavesdropper. In this case, the relay may not improve the
secrecy of the transmitter. A similar analysis based on the relative strength of the
links can be performed for AF and CF, as e.g., in [ZYC+09].

Finally, we should note that other cooperative networks with secrecy have been
deeply investigated in recent works, such as the relay-broadcast channel with secrecy
constraints in [EU11], or the cognitive interference channel with secrecy constraints
in [LSBP+09]. A comprehensive review of the main results for multi-user networks
with secrecy can be found in [LPSS09]. For a recent summary of advances in the
field of cooperation for secrecy, we refer the reader to the survey [EHT+13].

2.6 Cooperative Secrecy in Wireless Networks: A Case

Study

In this section we investigate cooperation for secrecy for wireless channels through
a case study. The aim of this section is highlight several difficulties in the secrecy
analysis of the relay-eavesdropper channel inherent to some crucial assumptions
from Wyner’s wiretap channel model. Consequently, we will introduce in the next
chapter the system model investigated throughout this thesis that allows us to
eliminate the shortcomings highlighted in this case study.
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We consider in particular quasi-static Rayleigh fading channels. In such an en-
vironment, the common assumption of perfect knowledge of Eve’s channels is not
satisfying, and the performance of the schemes must be analyzed from an outage
perspective [BB11, Chapter 5]. As explained in the previous section, cooperation
can improve secrecy in two ways: either by improving the quality of the legitimate
transmission or by decreasing the amount of information obtained by the eavesdrop-
per. For the former way, we consider decode-and-forward and amplify-and-forward
as possible strategies for the helping node, while for the latter, we consider co-
operative jamming with noise. We introduce important secrecy measures for the
cooperative schemes, namely the secrecy outage probability, the conditional secrecy
outage probability and the secure throughput. These measures take into account
the fading model as well as the limited CSI about Eve’s channels. We derive closed-
form expressions for these measures. Moreover, we illustrate the performance of the
schemes for different scenarios to characterize the effect of the nodes’ geometry.

This study is divided into three sections. In the first Section 2.6.1 we describe
the model and the cooperative strategies investigated throughout this chapter. In
the second Section 2.6.2 we analyze and compare the secrecy outage probability and
the conditional secrecy outage probability performance of the cooperative schemes.
Finally in the last Section 2.6.3 we elaborate a global system optimization regarding
strategy selection, node positioning, power allocation, and rate design.

2.6.1 System Description

In this section we first describe the system model investigated throughout this
study. Secondly, we give achievable secrecy rates for the considered cooperative
schemes in this model. Finally we define our performance measures, namely the
secrecy outage probability and the conditional secrecy outage probability.

System Model We will consider the four-node network illustrated in Figure
2.14. The source (S) wishes to communicate a message to the destination (D) in
the presence of the helping node (H) and the eavesdropper (E).

Network Model We make the following assumptions regarding the considered
network:

• The source transmits with a fixed power Ps = Pmax and the relay transmits
with a power Pr ∈ [0, Pmax].

• The additive noise n for all nodes is zero-mean white complex Gaussian with
variance σ2. For simplicity, we will assume that σ2 = 1 and that SNRmax ,
Pmax

σ2 = 10 dB.

• All channels are Rayleigh quasi-static fading channels. From a codeword to
another, the fading coefficients hij change randomly according to a complex
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Figure 2.14: Relay-eavesdropper channel model.

Gaussian distribution:
hij ∼ CN

(

0, 1/dαij
)

, (2.44)

where α represents the path-loss exponent, and dij is the Euclidian distance
between node i and node j.

• We note γij = Pi |hij |2 the instantaneous SNR between node i and node j,
where Pi is the transmission power of node i. The random variable γij is
exponentially distributed, with mean γ̄ij =

Pi

dα
ij

.

Transmission Model For the relaying schemes, we assume that a time division
is imposed by the network such that the source transmits in the first time slot and
the relay transmits in the second time slot. The source remains silent during the
second time slot. Both time slots have the same length. In the first time slot, we
have

yr = hsrxs + n(1)
r ,

y
(1)
d = hsdxs + n

(1)
d ,

y(1)e = hsexs + n(1)
e ,

while in the second time slot, we have

y
(2)
d = hrdxr + n

(2)
d ,

y(2)e = hrexr + n(2)
e .

We also consider the cooperative jamming scheme described in the previous section
where the helper transmits the Gaussian noise xj with power Pr while the source
transmits in the first time slot. In the first time slot, we have

y
(1)
d = hsdxs + hrdxj + n

(1)
d ,
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y(1)e = hsexs + hrexj + n(1)
e ,

while we assume that both source and helper remain silent in the second time slot
such that the comparison between the relaying schemes and cooperative jamming
is fair in terms of average power consumption.

Transmission Schemes In this section we describe the cooperative transmission
schemes, namely direct transmission (DT), decode-and-forward relaying, amplify-
and-forward relaying, and cooperative jamming. We assume that full channel state
information on all channels is available at the legitimate nodes. This particular
assumption will then be discussed in the next section. We relegate the achievable
instantaneous secrecy rates expressions to Appendix 2.A for a better readability of
the study.

Direct Transmission For DT, the relay is turned off and the source simply
transmits the message to the destination during the first time slot. We are therefore
treating DT as a special case of the considered relaying schemes.

Decode-and-Forward Relaying In the first time-slot, the source broadcasts the
message xs. Then in the second stage, the relay decodes the information transmit-
ted by the source and re-encodes it using the same codebook (repetition coding)
as the source to transmit the information to the destination. The receiver uses
maximum ratio combining (MRC) to optimally combine both observations. Fur-
thermore, we assume that DF is implemented only if γsd < γsr. This particular DF
scheme is considered in [DHPP10]. Other strategies can be implemented by the re-
lay which lead to different achievable secrecy rates (e.g., in [Yuk08], an independent
codebook is used at the relay).

Amplify-and-Forward Relaying In the AF scheme, the relay scales the signal
received after the first time slot, and then it simply forwards it such that

xr =
√

Pryr with Pr ∈
[

0,
Pmax

1 + γsr

]

,

i.e., ∃β ∈
[

0, 1
1+γsr

]

with Pr = βPmax.

Again, the receiver combines the observations optimally by using MRC.

Cooperative Jamming In the CJ scheme, the helper interferes via transmit-
ting Gaussian noise as described in Section 2.5 while the source is transmitting its
message, in order to confuse the eavesdropper.

The aim of this section is to consider cooperative schemes which are simple
to implement and easily adaptable. Hence we choose the DF and AF strategies
previously described. Furthermore, more elaborated relaying schemes often require
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Figure 2.15: Geometrical model.

perfect CSI on all channels and they also are sensible to modifications of the chan-
nels’ coefficients, and thus, they are less suitable for the scenario studied in this
study.

Geometrical Model We consider throughout this section the geometrical model
where the source and the destination are located at the respective fixed positions
(0, 0) and (0, 1), which means that the distances between different nodes in this
model are normalized w.r.t. the source-destination distance. The geometrical model
is depicted in Figure 2.15. E can be located at any position (xe, ye) ∈ P, with
P , xe ∈ [−1.5, 1.5] ∩ ye ∈ [−1, 1.5] while we will consider in this chapter three
possibilities for the positioning of the helping node:

Case CH1
: The helping node is located in (0.1, 0.1) i.e., close to the source. In

other terms, γ̄sr ≫ γ̄sd ≈ γ̄rd.

Case CH2
: The helping node is located in (0.5, 0.1) i.e., in the middle of the trans-

mission. In other terms, γ̄sr ≈ γ̄rd.

Case CH3
: The helping node is located in (0.9, 0.1) i.e., close to the destination.

In other terms, γ̄rd ≫ γ̄sd ≈ γ̄sr.

Secrecy Outage In our case study, we assume that the legitimate nodes have
full CSI on the legitimate channels (i.e., the channels between S, D and H). We
will also assume that only the channel statistics, i.e., the average SNRs, of the
eavesdropper’s channels are known but not the instantaneous realizations of these
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channels. This corresponds to the path-loss model for quasi-static Rayleigh fading
channels scenario where only the location of Eve is known. For that model, we will
naturally use the secrecy outage probability as a measure of the system performance.
For the relay-eavesdropper channel considered in this case study, the instantaneous
secrecy capacity is unknown. However, according to the instantaneous achievable
secrecy rates for different strategies defined in the previous section, we can then
define the secrecy outage probability as follows:

The secrecy outage probability for the strategy sH of the helper is defined as
the probability that the chosen transmission rate R exceeds the achievable
instantaneous secrecy rate Rs, i.e.,

P
(sH)
out (R) = P {Rs < R} . (2.45)

Definition 2.19.

For DT and CJ, the achievable instantaneous secrecy rates given in Section

2.6.1 coincide with the instantaneous secrecy capacity, that is R
(DT )
s =

C
(DT )
s and R

(CJ)
s = C

(CJ)
s [VBBM11]. In this case, if Rs < R, then a

secrecy outage occurs certainly since the secrecy capacity is the supremum
of all achievable secrecy rates. However, we notice that our performance

measure is somewhat pessimistic for the relaying schemes, since the R
(DF )
s

and R
(AF )
s obtained in Section 2.6.1 are only achievable secrecy rates for

the proposed strategies; i.e., there could be higher achievable rates within
the secrecy capacity region of these strategies.

Remark 2.6.

We also define an alternative measure of secrecy, based on our CSI assumptions.
With the assumption of full CSI on the legitimate channels, a secrecy outage prob-
ability conditioned on the known fading coefficients becomes meaningful. Since the
channel coefficients are known during the transmission of the whole codeword under
the quasi-staticity assumption, the distribution of the fading coefficients will not
influence the outage events during this transmission. Therefore, γsr, γrd and γsd
are not considered as random variables, but as given realizations of the channels.
This leads to the notion of conditional secrecy outage probability (CSOP), which
we define as follows:
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The conditional secrecy outage probability for the strategy sH of the helper
is defined as the probability that the chosen transmission rate R exceeds
the achievable instantaneous secrecy rate Rs, given γsr, γrd and γsd, i.e.,

P
(sH)
out,c (R) = P {Rs < R|γsr, γrd, γsd} . (2.46)

We should note that there exists a mathematical relation between the SOP
and the CSOP of the scheme sH:

P
(sH)
out (R) = Eγsr,γrd,γsd

P
(sH)
out,c (R) . (2.47)

Definition 2.20.

2.6.2 Secrecy Outage Performance of Cooperation

In this section we consider the cooperative schemes described previously. We in-
vestigate the performance of the different schemes in terms of our two performance
measures: the secrecy outage probability and the conditional secrecy outage prob-
ability. We provide closed-form expressions for the SOP and the CSOP of the
different schemes. For each cooperative strategy we give first closed-form expres-
sions for the SOP. Then, we analyze the conditional secrecy outage probability.
This measure of performance is particularly relevant since it takes into account the
CSI knowledge of the legitimate nodes about their channel realizations. In some
sense, the CSOP takes into account that only the uncertainty about Eve’s channels
remains. Finally, we give numerical examples based on our geometrical model pre-
viously introduced. We will use the Case CH2

since this particular positioning of
the helper appeared to be advantageous in the light of the results in [Gab12].

Direct Transmission Performance

We consider first the wiretap channel without any cooperation of the helper. We
can view it as the reference model to which we will compare the performance of the
proper cooperative schemes.

Secrecy Outage Probability In the following theorem, previously shown in
[BBRM08], we give the secrecy outage probability for the direct transmission strat-
egy.
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The secrecy outage probability for DT is given by

P
(DT )
out (R) = 1− γ̄sd

γ̄sd + 22Rγ̄se
e
− 22R−1

γ̄sd . (2.48)

Theorem 2.7 (SOP for Direct Transmission [BBRM08]).

We can analyze the secrecy outage expression for several extreme cases:

γ̄sd → ∞: When the average SNR of the main channel is arbitrarily large then from
(2.48) it follows that

P
(DT )
out (R) → 0.

γ̄se → ∞: When the average SNR of the eavesdropper’s channel is arbitrarily large
then from (2.48) it follows that

P
(DT )
out (R) → 1.

R → 0: In this case, we have:

P
(DT )
out (R) → γ̄se

γ̄se + γ̄sd
,

which means that even for an arbitrarily small target secrecy rate, there will
always be a strictly positive probability that the transmission is not secure,
due to the fading nature of the channels.

Conditional Secrecy Outage Probability We now consider the CSOP for the
direct transmission scheme. We first need to define the following auxiliary function
Qa,b (R), which will be useful in this section:

Qa,b (R) ,
2−2R (1 + a)− 1

b
. (2.49)

where R ∈ [0, 1/2 log (1 + a)], a > 0, and b > 0.
In the following theorem, we give the conditional secrecy outage probability

given γsd for the direct transmission strategy.

The conditional secrecy outage probability for DT is given by

P
(DT )
out,c (R) = e−

2−2R(1+γsd)−1

γ̄se = e−Qγsd,γ̄se (R), (2.50)

with R ∈ [0, C (γsd)] to ensure the reliability of the DT scheme.

Theorem 2.8.
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Proof. We refer to [Gab12] for the proof of the theorem. �

We can analyze the conditional secrecy outage expression for several extreme
cases:

γ̄sd → ∞: When the average SNR of the main channel is arbitrarily large, then
from (2.48) we have

P
(DT )
out,c (R) → 0.

γ̄se → ∞: When the average SNR of the eavesdropper’s channel is arbitrarily large,
then from (2.48) we deduce that

P
(DT )
out,c (R) → 1.

R → 0: In this case, we have:

P
(DT )
out,c (R) → e−

γsd
γ̄se ,

which means that even for an arbitrarily small target secrecy rate, there will
always be a strictly positive probability that the transmission is not secure,
due to the fading nature of the channels.

R → 1
2 log (1 + γsd): In this case, we have:

P
(DT )
out,c (R) → 1.

Decode-and-Forward Relaying Performance

In this section we analyze the SOP and the CSOP performance of the DF scheme.
As for DT, we first investigate the SOP, and then, we consider the CSOP.

Secrecy Outage Probability In the following theorem, we give a closed-form
expression for the secrecy outage probability for the considered DF scheme.
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The secrecy outage probability for the DF strategy is given by

P
(DF )
out (R) =

aγ̄sr
(γ̄re)− a (γ̄sr

γ̄se)

(γ̄re − γ̄se)

+ γ̄sr
aγ̄sr

(γ̄se) (h (γ̄se, γ̄sd)− h (γ̄se, γ̄rd))

22R (γ̄re − γ̄se) (γ̄rd − γ̄sd)

− γ̄sr
aγ̄sr

(γ̄re) (h (γ̄re, γ̄sd)− h (γ̄re, γ̄rd))

22R (γ̄re − γ̄se) (γ̄rd − γ̄sd)
, (2.51)

where we define the following auxiliary functions















h (x, y) =
yγ̄sr

x (y + γ̄sr) + γ̄sr2−2Ry
,

ay (x) =
x2

y2−2R + x
e−

(2−2R−1)
x .

(2.52)

Theorem 2.9 (DF Secrecy Outage Probability).

Proof. Theorem 2.9 is proven in Appendix 2.B. �

Conditional Secrecy Outage Probability In the following theorem, we give
the conditional secrecy outage probability given (γsd, γsr, γrd) for the DF strat-
egy.

The conditional secrecy outage probability for the DF scheme is given by:

P
(DF )
out,c (R) =

γ̄ree
−Qmin(γsr,γd),γ̄re

(R) − γ̄see
−Qmin(γsr,γd),γ̄se

(R)

γ̄re − γ̄se
, (2.53)

with R ∈ [0, C (min (γsr, γd))] to ensure the reliability of the DF scheme.

Theorem 2.10.

Proof.

P
(DF )
out,c (R) = P {min (log (1 + γsr) , log (1 + γd)) < log (1 + γe) + 2R}

= P
{

2−2R (1 + min (γsr, γd))− 1 < γe
}

=

∞
∫

(1+min(γsr,γd))2−2R−1

gγe
(γe) dγe,
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and the result of Theorem 2.10 follows from standard integration. �

We notice that when Pr → 0, P
(DF )
out,c (R) → P

(DT )
out,c (R).

Remark 2.7.

In the following proposition we give a condition for DF to improve the CSOP
performance in comparison to DT.

If we have
|hrd|2 > 22RE[|hre|2], (2.54)

and if we assume that min (γsr, γd) = γd, i.e., the source-relay link is strong,
then there exists a power Pr > 0 used by the helper such that DF improves
the CSOP performance.

Proposition 2.1.

Proof. We note Pr = βPmax. From (2.53) we derive

∂P
(DF )
out,c (R)

∂β β→0

=

(

E[|hre|2]− 2−2R |hrd|2
γ̄se

)

e−
2−2R(1+γsd)−1

γ̄se (2.55)

The relay is used if P
(DF )
out,c (R) is a decreasing function of the power when evaluated

in 0, i.e.,

∂P
(DF )
out,c (R)

∂β β→0

< 0 (2.56)

Proposition 2.1 follows from (2.55) and (2.56). �

Proposition 2.1 shows that we can opportunistically activate the relay to improve
the CSOP performance with DF relaying when the strength of the relay-destination
link is above a threshold depending on the strength of the relay-eavesdropper link.

Amplify-and-Forward Relaying Performance

In this section we analyze the SOP and the CSOP performance of the AF scheme.
As for the previous schemes, we first investigate the SOP, and then, we consider
the CSOP.
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Secrecy Outage Probability The secrecy outage probability for the AF scheme
is defined as

P
(AF )
out (R) = P

{

R
(AF )
d −R(AF )

e ≤ 2R
}

= P

{

C
(

γsd +
γsrγrd

1 + γsr + γrd

)

− C
(

γse +
γsrγre

1 + γsr + γre

)

≤ R

}

= P

{(

γsd ≤
(

22R
(

1 + γse +
γsrγre

1 + γsr + γre

)

−
(

1 +
γsrγrd

1 + γsr + γrd

)))}

=

∫

(R+)4

m
∫

0

fγ (γse) fγ (γrd) fγ (γre) fγ (γsr) dγsddγsedγrddγredγsr, (2.57)

with

m ,

(

22R
(

1 + γse +
γsrγre

1 + γsr + γre

)

−
(

1 +
γsrγrd

1 + γsr + γrd

))

.

The integral expression (2.57) cannot be simplified. However, under a high SNR
assumption, we can simplify the secrecy outage probability to obtain a closed-form
expression. This expression is given in the following theorem.

The secrecy outage probability for the AF strategy and for high SNR is
given by

P
(AF )
out (R) =

γ̄d′

(

aγ̄d′
(γ̄e′)− aγ̄d′

(γ̄se)
)

− γ̄sd (aγ̄sd
(γ̄e′)− aγ̄sd

(γ̄se))

(γ̄e′ − γ̄se) (γ̄d′ − γ̄sd)
(2.58)

with ay (x) is defined as in (2.52), and where γ̄d′ and γ̄e′ are defined as
follows

1

γ̄d′

,
1

γ̄sr
+

1

γ̄rd
, (2.59)

1

γ̄e′
,

1

γ̄sr
+

1

γ̄re
. (2.60)

Theorem 2.11 (AF Secrecy Outage Probability for high SNR).

Proof. We give the proof of Theorem 2.11 in Appendix 2.C. �

Conditional Secrecy Outage Probability We now consider the CSOP of AF
relaying. In the following theorem, we derive the conditional secrecy outage proba-
bility given (γsd, γsr, γrd) under a high SNR assumption for the AF strategy.
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The CSOP for the AF strategy and for high SNR is given by:

P
(AF )
out,c (R) =

e−
cAF +γsr

γ̄se

(

γ̄see
γsr
γ̄se + γsre

1
γ̄re E1 (1/γ̄re − γsr/γ̄se)

)

γ̄se
, (2.61)

where E1 (x) ,
∞
∫

x

e−t

t dt, cAF , 2−2R+R
(AF )
d − 1 with R

(AF )
d defined in

(2.80a), and R ∈
[

0, R
(AF )
d

]

to ensure the reliability of the AF scheme.

Theorem 2.12.

Proof. We give the proof of Theorem 2.12 in Appendix 2.D. �

Cooperative Jamming Performance

In this section we analyze the SOP and the CSOP performance of the CJ scheme.

Secrecy Outage Probability First, we investigate the SOP performance of CJ.
In the following theorem, we give the SOP for the CJ scheme.

The secrecy outage probability for the CJ strategy is given by

P
(CJ)
out (R) =1 +

e−cCJ

γ̄reγ̄rdl

(

1

g
− 1

hlg2

)

F (g + gh)

+
e−cCJ

γ̄reγ̄rdl

((

1

hlg2
+

1

hg

)

F

(

1 + h

hγ̄re

)

− γ̄re
g

)

, (2.62)

where

cCJ ,
22R − 1

γ̄sd
, g ,

1 + γ̄rdc

γ̄rd
, h ,

γ̄sd
γ̄se (1 + γ̄sdc)

,

E1 (x) =

∞
∫

x

e−t

t
dt, l , 1− 1

γ̄regh
, F (x) = exE1 (x) .

Theorem 2.13 (CJ Secrecy Outage Probability [BBVM10]).

Proof. The proof of Theorem 2.13 is given in [BBVM10] and [Gab12]. �
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Conditional Secrecy Outage Probability We now consider the CSOP. In
the following theorem, we derive the conditional secrecy outage probability given
(γsd, γsr, γrd) for the CJ strategy.

The conditional secrecy outage probability for the CJ scheme is given by:

P
(CJ)
out,c (R) =

e
−Q γsd

1+γrd
,γ̄se

(R)

1 + γ̄reQ γsd
1+γrd

,γ̄se
(R)

, (2.63)

where R ∈
[

0, C
(

γsd

1+γrd

)]

to ensure the reliability of the CJ scheme.

Theorem 2.14.

Proof. The proof follows is similar to the proof of Theorems 2.8 and 2.10, and it is
therefore omitted here. �

As for DF, when Pr → 0, P
(CJ)
out,c (R) → Pout,c (R)

(DT )
.

Remark 2.8.

Similar to Proposition 2.1, we derive in the following proposition a criterion for
CJ to improve the CSOP performance in comparison to DT.

If we have

|hrd|2 < 22RE[|hre|2]
(

2−2R(1 + γsd)− 1

γsd

)

, (2.64)

then there exists a power Pr > 0 used by the helper such that CJ improves
the CSOP performance.

Proposition 2.2.

Proof. We note Pr = βPmax. From (2.63) we have

∂P
(CJ)
out,c (R)

∂β β→0

=

(

2−2R(E[|hre|2](22R − 1− γsd) + γsd |hrd|2)
γ̄se

)

e−
2−2R(1+γsd)−1

γ̄se

(2.65)
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The helper is used if P
(CJ)
out,c (R) is a decreasing function of the power when evaluated

in 0, i.e.,

∂P
(CJ)
out,c (R)

∂β β→0

< 0 (2.66)

Proposition 2.2 follows from (2.65) and (2.66). �

Numerical Examples

We will now consider the CSOP of the cooperative schemes, and we choose γsd =
γ̄sd, γsr = γ̄sr, and γrd = γ̄rd in our numerical examples.
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Figure 2.16: Conditional secrecy outage probability for DF for Case CH2 .

Numerical Example for Decode-and-Forward In Figure 2.16 we illustrate
the conditional secrecy outage probability for DF in the Case CH2

and we also show
how DF performs in comparison with DT.

The upper plot in Figure 2.16 depicts the CSOP for the DF scheme. The darker
a point in the plot is, the lower the CSOP for an eavesdropper located at this point
is. We observe that the CSOP is particularly high when Eve is located in the middle
of the transmission. When the eavesdropper gets further away, the CSOP decreases.
Thus, the CSOP has a similar behavior as for the wiretap channel without relay,
i.e., for the DT strategy.

In order to quantify the benefit provided by the DF scheme compared to DT,

we now analyze the lower plot in Figure 2.16, where the difference P
(DT )
out,c (R) −
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Case maxE∈P Dε EE∈P [Dε]
CH1

14.9% 5.2%
CH2

15.8% 5.2%

Table 2.4: Validity of the high SNR approximation with E ∈ P.

P
(DF )
out,c (R) is represented. A large difference is equivalent to a large decrease of the

CSOP using the DF scheme, which corresponds to the desired effect of the scheme.
We can distinguish 3 main areas for the location of the eavesdropper:

• When the eavesdropper is in the middle of the transmission, secrecy is highly
compromised, and increasing the reliability via DF relaying is useless.

• When the eavesdropper is far away, the CSOP was already close to 0 without
the relay, and the CSOP can thus not be further decreased.

• There is a half circular area around the source for Eve’s location, for which
the helper can securely relay the source message. This leads to a decrease of

the CSOP, up to a difference P
(DT )
out,c (R)− P

(DF )
out,c (R) ≈ 0.4.

Numerical Example for Amplify-and-Forward First we measure the accu-
racy of the high SNR approximation in Table 2.4. We define the relative error as

Dε ,

∣

∣

∣
P

(AF )
out (R)−P

(AF )
out,s (R)

∣

∣

∣

P
(AF )
out,s (R)

, where P
(AF )
out,s (R) is numerically evaluated using Monte-

Carlo simulations with 50000 iterations. The average relative error of the approxi-
mation in our case of study is around 0.05 with a maximum relative error of 0.158
in Case CH2

, thus the high SNR approximation is satisfying. In Figure 2.17 we
compare the secrecy outage probability of AF and DT depending on the location
of the eavesdropper. S and D are represented with the white circles and H with
the green circle. For each location of E , we compare the SOP of DT and AF. We
observe that in both cases there exists an area for which AF strictly improves the
SOP in comparison to DT. When E is in the middle of the transmission, the SOP
does not decrease since secure transmission is not possible. When E is far away,
AF cannot improve the SOP performance since the SOP is already close to zero.
We should note that the comparison between both schemes is fair since the average
power constraint is equivalent for both schemes. An opportunistic use of a relay-
ing node depending on the location of E could thus decrease the SOP. Moreover if
several helping nodes are potentially available, this performance could be further
increased by relay selection.

Numerical Example for Cooperative Jamming In Figure 2.18 we illustrate
the CSOP performance for the CJ scheme in the Case CH2 . The first observation is
that CJ performs differently than the relaying schemes depending on Eve’s location.
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Figure 2.17: SOP increase for AF for Cases CH2
and CH3

. The upper plot depicts
the Case CH2

while the lower plot shows the Case CH3
.

In particular, when the eavesdropper is close to the helper, the performance is
significantly improved due to the efficiency of jamming Eve. When the eavesdropper
is further away, no jamming power is used by the helper, and the scheme reduces
to DT as shown in the lower plot in Figure 2.18. The difference of CSOP over

DT is P
(DT )
out,c (R) − P

(CJ)
out,c (R) ≈ 0.7, which is a more substantial improvement of

performance than the relaying schemes.

Secrecy Outage Decrease In Figure 2.19 we illustrate the difference in terms
of CSOP for the optimal strategy s̃H in comparison to DT in the Case CH2 . We
make the following observations:

• Using the helper in the Case CH2 leads to an improvement in terms of CSOP
up to around 0.7 when the eavesdropper is located close to the helper using
CJ.

• When DF relaying is chosen, the decrease of CSOP is less compared to CJ,
however there is still a benefit in terms of CSOP performance.

• The gain is extremely low when the eavesdropper is located far away from
the transmission. The explanation is two-fold. First the conditional secrecy
outage probability for DT in this case is already low, and it can therefore be
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Figure 2.18: Conditional secrecy outage probability for CJ for CH2 .

hardly improved. Furthermore, CJ is not efficient for these locations of the
eavesdropper, and the helper is thus bounded to increase the reliability of the
transmission.

Conclusions We can draw some general conclusions from our observations con-
cerning the secrecy outage performance of the different schemes. First the presence
of a helper allows higher secrecy rates, and it also leads to lower secrecy outage
probabilities. When the eavesdropper is close to the helper, CJ decreases the prob-
ability of a secrecy outage by significantly reducing the amount of information
obtained by the eavesdropper. When the eavesdropper is further away from the
helper, the relaying schemes improve the reliability of the main transmission, and
therefore they lower the probability of a secrecy outage by increasing the achievable
secrecy rates.

2.6.3 System Optimization

In this section we investigate the global optimization of the system. We first in-
troduce a new performance measure, namely the secure throughput. Then, we
describe how the legitimate nodes would proceed to optimize the system perfor-
mance in terms of CSOP and secure throughput.



2.6 Cooperative Secrecy in Wireless Networks: A Case Study 73

x of Eve

y
o
f
E
v
e

P
(DT)
out,c − P

(sH)
out,c

 

 

−1 −0.5 0 0.5 1

−0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2.19: Conditional secrecy outage probability decrease for the optimal strat-
egy for CH2 .

Secure Throughput

We recapitulate our assumptions:

1. (γsd, γsr, γrd) are known to the legitimate nodes.

2. The helper can choose between the cooperative strategies and three possible
locations given by the Cases CH1

, CH2
and CH3

.

3. The performance measure is given by the conditional secrecy outage proba-
bility, which depends on the eavesdropper location, the fixed secrecy rate R
and the power allocation at the helper characterized by β defined as follows:

Pr = βPmax. (2.67)

First, we have the following lemma:

For any strategy sH ∈ {DT,DF,AF,CJ} chosen by the helper, P
(sH)
out,c (R) is

an increasing function in R.

Lemma 2.1.
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Figure 2.20: Secure throughput increase and relative increase for Case CH2
for AF.

The consequence of Lemma 2.1 is that the optimal rate to optimize the system
performance in terms of CSOP is R = 0, which is clearly not a satisfactory result.
Therefore, we introduce the following performance measure, which evaluates the
performance in terms of throughput.

We define the secure throughput of the strategy sH given (γsd, γsr, γrd) for
a secrecy rate R by

Ts , R
(

1− P
(sH)
out,c (R)

)

. (2.68)

The secure throughput characterizes the rate of information transferred to
the destination without secrecy outage.

Definition 2.21.

Secure Throughput Performance In Figure 2.20 we illustrate the secure through-
put measure by comparing the secure throughput of AF and DT depending on the
location of the eavesdropper. The upper plot depicts the difference Ts(AF ) −
Ts(DT ) in the Case CH1 while the lower plot represents the relative difference
Ts(AF )−Ts(DT )

Ts(DT ) . We observe that using AF relaying leads to an increase up to 1.5
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bits per channel use. This corresponds to a relative increase factor of 20 for the
optimal locations of E .

Optimization

Using Definition 2.21, we are now able to develop the optimization steps in this
section. We describe how the legitimate nodes proceed to optimize the system
performance in terms of CSOP and secure throughput. We assume that the helper is
at a fixed location. Three parameters can be optimized by the legitimate nodes: the
target secrecy rate R, the helper’s strategy sH and the power allocation β. We give
in the following proposition the successive steps to optimize the system performance,
in terms of conditional secrecy outage probability and secure throughput.

The optimal
(

R̃, s̃H, β̃sH

)

, where R is the secrecy rate, sH is the strategy

of the helper, and β represents the power allocation, are the solution of:

β̃sH(R) = argmin
βsH

P
(sH)
out,c (R, βsH) (2.69)

s̃H(R) = argmin
sH

P
(sH)
out,c

(

R, β̃sH

)

(2.70)

R̃ = argmax
R

Ts = argmax
R

R
(

1− P
(s̃H)
out,c

(

R, β̃s̃H

))

. (2.71)

Therefore, the optimization must follow the successive steps:

1. For every strategy sH of the helper, choose the power allocation β̃sH

that minimizes the conditional secrecy outage probability for a given
secrecy rate R.

2. Once the power allocations are optimized, choose the strategy s̃H
that minimizes the conditional secrecy outage probability for a given
secrecy rate R.

3. Finally, choose the secrecy rate maximizing the secure throughput.

Proposition 2.3.

Proof. We refer to [Gab12] for the proof. �

The positioning and the strategy of the helper have been discussed in previous
sections. In the following, we will focus on the parameters β and R.
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Figure 2.21: Optimal power allocation β at the helper, in the Case CH1
, for (a)

Decode-and-forward and (b) Cooperative jamming.

Discussion on the Optimization of the Power Allocation β

In this section we illustrate the first step of the optimization 2.3, namely the power
allocation β for the helping node. Finding a closed-form solution for

β̃sH = argmin
βsH

P
(sH)
out,c (R, βsH) ,
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using (2.53) and (2.63) is not possible due to the complexity of the expressions.
However, we obtain the following condition for the optimal βCJ :

If βCJ ∈ [0, 1] is an optimal power allocation for the CJ scheme then βCJ

is a solution of the polynomial equation

a3X
3 + a2X

2 + a1X + a0 = 0, (2.72)

where

a0 = 22Rγ̄se(E[|hre|2](22R − 1− γsd) + γsd |hrd|2),
a1 = |hrd|2

(

γ̄seγsd(E[|hre|2](−22R + 1 + γsd))
)

+ |hrd|2
(

22Rγ̄se(E[|hre|2](−3 + 3× 22R − γsd) + γsd |hrd|2)
)

,

a2 = (−1 + 22R)E[|hre|2](3× 22Rγ̄se − γsd) |hrd|4 , and

a3 = 22R(−1 + 22R)γ̄seE[|hre|2] |hrd|6 .

Proposition 2.4.

Proof. We refer to [Gab12] for the proof. �

We use our numerical example to illustrate the optimal power allocation. In
Figure 2.21a and 2.21b we illustrate the behavior of βDF and βCJ , respectively,
depending on the eavesdropper’s location for CH1

. For DF, we can observe that in
the regions where DF performs well (see, e.g., Figure 2.16), the power used by the
relay is a high fraction of the maximal available power, close to βDF = 0.8.

In comparison to DF, CJ needs less power (βDF ≈ 0.6) where it outperforms
the other schemes, i.e., Eve being close to the helper. This observation could be
justified by the fact that there is no need to use a large amount of power to confuse
the eavesdropper when it is located close to the helper, as using additional power
might only disrupts the main transmission.

With the aim of verifying this justification, we represent in Figure 2.22 the
optimal power allocation βCJ for the Case CH2

. We observe that for the optimal
regions, a small fraction of the available power is used βCJ ≈ 0.1. This means that
CJ performs well, and that, moreover, it does not require a high power consumption.

Discussion on the Optimization of the Secrecy Rate R Finally we discuss
the optimization of the last parameter: the target secrecy rate R. The objective is
to design R such that R = R̃ according to

R̃ = argmax
R

Ts = argmax
R

R
(

1− P
(s̃H)
out,c

(

R, β̃s̃H

))

. (2.73)



78 Review

0 0.5 1 1.5 2

−0.5

0

0.5

1

x of Eve

y
o
f
E
v
e

Optimal Power Allocation βCJ

 

 

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Figure 2.22: Optimal power allocation β at the helper, in the Case CH2 and for
cooperative jamming.

In the following proposition, we argue that there exists at least one optimal
value of R which maximizes the secure throughput Ts.

There exists (at least) one optimal target secrecy rate R̃ for every strategy
sH ∈ {DT,DF,AF,CJ}, such that

R̃ = argmax
R

Ts. (2.74)

Proposition 2.5.

Proof. We refer to [Gab12] for the proof. �

In Figure 2.23 we show how cooperation increases the secure throughput by
computing the difference between the secure throughput Ts obtained with the op-
timization protocol and the secure throughput with direct transmission. Figure
2.23 shows that, in general, higher secure throughput is achieved with cooperation.
Moreover, it seems that the secure throughput increase is higher in the regions
where DF is optimal compared to CJ. We distinguish in particular the optimal CJ
area located around the helper, and the optimal DF region when Eve is further
away. However, we observe that there is an area surrounding the source and the
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Figure 2.23: Secure throughput increase with cooperation and optimal design pa-
rameters.

destination for which the secure throughput is not increased by cooperation, since
T̃s − Ts(DT ) = 0.
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Conclusions

In Section 2.6 we investigated the cooperative schemes introduced in Section 2.5
for wireless channels. Our model takes into consideration the fading nature of
the channels, and the limited CSI on the eavesdropper’s channels, which are both
reasonable and practical assumptions. Based on our study, we are able to highlight
several fundamental weaknesses of the considered model.

1. External Eavesdropper Assumption: This assumption is hardly combin-
able with the perfect CSI assumption on Eve’s channels, even though this is
a common assumption in the existing literature.

2. CSI Knowledge: Full CSI knowledge on Eve’s channels is not easily justifi-
able if Eve is not a legitimate user in the system. With limited CSI assump-
tions, the analysis of the cooperative schemes is difficult as shown in our case
study.

3. Trustable Helper: The assumption of the existence of a cooperative node
whose sole aim is to help the secrecy of the legitimate transmission is some-
what optimistic as today’s communications networks are constituted of self-
ish nodes. Moreover, we assumed in our study that this helper would be
unconditionally cooperative and trustable. If the cooperative node cannot
be trusted, it is unclear where cooperation for secrecy is possible, see e.g.,
[HY10], [YLE11].

4. Secrecy Measures: While we were able to investigate the secrecy perfor-
mance of cooperation through new secrecy measures, namely the CSOP and
the secure throughput, these measures are not fully satisfying to design the
transmission system, e.g., the secure channel codes.

To remedy these weaknesses, we investigate in this thesis a novel scenario: the
cognitive radio channel with secrecy constraints, where the helper and the eaves-
dropper are legitimate secondary nodes in the system. This model allows us to
alleviate the shortcomings of the relay-eavesdropper channel model as it will be
described in the following chapters.
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2.A Achievable Secrecy Rates for DT, DF, AF and CJ.

In this appendix, we give achievable secrecy rates of the cooperative transmission
schemes, namely direct transmission, decode-and-forward relaying, amplify-and-
forward relaying, and cooperative jamming.

Direct Transmission

For quasi-static Rayleigh fading channels with instantaneous SNRs γsd and
γse on the links from S to D and from S to E , respectively, an instantaneous
achievable secrecy rate is given by

R(DT )
s =

1

2

(

R
(DT )
d −R(DT )

e

)+

, (2.75)

where

R
(DT )
d = log (1 + γsd) , (2.76a)

R(DT )
e = log (1 + γse) . (2.76b)

Theorem 2.15 (Instantaneous Secrecy Rate for DT [BB11]).

We can make the following two remarks regarding the achievable instanta-
neous secrecy rate for DT:

1. The factor 1/2 comes from the fact that the source only transmits
during the first time slot.

2. The achievable secrecy rate in (2.75) is the instantaneous secrecy
capacity in this case.

Remark 2.9.

Decode-and-Forward The instantaneous achievable secrecy rate is given in the
following theorem.
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For quasi-static Rayleigh fading channels with instantaneous SNRs γsd, γrd,
γsr, γse and γre, an achievable instantaneous secrecy rate for the described
decode-and-forward scheme with repetition coding is given by

R(DF )
s =

1

2

(

R
(DF )
d −R(DF )

e

)+

, (2.77)

where

R
(DF )
d = min (log (1 + γsr) , log (1 + γsd + γrd)) , (2.78a)

R(DF )
e = log (1 + γse + γre) . (2.78b)

Theorem 2.16 (Instantaneous Secrecy Rate for DF [DHPP10]).

As noted in [DHPP10], this particular DF scheme is mathematically equivalent to
a 1× 2 single-input multiple-output wiretap channel, for which the secrecy capac-
ity (and thus achievable secrecy rates) is known (e.g., [OH08], [SLU09]). (2.78a)
represents simply the achievable rate for DF without eavesdropper, while (2.78b)
characterizes the amount of information leaked to the eavesdropper during the
transmission.

Amplify-and-Forward

For quasi-static Rayleigh fading channels with instantaneous SNRs γsd,
γrd, γsr, γse and γre, an achievable secrecy rate for the described amplify-
and-forward scheme is given by

R(AF )
s =

1

2

(

R
(AF )
d −R(AF )

e

)+

, (2.79)

where

R
(AF )
d = log

(

1 + γsd +
γsrγrd

1 + γsr + γrd

)

, (2.80a)

R(AF )
e = log

(

1 + γse +
γsrγre

1 + γsr + γre

)

. (2.80b)

Theorem 2.17 (Instantaneous Secrecy Rate for AF [DHPP10]).

Cooperative Jamming The achievable instantaneous secrecy rate for CJ is
given in the following theorem.
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For quasi-static Rayleigh fading channels with instantaneous SNRs γsd,
γrd, γse and γre, an achievable secrecy rate for the described cooperative
jamming scheme is given by

R(CJ)
s =

1

2

(

R
(CJ)
d −R(CJ)

e

)+

, (2.81)

where

R
(CJ)
d = log

(

1 +
γsd

1 + γrd

)

(2.82a)

R(CJ)
e = log

(

1 +
γse

1 + γre

)

. (2.82b)

Theorem 2.18 (Instantaneous Secrecy Rate for CJ [VBBM11]).

2.B Proof of Theorem 2.9

Proof. In order to prove Theorem 2.9, we need to define the following random
variables:

γd , γsd + γrd (2.83)

γe , γse + γre (2.84)

We give in the following the probability density functions of the two newly defined
random variables.

The probability density function of γd (resp. γe) is given by

gγd
(γ) = gγsd+γrd

(γ) =
1

γ̄rd − γ̄sd

(

e
− γ

γ̄rd − e
− γ

γ̄sd

)

, (2.85)

gγe
(γ) = gγse+γre

(γ) =
1

γ̄re − γ̄se

(

e−
γ

γ̄re − e−
γ

γ̄se

)

. (2.86)

Lemma 2.2.

Lemma 2.2 results from the probability density function of the sum of two inde-
pendent random variables being the convolution of their separate density functions.

According to (2.45), the secrecy outage probability can be formulated as:

P
(DF )
out (R) = P {(C (min (γsr, γsd + γrd))) < C (γse + γre) + 2R} . (2.87)
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We can notice that this formulation takes into account the possibility of a secrecy
outage occurring during the first time slot. Indeed, we are in secrecy outage after
the first phase if:

R
(DF )
d − log (1 + γse) < 2R. (2.88)

Similarly, we are in secrecy outage after the second phase if:

R
(DF )
d − log (1 + γse + γre) < 2R. (2.89)

Since (2.88) implies (2.89), we can deduce that we are in secrecy outage if and only
if (2.89) holds. The outage probability for the DF scheme can therefore be written
as:

P
(DF )
out (R) = P {min (log (1 + γsr) , log (1 + γd)) < log (1 + γe) + 2R}

= P
{

2−2R (1 + γd)− 1 < γe ∩ γsr > γd
}

+ P
{

2−2R (1 + γsr)− 1 < γe ∩ γsr < γd
}

,

which gives

P
(DF )
out (R) =

∫

(R+)

∞
∫

γd

∞
∫

(1+γd)2−2R−1

gγd
(γd) gγe

(γe) fγsr
(γsr) dγedγsrdγd

+

∫

(R+)

γd
∫

0

∞
∫

(1+γsr)2−2R−1

gγd
(γd) gγe

(γe) fγsr
(γsr) dγedγsrdγd.

Theorem 2.9 follows from standard integration calculus. �

2.C Proof of Theorem 2.11

Proof. The secrecy outage probability for the AF scheme is defined as:

P
(AF )
out (R) = P

{(

R
(AF )
d −R(AF )

e ≤ 2R
)}

= P

{(

C
(

γsd +
γsrγrd

1 + γsr + γrd

)

− C
(

γse +
γsrγre

1 + γsr + γre

)

≤ R

)}

≈ P

{(

log

(

1 + γsd +
γsrγrd

γsr + γrd

)

− log

(

1 + γse +
γsrγre

γsr + γre

)

≤ 2R

)}

.

where the last inequality is a consequence of the high SNR assumption.

We will use the following lemma [HA03]:
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If X1 and X2 are two independent exponential random variables with pa-
rameters γ1 and γ2, respectively, (i.e., with respective means 1/γ1 and
1/γ2), then the harmonic mean X of X1 and X2 given by X = X1X2

X1+X2
has

for cumulative distribution function (cdf) FX (x):

FX (x) = 1− 2x
√

(γ1γ2)e
−x/(γ1+γ2)K1

(

2x
√

(γ1γ2)
)

where K1 (.) is the first order modified Bessel function of the second kind.

Lemma 2.3.

Applying the lemma for X = γsrγrd

γsr+γrd
, we obtain

FX (x) = 1− 2x
√

(1/γsrγrd)e
−x/

(

1
γsr+γrd

)

K1

(

2x
√

(1/γsrγrd)
)

≈ 1− e
−x/

(

1
γsr+γrd

)

,

since K (x) ≈ 1/x for small x (high SNR assumption).

This cdf corresponds to the CDF of an exponential random variable γd′ with
parameter 1

γ̄d′
= 1

γ̄sr
+ 1

γ̄rd
.

Similarly, we define γe′ with parameter 1
γ̄e′

= 1
γ̄sr

+ 1
γ̄re

.

The secrecy outage probability becomes:

P
(AF )
out (R) ≈ P {log (1 + γsd + γd′)− log (1 + γse + γe′) ≤ 2R}

= P {log (1 + γd′′)− log (1 + +γe′′) ≤ 2R}
= P

{

2−2R (1 + γd′′)− 1 < γe′′
}

=

∞
∫

0

∞
∫

(1+γd′′ )2
−2R−1

gγd′′
(γd′′) gγe

(γe′′) dγe′′dγd′′

since γd′′ , γsd + γd′ and γe′′ , γse + γe′ have for PDF

gγi′′
(γ) = gγsi+γi′

(γ) =
1

γ̄i′ − γ̄si

(

e
− γ

γ̄
i′ − e

− γ
γ̄si

)

, (2.90)

where i ∈ {e, d}. (2.90) results from the pdf of the sum of two independent random
variables being the convolution of their separate density functions. The result of
Theorem 2.11 follows from standard integral calculations. �
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2.D Proof of Theorem 2.12

Proof. The conditional outage probability for the AF scheme is defined as:

P
(AF )
out,c (R) = P

{(

R
(AF )
d −R(AF )

e ≤ 2R|γsd, γsr, γrd
)}

= P

{(

γse +
γsrγre

1 + γsr + γre

)

≥ cAF

}

,

with cAF defined in Theorem 2.12.
First we have

γsrγre
1 + γsr + γre

≈ γre
1 + γre

γsr

, (2.91)

as a consequence of the high SNR assumption.
Since γre

γsr
∼ exp (γ̄reγsr), it follows that the random variable U , 1 + γre

γsr
is Benk-

tander -Weibull distributed with pdf given by

fU (x) =
1

γ̄reγsr
e(

1−x
γ̄reγsr

) for x > 1.

The pdf gY (y) of the random variable Y ,
γre

U is then obtained according to
the ratio distribution formula as

gY (y) =

∞
∫

−∞

fγre
(yz)fU (z) |z| dz

= e−( y
γ̄reγsr

) (γsr + γ̄reγsr + y)

γ̄re(γsr + y)2
.

Finally the pdf hT (t) of the random variable T , Y + γse is given by

hT (t) =

∞
∫

0

gY (y)fγse
(t− y)dy. (2.92)

The conditional outage probability for the AF scheme is then written as

P
(AF )
out,c (R) =

∞
∫

cAF

hT (t)dt, (2.93)

and the result of Theorem 2.12 follows from combining (2.92) and (2.93). �



Chapter 3

Transmission Strategies for

Cognitive Radio Channels with

Secrecy

In this chapter we investigate the cognitive radio channel with secrecy constraints
on the primary message. First we present the list of the chapter’s goals.

• Describe how a cognitive transmitter can improve the secrecy of pri-
mary transmissions in cognitive radio networks.

• Derive the achievable rate regions with secrecy constraints for the
AWGN cognitive radio channel model with and without primary mes-
sage knowledge at the secondary transmitter and provide insights on
the power allocation strategies for the two scenarios.

• Formulate and solve three relevant power allocation problems, namely
the maximization of the primary rate and of the secondary rate, and
the minimization of the transmitting power.

• Analyze using a Stackelberg game model a realistic power allocation
problem corresponding to an optimization of both transmitters’ util-
ities.

• Illustrate our results through numerical examples based on a geo-
metrical setup, highlighting the impact of the node geometry on the
achievable rates and on the optimal strategy of the secondary trans-
mitter and compare those results to the game theoretic interaction.

Objectives of the Chapter.

87
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Organization of the Chapter This chapter consists of eight sections. In Sec-
tion 3.1 we introduce cognitive radio networks with security concerns. In Section
3.2 we define our system model, the notation, and the two different cognitive sce-
narios. In Section 3.3 we derive the achievable rate regions for the given setup
under the AWGN channel model. In Section 3.4 we investigate three important
optimization problems for the cognitive radio channel with secrecy. In Section 3.5
we analyze the interaction between both transmitters from a game theoretic per-
spective. In Section 3.6 we extend our results to the practical case of multiple
secondary receivers. In Section 3.7 we illustrate our results through numerical sim-
ulations taking into account the geometry of the nodes. In Section 3.8 we close the
chapter with concluding remarks.

3.1 Introduction to Cognitive Radio Networks with Secrecy

Constraints

In this section we introduce the necessary background and references on security
challenges in cognitive radio networks (CRN).

Security Issues in Cognitive Radio Networks In recent years, security issues
in cognitive radio networks have been the subject of increasing interest. Indeed,
with the growth of these networks, security challenges have become a critical issue
for cognitive radio technologies. While traditional security threats such as jamming,
eavesdropping and MAC-layer attacks exist, one must also consider CRN-specific
threats such as exogenous attackers or selfish/intruding nodes exploiting the vul-
nerability of ad hoc cognitive networks. We refer the reader to [ATV+12] and
references therein for a comprehensive survey of security challenges in CRN and
potential solutions to those challenges. Other attacks specific to the infrastructure
of CRNs include spectrum sensing data falsification, or primary user emulation
(PUE) attacks [SQC13]. In [WLZZ13], a PHY-layer framework to defend against
security threats in CRN is developed. While investigating solutions to PHY-layer
attacks such as PUE or reporting false sensing data as in [WLZZ13] is outside
the scope of this thesis, we know from Chapter 2 the suitable framework to study
eavesdropping in CRN: information theoretic secrecy.

Information Theoretic Secrecy for CRN Although security problems for
classic wireless networks have been studied for many years, the interest in the secu-
rity at the physical layer of cognitive radio networks has grown, albeit considerably,
only recently. The concept of information theoretic secrecy, and the corresponding
cooperative techniques for secrecy can naturally be applied to cognitive radio net-
works. In [WL11], a scenario where an external eavesdropper attempts to decode
the primary user’s message is considered. In exchange of cooperation from the
secondary user to improve its own secrecy rate, the primary user allows the sec-
ondary user a share of the spectrum. In [SY11] and [LCK13], a cognitive scenario
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with an external eavesdropper is investigated under a spectrum leasing perspective.
While the authors of [LCK13] consider the case where the transmitters are equipped
with multiple antennas and the secondary transmitter knows the primary message,
the work in [SY11] investigates cooperative jamming for secrecy for single-antenna
nodes. Secure multiple-input single-output cognitive radio channels are studied in
[PLZ+10] in the presence of an external eavesdropper. A different setup is investi-
gated in [LSBP+09]: the secondary user wants to keep its message confidential to
the primary network; i.e., the primary receiver is viewed as an eavesdropper from
the secondary network perspective. In [BSSA10], the case where both receivers
are eavesdroppers to the other user’s message is investigated, and inner and outer
bounds on the capacity-equivocation region are derived.

Our Contribution In this chapter we explore the novel case where the sec-
ondary receiver is treated as a potential eavesdropper with respect to the primary
transmission. Since the primary users are the legacy owners of the spectrum, the
confidentiality of the primary message should be considered. In this context, the
primary transmitter may be assisted by the trustworthy secondary transmitter if
the cooperation could improve the secrecy performance, while the secondary trans-
mitter benefits as it is awarded a share of the spectrum for its data transmission.
This model is particularly relevant since it describes, for example, a scenario where
the primary user subscribes for a premium content while the secondary user only
subscribes for free content. Both transmitters belong to the same entity, thus the
cognitive transmitter can help the primary transmission, but it should ensure that
no premium content is leaked to the secondary user. Furthermore, this model has
the advantage of providing a justification for the common assumption of the knowl-
edge of the eavesdropper’s channels, since the eavesdropper is actually a legitimate
user in the network. We consider the two types of cooperation for secrecy tech-
niques described in Chapter 2 for the cognitive transmitter: oblivious cooperation
by cooperative jamming and cooperation with knowledge of primary transmitter’s
message by relaying. In the first case, the secondary transmitter is unaware of the
primary transmitter’s message and acts as a deaf helper to enhance the secrecy
of the primary transmission, whereas in the second case, relaying of the primary
message is also within its capabilities.

3.2 System Model

We begin our study by first introducing our system model. In particular we describe
our network model in Section 3.2.1, our channel model and the notation of the
chapter in Section 3.2.2, and the information theoretic secrecy constraints specific
to this chapter in Section 3.2.3.
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Figure 3.1: Cognitive channel with secrecy constraints.

3.2.1 Network Model and Cognitive Scenarios

In this chapter we investigate the cognitive radio network described in Figure 3.1.
The cognitive radio network consists of the following single antenna nodes: a pri-
mary transmitter T1, a cognitive secondary transmitter T2, a primary receiver U1

and a secondary receiver U2. T1 wishes to transmit the secret message w1, which
is intended to U1, and which should be kept secret from U2, whereas T2 wants to
transmit the message w2 (without secrecy constraints) to the secondary receiver U2.
In this setup, we consider two different cooperative scenarios. In the first scenario
S1, T2 has no knowledge of the secret message w1. In the second scenario S2, T2

knows the secret message w1 perfectly.

3.2.2 Channel Model and Notation

We consider the following AWGN channel model

y1 = x1 +
√
c21x2 + n1, (3.1a)

y2 =
√
c12x1 +

√
c22x2 + n2, (3.1b)

where the noises n1, n2 are real-valued Gaussian distributed with unit variance, i.e.,
n1, n2 ∼ N (0, 1). All channel coefficients are assumed to remain constant during
the transmission of a codeword. Moreover, we consider the path-loss channel model
so that ci,j = d−α

i,j , where di,j is the distance between transmitter i and receiver j
and α is the path-loss exponent.

The transmitters use the channel by encoding their messages into codewords
of length n. T1 encodes message w1 into the codeword x1 = (x1,1, . . . , x1,n). T2

assigns a codeword x2 = (x2,1, . . . , x2,n) to the message w2 or, possibly, to the set
of messages (w1, w2) in the scenarios S1 and S2, respectively. The codewords have
to satisfy average power constraints P1 and P2 respectively, i.e.,

1

n

n
∑

k=1

|xi,k|2 ≤ Pi for i ∈ {1, 2}. (3.2)
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The receivers decode their receptions y1 and y2 into message estimates ŵ1 and ŵ2,
respectively.

3.2.3 Information Theoretic Secrecy

A rate pair (R1, R2) for the messages w1 and w2 is said to be achievable, if the
average error probabilities Pe,1 , P{ŵ1 6= w1} and Pe,2 , P{ŵ2 6= w2} can
be made arbitrarily small, while the message w1 stays secure from the secondary
receiver. In other terms, for any ε > 0 and a sufficiently large n, the following
conditions hold:

max{Pe,1, Pe,2} ≤ ε (Reliability) (3.3a)

I(w1;y2) ≤ nε (Secrecy). (3.3b)

When T2 does not transmit, the maximum achievable rate RWT
1 such that both

the reliability and secrecy conditions are fulfilled is known as the secrecy capacity
of the wiretap channel [Wyn75] and is given by:

RWT
1 = (C(P1)− C(c12P1))

+
. (3.4)

We observe that the secrecy capacity is only positive if the primary link has better
quality than the link between T1 and U2. Therefore, secrecy concerns lay the foun-
dation of mutual cooperation between primary and secondary transmitters since
cooperation from T2 could allow strictly positive secrecy rates, while allowing the
secondary network to transmit its own message.

3.3 Achievable Rate Regions

In this section we derive the achievable rate regions for the cognitive interference
channel with secrecy constraint on the primary message. In Section 3.3.1 we con-
sider the scenario S1, while in Section 3.3.2, the scenario S2 is investigated.

3.3.1 Cooperation without Message Knowledge at Secondary

Transmitter

We first consider the cognitive scenario S1, i.e., the second transmitter does not
know the secret message w1. This scenario was previously considered in [TKEG10].
Here, we present the achievable rate region obtained in that work and describe the
corresponding achievable scheme.

Encoding Scheme The secondary transmitter T2 transmits x2(q) = V2c(q) +
V2s(q) + V2j(q), with V2c(q) ∼ N (0, P2c(q)), V2s(q) ∼ N (0, P2s(q)), V2j(q) ∼
N (0, P2j(q)), and q is the time-sharing parameter. Note that in the following,
we restrict ourselves to a deterministic time-sharing variable. In other words, T2

splits its available power P2 into three parts: P2s for its own message w2, P2c for the
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common message which should be decoded by both receivers and P2j for a jamming
signal, such that P2 = P2s + P2c + P2j and R2 = R2s + R2c. The corresponding
achievable rate region is given in the following theorem [TKEG10].

The achievable rate pair (R1, R2) is given by the following region R1:

R1 <

(

C
(

P1

1 + c21P2s + c21P2j

)

− C
(

c12P1

1 + c22P2j

))+

(3.5a)

R2c < C
(

c21P2c

1 + c21P2s + c21P2j

)

(3.5b)

R1 +R2c <

(

C
(

P1 + c21P2c

1 + c21P2s + c21P2j

)

− C
(

c12P1

1 + c22P2j

))+

(3.5c)

R2s < C
(

c22P2s

1 + c12P1 + c22P2j

)

(3.5d)

R2c +R2s < C
(

c22P2c + c22P2s

1 + c12P1 + c22P2j

)

(3.5e)

for every possible power splitting P2 = P2s + P2c + P2j, and with R2 =
R2c +R2s.

Theorem 3.1.

Proof. This theorem and its proof appear in [TKEG10]. However, we give another
proof in Appendix 3.A for the rate region R1, as the extension to multiple secondary
users in Section 3.6 follows from this alternative proof. �

The achievable rate region can be interpreted as follows. First, T2 uses the rate
splitting technique introduced by Han and Kobayashi in [HK81]. Rate splitting
allows a significant rate improvement in the “strong interference” regime. Further-
more, T2 uses a power P2j for a Gaussian jamming signal. We notice that, while
this jamming signal can only decrease the secondary rate R2 since it is not decod-
able by U2, it can possibly increase the achievable rate of the primary user since
the interference injection increases the confusion of U2 about the primary message
w1. This effect is reflected by the influence of P2j in Equation (3.5a). The positive
term in (3.5a) can be interpreted as the achievable primary rate without secrecy
constraints while the negative term represents the amount of rate T1 has to sacrifice
to guarantee a secure transmission.
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In order to represent the rate region efficiently, we also reformulate R1

using the Fourier-Motzkin elimination [EGK12]:

R1 <

(

C
(

P1

1 + c21P2s + c21P2j

)

− C
(

c12P1

1 + c22P2j

))+

,

R2 < min

(

C
(

c22P2c + c22P2s

1 + c12P1 + c22P2j

)

,

C
(

c21P2c

1 + c21P2s + c21P2j

)

+ C
(

c22P2s

1 + c12P1 + c22P2j

))

,

R1 +R2 <

(

C
(

P1 + c21P2c

1 + c21P2s + c21P2j

)

− C
(

c12P1

1 + c22P2j

))+

+ C
(

c22P2s

1 + c12P1 + c22P2j

)

. (3.6)

Remark 3.1.

3.3.2 Cooperation with Message Knowledge at Secondary

Transmitter

In this section we assume that the secondary transmitter T2 knows the primary
message w1 perfectly. The assumption is justified whenever primary and secondary
transmitter are connected by a link with sufficiently high secrecy capacity. Such
a connection can for instance be realized by a wired link, which has a capacity of
at least R1. This assumption will be further investigated in Chapter 4. As in the
previous scenario, T1 encodes into the codeword x1, independently of the encoding
at T2. Now with the knowledge of w1, T2 is able to encode (w1, w2) into x2 based
on four strategies as follows:

1. Transmission of a common message: As in S1, the common message,
encoded by V2c binned against x1 has to be decoded by both users U1 and
U2.

2. Transmission of the secondary message: As in S1, w2 encoded into V2s

to be decoded by the secondary user U2 only.

3. Jamming: S1, the jamming signal is encoded into J2 to confuse the eaves-
dropping secondary user U2.

4. Relaying (or broadcasting) of the primary message: w1 is encoded
into V1p, binned against V2s conditioned on V2c,x1 to be decoded only by the
primary user U1.
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Therefore, this encoding scheme results in T2 splitting its transmission power into
P2 = P2s + P2c + P2j + P2p, where the new term P2p is the power allocated to V1p

encoding the primary message.

The achievable rate pair (R1, R2), with R2 = R2c + R2s is given by the
following region R2:

R1 <

(

C
(

P1 + c21P2p

1 + c21P2s + c21P2j

)

− C
(

c12P1 + c22P2p

1 + c22P2j

))+

(3.7a)

R1 +R2c < C
(

P1 + c21P2c + c21P2p

1 + c21P2s + c21P2j

)

(3.7b)

R2s < C
(

c22P2s

1 + c12P1 + c22P2j + c22P2p

)

(3.7c)

R2c +R2s < C
(

c22P2c + c22P2s

1 + c12P1 + c22P2j + c22P2p

)

, (3.7d)

for every possible power splitting P2 = P2s + P2c + P2j + P2p.

Theorem 3.2.

Proof. The proof is similar to the proof of Theorem 3.1 in Appendix 3.A and is
therefore omitted here. This scenario is a special case of the setup investigated in
[BSSA10] where the secrecy of w2 with respect to U1 is also required. In that setup,
an achievable rate-equivocation region for the general case of a discrete memoryless
interference channel is derived. Our scenario reduces to a subset of equations in
this region, since we have no constraints on the secrecy of the secondary message.
Furthermore, we consider here the more general scheme from [RTD12] where the
secondary user can also relay the primary message instead of the scheme employed
for obtaining equations (6)-(9) in Theorem 1 in [BSSA10]. Finally, we specialize the
result in [BSSA10] to Gaussian channels, by defining the auxiliary random variables
and joint distributions. The region R2 follows from choosing the joint distributions
as in [TKEG10], except for x2 as we allocate the power P2p for broadcasting the
message w1 at T2, i.e., x2 = V2c + V2s + J2 + V1p, with V1p ∼ N (0, P2p) (our V1p

corresponds to U2pb in [RTD12]). �

This choice of the auxiliary variables leading to R2 is not optimal; however, it
leads to a more tractable rate region for the optimization analysis in the following
sections.
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We can also reformulate the region R2 by using Fourier-Motzkin elimina-
tion:

R1 <

(

C
(

P1 + c21P2p

1 + c21P2s + c21P2j

)

− C
(

c12P1 + c22P2p

1 + c22P2j

))+

R2 < C
(

c22P2c + c22P2s

1 + c12P1 + c22P2j + c22P2p

)

R1 +R2 < C
(

P1 + c21P2c + c21P2p

1 + c21P2s + c21P2j

)

+ C
(

c22P2s

1 + c12P1 + c22P2j + c22P2p

)

(3.8)

Remark 3.2.

Finally, for convenience in the remainder of this chapter, we will parameter-
ize the power fractions devoted to jamming, common message, relaying and own
message as

P2j = ρP2, (3.9)

P2c = β(1− ρ)P2, (3.10)

P2p = γ(1− β)(1− ρ)P2, (3.11)

P2s = (1− γ)(1− β)(1− ρ)P2, (3.12)

respectively. The parameter ρ ∈ [0, 1] denotes the fraction of the total power P2

used for jamming. The remaining power (1 − ρ)P2 is divided by the parameter
β ∈ [0, 1], where the fraction β(1 − ρ)P2 is used for the strategy of transmitting
a common message. Finally, the parameter γ ∈ [0, 1] divides the remaining power
(1 − β)(1 − ρ)P2 into power fractions for relaying the primary message w1 and
transmitting the secondary message w2.

3.4 System Optimization

In this section we derive closed-form solutions for a set of interesting optimization
problems. Firstly, we define two new rate regions for the important case P2c = 0,
where T2 is unable to use a common message. Note that the common message
has to be decoded by the primary receiver along with the primary message w1.
Instead, the receiver might use the legacy codebook to decode w1 and treat the
remaining signal components as noise. In this situation, T2 has to refrain from
using a common message. The cognitive scenario where U1 does not have multi-
user decoding capabilities is further investigated in Chapter 4. The motivation
for studying this case is that the legacy system might not provide the necessary
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decoding capability to decode both the primary and the common message. This is
a reasonable assumption if the secondary system is supposed to cooperate with a
primary system, which is not designed for this kind of cooperation. Therefore we
define the following rate regions:

For the scenario S1 without common message, our rate region, denoted as
S1,SD, simplifies to:

R1 <

(

C
(

P1

1 + c21P2

)

− C
(

c12P1

1 + c22ρP2

))+

, (3.13a)

R2 < C
(

c22(1− ρ)P2

1 + c12P1 + c22P2ρ

)

. (3.13b)

Definition 3.1.

For the scenario S2 without common message, we consider the rate region
S2,SD:

R1 <

(

C
(

P1 + c21(1− ρ)γP2

1 + c21(1− γ + γρ)P2

)

− C
(

c12P1 + c22(1− ρ)γP2

1 + c22ρP2

))+

,

(3.14)

R2 < C
(

c22(1− ρ)(1− γ)P2

1 + c12P1 + c22P2(ρ+ γ − ργ)

)

. (3.15)

Definition 3.2.

Note that the rate region S2,SD reduces to the region S1,SD with ρ = 0. Hence,
studying the region S2,SD covers both cases of cooperation with and without mes-
sage knowledge.

In this section we consider optimization under the assumption of full cooper-
ation between primary and secondary systems. The two transmitters jointly find
the optimal operation strategy for the given constraints. This is in contrast to
a game theoretic approach which we consider in the subsequent section 3.5. We
consider three important optimization scenarios for the strategy of the secondary
transmitter. On the one hand, T2 could either aim at maximizing its own achievable
rate, under the constraint that the resulting rate achievable by the primary net-
work is not lower than the wiretap rate R1 ≥ RWT

1 achievable without cooperation
(problem PR2

). The motivation is that RWT
1 is the achievable rate if the secondary

transmitter is not present, and the secondary user acts as an eavesdropper. On
the other hand, the goal of T2 could also be to minimize its transmit power, under
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Figure 3.2: Maximization problem PR2(β̄).

the constraints that the rates of both users are above a certain threshold (problem
PP2). At last, T2 aims at maximizing the primary rate R1 subject to the constraint
R2 ≥ Rthr

2 (problem PR1).

3.4.1 Maximization of Secondary Rate PR2

We first investigate the optimization problem PR2 . In particular we consider the
optimization PR2

(β̄) (no common message) defined as follows.

The optimization PR2
(β̄) is defined as

max
γ,ρ,P2

R2 (3.16a)

s.t. R1 ≥ RWT
1 and P2 ≤ P thr

2 . (3.16b)

Further, we define PR2(β̄, γ̄) as

max
γ=0,ρ,P2

R2 (3.17)

s.t. R1 ≥ RWT
1 and P2 ≤ P thr

2 . (3.18)

Definition 3.3 (PR2
(β̄)).
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The first constraint means that the secondary system must not degrade the per-
formance of the primary system, whereas the second constraint reflects a limited
transmit power of the secondary transmitter. The maximization PR2(β̄) is depicted
in Figure 3.2 for c22 = 8, c12 = 0.354, c21 = 0.716 and P1 = 10.1 The figure shows
the rates R1 and R2 as functions of ρ and γ. The surface that attains its maxi-
mum at ρ = 1 corresponds to R1; the other surface with maximum at ρ = γ = 0
corresponds to R2. The constraint RWT

1 is depicted by the red plane. The feasible
set of parameters ρ and γ corresponds to the region where R1 is above that plane.
This region is projected down on R2 and marked by white grid lines. Within this
region we find the point that maximizes R2, depicted by the red dot labeled Ropt

2 .

Closed-form Expression for PR2(β̄, γ̄) Since problem PR2(β̄) is non-convex,
to simplify the analysis, we consider the special case of PR2(β̄, γ̄), i.e., γ = 0,
where T2 does not relay the primary message. By the equality of the rate regions
S1,SD and S2,SD for β = 0, this is also the case where T2 does not possess the
primary message, i.e., the deaf helper case. The general case for arbitrary γ will be
considered in Section 3.7. We obtain the following result:

There exists at most a unique closed-form solution (ρ⋆, P ⋆
2 ) to the opti-

mization problem PR2(β̄, γ̄).

Proposition 3.1.

Proof. Proposition 3.1 is proven in Appendix 3.B and closed-form expressions for
(ρ⋆, P ⋆

2 ) are given in the steps of the proof. �

We also illustrate in Figure 3.3 R1 and R2 as functions of ρ and β for the
optimization:

max R2 s.t. R1 ≥ RWT
1 , (3.19)

for scenario S1. We see that there is a trade-off between R1 and R2 in both param-
eters. This is reasonable because R1 increases with ρ (jamming) and decreases with
β while R2 has the opposite behavior. The feasible set of parameters ρ and β is
the region where R1 is above that plane and the constraint of (3.19) is represented
by the cyan plane. Within this region we find the maximum R⋆

2, which is marked
by a red dot.

The simulation results of Figure 3.13 in Section 3.7 further reflect our solution,
especially in the column for PR2

(β̄), the secrecy constraint results in an unfeasible
area in which the secondary transmitter can not improve the performance.

1These values correspond to the basic scenario considered in Section 3.7.
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Figure 3.3: Achievable rate region (R1, R2) as functions of β and ρ for S1.

3.4.2 Minimization of Secondary Transmission Power PP2

Similarly, we consider the minimization of secondary transmit power without com-
mon message PP2(β̄) defined as follows.

We define PP2
(β̄) defined as

min
ρ,γ

P2 (3.20a)

s.t. R1 ≥ RWT
1 (3.20b)

R2 ≥ Rthr
2 . (3.20c)

Similarly to PR2 , we define the sub-problems PP2(β̄, γ̄) and PP2(β̄, ρ̄) as
PP2

(β̄, γ = 0) and PP2
(β̄, ρ = 0) respectively.

Definition 3.4 (PP2
(β̄)).

The primary rate R1 is constrained by the wiretap rate RWT
1 , and the secondary

rate R2 should at least meet the required threshold Rthr
2 .

The motivation for this optimization is energy consumption control, which can
be applied to green communications. Green communications technologies provide
solutions to contribute to the reduction of carbon footprint, an objective that is
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Figure 3.4: Minimization problem PP2(β̄).

realized by increasing the energy efficiency of communications networks in a wireless
environment. For cognitive radio networks, the cognitive properties can further help
make the communication more efficient and flexible [GA11]. Efficiency for cognitive
radio networks with secrecy constraints will be considered further in Chapter 6.

The minimization PP2(β̄) of P2 is depicted in Figure 3.4. The figure shows the
rate region (R1, R2) for different values of P2. Furthermore, the constraints RWT

1

and Rthr
2 are depicted as pink and blue planes, respectively. The rate region must

contain at least one point that fulfill both constraints in order for the corresponding
value of P2 to be feasible. The point that minimizes P2 is depicted as a red dot.

Considering the problems PP2(β̄, γ̄) and PP2(β̄, ρ̄), we are able to obtain the
following result.

There exists at most a unique closed-form solution (ρ⋆, P ⋆
2 ), respectively

(γ⋆, P ⋆
2 ) to the problem PP2(β̄, γ̄), respectively PP2(β̄, ρ̄).

Proposition 3.2.

Proof. Proposition 3.2 is proven in Appendix 3.C where the corresponding optimal
parameters are derived in closed-form. �

A visualization of our solution is given in Figure 3.15. Consider the first column,
which depicts the scenario without common message (β = 0). Clearly there are
two dominating strategies: If the secondary transmitter T2 is located close to the
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primary receiver, it mainly relays the primary message. The strategy we analyzed
above is used when T2 is close to the secondary receiver. It is a combination of
jamming and transmitting the secondary message w2.

3.4.3 Maximization of Primary Rate PR1

In the last part we discuss the maximization problem of primary rate PR1
. In this

problem, we focus on protecting the priority of the primary system.

We define the maximization problem PR1(β̄) as

max
ρ,γ,P2

R1 (3.21a)

s.t. R2 ≥ Rthr
2 (3.21b)

P2 ≤ P thr
2 . (3.21c)

Further we define PR1
(β̄, γ̄) as PR1

(β̄, γ = 0).

Definition 3.5 (PR1(β̄)).

The constraints imply that by using a limited transmit power, T2 needs to support
as much the primary rate gain as possible while maintaining a certain transmission
rate on its own.

Closed-form Expression for PR1
(β̄, γ̄) As for the previous two optimization

problems, we obtain the following result:

There exists at most a unique closed-form solution (ρ⋆, P ⋆
2 ), to the problem

PR1(β̄, γ̄).

Proposition 3.3.

Proof. Proposition 3.3 is proven in Appendix 3.D where the corresponding optimal
parameters are derived in closed-form. �

Consider Figure 3.14 for a visualization of the solution. Similar as for the
previous optimization PP2

(β̄, γ̄), the optimization PR1
(β̄, γ̄) yields a solution when

the secondary transmitter T2 is close to the secondary receiver. Interestingly, it is
not required to utilize all available secondary power P2 to maximize R1. The reason
is that R1 could only be maximized by increasing the jamming. This, however,
demands for a higher power P2s for transmitting the secondary message w2 to meet
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the requirement on R2. Both jamming and transmitting w2 cause interference to
the primary receiver. The interference is too high to justify the jamming.

3.5 Optimization with Game Theoretic Cooperation

In this section we analyze the cooperation between primary and secondary transmit-
ters through a game theoretic framework. Since T1 and T2 have their own interests
and thus do not cooperate unconditionally, non-cooperative game theory is a nat-
ural approach to model their interaction in cognitive radio networks with secrecy
constraints as e.g., in [TKEG10] and [WL11]. A Stackelberg game between T1 and
T2 as introduced in Chapter 2 is a common model for the cognitive scenario. In this
perspective, we consider T1 as the game leader selling some fraction of its spectrum
to T2 and, subsequently, T2 as the follower being awarded a share of the spectrum
for its cooperation, similarly to [SSS+08] (CRN without secrecy constraints) and
to [SY11] (with secrecy). In the proposed Stackelberg game, it is assumed that the
primary transmitter operates at a fixed power P1 and the secondary transmitter is
allowed to use some power to transmit its own data. At the same time, the latter
user has to help the primary system to reduce the possible leakage to the secondary
receiver by employing some Gaussian jamming (or relaying of the primary message,
if applicable).

The next step of the analysis is to solve the game, i.e., to predict the strategies
that the rational players would adopt, and hence, to determine the corresponding
outcome. For the Stackelberg game model, the outcome of this competitive and
decentralized behavior can be described by the solution concept called the Stackel-
berg equilibrium (SE). In this section we define the Stackelberg equilibrium of the
power-control game between T1 and T2 and we derive it in a closed-form expression
for some important cases.

Oblivious Cooperation

If the primary message is not available at the secondary receiver, the corresponding
rate region reduces to the one formed by (3.13a) and (3.13b). Throughout the
two following subsections we consider a case where P2c = 0, and hence no common
message is available.

Definition of the Game T2 can be modeled as a buyer of the resource from the
primary system which wants to maximize its achievable rate minus the cost of the
power. The utility function of T2 is then defined as

U2(ρ, P2) = R2 − θP2, (3.22)

where θ represents the price per unit power for the secondary transmitter. T2

intends to maximize its utility, i.e., to solve the following maximization problem:

max
P2

U2(ρ, P2). (3.23)
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T1 can be seen as a seller aiming to earn a payment from T2 for the power used.
We define its utility function as

U1(ρ, P2) = R1 + θP2, (3.24)

Similarly, T1 wants to maximize its utility; i.e.,:

max
ρ

U1(ρ, P2). (3.25)

The SE of the game is then given by [SC73]

P ∗
2 (ρ) = argmax

P2

U2(ρ, P2), (3.26a)

ρ∗ = argmax
ρ

U1(ρ, P
∗
2 ). (3.26b)

The corresponding equilibrium utilities are (U1(ρ
∗, P ∗

2 (ρ
∗)),U2(ρ

∗, P ∗
2 (ρ

∗))).
The Stackelberg interaction can be explained as follows. T1, as a leader, sets

some value to the parameter ρ, which T2, as a follower, takes into account. The
secondary transmitter then optimizes P2 to maximize its own utility U2(ρ, P2). One
can show that the second derivative of U2(ρ, P2) is given by

∂2

∂P 2
2

U2(ρ, P2) =

− (1− ρ)
c222(c12P1 + 1)(ρ+ (1 + ρ)c12P1 + 2ρc22P2 + 1)

2 ln 2(c12P1 + c22P2 + 1)2(c12P1 + ρc22P2 + 1)2
. (3.27)

Since ρ ∈ [0, 1], function U2(ρ, P2) is concave in P2 and therefore, the optimal
power as a function of the jamming power fraction is found by setting the derivative
∂

∂P2
U2(ρ, P2) to zero. The optimal power allocation is then given by

P ∗
2 (ρ) =

[

√

(1− ρ)c [(1− ρ)bc+ 2ρa]

ρa
√
b

− (1 + ρ)c

ρa

]Pmax
2

0

, (3.28)

where a , 2c22, b , 2 ln 2θ, c , 1 + c12P1 and [a]amax
amin

, min{amin,max{amax, a}}.
Further, T1 can compute the optimal jamming fraction ρ∗ maximizing its own

utility function U1(ρ, P
∗
2 ):

ρ∗ = argmax
0≤ρ≤1

U1(P
∗
2 (ρ), ρ). (3.29)

The optimal jamming fraction ρ∗ is then plugged into (3.28) to obtain the optimal
power level of the secondary transmitter P ∗

2 (ρ
∗). Thus, a pair (P ∗

2 (ρ
∗), ρ∗) deter-

mines the Stackelberg equilibrium for the game, i.e., the optimal power allocation
for the secondary user.
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Figure 3.5: Cognitive radio channel with secrecy constraints and multiple secondary
receivers.

Cooperation with Primary Message Knowledge at the Secondary
Transmitter

Defining the utility functions in the same way, we let the primary transmitter set
parameters ρ and γ. For ease of exposition, we define two following quantities. Let
λ , ρ+ (1− ρ)γ be the fraction of the power the secondary transmitter devotes to
helping the primary system (viz., it includes both jamming and relaying) and let
µ ,

ρ
λ be the fraction of this power devoted only to jamming.

The procedure of the Stackelberg game is similar to the previous case. The
secondary transmitter, as a follower, takes λ into account, and computes its power
P ∗
2 (λ) according to precisely the same solution as given in (3.28). Meanwhile, the

primary transmitter can compute the optimal pair (λ∗, µ∗) maximizing its own
utility function (3.24):

(λ∗, µ∗) = argmax
0≤λ≤1
0≤µ≤1

U1(P
∗
2 (λ), λ, µ). (3.30)

Finally, knowing the optimal λ∗ and µ∗, the secondary transmitter can compute its
final power allocation P ∗

2 (λ
∗, µ∗).

3.6 Extension to Multiple Secondary Receivers

In this section we extend our cognitive radio scenario to a network consisting of a
primary transmitter T1, a cognitive secondary transmitter T2, a primary receiver U1

and K secondary receivers U2,k with k ∈ {1, 2, . . . ,K}. T1 intends to transmit the
secret message w1, which is intended to U1, and which should not be decoded by
the secondary receivers. T2 transmits the message w2 (without secrecy constraints)
to the secondary receivers. Similarly to the previous sections, we investigate two
different cooperative scenarios and their respective extensions to K secondary re-
ceivers, as represented in Figure 3.5. In the first scenario, T2 has no knowledge of
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the secret message w1, it will therefore cooperate in the sense of a “deaf helper”. In
the second scenario, T2 has knowledge of the secret message w1.

Model Modifications

The primary and secondary receivers now receive:

y1 = x1 +
√
c21x2 + n1, (3.31)

y2,i =
√
c12,ix1 +

√
c22,ix2 + n2,i. (3.32)

Information Theoretic Secrecy We are interested in the achievable rate pair
(R1, R2) of messages w1 and w2, such that average error probabilities (noted Pe,1

and Pe,2) for both messages can be made arbitrarily small, while the message w1

stays perfectly secure from the secondary receivers. In other terms, for any ε > 0
and a sufficiently large n:

max{Pe,1, Pe,2} ≤ ε (3.33)

I(w1;Y2,i) ≤ nε ∀i ∈ {1, 2, ..,K}. (3.34)

Finally, without the cognitive transmitter T2, the achievable secrecy rate is well-
known as the channel reduces to the wiretap channel [Wyn75]:

RWT
1,K =

1

2

(

log(1 + P1)−max
i

log(1 + c12,iP1)
)+

. (3.35)

3.6.1 Cooperation without Message Knowledge at Secondary

Transmitter

In this scenario, T2 does not know the message w1. T2 splits its available power
P2 into three parts: P2s for its own message w2, P2c for the common message and
P2j for a Gaussian jamming signal, such that P2 = P2s + P2c + P2j. According
to this power allocation, we have R2 = R2s + R2c. According to this strategy,
we give in the following theorem an achievable rate region for the case of multiple
secondary receivers. We assume that the secondary message should be sent to a
subset S ⊆ {1, . . . ,K} of secondary receivers.
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The achievable rate pair (R1, R2), with R2 = R2c + R2s is given by the
following region R1,m:

R1 <
1

2

(

log

(

1 +
P1

1 + c21P2s + c21P2j

)

− max
k∈{1,...,K}

log

(

1 +
c12,kP1

1 + c22,kP2j

))

(3.36)

R2c <
1

2
log

(

1 +
c21P2c

1 + c21P2s + c21P2j

)

(3.37)

R1 +R2c <
1

2

(

log

(

1 +
P1 + c21P2c

1 + c21P2s + c21P2j

)

− max
k∈{1,...,K}

log

(

1 +
c12,kP1

1 + c22,kP2j

))

(3.38)

R2s <
1

2
min
k∈S

log

(

1 +
c22,kP2s

1 + c12,kP1 + c22,kP2j

)

(3.39)

R2c +R2s <
1

2
min
k∈S

log

(

1 +
c22,kP2c + c22,kP2s

1 + c12,kP1 + c22,kP2j

)

(3.40)

for every power splitting P2 = P2s + P2c + P2j.

Theorem 3.3.

Proof. With multiple secondary receivers, R1,MAC stays unchanged. However the
pair (R2s, R2c) should now belong to the separate decoding region of every secondary
receiver, i.e., (R2s, R2c) ∈ ∪iR2,i,SD. This justifies the minimum terms in (3.39)

and (3.40). Furthermore, by choosing R1,e = maxk∈{1,...,K} log
(

1 +
c12,kP1

1+c22,kP2j

)

, we

notice that ∀R2, R1,e /∈ Ri,e,MAC ∩ Ri,e,SD. We then obtain the achievable region
R1,m as in the single secondary receiver case. The two special cases defined above
can as well be investigated for the multi-receiver case. �

3.6.2 Cooperation with Message Knowledge at Secondary

Transmitter

In this section we now assume that the secondary transmitter T2 knows the primary
message w1 perfectly. We derive the achievable rate region in the case of multiple
secondary receivers.
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The achievable rate pair (R1, R2), with R2 = R2c + R2s is given by the
following region R2:

R1 <
1

2

(

log

(

1 +
P1 + c21P2,1

1 + c21P2s + c21P2j

)

− max
k∈{1,...,K}

log

(

1 +
c12,kP1 + c22,kP2,1

1 + c22,kP2j

))

(3.41)

R1 +R2c <
1

2
log

(

1 +
P1 + c21P2c + c21P2,1

1 + c21P2s + c21P2j

)

(3.42)

R2s <
1

2
min
k∈S

log

(

1 +
c22,kP2s

1 + c12,kP1 + c22,kP2j + c22,kP2,1

)

(3.43)

R2 <
1

2
min
k∈S

log

(

1 +
c22,kP2c + c22,kP2s

1 + c12,kP1 + c22,kP2j + c22,kP2,1

)

, (3.44)

for every power splitting P2 = P2s + P2c + P2j + P2,1.

Theorem 3.4.

Proof. The proof is similar to the previous ones and it is therefore omitted here. �

3.7 Numerical Results

In this section we present the results of numerical simulations and some related
discussion. We divide the numerical results in two sections as follows. In Section
3.7.1 we aim at investigating the influence of the distances and the power splitting
on the achievable rate regions. In Section 3.7.2 we elaborate on a more sophisticated
geometrical framework to study the three optimization problems in terms of optimal
rates, transmit power and strategies as well the impact of the Stackelberg game on
those aforementioned variables.

3.7.1 Varying Setup

Our main objectives in this section are understanding the influence of the power
splitting on the achievable rate pairs, comparing the rate regions with and without
knowing the message w1 at the secondary transmitter, and analyzing how the chan-
nel gains of the cognitive radio channel influence the rate regions. To achieve this
goal, we consider a base setup where the distances between nodes are d11 = d22 = 1
and d12 = d21 = 1.56. The normalized transmit power at both transmitters is
P1 = P2 = 6, the path-loss exponent is α = 3.
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Figure 3.6: Achievable rates as functions of splitting variables ρ and γ for S2,SD.

Rates as Functions of Power Splitting

In Figure 3.6, we observe the behavior of R1 and R2 for scenario S2,SD. For our
base case, d22 = 1, we see that increasing γ, i.e., the fraction of power used for
transmitting w1, decreases both rates. The decrease in R1 comes from the fact
that, in this case, U2 is closer to T2 than U1, thus transmitting w1 causes more
leakage than gain in rate. R2 also decreases since by increasing γ, we decrease the
fraction of power available for transmitting w2. When d22 = 1.8, i.e., U2 is now
further away from T2, transmitting w1 at U2 is now beneficial, which explains the
increase R1 when γ increases.

Rate Regions as Functions of Distances

By taking the convex hull over all variations of the parameters ρ, β, and γ we obtain
the achievable rate region. Figures 3.7, 3.8, 3.9 and 3.10 show those rate regions
with (dashed) and without (solid) knowledge of w1 at the secondary transmitter.
The corresponding wiretap rate RWT

1 is depicted by the dash-dotted line. In each
of the first three figures we change one of the three variable distances.

Decreasing d22 in Figure 3.7 increases R1 and R2 due to improved jamming
and transmission of w2, respectively. This also increases the optimum Ropt

2 which
is found at the intersection of the dash-dotted line and hull of the respective rate
region. The benefit of knowing w1 on Ropt

2 is large.
The cross-distance d21 does not change the rate regions significantly in Fig-

ure 3.8. For the case without w1 (solid), Ropt
2 increases with decreasing d21 due to

improved use of the common message. With w1, however, the effect is reversed.
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Figure 3.7: Rate regions with and without knowledge of w1 for varying distance
d22.
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Figure 3.9: Rate regions with and without knowledge of w1 for varying distance
d12.
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Figure 3.10: Optimal secondary rate with and without knowledge of w1 for varying
distance d12.

This is because Ropt
2 is achieved close to the maximum R2. At this point T2 trans-

mits almost exclusively its own message. Hence, decreasing d21 increases the inter-
ference at U1.

Increasing the second cross-distance d12 in Figure 3.9 increases R1 and R2 due
to less leakage and less interference, respectively. Since the wiretap rate RWT

1

depends on d12, we see an interesting effect on Ropt
2 , which we investigate further in

Figure 3.10. Without knowing w1, the optimum Ropt
2 increases as long as RWT

1 = 0.
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Due to the steep increase of RWT
1 , Ropt

2 decreases subsequently. However, with
knowledge of w1 we can increase Ropt

2 further, reaching more than two times the
value of Ropt

2 without knowledge of w1. For d12 above a threshold of about 1.5, Ropt
2

decreases for both cases, because leakage becomes negligible and RWT
1 approaches

the point-to-point capacity of the link d11. Overall, we conclude that knowing w1

enlarges the rate regions significantly. The important figure of merit, Ropt
2 , increases

by more than 100% in some cases.

Multi-User Scenario

Finally, we consider the scenario with multiple secondary receivers. The K receivers
are randomly located in a square of length a centered at the position of the sec-
ondary receiver in our base case. The locations are uniformly and independently
distributed. Figure 3.11 shows how the optimum Ropt

2 depends on K and a for
the cases without (solid) and with (dashed) knowing w1. The gain of knowing the
message w1 depends highly on the square size a. This is because if the square is
large, a secondary receiver may appear close to the primary transmitter. In this
case all power P2 has to be used to jam that user; hence, there is no gain from
knowing w1. The probability of having such a critical receiver increases with K.
Therefore this effect is more visible for high K.

To explain why Ropt
2 obtains a maximum for high K without knowing w1, we

plot the wiretap rate RWT
1,K for K = 20. It is steeply decreasing with a for a < 1. In

this range the secondary transmitter can improve the system’s performance and,
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Figure 3.12: Rate regions for T2 at (0.5, 0).

hence, Ropt
2 . However, when RWT

1,K flattens out, there is little room for improvement.
T2 has to sacrifice most of its power for jamming, which diminishes R2.

3.7.2 Fixed Wiretap Channel Setup

In this section we develop a study framework by fixing the location of the primary
transmitter and receiver at the coordinates (0, 1) and (1, 1), respectively. The
secondary receiver is fixed at (1, 0). We assume a path-loss model with path-loss
exponent α = 3, i.e., cij = d−3

ij . The power constraints at both transmitters are
Pmax
1 = Pmax

2 = 10. Each set of parameters (ρ, β, γ) yields a pentagon-shaped rate
region. We vary the parameters over a sufficiently fine grid and take the convex
hull over all corresponding rate regions.

We start by plotting the rate regions for a particular topology of interest re-
vealing the importance of the different strategies of the secondary system, such as
jamming, relaying and using a common message. We then reconsider the three
optimization problems from the previous section – maximization of R2 (PR2

), max-
imization of R1 (PR1

), and minimization of P2 (PP2
) – as well as the Stackelberg

game. We study the secondary rate attained, as well as the consumed secondary
power. In particular, we are interested in how the system behaves for different
locations of the secondary transmitter.

3.7.3 Performance Optimization

In Figure 3.12 we plot the rate regions for T2 being at the position (0.5, 0). The
black solid line corresponds to the region S1, where T2 knows the primary message
and can use all strategies: jamming, relaying and common message transmission.
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The green dash-dotted line depicts the rate region S2 achievable by the oblivious
helper that does not possess the primary message, γ = 0. If the primary receiver
cannot decode a common message, β = 0, the regions S1,SD and S2,SD coincide.
They are depicted by the dashed red line. In other words, knowing the primary
message is not beneficial, if no common message can be sent. This is because T2 is
too far away from R1 for relaying to be beneficial.

Furthermore, Figure 3.12 shows the optimal solution obtained by solving (3.50)
and the SE points obtained by solving (3.29) for different cost values θ (blue dots).
Note that for the case where power is cheap, i.e., θ is small, the rate of the secondary
user R2 tends to zero. This is due to the fact that even though the allowed power
level P2 for the secondary user is large, a larger fraction of jamming ρ is demanded
by the primary user for the possibility to operate. Therefore, the secondary user
becomes just a generous jammer that helps the primary system to reduce the leak-
age through link c12. On the other hand, for large values of cost θ, the secondary
user’s utility U2 is dominated by the second term, i.e., −θP2. Hence, utility maxi-
mization at the first step of the Stackelberg procedure reduces to minimization of
the secondary power P2. This yields P2 → 0 and the setup reduces to the wiretap
channel. That is why the achievable rate R1 for the primary user reduces to the
wiretap rate RWT

1 for high costs θ. Thus, there exists an optimal value of the cost
maximizing the secondary rate.

3.7.4 Performance Comparison

In this section we compare the results obtained from numerical solution of the
optimization problems investigated in Section 3.4, i.e., problems PR2

, PR1
and

PP2
(and their respective special cases), together with the Stackelberg equilibrium

rate and power outcomes. We fix the positions of the primary terminals and the
secondary receiver at the previous locations and vary the position of the secondary
transmitter within a rectangle R, with R , {xT2 ∈ [−1, 2] ∩ yT2 ∈ [−1, 2]}.

We furthermore illustrate the impact of this game on the achievable rates and on
the transmission strategies of T2, which we compare to the optimal rates, transmit
power, and the strategies obtained from PR2

, PR1
and PP2

.

Secondary Rate Maximization and Stackelberg Equilibrium

Figure 3.13 compares the achievable transmission rates R2 of the secondary sys-
tem, tolerable powers and necessary power splitting for different positions of the
secondary transmitter. Each subfigure depicts the same spatial region, where the
positions of the primary transmitter-user pair as well as the secondary user are
marked by white circles. The colors show how the secondary rate and the different
power fractions change as the secondary transmitter changes its position.

Figure 3.13 is constituted of three columns. The first column depicts the equilib-
rium outcomes of the Stackelberg game between T1 and T2, where the cost is set to
θ = 0.1. The second column represents the maximization PR2(β̄) of R2 subject to
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Stackelberg Equilibrium
PR2(β̄): max

ρ,γ,P2

R2 PR2 : max
ρ,β,γ,P2
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Figure 3.13: Operating secondary rates and powers depending on the position of
T2 for PR2

and the Stackelberg game.
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R1 ≥ RWT
1 with β = 0. The third column corresponds to the general optimization

problem PR2 . The first row of subplots depicts the achievable secondary rate R2 in
logarithmic scale. The remaining rows show the power fractions P2s, P2j, P2p for
PR2

(β̄) and P2c for PR2
, while the last row shows the total required power P2. In

the fourth row for PR2
, P2p is not presented since it is observed that the relaying

power is always zero, i.e., T2 prefers using common message to relaying for PR2
.

First, we compare the achievable R2 for the three optimization problems in the
first row. As expected, we observe that the Stackelberg equilibrium leads to lower
rates, since T2 maximizes its utility after T1’s maximization. Moreover, there is a
cost for the power used in the Stackelberg model, whereas power conservation is
not crucial in the other rate maximization problems. Higher rates are achieved for
PR2

than for PR2
(β̄) since more strategies are available at T2.

We also note that for the maximization of R2, the peak of the achievable rate
is located exactly at the position of the secondary receiver U2, which reflects the
fact that for the path-loss channel model the closer the communicating terminals,
the higher the transmission rate. Interestingly, in contrast to this result, for the
Stackelberg equilibrium solution, the optimal location of the secondary transmitter
that maximizes the utility U2 is shifted further away from the primary system.
To conclude the analysis of the game theoretic solution, we note the low power
consumption of T2 in the SE (around 20% of the allowed transmission power) which
justifies the lower R2. The Stackelberg strategy represents balancing between own
message power P2s, necessary to achieve a strictly positive utility, and jamming
power P2j needed in order not to deteriorate the primary transmission in terms of
secrecy.

We now compare the second and third columns of Figure 3.13, corresponding to
PR2(β̄) and PR2

, respectively. First, we notice that for PR2
, all the available power

is utilized for all locations of T2, while this is not the case for PR2
(β̄). This is due

to the fact that when there is no common message, a power threshold exists above
which T2 cannot transmit without breaching the constraint R1 ≥ RWT

1 , by either
creating additional interference at the primary user from P2s or P2j or by leaking
information to the secondary user from P2p.

Comparing the figures in the first row, we notice that the achievable secondary
rates R2 are significantly higher for PR2

. Furthermore, for some topologies the
problem PR2

(β̄) does not yield a positive secondary rate R2, which means that the
secondary system cannot operate. This is the case in the black regions. Thus, there
exists a considerable performance improvement between the cases with and without
common message. Opportunity to transmit a message that can be decoded by both
users is game changing. It should be noted, though, that this demands advanced
decoding capabilities, which might not be provided by the primary system.

Finally, we discuss the power allocations for PR2(β̄) and PR2. For PR2, most
of the power is allocated to the common message as expected, while the power
allocated for jamming and own message is concentrated in the locations close to
U2. For PR2(β̄), we observe that the power allocations depending on (xT2 , yT2)
conforms to the intuition: a high proportion (up to 90%) of the power is used for
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relaying when T2 is located close to U1. Moreover, P2s is higher when T2 is close to
U2 and on the opposite side from U1, so that interference is low at U1. Meanwhile,
jamming is used in high proportions for locations of T2 where it cannot hurt the
primary transmission.

We conclude that the secondary system benefits strongly if U1 can decode a
common message. Transmitting a common message is the predominant strategy.
If no common message can be used (β = 0), the system has to rely on relaying
and jamming. This reduces the secondary rate or even prohibits the operation
of the secondary system. The Stackelberg game results in much less total power
consumption P2 at the cost of reduced secondary rate. Note that this trade-off can
be changed to some extent by adjusting the cost ϑ.

Primary Rate Maximization

Figure 3.14 illustrates problem PR1
, namely the maximization of the primary rate

R1, and the corresponding secondary transmit power allocation. The threshold on
the secondary rate Rthr

2 is set to 80% of the maximum R2, which was attained in
problem PR2 . Note that the threshold depends on the position of T2. In other
words, we ask how much R1 can be increased if the secondary system reduces its
rate by 20%. The results in Figure 3.14 are depicted for two problems, the first
column is PR1

(β̄) and the second column is PR1
. Note that we use the last row

for depicting P2 and P2c for PR1
(β̄) and PR1

, respectively. We have P2c = 0 for
PR1

(β̄), while P2 = 10 everywhere for PR1
.

Interestingly, for PR1
, R1 can be significantly increased if T2 is close to U1. In

this case relaying is beneficial and becomes the predominant strategy. The 80% of
R2 are attained by a fraction P2c, so that the remaining power is used for relaying.
In PR1

(β̄), however, almost all the power was already used for relaying. Reduc-
ing R2 frees only marginal amounts of power, and hence R1 cannot be increased
significantly.

If T2 is close to U2, the rate R1 can only be increased marginally for both
PR1

(β̄) and PR1
. Less power is required for transmitting both the secondary and

the common messages. Therefore, R1 can be increased by jamming slightly more
than for the problem PR2 . Again, our results show the importance of the common
message strategy. Not only is the secondary rate R2 higher; the strategy also
permits to significantly increase the primary rate R1, having R2 reduced.

Secondary Power Minimization

To evaluate the power minimization problem, we calculate the rate regions for
successive increase of P2. We find the minimum P2 such that the rate constraints
are fulfilled. Like in previous simulations, Rthr

2 is set at 80% of the maximum rate
R2 found by for the problems PR2(β̄) and PR2 , respectively. The result is depicted
in Figure 3.15, structured similarly as before, except that the total power P2 is
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Figure 3.14: Operating primary rates and powers depending on the position of T2

for PR1
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PP2(β̄):min
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Figure 3.15: Operating powers depending on the position of T2 for PP2 .
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shown in the first row, while the other rows describe the power allocation strategies
adopted by T2.

First, we compare the corresponding values of P2 in the last row and second and
third column of Figure 3.13. We see that the overall power consumption has been
significantly reduced compared to the rate maximization problems. The effect is
the most significant for PP2

since all available power P2 was utilized for all locations
of T2 in the problem PR2

. Interestingly, the power saving opportunities are most
prominent around the location of U2.

We now visualize that the power allocation strategies depending on (xT2 , yT2) are
noticeably similar to the strategies adopted for the secondary rate maximizations
depicted in Figure 3.13. In particular for PP2

(β̄), in a large region between U1 and
U2, T2 does not transmit since no rate R2 > 0 is achievable without hurting the
primary system. When T2 is close to U2 on the opposite side of U1, most of P2 is
allocated to T2’s own message; while when T2 is closer to U1 in the opposite side
of U2, the power is mainly allocated to relaying. Finally, we make the interesting
observation that when T2 is close enough to U2 and common message is available,
even power P2 close to zero suffices to satisfy the rate constraints.
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3.8 Conclusions

We summarize the chapter’s contributions and we make some important remarks.

Summary In this chapter we investigated transmission strategies for the sec-
ondary transmitter in a cognitive radio channel to enhance the secrecy of the pri-
mary message. Based on achievable rate regions for two different cognitive scenarios,
we defined three main optimization problems: the maximization of the secondary
rate without decreasing the secrecy of the primary message, the maximization of
the primary secrecy rate and the minimization of the secondary transmit power.
We found solutions in closed-form for special cases of these optimizations.

We then assumed a more realistic cooperative scenario where we modeled the
interaction between both transmitters as a Stackelberg competition. We derived
the Stackelberg equilibrium for this game and analyzed its impact numerically in
comparison to the fully cooperative case. While the secondary rate attained at the
SE is lower than the maximum possible rate, the consumption of secondary power
is much less. We observed this from the rate region for a specific topology as well
as from our simulations of a varying topology, where we changed the position of
the secondary transmitter T2.

We also studied the optimization problems PR2 , PP2 and PR1 in our geometrical
setup. We showed that the transmission of a common message, which can be
decoded by both receivers, is a powerful strategy. We then reduced the rate R2

by 20% and examined how this increased the primary rate R1 or decreased the
secondary power P2 in PR1

and PP2
, respectively. While T2 being located close

to U1 is optimal for maximizing R1, the opportunity for reducing the power P2 is
largest if T2 is close to U2. This is due to the possibility of effective relaying in the
first case, and of transmitting the secondary message, in the other case.

Concluding Remarks The network model investigated in this chapter can be
used as a starting framework to investigate more complicated cognitive radio net-
works with secrecy constraints, e.g., with multiple secondary transmitters as in
Chapter 5. While cognitive radio networks are usually more complex than the 4-
node network studied in this chapter due their ad hoc nature, we believe that the
insight provided in this chapter on the impact of the transmission strategies on the
achievable rates is important to the understanding of secrecy mechanisms in CRN.

However several simplifying assumptions made in the chapter should be further
discussed. First, while the scenario S2 where T2 has non-causal knowledge of the
primary message can be justified, e.g., if there is a phase where T2 learns w1 before
the transmission studied in this chapter occurs, this learning phase should have
in general an impact on the secrecy of w1. Therefore this problem of interest
in investigated in Chapter 4. Secondly, if U1 does not have multi-user decoding
capabilities, the transmission scheme employed by the secondary transmitter should
be adapted; and this modification will also be studied in Chapter 4.
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3.A Proof of Theorem 3.1

Proof. First, the primary receiver can either perform joint decoding or separate
decoding for w1 and the common message. In particular, all rates in the joint
decoding MAC region R1,MAC given by:

R1 <
1

2
log

(

1 +
P1

1 + c21P2s + c21P2j

)

(3.45)

R2c <
1

2
log

(

1 +
c21P2c

1 + c21P2s + c21P2j

)

(3.46)

R1 +R2c <
1

2
log

(

1 +
P1 + c21P2c

1 + c21P2s + c21P2j

)

(3.47)

are achievable. We observe that in R1,MAC, the secondary message and the jamming
signal are treated as interference by the primary receiver. Similarly, the secondary
receiver can perform joint decoding or separate decoding for its own message w2

and the common message. In particular, all the rates in the MAC R2,MAC region
are achievable:

R2s <
1

2
log

(

1 +
c22P2s

1 + c12P1 + c22P2j

)

(3.48)

R2c +R2s <
1

2
log

(

1 +
c22P2c + c22P2s

1 + c12P1 + c22P2j

)

, (3.49)

where the constraint on R2c was redundant, and the primary message and the
jamming signal are viewed as interference.
From the eavesdropper’s (i.e., U2) point of view, the rate pair has to be in the
Re,MAC or the Re,SD region to be decodable. Re,MAC is defined by:

R1 <
1

2
log

(

1 + c12
P1

1 + c22P2j

)

R2 <
1

2
log

(

1 +
c22P2c + c22P2s

1 + c22P2j

)

R1 +R2 <
1

2
log

(

1 +
c12P1 + c22P2c + c22P2s

1 + c22P2j

)

,

while Re,SD is defined by

R1 <
1

2
log

(

1 +
c12P1

1 + c22P2

)

R2 >
1

2
log

(

1 +
c22P2c + c22P2s

1 + c22P2j

)

.

Finally the rate pair (R1, R2) is achievable if R1 = R1,p − R1,e, (R1,p, R2) ∈
(R1,MAC ∩ R2,MAC) and (R1,e, R2) /∈ (Re,MAC ∪ Re,SD). R1,e is a parameter of
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the wiretap code used by Tp and it represents the amount of rate that Tp has to
sacrifice in order to confuse the eavesdropper. Therefore, the “useful” rate for the
primary message becomes R1,p − R1,e, where R1,p was achievable without secrecy
constraints.

Choosing R1,e = log
(

1 + c12P1

1+c22P2j

)

, we notice that ∀R2, (R1,e, R2) /∈ Re,MAC ∪
Re,SD. We then obtain the achievable region R1 by replacing R1 by R1 + R1,e in
(3.45) and (3.47) and after some manipulations on the inequalities. �

3.B Proof of Proposition 3.1

Proof. The rate region S1,SD for γ = 0 is given by equations (3.13a) and (3.13b).
First, consider that R1 increases with increasing ρ, whereas R2 decreases with
decreasing ρ due to (3.13a) and (3.13b). Hence, any change of parameters that
increases R1 is also decreasing R2. Therefore, the maximum R2 will be attained
for R1 = RWT

1 . We solve

C
(

P1

1 + c21P2

)

− C
(

c12P1

1 + c22ρP2

)

= C(P1)− C(c12P1),

which yields

ρ⋆ =
c21(1 + c12P1)

c22 [c12(1 + P1)− c21P2(1− c12)]
. (3.50)

Plugging ρ⋆ into (3.13b) yields

22R
⋆
2 =

[c12(1 + P1)− (1− c12)c21P2](1 + c12P1 + c22P2)

c12(1 + c12P1)(1 + P1 + c21P2)

for the maximum achievable secondary rate R⋆
2. Maximizing 22R2 is equivalent to

maximizing R2, since R2 ≥ 0. We realize that R⋆
2 is not necessarily maximized by

using all the available secondary power P2 = P thr
2 . The condition for an extremum

in P2,
∂22R2

∂P2
= 0 reduces to

aR2P
2
2 + bR2P2 + cR2 = 0, (3.51)

with

aR2
, (1− c12)c

2
21c22, (3.52)

bR2
, 2(1− c12)c21c22(1 + P1), (3.53)

cR2
, (1 + P1)[c21(1 + c12P1)− c12c22(1 + P1)]. (3.54)

In order for RWT
1 to be positive, we require c12 < 1. This yields aR2

> 0 and
bR2

> 0; hence, there exists at most one positive extremum

P crit
2 =

1

2aR2

(√

b2R2
− 4aR2

cR2
− bR2

)

. (3.55)
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The second derivative ∂222R2

∂P2
2 at P2 = P crit

2 is negative, which means that P crit
2 is

the maximum we were seeking for. In the degraded scenario in which P crit
2 < P thr

2 ,
R2 is decreasing for P2 > 0. Furthermore, if P crit

2 > P thr
2 , the maximum feasible

R2 is attained at P2 = P thr
2 . Finally,

P ⋆
2 = min

(

(P crit
2 )+, P thr

2

)

. (3.56)

To calculate the corresponding R⋆
2, we plug P ⋆

2 into (3.50); then we plug both values
into (3.13b). We notice that the maximum R2 is limited by the secrecy constraint
which causes the limited feasible values of P2 and the corresponding parameters. �

3.C Proof of Proposition 3.2

Proof. Being in general non-convex, the problem can be simplified by reformulat-
ing the rate constraints into constraints on the secondary power. We solve both
constraints (3.20b) and (3.20c) for P2. The first constraint (3.20b) yields:

P 2
2 xP2 + P2yP2 ≥ 0 (3.57)

with

xP2
, c21c22

(

ρ− R̂1

(

ρ+ γ(1− γ)(1− ρ)2
)

)

, (3.58a)

yP2 , c21 + (1 + P1)c22ρ− R̂1c22(γ + ρ− γρ)

− R̂1c21(1 + c12P1)(1− γ + γρ). (3.58b)

where we used the expressions (3.4) and (3.14) for RWT
1 and R1, respectively. We

also introduced the short-hand notation R̂1 = 22R
WT
1 . Since R̂1 > 1, we have

xP2
< 0, hence, (3.57) yields

P2 ≤ − yP2

xP2

= P
⋆(1)
2 . (3.59)

Similarly, with R̂2 = 22R
thr
2 , the secondary rate constraint (3.20c) in conjunction

with (3.15) yields:

c22P2(1− ρ)(1− γ)

1 + c12P1 + c22P2(ρ+ γ − ργ)
≥ R̂2 − 1. (3.60)

To solve for P2 we transform the above equation to

c22P2(1− R̂2(ρ+ γ − ργ)) ≥ (R̂2 − 1)(1 + c12P1). (3.61)

We see that for R̂2(ρ+ γ − ργ) < 1 we get the constraint

P2 ≥ (R̂2 − 1)(1 + c12P1)

c22(1− R̂2(ρ+ γ − ργ))
= P

⋆(2)
2 , (3.62)
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whereas for R̂2(ρ+ γ − ργ) ≥ 1, there is no solution to (3.61).

Accordingly, the feasible set for the optimization of P2 is defined by P
⋆(1)
2 ≥

P
⋆(2)
2 when R̂2(ρ + γ − ργ) < 1. We see that P

⋆(2)
2 is increasing in both γ and ρ,

so the optimal P2 lies in the intersection P
⋆(1)
2 = P

⋆(2)
2 to get the minimum value.

However, if there is no intersection of P
⋆(1)
2 and P

⋆(2)
2 , there are two possible cases.

First, P
⋆(1)
2 ≥ P

⋆(2)
2 everywhere, i.e., all values of ρ and γ are feasible. Second,

P
⋆(1)
2 < P

⋆(2)
2 everywhere, i.e., no feasible ρ or γ, which cannot apply. We easily

see that the first case cannot apply either: at ρ = γ = 0, T2 uses all its power to
transmit its own secondary message. Hence, for any P2 > 0, we have R1 < RWT

1 .
This means that we cannot have R2 > 0 at this point, which violates any reasonable
constraint R2 ≥ Rthr

2 . With the two cases excluded, the smallest feasible value for
P2 has to lie in this intersection. Hence, the previous problem simplifies to

min
γ,ρ

P
⋆(2)
2 (3.63a)

s.t. P
⋆(1)
2 = P

⋆(2)
2 and ρ+ γ − ργ < 1/R̂2. (3.63b)

In the following, we consider the optimization for ρ = 0 and γ = 0 separately;
i.e., T2 either acts as a deaf helper or has access to w1 and cooperates actively.

Closed-form Expression for PP2
(β̄, γ̄) For γ = 0, i.e., for the oblivious coop-

eration scenario, P
⋆(1)
2 = P

⋆(2)
2 yields

ρ2aP2
+ ρbP2

+ cP2
= 0 (3.64)

with

aP2
, R̂2c22(1 + P1 − R̂1), (3.65)

bP2 , c21(R̂1 − 1)(R̂2 − 1)(1 + c12P1)− c22(1 + P1 − R̂1)− c21P1R̂2, (3.66)

cP2 , c21P1. (3.67)

Note that aP2
, bP2

and cP2
are constants and aP2

> 0. Hence, the only positive
solution for ρ is

ρ⋆ =
1

2aP2

(√

b2P2
− 4aP2cP2 − bP2

)

. (3.68)

The solution is feasible if ρ⋆ < 1/R̂2, otherwise there exists no solution.

Closed-form Expression for PP2(β̄, ρ̄) For ρ = 0, i.e., with message knowledge,

P
⋆(1)
2 = P

⋆(2)
2 yields

γ2dP2
+ γeP2

+ fP2
= 0 (3.69)

with

dP2 , c21(1 + P1)− c22R̂1R̂2, (3.70)
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eP2
, c22R̂1 − c21(2(1 + P1)− P1R̂2), (3.71)

fP2
, c21P1. (3.72)

(3.69) has two solutions

γ⋆,1 ,
1

2dP2

(√

e2P2
− 4dP2fP2c

′ − eP2

)

, (3.73a)

γ⋆,2 ,
1

2dP2

(

−
√

e2P2
− 4dP2

fP2
− eP2

)

. (3.73b)

In order to be feasible, the solutions need to lie within the interval (0, 1/R̂2). The

optimum γ⋆ is the minimum of the feasible solutions, because P
⋆(2)
2 is increasing in

γ. �

3.D Proof of Proposition 3.3

Proof. From equation (3.13a) we see that R1 increases with ρ. If we plug (3.13b)
into the constraint (3.21b), we see that R2 decreases with ρ. Hence, the maximum
R1 will be attained for R2 = Rthr

2 , which we solve for ρ⋆ as

ρ⋆ =
c22P2 − (R̂2 − 1)(1 + c12P1)

c22P2R̂2

, (3.74)

in which R̂2 = 22R
thr
2 . By plugging (3.74) into (3.13a), we get the following expres-

sion for the maximum rate R⋆
1,

22R
⋆
1 =

(1 + P1 + c21P2)(1 + c12P1 + c22P2 − c12P1R̂2)

(1 + c12P1)(1 + c12P1 + c22P2)
. (3.75)

The expression, and thus R⋆
1, is not necessarily maximized by using all secondary

power P2 = P thr
2 . So we solve ∂22R

⋆
1

∂P2
= 0, which is reduced to

aR1P
2
2 + bR1

P2 + cR1
= 0, (3.76)

with

aR1 , c21c22(c12c21R̂2 − c22), (3.77)

bR1
, 2c21c22(R̂2 − 1− c12P1), (3.78)

cR1 , c12c22R̂2(1 + P1) + c21(1 + c12P1)(c12P1(R̂2 − 1)− 1). (3.79)

The two solutions of the quadratic equation

P crit,1
2 ,

1

2aR1

(√

b2R1
− 4aR1

cR1
− bR1

)

, (3.80a)
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P crit,2
2 ,

1

2aR1

(

−
√

b2R1
− 4aR1

cR1
− bR1

)

, (3.80b)

are candidates for the rate maximizing power P2. We find the maximum R1 by plug-

ging the two values P ⋆,1
2 = min

(

(P crit,1
2 )+, P thr

2

)

and P ⋆,2
2 = min

(

(P crit,2
2 )+, P thr

2

)

into (3.75) and and selecting the one that maximizes (3.75). �



Chapter 4

Clean Relaying for Cognitive Radio

Channels with Secrecy

In this chapter we investigate clean relaying for secrecy in cognitive radio channels.
First, we present the list of the chapter’s goals.

• Extend the results of Chapter 3 in three directions:

1. by investigating the impact of the learning phase at the sec-
ondary transmitter for the primary message;

2. by considering a more realistic cognitive scenario where the pri-
mary user does not have multi-user decoding capabilities;

3. by using a stronger secrecy measure for the primary message.

• Introduce the clean relaying (CR) scheme for our cognitive radio sce-
nario with secrecy constraints.

• Derive the achievable rate region for the multi-phase CR scheme in-
vestigated in this chapter and compare this scheme to other signalling
strategies, namely dirty paper coding (DPC), cooperative jamming
(CJ) and interference neutralization (IN).

• Use the geometrical model developed in previous chapters to numer-
ically compare the secrecy performance of the schemes.

Objectives of the Chapter.

Organization of the Chapter This chapter is organized as follows. In Section
4.1 we motivate the study in this chapter. In Section 4.2 we define our system

127
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Figure 4.1: Cognitive channel with secrecy constraints.

model. In Section 4.3 we establish our main result and we formulate our optimiza-
tion problem investigated throughout the chapter. In Section 4.4 we describe the
transmission schemes and derive the achievable secrecy rates for different signalling
strategies. Our theoretical results are investigated through numerical simulations
in Section 4.5. Finally, Section 4.6 concludes this chapter.

4.1 Introduction and Motivation

In this chapter we generalize the model in Chapter 3 to a scenario with a stronger
secrecy measure for the primary message. More specifically, the variational dis-
tance between the joint distribution and the product of marginal distributions of
the message and Eve’s received signal is considered, which is stronger than the
commonly used weak secrecy [BL13]. In addition, the secondary transmitter uses
multi-phase signalling. As in the original model in Chapter 3, we assume that the
secondary receiver U2 is treated as a potential eavesdropper with respect to the pri-
mary transmission. However in Chapter 3 it is assumed that the second transmitter
has the knowledge of the primary message before the transmission occurs, which
is a simplistic assumption. In our multi-phase signalling scheme, T2 learns the pri-
mary message w1 in the first phase. After successfully decoding w1, T2 implements
two types of cooperation as introduced in Chapter 2, namely cooperative jamming
and relaying of the primary message. Moreover, we use the clean relaying scheme
introduced in [LLSH12], where the secondary transmitter splits its transmission
into the third phase in which its own message is not broadcasted (thus, the term
“clean”) to increase the efficiency of relaying/cooperative jamming. We also derive
the achievable rate of T2 under the same constraint for several other schemes, such
as the interference neutralization scheme [HJG13], the dirty paper coding scheme
in addition to clean relaying, and a pure cooperative jamming scheme.
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Figure 4.2: Multi-phase transmission scheme.

4.2 System Model

In this section we introduce our system model, i.e., the network and transmission
model, as well as the notation used throughout this chapter.

4.2.1 Network Model

In this chapter we investigate the cognitive radio network described in Figure 4.1.
The cognitive radio network consists of the following single antenna nodes: a pri-
mary transmitter T1, a cognitive secondary transmitter T2, a primary receiver U1

and a secondary receiver U2. T1 wishes to transmit the secret message w1 to U1,
which should be kept secret from U2. Meanwhile, T2 wants to transmit the message
w2 (without secrecy constraints) to the secondary receiver U2. As in the previous
chapters, we assume that all nodes operate in half-duplex mode. We also assume
all channels are complex and static within a codeword length. We assume T1 trans-
mits at the rate equal to the wiretap channel capacity, where the wiretap channel
is formed by T1 (Alice), U1 (Bob), and U2 (Eve). This is due to the single user
decoder assumption at U1, similar to [JV09]1. We assume that T1 perfectly knows
the channels from T1 to U1 and from T1 to U2, while T2 knows all channels. All the
channel gains in Figure 4.1 take complex values, which generalizes the assumption
of real-valued channels made in Chapter 3.

4.2.2 Transmission Model, Schemes, and Notations

In this chapter we consider the following three-phase transmission scheme for the
secondary user depicted in Figure 4.2. The ratios of the interval of each phase to a
codeword are defined as η1, η2, and η3, respectively. Assume the time index t ∈ N.
We define the corresponding intervals of the three phases as the following three sets

T1 = {t : 1 ≤ t ≤ ⌊η1n⌋},
1In [JV09], the considered primary channel is only a point to point channel. But here it is a

wiretap channel due to the secrecy requirement.
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T2 = {t : ⌊η1n⌋+ 1 ≤ t ≤ ⌊(η1 + η2)n⌋},
T3 = {t : ⌊(η1 + η2)n⌋+ 1 ≤ t ≤ n}.

Note that these ratios are fixed before each transmission according to the optimiza-
tion results. We want to design T2’s transmit signal x2 with T1’s signal x1 left
unchanged. For the ease of derivation, according to these phases we can divide

the signal transmitted by T1 into x1 = [x
(1)
1 x

(2)
1 x

(3)
1 ] where x

(k)
1 corresponds to the

fraction of a codeword in the kth phase. This representation is also valid for the
received signals yi and the noises ni. Recall that x1(t) and x2(t) are the signals
transmitted by T1 and T2, respectively, at the t-th symbol. The CR scheme employs
three phases of transmission that occupy a total of n channel uses, as described be-
low.
Phase 1: For t ∈ T1, only T1 broadcasts x

(1)
1 while T2 remains silent (i.e., x2(t) = 0

due to the half-duplex assumption) and attempts to decode T1’s message w1 from
the overheard signal yT (t). The duration of Phase 1 is chosen adaptively to ensure
that T2 successfully decodes the T1’s message. If η1 ≥ 1, we can resort to jamming
but not to relaying in order to keep the primary user’s secrecy rate unchanged.
This is quite different to the case without secrecy, in which if w1 cannot be decoded
within n channel uses, then Phases 2 and 3 cannot be employed since primary user’s
rate cannot be maintained under secondary user’s transmission in which case the
secondary user’s achievable rate R2 is zero [LLSH12]. The received signals at U1,
U2, and T2 within Phase 1 can be respectively described by

y
(1)
1 = x

(1)
1 + n

(1)
1 , (4.1)

y
(1)
2 = c12x

(1)
1 + n

(1)
2 , (4.2)

y
(1)
T = cTTx

(1)
1 + n

(1)
T . (4.3)

Without loss of generality, we assume that the noises n1(t), n2(t), and nT (t) at
the nodes U1, U2, and T1, respectively, are independent and identically distributed
circularly symmetric complex additive white Gaussian noises with zero mean and
unit variance and are mutually independent for all t.

Phase 2: For t ∈ T2, T2 splits its power P
(2)
2 in Phase 2 into three parts:

1. Jamming: The jamming signal is encoded into j2(t) with power P
(2)
2j =

ρ2P
(2)
2 to confuse the eavesdropping secondary user U2. The parameter ρ2 ∈

[0, 1) denotes the fraction of the power used for jamming.

2. Relaying of the primary message: For T2 to be able to successfully decode
message w1 in Phase 1, the following decodability constraint must be satisfied

|cTT | > 1. (4.4)

Then T2 may help to forward the second part of node 1’s codeword x
(2)
1 in

Phase 2 while simultaneously transmitting its own message w2. The con-
straint (4.4) being satisfied guarantees that the channel capacity between T1
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and T2 is large enough for T2 to successfully decode all codewords in T1’s
codebook, as U1 does. We assume that T2 knows T1’s codebook and w1 is

encoded into v
(2)
1 with power P

(2)
2,1 = γ(1− ρ2)P

(2)
2 . The message w1 is to be

decoded only by the primary receiver U1, where γ is the ratio of the remained
power for relaying.

3. Transmission of the secondary message: w2 is encoded into v
(2)
2 with

power P
(2)
2,2 = (1 − γ)(1 − ρ2)P

(2)
2 to be decoded by the secondary user U2

only.

Specifically, in Phase 2 node T2 transmits

x2(t) = v2(t) +

√

P
(2)
2,1

P1
e−jφ21x1(t) + j

(2)
2 (t) , v2(t) + v

(2)
1 (t) + j

(2)
2 (t), (4.5)

where φ21 is the phase of c21; v2(t) is the t-th code symbol of the codeword encod-
ing T2’s message w2, and the received signals at U1 and U2 in this phase can be
respectively described by

y
(2)
1 = x

(2)
1 + c21x

(2)
2 + n

(2)
1 , (4.6)

y
(2)
2 = c12x

(2)
1 + c22x

(2)
2 + n

(2)
2 . (4.7)

Phase 3: For t ∈ T3, node T2 performs clean relaying by transmitting the third

part of T1’s codeword {x1(t)}t∈T3
with power P

(3)
2,1 and the jamming signal with

power P
(3)
2j , but without super-imposing its own signal v2(t). The signal transmitted

by T2 can be written as

x2(t) =

√

P
(3)
2,1

P1
e−jφ21x1(t) + j

(3)
2 (t) , v

(3)
1 (t) + j

(3)
2 (t), (4.8)

where {X1(t)}t∈T3
is the third part of the codeword transmitted by T1. The received

signals at U1 and U2 in this phase are

y
(3)
1 = x

(3)
1 + c21x

(3)
2 + n

(3)
1 , (4.9)

y
(3)
2 = c12x

(3)
1 + c22x

(3)
2 + n

(3)
2 , (4.10)

respectively.
Note that the signal-to-interference-plus-noise ratio (SINR) at U1 changes in

each phase. The average transmit power constraints for both transmitters are
considered

1

n

n
∑

k=1

|xi(k)|2 ≤ Pi for i ∈ {1, 2}. (4.11)
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More specifically, at T2 we require the transmit power constraint

η2P
(2)
2 + η3P

(3)
2 ≤ P2. (4.12)

A rate pair (R1, R2) for the messages w1 and w2 is achievable, if for n → ∞,
Pe,1 , P{ŵ1 6= w1} and Pe,2 , P{ŵ2 6= w2} can be made arbitrarily small, while
the message w1 stays secure from the secondary receiver, i.e.,

max{Pe,1, Pe,2} ≤ ε (Reliability), (4.13a)

sup |PWy2 − PWPy2 | ≤ ε (Secrecy), (4.13b)

for arbitrarily small ε > 0. Note that the secrecy metric in (4.13b) is the varia-
tional distance or total variation distance [BL13], which is stronger than the com-
monly used weak secrecy constraint limn→∞ 1

nI(w1;y2) ≤ ε. For the detailed
characterization of different secure measures, please refer to [BL13, Proposition
1]. Note also that when only weak secrecy is considered, we may degenerate the
fast fading wiretap channel with full channel state information at the transmitter
(CSIT) [LPS08] to a fading channel with only three states corresponding to the
three phases, to derive the capacity of the primary user. When T2 does not trans-
mit, the maximum achievable rate RWT

1 for which both the reliability and secrecy
conditions are fulfilled is known as the secrecy capacity of the wiretap channel given

by RWT
1 =

(

C(P1)− C(c212P1)
)+

.

4.3 Main Result and Optimization Problem

In this section we establish our main result. We show the discrete memoryless se-
crecy capacity of the wiretap channel formed by T1 (Alice), U1 (Bob), and U2 (Eve)
with the multi-phase transmission under the variational distance secrecy constraint.
In particular we specialize the result from Bloch and Laneman in [BL13] to the con-
sidered case with three phases and average power constraint in Section 4.3.1. In
Section 4.3.2 we formulate the optimization problem investigated in this chapter.



4.3 Main Result and Optimization Problem 133

4.3.1 Main Result

For the 3-phase transmission, the memoryless secrecy capacity of the wire-
tap channel formed by T1, U1, and U2 can be represented as

Cs = sup
(V1,X1)∈P

3
∑

k=1

ηk

{

I(V
(k)
1 ;Y

(k)
1 )− I(V

(k)
1 ;Y

(k)
2 )

}

, (4.14)

where η1 + η2 + η3 = 1, ηk ≥ 0 and P , {(V1, X1) : V1 − X1 − Y1Y2

forms a Markov chain and 1
nΣ

n
j=1X

2
j ≤ P}.

Theorem 4.1.

Proof. The proof of Theorem 4.1 is given in Appendix 4.A. Note that the result of
Theorem 4.1 is also valid for finite alphabet input as proven in the Appendix. The
finite alphabet case is important especially for the statistical CSIT case. In [LYT10]
it was found that when the transmitter only knows the CSI of the main channel
but there is only statistical CSI of Eve’s channel, then finite alphabet signalling
will outperform the Gaussian signalling. �

We can also prove the same result as Theorem 4.1 using [PC94], which had
been applied to the problem of Gaussian Gelfand-Pinsker coding under
non-stationary and non-ergodic channels and states in [YSJ+01]. However,
according to [Tan14] we know that there are two caveats of using the non-
information-spectrum method:

1. The weak typicality is used; i.e., the sample entropy is close to the en-
tropy rate, which is hard to derive for the more general representation
in (4.39).

2. The general asymptotic equipartition property in [PC94] is derived
based on the Gaussian distribution and cannot be extended to the
expression of (4.39), which is valid for general distribution.

Remark 4.1.
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The proof of [PC94] is based on the fact that for a Gaussian process the
difference between the empirical and the true entropy rates is a scaled
chi-square distribution with parameters independent of the particular co-
variance matrices. Thus when it converges to zero as the block size goes to
infinity, it does not rely on the stationarity or ergodicity of the Gaussian
process.

Remark 4.2.

4.3.2 Optimization Problem

In this chapter we aim at maximizing the secondary user’s rate R2 using different
transmission schemes under the constraint that the primary user’s secrecy rate R1

when T2 is transmitting is no lower than the target secrecy rate RWT
1 , and with

an average power constraint P2 at the secondary transmitter. We formulate the
optimization problem in the following definition.

The optimization problem PR2m
investigated in this chapter is defined as

max
η1,η2,ρ2,ρ3,γ,P

(2)
2 ,P

(3)
2

R2 (4.15)

s. t. R1 ≥ RWT
1 (4.16)

η2P
(2)
2 + η3P

(3)
2 ≤ P2. (4.17)

Definition 4.1.

We assume that the strategy employed by T2 is known to T1 before the transmis-
sion occurs such that T1 designs its wiretap code according to the wiretap channel
where the point-to-point capacity from T1 to T2 is now given as

Cb = sup
(V1,X1)∈P

3
∑

k=1

ηkI(V
(k)
1 ;Y

(k)
1 ),

instead of C(P1) when T2 does not transmit. If we consider the more stringent
cognitive model where it is required that the wiretap coding at T1 stays unchanged,
as investigated in [LGT+14b], the additional constraint (4.18) is added to the op-
timization problem PR2m

:

3
∑

k=1

ηkI(V
(k)
1 ;Y

(k)
1 ) = C(P1). (4.18)
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4.4 Transmission Schemes and Achievable Rate Regions

In the following we will discuss different transmission schemes and the corresponding
achievable rate pairs under AWGN channels. In Section 4.4.1 we consider our
proposed scheme, clean relaying, combined with cooperative jamming. In Section
4.4.2 we consider CR, combined this time with dirty paper coding in addition to
cooperative jamming. In order to evaluate the performance of our scheme, we
propose several other transmission strategies, which will be compared to CR in
Section 4.5. In particular we derive the achievable rate region for pure cooperative
jamming in Section 4.4.3, which acts as a benchmark for the comparison. Finally
in Section 4.4.4 we consider the interference neutralization scheme considered in
[HJG13].

4.4.1 Clean Relaying with Cooperative Jamming

In this section we consider the clean relaying scheme combined with cooperative
jamming as described in Section 4.2.2. For T2 to be able to relay T1’s signal in the
second phase using decode and forward relaying, the decodability constraint (4.4)
must be satisfied. Therefore in this scenario, η1 is set as

η1 =
C(P1)

C(|cTT |2P1)
, (4.19)

and w1 is re-encoded using the same codebook as shown in (4.5) and (4.8), respec-
tively:

x
(2)
2 (t) = v2(t) +

√

P
(2)
2,1

P1
e−jφ21x1(t) + j

(2)
2 (t),

x
(3)
2 (t) =

√

P
(3)
2,1

P1
e−jφ21x1(t) + j

(3)
2 (t).

We give in the following proposition the achievable rate region using the CR
scheme combined with CJ.
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The achievable rate pair (R1, R2) for the clean relaying scheme with coop-
erative jamming is given by the following region RCR:
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R2 < η2 C











c222(1− ρ2)(1− γ)P
(2)
2

1 + c222ρ2P
(2)
2 +

∣

∣

∣

∣

c22e−jφ21

√

γ(1− ρ2)P
(2)
2 + c12

√
P1

∣

∣

∣

∣

2











.

(4.21)

Proposition 4.1.

Proof. The rate region defined by (4.20) and (4.21) can be obtained based on the
capacity expression (4.14), the signalling schemes introduced in the previous section,
and the selection V1 = X1. The proof of Proposition 4.1 is given in Appendix
4.B. �
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4.4.2 Clean Relaying with Cooperative Jamming and Dirty

Paper Coding

In this section we discuss the case where T2 implements dirty paper coding. In this
scenario, we need to take into account the information leakage due to DPC. After
considering this leakage effect, the DPC assisted cognitive radio is not a trivial
extension of the interference mitigating CR in [JV09]. Note that here we consider
the weak secrecy constraint instead of the total variation distance constraint as in
the previous section. To have a fair and feasible comparison, we may first consider
Theorem 4.1 with weak secrecy constraint, since the achievable rate in Equation
(4.14) is still valid under a weak secrecy constraint due to the expression in (4.39)
being valid for several secrecy levels where the most stringent level is the total
variation distance. In other terms, a stronger secrecy measure does not come at
an extra cost. We first prove that when T2 uses DPC, T1 cannot use the usual
transmission rate I(V1;Y1) − I(V1;Y2) and the corresponding coding scheme since
this choice of rate cannot guarantee perfect secrecy.

When T2 uses DPC, the original rate I(V1;Y1)−I(V1;Y2) used at T1 cannot
guarantee perfect secrecy.

Proposition 4.2.

Proof. The proof of Proposition 4.2 is given in Appendix 4.C. �

To guarantee the perfect secrecy of primary user’s transmission when T2 exploits
DPC, we may specialize the broadcast channel with confidential messages (BC-CM)
in [LMSY08], i.e., both receivers have their own secret message to be kept unknown
to each other, into the case that only one user requires secret transmission and the
other does not. This specialization is feasible since the latter is a special case
of the former. There we may consider the achievable rate region of the discrete
memoryless channel 2 as

R1 ≤ I(V1;Y1)− I(V1;Y2|V2)− I(V1;V2), (4.22)

R2 ≤ I(V2;Y2)− I(V1;V2). (4.23)

Note that in the original BC-CM model, I(V1;Y2|V2) needs to be subtracted from
R2 additionally. Note also that, even if T1 does not use DPC, the term −I(V1;V2)
must be taken into account as the information leakage due to DPC being used by
T2, the same as in the original BC-CM model.

2For DMCs, the authors in [LMSY08] do not prove the capacity since a tight upper bound is
missing. However for AWGN channels, the capacity can be proved by substituting the Gaussian
signalling into the DMC capacity formula.
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Transmission Model The received signals at U1 and U2 at time t ∈ T2 are given
as

y1(t) = x1(t) + c21x2(t) + n1(t) = x1(t) + c21(v1,r(t) + u2(t) + j2(t)) + n1(t)

(4.24)

=



1 + c21e
−jφ21

√

(1− ρ2)γP
(2)
2

P1



x1(t) + c21(u2(t) + j2(t)) + n1(t),

y2(t) = c22x2(t) + c12x1(t) + n2(t)

=



c22e
−jφ21

√

(1− ρ2)γP
(2)
2

P1
+ c12



x1(t) + c22(u2(t) + j2(t)) + n2(t),

(4.25)

where x2(t) = v1,r(t) + u2(t) + j2(t), v1,r(t) , e−jφ21

√

(1−ρ2)γP
(2)
2

P1
x1(t) is T1’s

signal relayed by T2, j2 ∼ N
(

0, ρ2P
(2)
2

)

is the cooperative jamming term. More

specifically, on the design of the DPC, if we use the original notation in Costa’s
paper [Cos83] we let V2 = U2 + αU ′

1, where

U ′
1 =



c12 + c22e
−jφ21

√

(1− ρ2)γP
(2)
2

P1



V1,

and where V1 = X1, X1 ∼ N(0, P1), U2 ∼ N
(

0, (1− ρ2)(1− γ)P
(2)
2

)

. With this

choice of random variables, V1 is independent of V2, and there is a Markov chain
V1−V2−Y2. Finally in the third phase T2 uses the same signalling as in the previous
scheme, i.e.,

x2(t)
(3) =

√

P
(3)
2,1

P1
e−jφ21x1(t) + j

(3)
2 (t).

The achievable rate region using this CR scheme combined with DPC is given in
the following proposition.
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The achievable rate pair (R1, R2) for the CR with DPC scheme is given by
the region RDPC defined as:

R1 ≤η1R
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, (4.26)

R2 ≤ η2C
(

|c22|2(1− ρ2)(1− γ)P
(2)
2

1 + |c22|2ρ2P (2)
2

)

. (4.27)

Proposition 4.3.

Proof. We refer to Appendix 4.D for the proof of Proposition 4.3. �

4.4.3 Pure Cooperative Jamming

In this section we use a simple cooperative jamming scheme as a benchmark to
compare with the performance of the clean relaying scheme. In particular if the
constraint (4.4) is violated, then the constraint (4.16) cannot be satisfied by relaying
under the assumption that the primary channel is fully loaded. Therefore, we
implement cooperative jamming as follows. Since in this case T2 does not need
to listen and decode w1, the signalling in the new phases 1 and 2 is modified
respectively as

x
(1)
2 (t) = v

(1)
2 (t) + j

(1)
2 (t), and x

(2)
2 (t) = v

(2)
2 (t) + j

(2)
2 (t).

Note that phases 1 and 2 in the cooperative jamming scheme are not aligned to
those in the previous scheme. The durations of these two phases here are to be
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solved according to the optimization problem in Definition 4.1. We parameterize the

power allocated to jamming and T2’s own message transmission as P
(2)
2j = ρ2P

(2)
2 ,

and P2,2 = (1 − ρ2)P
(2)
2 , respectively, where ρ2 ∈ [0, 1] denotes the fraction of the

power used for jamming. In the third phase, we only transmit the jamming signal
as

x
(3)
2 (t) = j

(3)
2 (t). (4.28)

The achievable rate pair (R1, R2) for the CJ scheme is given by the region
RCJ defined as:

R1 <
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η1R
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1 +η2
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, (4.29)

R2 < η2 C
(

|c22|2(1− ρ2)P
(2)
2

1 + |c12|2P1 + |c22|2ρ2P (2)
2

)

. (4.30)

Proposition 4.4.

4.4.4 Interference Neutralization

In this section we consider an interference neutralization (IN) strategy as a trans-
mission scheme for T2. The idea of interference neutralization is to nullify the
interference signal received from T1 at U2. In our scenario, this strategy could po-
tentially yield to two beneficial effects: the leakage of the primary message to the
secondary user is eliminated, while at the same time the quality of the secondary
transmission could be improved since there is no more primary interference. The
signalling in the first phase is the same as for the relaying schemes, since T2 needs
to decode w1 in the first phase. Therefore the constraint (4.4) must be satisfied
and η1 is set as C(P1)/C(|cTT |2P1). In the second phase T2 transmits:

x
(2)
2 (t) = v

(2)
2 (t)− c12

c22
x
(2)
1 (t). (4.31)

The received signals in the second phase are given by:

y
(2)
1 = x

(2)
1 + c21x

(2)
2 + n

(2)
1 , (4.32)

y
(2)
2 = c12x

(2)
1 + c22x

(2)
2 + n

(2)
2 , (4.33)
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which simplifies to

y
(2)
1 =

(

1− c12c21
c22

)

x
(2)
1 + c21v

(2)
2 + n

(2)
1 , (4.34)

y
(2)
2 = c22v

(2)
2 + n

(2)
2 . (4.35)

Note that if |c12| is too large and/or |c22| is too small such that

η2|
c12
c22

|2P1 > P2, (4.36)

then T2 may not have enough power to neutralize the interference and therefore IN
cannot be implemented. Based on this signalling, we obtain easily the achievable
rate region as follows.

The achievable rate pair (R1, R2) for IN is given by the region RIN defined
as:

R1 < η1R
WT
1 + η2 C

(

P1|1− c12c21
c22

|2

1 + |c21|2(P (2)
2 − | c12c22

|2P1)

)

, (4.37)

R2 < η2 C
(

|c22|2
(

P
(2)
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c12
c22

∣
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∣

2

P1

))

. (4.38)

Proposition 4.5.

4.5 Numerical Illustrations

In this section we present the numerical results and related discussions. We will
compare the rate performance of the proposed clean relaying with cooperative jam-
ming, pure cooperative jamming, and the relaying without the additional phase,
with respect to the particular topology of interest. In particular, we are interested
in how the system behaves for different locations of the secondary transmitter. We
will also show how the relaying and time splitting of different strategies are affected
by the relative positions of nodes.

In our simulation, we fix the locations of the primary transmitter T1 and receiver
U1 at the coordinates (0, 0) and (1, 0), respectively. The secondary receiver is fixed
at (1,−1). We assume a path-loss model with path-loss exponent α = 3, i.e.,
cij = d−3

ij . The power constraints at both transmitters are Pmax
1 = Pmax

2 = 10

dB. We scan the parameters (ρ2, ρ3, γ, η1, η2, P
(2)
2 , P

(3)
2 ) over a sufficiently fine grid

and take the maximum achievable rate over all corresponding rates. Note that we
also include power control as a possible strategy for T2; i.e., the transmission power
utilized is not necessarily fixed to its maximum Pmax

2 = 10 dB.
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Figure 4.3: Difference R2(CR)−R2(CJ) depending on the location of T2.

Comparison with Pure Cooperative Jamming In Figure 4.3 we depict the
difference in terms of maximal achievable rates between the clean relaying with
cooperative jamming strategy and the pure cooperative jamming strategy. The
red line represents the coarse boundary under which the clean relaying results in
R2 = 0, since the decodability constraint is not satisfied for T2 located outside this
decodability circle. In the region below the red line, pure CJ is efficient while above
the red line, the pure CJ strategy yields to R2 = 0. As discussed in the previous
chapter, the explanations of this phenomenon are two-fold: first, if T2 is above
this region, pure jamming may degrade the main channel more than Eve’s channel.
Therefore relaying is necessary while jamming is hurtful. Secondly, because T2 is
much closer to U2 than to U1 when T2 is below the red line, the relaying contributes
more to the numerator of the second term in the bracket multiplied by η2 in (4.20),
which degrades the primary user’s secrecy rate. The achievable rates by clean
relaying and CJ are also labeled in the figure by blue and green lines, respectively.
From Figure 4.3 we observe that pure CJ and CR are achieving strictly positive
secondary rates in different regions, and their performance is not comparable for
a fixed location of T2. Thus in the following we restrict our comparison with the
other schemes, namely CR with DPC and IN. This observation also leads to the
idea of an hybrid scheme where T2 either uses one of the strategies where X1’s
knowledge is necessary, or resorts to jamming if X1 is not decodable, i.e., outside
the decodability region.
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Figure 4.4: Illustration of the existence of a region where w1 is decodable by T2.

Clean Relaying: Signalling Parameters In Figure 4.4 we show the relation
between the relative position of T2 to other nodes and the necessary interval η1 for
T2 to successfully decode w1. It is intuitive that when T2 is much further away
from T1, η1 becomes larger. There exists a threshold over which T1 is unable to
successfully decode w1 within a codeword, in which case the relaying scheme can
not be used.

In Figure 4.5 we show the relation between the location of T2 and the time
splitting parameters η3 for T2 to implement clean relaying/cooperative jamming
in the third phase. The figure shows that the third phase, specific to the clean
relaying scheme, is used by the secondary transmitter, which shows the relevance
of considering the CR scheme for our cognitive model. We observe that η3 decreases
with the increasing distance between T2 to T1. One possible explanation to this
observation is that since η1 becomes larger as T2 gets further away from T1, as shown
in Figure 4.4, there is less time allowed for clean relaying to be implemented in the
third phase. The interesting behavior in the middle-left area can be tentatively
explained using the observations from Figures 4.8a and 4.8b. In this particular
area, the third phase is solely for CJ instead of relaying the message, which possibly
explains the difference in behavior as the aim of the third phase is changed.

In Figure 4.6 we depict how the secondary power in the second phase P
(2)
2 is

distributed depending on the location of T2. This transmission power is constituted
of three parts: the power allocated to the primary message, the jamming power,
and the power allocated to the secondary message. According to numerical results
not depicted here we made the following observations:
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(3)
2 in the third phase for the CR scheme depend-

ing on the location of T2.

1. Most of the transmission power used in the second phase is allocated to the

transmission of the secondary message, i.e., the term (1− γ)(1− ρ)P
(2)
2 .

2. No power is allocated to the relaying of the primary message in the second
phase, i.e., γ = 0. Instead the power allocated to relaying is concentrated in
the third phase, as highlighted in Figure 4.8a.

3. There exists a region where some jamming power is allocated, namely the
region inside the decodability circle which is the closest to U2, since CJ is
efficient in this location.

In Figure 4.7 we show how the secondary power in the third phase P
(3)
2 is

distributed depending on the location of T2. By comparing Figure 4.7 with Figure
4.6 we observe that T2 is allocating power to the third phase whenever there is still
power available after the second phase, since we observe some complementarity in
the region of interest between the two plots. However one aspect of the third phase
transmission is not visible in Figure 4.7: the power allocated to jamming in the
lower left part of the figure. This is due to the amount of power needed for CJ in
this area being negligible compared to the power allocated to relaying in the upper
part of the figure.

In order to highlight the existence of an area where jamming is used in the
third phase we represent the power splitting parameter ρ3 for CJ and (1 − ρ3)
for relaying in Figure 4.8. The figure shows that clean relaying of the primary
message is implemented when T2 is between T1 and U1, as intuitively expected,
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Figure 4.8: Power splitting for the third phase for the CR scheme depending on the
location of T2.

while jamming is preferred in the region where T2 is closer to U2. However due to
the decodability constraint on η1, T2 cannot be located in the most efficient position
for CJ, i.e., extremely close to U2.
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relaying depending on the location of T2.

In Figure 4.9 we compare the achievable secondary rates R2(CR) and R2(SP)
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where R2(SP) denotes the rate R2 by the transmission scheme without the third
phase. Since the transmission without the clean relaying phase is a special case
of the multi-phase scheme, we expect therefore the existence of a third phase to
perform at worst the same as without clean phase, and potentially improve the
secondary rate performance. We can observe that clean relaying indeed outperforms
the one without clean phase, especially when T2 is close to U1 and further away
from U2. This is consistent to the intuition in the sense that, when T2 is at such

location, the clean relaying is highly efficient: it will boost the SINR of I(V1;Y
(3)
1 )

much faster than Phase 2 due to T2 is close to U1. Meanwhile the increment on
the SINR of I(V1;Y

(3)
2 ) is kept limited due to T2 being far from U2. Another small

region around the point (0.4, 0.8) shows an improvement compared to the single
phase transmission, which corresponds to the area where T2 implements CJ in the
third phase.

Combining Clean Relaying with DPC We now investigate the improvement
in performance due to the use of DPC in addition to clean relaying with cooperative
jamming by T2. We should first note that, even if an improvement in terms of
achievable rates is to be expected, there is some drawback to the implementation
of DPC. First the rate expression in (4.22) relies on the use of double binning
scheme which is different to the single binning one originally used by T1. Thus
when the secondary user starts to transmit with DPC, there must exist a protocol
to acknowledge the primary user to change the coding scheme accordingly. Further
we consider the weak secrecy constraint instead of the total variation distance; in
other terms, the secrecy requirements for the use of the DPC scheme are lowered
compared to the CR scheme without DPC.

In Figure 4.10 we illustrate the achievable secondary rate for the CR scheme
with DPC while in Figure 4.11 we depict the improvement in performance in terms
of secondary rate obtained by implementing DPC in addition to the CR scheme.
We notice two distinct regions for which DPC improves the performance of the CR
scheme: when T2 is between T1 and U1, and in the area where CJ was used for the
CR scheme. In order to understand the reasons of this increase in performance we
investigate the power and time splitting parameters for the DPC based scheme.

First we compare in Figure 4.12 the importance of the second phase with and
without DPC by depicting the value of η2 for both schemes. We observe that for
the DPC scheme the length of the second phase is higher than for the simple CR
scheme. This difference indicates that the DPC encoding in the second phase yields
to a performance improvement or that the use of a third relaying phase is not crucial
any longer with DPC. The latter reason would explain the decrease of the third
phase length and hence the increase of η2.

In Figure 4.13 we complement the previous observation by showing the powers

P
(2)
2 (DPC) and P

(3)
2 (DPC) used by T2 in the second and third phase, respectively.

The phenomenon is confirmed as most of the transmission power of the secondary
transmitter is allocated to the second phase while some power, albeit at most only
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Figure 4.10: Achievable secondary rate R2(DPC) using CR with DPC depending
on the location of T2.
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Figure 4.11: Difference R2(DPC) − R2(CR) using CR with and without DPC de-
pending on the location of T2.
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Figure 4.12: Comparison of the length of the second phase η2 for the CR scheme
with and without DPC with depending on the location of T2.
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Figure 4.13: Transmission power for the CR scheme with DPC depending on the
location of T2.

20% of the maximum transmission power, is allocated to third phase when T2 is
located close to U1. Before analyzing this efficient power splitting in the second
phase we will look at the power splitting in the third phase in Figure 4.14.

As expected we observe in Figure 4.14 a similar area where some power ρ3P
(3)
2

is allocated to CJ as for the CR scheme without DPC. Combining this observation
with the power splitting from Figure 4.13b we can deduce that relaying in the third
phase is only implemented in a smaller region near U1 compared to the first CR
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scheme.

In Figure 4.15 we represent the power splitting during the second phase. In
particular Figure 4.15a depicts the power allocated to relaying the primary message
while Figure 4.15b shows the power allocated to w2. We see that in contrast to
the CR scheme without DPC, an important fraction of the transmission power is
allocated to relaying w1 thus explaining that the third phase is less used compared
to the CR scheme.

Comparison with Interference Neutralization We now illustrate the perfor-
mance of the IN scheme. First in Figure 4.16 we depict the secondary rate achiev-
able using interference neutralization. We observe two separate regions where IN
achieves strictly positive secondary rates. First when T2 is located close to U2, yet
still in the decodability region since X1 needs to be known by T2 for the implemen-
tation of the scheme, we observe that IN performs well. This is expected since T2

can neutralize the interference caused by X1 transmitted by T1 efficiently. The IN
scheme being efficient when T2 is close to U1 is surprising however and it can be
explained as follows. Since c21 is large for that scenario, the negative part of X1

adding itself to the received signal at U1 becomes large enough so that the ampli-
tude of the received signal in X1, is higher than without the interference caused by
T2. Thus T2 is effectively relaying X1 to U1 in that region.

Finally in Figure 4.17 we compare CR and IN in terms of achievable secondary
rates. We observe that in the region between T1 and U1, CR outperforms IN.
However in the lower part of the plane, IN outperforms CR, which highlights that IN
is more effective than jamming, i.e., that cancelling the signal X1 at U2 is preferable
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Figure 4.15: Power splitting in the second phase for the CR scheme with DPC
depending on the location of T2.
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to exhausting the decoding capabilities of U2 by jamming using Gaussian signals.
However we should note that the IN strategy necessitates a precise knowledge of
the channels’ CSI to be implemented, while the CJ scheme does not rely on the
knowledge of the signal coefficients for its signalling.
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4.6 Conclusions

In this chapter we investigated the cognitive channel introduced in Chapter 3 where
the secondary receiver is a potential eavesdropper with respect to the primary
transmission. To efficiently allow the secondary system to operate simultaneously
with the primary system while leaving the primary user’s secrecy rate unchanged,
we introduced clean relaying combined with cooperative jamming and dirty paper
coding. The main contributions of this chapter can be summarized as follows:

• We introduced the clean relaying scheme for the cognitive radio channel with
a stronger secrecy constraint than the weak secrecy, which generalizes the
results in Chapter 3. Furthermore the model analyzed in this chapter consid-
ered the impact of the message-learning phase at T2 in contrast with the ideal
assumption in Chapter 3. Using the multi-phase clean relaying scheme, we
derived the achievable secrecy rate of the considered channel via specializing
the result from the information spectrum method [BL13].

• We investigated the optimization of the secondary user’s rate under the con-
straint of non-degradation of the primary user’s secrecy rate, over the power
splitting and time splitting arguments.

• We considered several signalling strategies for the secondary transmitter and
in particular we analyzed T2’s achievable rate when dirty paper coding with
clean relaying or interference neutralization is used to compare with the per-
formance of clean relaying with cooperative jamming.

• Finally we illustrated our results through numerical examples based on a
geometrical setup, which emphasized the impact of the node geometry on the
achievable rates and on the optimal power allocation and time splitting of the
secondary transmitter. We also compared the performance of the CR scheme
with the other signalling strategies in our setup.

Our results showed the impact of the primary message-learning phase on the sys-
tem’s performance as well as the role of the third phase for the clean relaying of
the primary message, which confirmed the importance of the study in this chapter.
Furthermore our study demonstrated how the signalling strategies can outperform
each other depending on the relative location of the nodes. We conclude from this
observation that the position of the users must be taken into account for the design
of secure transmissions in cognitive radio networks.
Since secondary networks in CRNs usually consist of more than a single transmitter-
receiver pair, the results of this chapter suggest that the primary network could
choose which secondary transmitter is allowed to access the spectrum, depending
on the users’ location and their impact on the achievable secrecy rates. This leads
to the study in the following chapter, where we will analyze the spectrum sharing
mechanisms for cognitive radio networks with multiple secondary pairs.
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4.A Proof of Theorem 4.1

Proof. The secrecy capacity of a general wiretap channel can be restated as the
following from [BL13, Corollary 1]

Cs = sup
(V1,X1)∈P

(

p-lim inf
n→∞

1

n
i(V1;Y1)− p-lim sup

n→∞

1

n
i(V1;Y2)

)

, (4.39)

where P ,

{

{V1X1}n≥1 : ∀n ∈ N, V1 −X1 −Y1Y2 forms a Markov chain and
1
ncn(X1) ≤ P with probability 1

}

, {cn}n≥1 is a sequence of cost functions with

cn : X → R
+, and

p-lim inf
n→∞

1

n
i(X;Y) , sup

{

α : lim
n→∞

P

(

1

n
i(X;Y) < α

)

= 0

}

,

p-lim sup
n→∞

1

n
i(X;Y) , inf

{

α : lim
n→∞

P

(

1

n
i(X;Y) > α

)

= 0

}

,

and i(X;Y) = ln p(X,Y)
p(X)p(Y) is the information density. Since the whole channel

is memoryless and for each phase the channel is stationary, we can rewrite the
right-hand side (RHS) of (4.39) as follows
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(e)
= sup
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where in

(a) we use the fact that there are three non-overlapping phases and these phases
are memoryless and independent;

(b) we use the memoryless property pY1Y2|V1
(yn1 , y

n
2 |un) = Πn

i=1pY1Y2|X1
(y1i, y2i|x1i)·

pX1|V1
(x1i|ui), and the fact that in each phase the distribution is independent

and identically distributed;

(c) we introduce nk/nk for each phase for the ease of the expression in average
mutual information in the next step;

(d) we apply the law of large numbers: 1
nk

i(V
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(k)
l ) = 1

nk

∑nk

j=1 i(V
(k)
1j ;Y

(k)
lj ) →

I(V
(k)
1 ;Y

(k)
l ) a.s. as nk → ∞, k = {1, 2, 3} and l = {1, 2};

(e) we first define ηk , nk/n, k = {1, 2, 3}, which are fixed. After substituting
ηk, the RHS of (d) is independent of n and we can remove the p- lim inf and
the p- lim sup operations.

For the power constraint, we can follow steps in [BL13, Theorem 3] with discrete
approximations to have the average power constraint. This completes the proof. �

4.B Proof of Proposition 4.1

Proof of Equation (4.20)

Proof. Using (4.14) in Theorem 4.1, the following secrecy rate is achievable for the
primary user

R1 =

3
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(

I(V
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By the selection V1 = X1, we have
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)

. (4.41)

Since T2 is silent during the first phase, the normalized secrecy rate in this phase
is η1R

WT
1 . To derive the normalized secrecy rate in the second phase, after substi-

tuting x2(t) = v2(t)+

√

P
(2)
2,1

P1
e−jφ21x1(t)+ a

(2)
2 (t) where c21 = |c21|ejφ21 into (4.41),



156 Clean Relaying for Cognitive Radio Channels with Secrecy

we have
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Note that in the second term inside the bracket multiplied to η2 on the RHS
of (4.20), the denominator includes only the power from jamming but no power
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from v2(t). This considers the worst case for T1 that U2 can decode w2 and sub-
tract v2(t) first, then the channel between T1 and U2 is not interfered by the
signal v2(t), translated by the upper bounding of the leakage term in the proof
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is immediately obtained from the proof of

the second term by setting γ = 1. �

Proof of Equation (4.21)

Proof. For the secondary user, the power used for the transmission of w2, which

only happens in phase 2, is P
(2)
2,2 = (1−ρ2)(1−γ)P
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2 . In addition, the single letter

expression rate should be scaled by η2 since only phase 2 is used to transmit, then
we have
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The achievable rate region is proven. �

4.C Proof of Proposition 4.2

Proof. To prove Proposition 4.2, we show that there exists a gap which cannot be
made arbitrarily close to zero between the equivocation rate H(w1|Y2) and H(w1).
First we know that

H(w1|Y2)
(a)

≥ H(V1|V2)−H(V1|V2,Y2, w1)− I(V1;Y2|V2)

(b)

≥ (H(V1)− nI(V1;V2))− nε2 − nI(V1;Y2|V2), (4.42)

where (a) is from [LMSY08, (68)]; the expansion of the last two terms in (b)
are from Lemma 2 and Lemma 3 in [LMSY08], respectively. For the original T1,
H(V1) = n(R1 + I(V1;Y2)). After substituting it into (4.42), we have

H(w1|Y2) ≥ n(R1 + I(V1;Y2)− I(V1;V2)− I(V1;Y2|V2)− ε2), (4.43)

which can be further rearranged as

1

n
I(w1;Y2) ≤ I(V1;V2Y2)− I(V1;Y2) + ε2 = I(V1;V2|Y2) + ε2. (4.44)
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Since there is no Markov chain as V1 − Y2 − V2, from [Yeu08, Th. 2.34], we know
that I(V1;V2|Y2) 6= 0. Thus the weak secrecy constraint can not be guaranteed. �

4.D Proof of Proposition 4.3

Proof. We first calculate the first term of (4.22):
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. (4.45)

Then we calculate the summation of the remaining terms:

I(V1;Y2|V2) + I(V1;V2) = I(V1, V2;Y2)− (I(V2;Y2)− I(V1;V2))
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(4.47)

where (4.46) results from the DPC capacity being the same as that of the inter-
ference free channel and here the powers of the signal and the equivalent additive
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noise are |c22|2(1−γ)(1−ρ2)P
(2)
2 and 1+|c22|2ρ2P (2)

2 , respectively. After combining
(4.45) and (4.47), we have (4.26). Finally R2 is obtained from the usual achiev-
able secondary rate expression for DPC transmission. This completes the proof of
Proposition 4.3. �





Chapter 5

Secrecy Games in CRNs with

Multiple Secondary Users

In this chapter we investigate secrecy games in CRNs with multiple secondary pairs
and secrecy constraints. First, we present the list of the chapter’s goals.

• Extend the cognitive channel model from previous chapters to larger
cognitive radio networks with multiple secondary pairs.

• Define the new network model and achievable rate regions when sec-
ondary pairs are allowed to use the channel simultaneously.

• Investigate the spectrum sharing mechanisms using several game the-
oretic models, namely:

1. A single-leader multiple-follower Stackelberg game with T1 as
the leader and the secondary transmitters as followers.

2. A non-cooperative power control game between the secondary
transmitters if they can access the channel simultaneously.

3. An auction between a primary auctioneer and secondary bidders
which allows the primary transmitter to exploit the competitive
interaction between the secondary transmitters.

• Illustrate through numerical simulations the equilibrium outcomes of
the analyzed games and the impact of the competition between the
secondary transmitters on the secrecy performance of the primary
transmission in the cognitive radio network.

Objectives of the Chapter.

161
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Organization of the Chapter This chapter consists of 6 sections. In Sec-
tion 5.1 we motivate the study in this chapter and introduce some background on
auction theory in cognitive radio networks. In Section 5.2 we describe our new
system model. In Section 5.3 we investigate Stackelberg games between primary
and secondary transmitters. In Section 5.4 we analyze the case where multiple sec-
ondary transmitters are allowed to transmit simultaneously through a Nash power
control game. In Section 5.5 we describe and study the interaction between the
primary transmitter and the secondary transmitters as a Vickrey auction. Further
we illustrate numerically the outcome of the auction game and compare it to the
Stackelberg games. Finally Section 5.6 concludes this chapter.

5.1 Introduction and Motivation

Primary Network

Secondary Networks

T1

U1

T2,1

U2,1

T2,2

U2,2

T2,3

U2,3

T2,k

U2,k

Figure 5.1: Cognitive radio network with multiple secondary pairs.

In this chapter we investigate the scenario described in Figure 5.1. As in the
previous chapters, we consider a cognitive radio scenario, however in this chapter,
we look at the novel case where multiple secondary transmitter-receiver pairs wish to
access the spectrum. In this scenario, the primary network can either grant a share
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cKK

c2K,1

c1,2K

Figure 5.2: Equivalent orthogonal cognitive channels with secrecy constraints.

of the spectrum access to one secondary pair, which reduces to the cognitive channel
investigated in the previous chapters, or it can allow multiple secondary pairs to
access the spectrum. In the latter case, the transmission occurs simultaneously. As
in Chapter 3 and Chapter 4 we investigate cooperation for secrecy in cognitive radio
networks where the secondary receiver(s) are treated as potential eavesdropper(s)
with respect to the primary transmission. We now explore the case where any
secondary receiver U2,k which has been allowed to access the spectrum is treated as
a potential eavesdropper with respect to the primary transmission. In this context,
the primary transmitter T1 is assisted by the trustworthy secondary transmitters
T2k’s if the cooperation could improve the secrecy performance, while the secondary
transmitters benefit as they are awarded a share of the spectrum for their own data
transmission. Therefore this chapter is a natural extension of our previous model
to the more general network containing K secondary pairs in the network.
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Figure 5.3: Cognitive channel with secrecy constraints and multiple secondary si-
multaneous transmissions.

5.2 System Model

In this section we define the model investigated throughout this chapter and we
describe the different transmission scenarios considered.

5.2.1 Network Model

In this chapter we investigate the cognitive radio network described in Figure 5.1.
The cognitive radio network consists of the following single antenna nodes: a pri-
mary transmitter T1, a primary receiver U1, and K potential cognitive secondary
transmitter-receiver pairs (T2,k, U2,k), with k ∈ [|1,K|]. T1 wishes to transmit the
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secret message w1, which is intended to U1, and which should be kept secret from
allowed secondary receivers U2,k with k ∈ T where T denotes the subset of sec-
ondary pairs allowed to use the spectrum. Simultaneously, T2,k wants to transmit
the message w2,k (without secrecy constraints) to the secondary receiver U2,k. We
consider in particular two scenarios:

Single Secondary Pair: In this scenario Ss, the primary network only allows one
secondary transmitter-receiver pair to access the spectrum and transmit. This
scenario can therefore be described as K orthogonal cognitive radio channels
with secrecy where only one channel is active. This model is depicted in
Figure 5.2.

Multiple Secondary Pairs: In this scenario Sm, the primary network allows a
subset T ⊆ {1, . . . ,K} to access the spectrum. Therefore several secondary
transmitters are transmitting simultaneously, potentially increasing the ben-
efit of cooperation. However, this leads to more secondary receivers being
allowed to sense the spectrum and listen to the transmissions, thus poten-
tially eavesdropping the primary message. This model is depicted in Figure
5.3.

5.2.2 Channel Model and Notations

In this section we describe the channel model corresponding to either scenario.

Single Secondary Pair Scenario Ss: This corresponds to the cognitive scenario
investigated in the previous chapters. We remind the AWGN channel model

y1 = x1 +
√
c2i,1x2 + n1, (5.1)

y2,i =
√
c1,2ix1 +

√
ciix2 + n2,i, (5.2)

where the noises n1, n2,i are real-valued Gaussian distributed with unit variance,
i.e., n1, n2,i ∼ N (0, 1) and

1

n

n
∑

k=1

|xi,k|2 ≤ Pi for i ∈ {1, 2}. (5.3)

A rate pair (R1, R2,i) for the messages w1 and w2,i is then achievable, if Pe,1 ,

Pr{ŵ1 6= w1} and Pe,2 , Pr{ŵ2,i 6= w2,i} can be made arbitrarily small, while the
message w1 stays secure from the secondary receiver, i.e.:

max{Pe,1, Pe,2} ≤ ε, (5.4a)

I(w1;y2,i) ≤ nε. (5.4b)

When T2,i does not transmit, the maximum achievable rate RWT
1 such that both

the reliability and secrecy conditions are fulfilled is known as the secrecy capacity
of the wiretap channel given by RWT

1 = (C(P1)− C(c1,2iP1))
+
.
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Multiple Secondary Pairs Scenario Sm: In this scenario described in Figure
5.3 the primary and secondary receiver k now receive:

y1 = x1 +
∑

k∈T

√
c2k,1x2k + n1, (5.5)

y2,k =
√
ckkx2k +

√
c1,2kx1 +

∑

j∈T ,j 6=k

√
cjkxj + n2,k. (5.6)

For the message w1 to stay perfectly secure from the secondary receivers, the
constraint (5.4b) now becomes

I(w1;Y2,k) ≤ nε ∀k ∈ T , (5.7)

for every ε > 0 and a sufficiently large n. Finally, without the cognitive transmitters
T2,k the worst-case achievable secrecy rate assuming that all secondary receivers are
potentially eavesdropping is given by:

RWT
1,WC = min

k∈[|1,K|]
(C(P1)− C(c1,2kP1))

+
. (5.8)

5.2.3 Achievable Rate Regions

In this section we give the achievable rate regions depending on the scenario con-
sidered. Throughout this chapter, we assume the underlay scenario of Chapter 3
where the secondary transmitters do not have the knowledge of w1. Thus, only the
cooperative jamming strategy is available at T2,k.

Single Secondary Pair Scenario Ss We parameterize the power fraction de-
voted to jamming by the transmitting user T2,i as P2j,i = ρP2,i, where the parameter
ρ ∈ [0, 1] denotes the fraction of the power used for jamming. The achievable rate
region Rjam,s is given by:

R1 <

(

C
(

P1

1 + c2i,1P2,i

)

− C
(

c1,2iP1

1 + ciiρP2,i

))+

, (5.9)

R2,i < C
(

cii(1− ρ)P2,i

1 + c1,2iP1 + ciiP2,iρ

)

. (5.10)

Multiple Secondary Pairs Scenario Sm Each secondary transmitter T2,k ∈ T
splits its available power P2,k into two parts: P2s,k for its own message w2,k, and
P2j,k for the jamming signal, such that P2j,k = ρkP2,k. In the following proposition
we give the achievable rate region Rjam,m for this scenario.



5.3 Stackelberg Games 167

Leader T1

Follower T2,i

maxU1 = R1 maxU2,i = R2,i − θP2,i

ρSF

P SF
2,i

Figure 5.4: Single secondary user Stackelberg game (SF-SG) between T1 and T2,i.

The achievable rate region Rjam,m is given by:

R1 <






C
(

P1

1 +
∑

k c2k,1P2,k

)

−max
k∈T

C







c1,2kP1

1 + ckkρkP2,k +
∑

j∈T ,j 6=k

cj,kP2,j













+

,

R2,k < C
(

ckk(1− ρk)P2,k

1 + c1,2kP1 + ckkρkP2,k +
∑

j∈T ,j 6=k cj,kP2,j

)

,

where k ∈ T .

Proposition 5.1.

In the following sections we will investigate different types of games between
the primary transmitter T1 and the secondary transmitters T2,k in order to predict
the behavior of the users in this large cognitive radio network.

5.3 Stackelberg Games

In this section we investigate an important Stackelberg game between the primary
transmitter T1 and the secondary transmitters T2,k. The Stackelberg model stud-
ied in this section constitutes the reference scenario upon which we will build the
auction analysis in Section 5.5.

5.3.1 Single Follower Stackelberg Game

The single follower Stackelberg game (SF-SG) is depicted in Figure 5.4. We consider
the case where there is a single secondary transmitter T2,i, which corresponds to the
cognitive channel model investigated in the previous chapters. This case represents
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the communication scenario Ss when T1 has already chosen the secondary pair
according to some mechanism which will be described later on. As discussed in
Chapter 3, a Stackelberg game between T1 and T2,i is a common model to represent
the conditional cooperation between both transmitters. Naturally, we consider the
primary transmitter T1, which is the owner of the spectrum, as the game leader
selling some fraction of its spectrum to T2,i and, thus, T2,i as the follower being
awarded a share of the spectrum for its cooperation.

Secondary Follower Utility T2,i is modeled as a buyer of the resource from the
primary system which wants to maximize its achievable rate minus the cost of the
power:

U2,i(ρ, P2,i) = R2,i − θP2,i,

where θ represents the fixed price per unit power for T2,i who solves:

max
P2,i

U2,i(ρ, P2,i).

Primary Leader Utility In this chapter we consider a different utility function
for T1 compared to Chapter 3, as an emphasis is placed on the secrecy performance
of the primary network, and thus the payment θP2,i from T2,i for the power used
is not taken into account in the primary utility; i.e., we have:

U1(ρ, P2,i) = R1,

and T1 solves:

max
ρ

U1(ρ, P2,i).

In the following theorem we derive the Stackelberg equilibrium of the (SF-SG) game
defined above.
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The Stackelberg equilibrium of the (SF-SG) game is given by (P SF
2,i , ρ

SF),
where

P SF
2,i (ρ) = argmax

P2,i

U2,i(ρ, P2,i),

ρSF = argmax
ρ

U1(ρ, P
SF
2,i ).

The optimal power allocation P SF
2,i is given by

P SF
2,i (ρ) =

[

√

(1− ρ)cSF [(1− ρ)bSFcSF + 2ρaSF]

ρaSF

√
bSF

− (1 + ρ)cSF

ρaSF

]Pmax
2,i

0

,

where aSF , 2cii, bSF , 2 ln 2θ, cSF , 1 + c1,2iP1 and [x]xmax
xmin

,

min{xmin,max{xmax, x}}. The corresponding equilibrium utilities are
(U1(ρ

SF, P SF
2,i (ρ

SF)),U2,i(ρ
SF, P SF

2,i (ρ
SF))) where T1 first computes the op-

timal:
ρSF = argmax

0≤ρ≤1
U1(P

SF
2,i (ρ), ρ).

Finally ρSF is plugged into (5.1) to obtain the optimal power level of the
secondary transmitter P SF

2,i (ρ
SF).

Theorem 5.1.

Proof. Theorem 5.1 is obtained by first noticing that ∀ρ ∈ [0, 1] we have

∂2U2,i(ρ, P2,i)

∂P 2
2,i

< 0.

Therefore the optimal power P SF
2,i (ρ) is found by solving

∂U2,i(ρ, P2,i)

∂P2,i
= 0.

The result in the theorem follows by standard calculations. �
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A condition for the participation of the secondary transmitter T2,i is ob-
tained by noticing that if

∂U2,i(ρ, P2,i = 0)

∂P2,i
< 0 (5.12)

then U2,i is maximized for P2,i = 0; i.e., the secondary transmitter does
not cooperate with the primary transmitter. After calculations we obtain
that Equation (5.12) is equivalent to

cii(1− ρ)− bSFθcSF < 0. (5.13)

We can formulate a quantitative interpretation of this condition. Since
f(ρ, θ) , cii(1 − ρ) − bSFθcSF is a decreasing function in both ρ and θ,
if those parameters are getting too large, then the secondary transmitter
will not participate. This is intuitively reasonable, since if the price of
the power is too high, or if most of the transmitting power is allocated to
jamming, then the secondary transmitter is not interested in cooperating.

Remark 5.1.

Illustration of the (SF-SG) Game In this section we illustrate the single
follower Stackelberg game and its Stackelberg equilibrium using the geometrical
model from previous chapters. The locations of the primary transmitter T1 and
receiver U1 are still fixed at the coordinates (0, 0) and (1, 0), respectively while the
secondary receiver is fixed at (1,−1). We assume a path-loss model with path-loss
exponent α = 3, i.e., cij = d−3

ij . The power constraints at both transmitters are
Pmax
1 = Pmax

2,k = 10 dB. In our example depicted in Figure 5.5, T2,k is located in
(1,−0.8).

In the figure we represent U2(ρ, P2,k) as the red surface while −U1(ρ, P2,k) is the
blue surface. Note that we choose to represent the opposite of the primary utility
for better readability of the figure, as both utilities would overlap otherwise. The
Stackelberg game (SF-SG) can be explained as follows. For each possible strategy
of T1, T2,k finds the transmission power maximizing its utility; i.e., T2,k derives
the function P SF

2,k(ρ). In the figure P SF
2,k(ρ) is depicted as the black line superim-

posed to the secondary utility. T1, as the leader of the (SF-SG) game, is aware
of T2,k’s strategy and chooses accordingly the jamming fraction ρSF maximizing
its own utility (i.e., minimizing −U1(ρ, P

SF
2,k) in Figure 5.5). ρSF is represented as

a green dot in the figure. Finally we note that the utility achieved in the SE of
the (SF-SG) game is given by U2,i(ρ

SF, P SF
2,i (ρ

SF)) which is evaluated numerically

as U2,i(ρ
SF, P SF

2,i (ρ
SF)) ≈ 0.05. We remark that T2,k’s utility in the SE is signifi-

cantly lower than its maximum utility, which is due to T2,k being the follower in
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Figure 5.5: Illustration of the Stackelberg equilibrium mechanism for the (SF-SG)
game.

the Stackelberg game model.

5.3.2 Multi-Follower Stackelberg Game

In this section we explain how to reduce the general framework of multiple secondary
transmitters to the single follower analysis of Section 5.3.1. As described in Figure
5.3, the network can be decoupled into K possible 4-node channels with a single
secondary transmitter. Therefore, T1 can choose among K possible followers. For
every possible follower T2,i, it solves the corresponding (SF-SG) game as described
in Section 5.3.1. T1 then chooses the secondary pair which maximizes its utility U1.

The corresponding multi-follower Stackelberg game (MF-SG) is depicted in Fig-
ure 5.6. Formally the Stackelberg game framework described in Section 5.3.1 is
changed as follows. The SE strategy of T1 is now the jamming power and the
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Leader T1

Follower T2,1 Follower T2,K

ρSF
iMF , i

MF

P SF
2,1 P SF

2,K

. . .

Figure 5.6: Multi-follower Stackelberg game (MF-SG) between T1 and T2,i in Sce-
nario Ss.

indice i of the chosen secondary transmitter, such that

iMF = argmax
i

U1(ρ
SF
i , P SF

2,i ),

where (ρSF
i , P SF

2,i ) are the corresponding Stackelberg equilibrium strategies of the
single-follower Stackelberg game between T1 and T2,i. The primary transmitter SE
utility is then given by U1(ρ

SF
i , P SF

2,i ), while only the secondary transmitter T2,iMF

achieves a non-zero utility U2(ρ
SF
i , P SF

2,i ) among the secondary transmitters.
However, this Stackelberg game approach does not exploit fully the rational and
competitive behavior of the secondary transmitters, as they are maximizing their
utilities in the Stackelberg framework without taking into consideration the other
secondary transmitters’ strategies. This observation leads to the auction scenario
which will be investigated in Section 5.5.

5.4 Power Control Game

In this section we consider the case where the secondary transmitters are allowed
to transmit simultaneously, i.e., Scenario Sm. For this scenario, we recall that the
achievable rate region is given by Proposition 5.1.

5.4.1 Game Definition

We consider the Stackelberg framework from the previous section where T1 is the
leader of the game and the secondary transmitters T2,k are the followers. However
there is now a fundamental difference with the model of the previous section since
the strategy chosen by a secondary transmitter has an influence over the others’
utilities due to the rate expressions in Proposition 5.1. Therefore we are now
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Leader T1

Follower T2,1 Follower T2,K

ρPC
i , T PC

PPC
2,1 PPC

2,K

Non Cooperative Game

Figure 5.7: Multiple-user Stackelberg game between T1 and T2,i in Scenario Sm.

considering a 2-stage game as described in Figure 5.7. This power control game
(PC-G) can be explained by the following steps.

1. For a given ρi and a given set of active secondary transmitters T , each jammer
i determines its transmitter power PPC

2,i according to the Nash equilibrium of
the non-cooperative game between the secondary transmitters.

2. T1, as the leader of the Stackelberg game, accordingly chooses T PC and the
corresponding ρPC

i ’s of the secondary transmitters belonging to that set, i.e.,
with i ∈ T PC, maximizing its utility.

5.4.2 Nash Equilibrium and Power Control Game Outcomes

In this section we establish the solution of the two-stage game between T1 and
the competing secondary transmitters. First, we characterize the outcome of the
(PC-G) game in the following theorem.
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The equilibrium outcome of the power control game (PC-G) between
T1 and the K secondary transmitters T2,i is given by the parameters
(PPC

2,i , ρ
PC
i , T PC), ∀i ∈ T PC such that:

(ρPC
i , T PC) = argmax

ρ
U1(ρ, , T , PPC

2,i (ρi, T )), (5.14)

with T ⊆ {1, . . . ,K} and where PPC
2,i is the Nash equilibrium of the non-

cooperative game between the secondary transmitters, i.e.

U2,i(ρi, T , PPC
2,i ,P

PC
2,k) ≥ U2,i(ρi, T , P2,i,P

PC
2,k), ∀ P2,i, (5.15)

where (ρi, T ) are fixed and PPC
2,k represents the vector of PPC

2,k , ∀k ∈ T with
k 6= i.

Theorem 5.2.

Furthermore we are able to derive the transmission power of the secondary trans-
mitters in the equilibrium outcome as given by the following proposition.

The Nash equilibrium strategy PPC
2,i (ρi, T ) for transmitter i of the non-

cooperative game between the secondary transmitters is given by

PPC
2,i (ρi, T ) =

[

√

(1− ρ)cPC [(1− ρ)bPCcPC + 2ρaPC]

ρaPC

√
bPC

− (1 + ρ)cPC

ρaPC

]Pmax
2,i

0

,

(5.16)
where aPC , 2cii, bPC , 2 ln 2θ, cPC , 1 + c1,2iP1 +

∑

j∈T ,j 6=i cj,iP
PC
2,j .

Proposition 5.2.

Proof. Proposition 5.2 is obtained by solving

PPC
2,i (ρi, T ) ,

∂U2,i(ρi, T )

∂P2,i
= 0,

with P2,j = PPC
2,j , ∀j ∈ T , j 6= i. The proposition follows from standard calcula-

tions. �

5.5 Auction Games

In this section we analyze the spectrum sharing mechanism from an auction per-
spective. In contrast to the Stackelberg game (MF-SG) investigated in Section 5.3,
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the auction game model takes advantage of the competitive interaction between the
secondary users for spectrum access. First we define the Vickrey auction considered
in Section 5.5.1. We then investigate the outcome of the auction in Section 5.5.2.

5.5.1 Vickrey Auction Between T1 and Secondary Bidders

In this section we consider the Vickrey auction defined as follows.

• The auctioneer is the primary transmitter T1, with utility U1 defined
in Equation (5.3.1).

• The bidders are the secondary transmitters T2,k. Bidder k’s strategy
is its transmission power P2,k and its utility is U2,k is defined in
Equation (5.3.1).

• The bids are given by U1(ρ, P2,k) for ρ fixed, with the minimal bid
being set as RWT

1,WC; i.e., the primary transmitter only accepts bids
higher than its worst-case achievable secrecy rate without the partic-
ipation of the secondary transmitters.

Definition 5.1.

Bidders are incentivized to bid their true value for second-price auction such as
Vickrey auctions. This means formally that since truthful bidding is a dominant
strategy, the outcome of Vickrey auctions is the dominant strategy equilibrium
where every participant bids according to its dominant strategy defined as fol-
lows.

A dominant strategy equilibrium of a non cooperative game G =
(N , (Si)i∈N , (Ui)i∈N ) is a strategy profile sDS ∈ S, such that ∀i ∈ N ,
we have:

Ui(s
DS
i , s−i) ≥ Ui(si, s−i) ∀si ∈ Si. (5.17)

Definition 5.2 (Dominant strategy equilibrium).

We denote here the winning bidder of the auction, i.e., the highest bidder, by

k∗(ρ) , arg max
k∈[|1,K|]

U1(ρ, P
DS
2,k (ρ)), (5.18)

for a given ρ. Finally we denote the second highest bid, i.e., the minimum price
that the auction winner has to pay, by

U (2)
1 (ρ) , max

k∈[|1,K|],k 6=k∗
U1(ρ, P

DS
2,k (ρ)). (5.19)
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As explained in [SY13], a winning bidder can possibly have an incentive to bid

a larger amount than U (2)
1 (ρ), if for instance its utility is increased by doing so, and

therefore we allow in the following the winning secondary transmitter to make a
payment higher than the second-best price since this modification does not harm
any user’s utility.

Before analyzing the Vickrey auction defined above, we make the following
remark.

The Vickrey auction model chosen in this section is not the only possible
way to analyze the competitive interaction between secondary transmitters
from an auction perspective. An alternative auction scheme could be based
on traditional ascending clock auctions, where T1 is now changing the price
θ assumed that is fixed in the Vickrey auction. The utility function of T2,k

is still U2,k(ρ, θ, P2,k) = R2,k − θP2,k and the utility function of T1 is now
U1(ρ, θ, P2,k) = R1 − RWT

1 . Note how the wiretap rate is subtracted from
the utility of the auctioneer in order to fix the reserve price such that T1

does not participate in the auction if he does not provide the performance
achieved without the presence of the secondary transmitters.

1. Start with T1 setting θ0 = 0, and solve P ∗
2,k(θ0) =

argmaxP2,k
U2,k(θ0, P2,k), ∀k.

2. If U1(ρ, θ0, P2,k(0)) ≤ 0 (alternatively maxρ U1(ρ, θ0, P2,k(0)) ≤ 0),
the primary transmitter does not participate in the trade.

3. While
∑

k P2,k ≥ Pmax
2 , θt = θt−1 + ε, and continue the auction.

After the auction has finished, T1 is then maximizing its utility over ρ, as
in the Stackelberg framework for the Vickrey auction.

Remark 5.2.

5.5.2 Auction Analysis

In this section we investigate the outcome of the sealed-bid second-price auction
defined in Section 5.5.1. First we derive the secondary transmission power PM

2,k

which maximizes the primary utility in the following proposition.
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Assuming that ρ is fixed, the function U1(ρ, P2,k) is quasi-concave in P2,k

with a maximum for PM
2,k , argmaxP2,k∈[0,Pmax

2,k ] U1(ρ, P2,k) given by

PM
2,k =

[

dM +
√

d2M − (bM − cM )(aM (bMc1,2k − c2k,1) + cM )

bM − cM

]Pmax
2,k

0

,

(5.20)
if the following condition is satisfied:

bMc1,2k
1 + c1,2kP1

>
c2k,1
aM

, (5.21)

with aM , 1 + P1, bM , ckkρ, cM , c1,2kc2k,1, and dM , c1,2k − 1.

Proposition 5.3.

Proof. The proof of Proposition 5.3 is given in Appendix 5.A. �

Using the previous result, we give in the following proposition the dominant
strategy for secondary transmitter T2,k in the dominant strategy equilibrium.

The dominant strategy PDS
2,k (ρ) for secondary transmitter T2,k for a fixed ρ

is given by
PDS
2,k (ρ) = min(PM

2,k, P
max
2,k ). (5.22)

where Pmax
2,k is the maximum available transmission power and PM

2,k is given
in Proposition 5.3.

Proposition 5.4.

Proof. The proof of Proposition 5.4 is obtained immediately from the following
observations:

1. T2,k’s dominant strategy is to maximize its chance of winning the auction,
which is independent from the other transmitter’s bids. Therefore T2,k aims
at maximizing U1; i.e., T2,k bids PM

2,k.

2. The bidding amount must be within the transmission power range; i.e. PDS
2,k (ρ)

is limited by Pmax
2,k .

�
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Finally we give in the following theorem the outcome of the Vickrey auction
between T1 and the secondary transmitters T2,k.

Let T2,k∗(ρ) be the winner of the Vickrey auction between T1 and the sec-
ondary transmitters T2,k. The transmission power P2,k∗(ρ)(ρ) chosen by
T2,k∗(ρ) is given by

PVA
2,k∗(ρ)(ρ) =











P2,r1 if P SF
2,k∗(ρ)(ρ) > P2,r1,

P2,r2 if P SF
2,k∗(ρ)(ρ) < P2,r2,

P SF
2,k∗(ρ)(ρ) if P2,r2 ≤ P SF

2,k∗(ρ)(ρ) ≤ P2,r1,

where we define P2,r1 and P2,r2, with P2,r1 > P2,r2, as the roots of the
second-price constraint:

U1(ρ, P2,k∗(ρ)(ρ)) = U (2)
1 (ρ), (5.23)

and where P SF
2,k∗(ρ)(ρ) is defined in Theorem 5.1.

Finally, as the leader of the resulting Stackelberg game in which the auction
winner is the follower, T1 determines its SE strategy as

ρVA , argmax
ρ

UVA
1 (ρ, PVA

2,k∗(ρ)(ρ)), (5.24)

which leads to its SE utility UVA
1 .

Theorem 5.3.

Proof. Since T2,k∗(ρ) has won the auction, it should provide the auctioneer T1 an
utility at least equal to the second bid, i.e., such that

U1(ρ, P2,k∗(ρ)(ρ)) ≤ U (2)
1 (ρ). (5.25)

Since U1 is quasi-concave in P2 and we assume that the condition (5.21) of Propo-
sition 5.3 is fulfilled, there exists two roots P2,r1 and P2,r2 of Equation (5.23), and
T2,k∗(ρ) can choose any transmission power in the interval [P2,r2, P2,r1]. Therefore
T2,k∗(ρ) maximizes its utility U2,k∗(ρ), under the constraint (5.25). This leads to
three cases due to the quasi-concavity of U2,k∗(ρ) in P2,k∗(ρ), depending on the rela-

tive order between P SF
2,k∗(ρ)(ρ) which is the solution of the maximization of U2,k∗(ρ)

and the roots of Equation (5.23). This concludes the proof of the theorem. �

5.5.3 Numerical Illustrations

In this section we illustrate and compare the multiple follower Stackelberg game
(MF-SG) and the Vickrey auction (VA) using our geometrical model. We are now
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T1 U1

Rg

Rg2

Figure 5.8: Topology of the cognitive radio network: T1 = (0, 0), U1 = (1, 0), and
(T2,k, U2,k) in the rectangle Rg or the rectangle Rg2.

interested in how the system behaves for different locations of the secondary pairs.
In particular, we consider two regions of interest for the possible locations of the
pairs (T2,k, U2,k) as shown in Figure 5.8. The cognitive pairs are located randomly
inside a rectangle, either Rg or Rg2. For each scenario we average our simulation
results over 200 possible (T2,k, U2,k) coordinates. The locations of the primary
transmitter T1 and receiver U1 are still fixed at the coordinates (0, 0) and (1, 0)
while we assume as usual a path-loss model with path-loss exponent α = 3 and
power constraints at both transmitters as Pmax

1 = Pmax
2 = 10 dB.

In Figure 5.9 we show the average primary equilibrium utilities UMF
1 and UVA

1

for the multi-follower Stackelberg game (MF-SG) and the Vickrey auction, respec-
tively, for cognitive pairs in Rg as a function of the number of potential transmitters
T2,k. We observe that the primary utility in the Vickrey auction equilibrium UVA

1

are higher than those in the Stackelberg game UMF
1 , which shows that the auction

exploits the competition between the secondary users to increase the auctioneer’s,
i.e. T1’s utility. Both utilities are increasing functions of the number of potential
secondary transmitters, which is the expected behavior. Moreover by comparing
the slope of the curves, we observe that each increment of the number of users has a
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Figure 5.9: UMF
1 and UVA

1 for cognitive pairs in Rg as a function of the number of
existing secondary transmitters.

bigger impact on the primary utility in the Vickrey auction than in the Stackelberg
game. This is due to secondary users being in direct competition for the Vickrey
auction, which leads to an increment of the bids (and thus, the primary utilities)
for each new potential bidder. On the other hand, adding a new Stackelberg fol-
lower does not influence the other followers’ strategies since the Stackelberg game is
played between T1 and the T2,k’s, which justifies the smaller impact on the primary
equilibrium utility. Finally when the number of secondary transmitter is equal to
1, T2,k simply needs to bid the wiretap rate to win the auction, which explains why
the (MF-SG) game outperforms the Vickrey auction game in this case. We observe
indeed in Figure 5.9 that for 1 secondary transmitter, the primary utility is 0.62
which is the average achievable wiretap rate with U2,k randomly located in Rg.

The previous observations are verified in Figure 5.10 where we show the average
primary equilibrium utilities UMF

1 and UVA
1 , this time for cognitive pairs in Rg2

as a function of the number of potential transmitters T2,k. We note that for this
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Figure 5.10: UMF
1 and UVA

1 for cognitive pairs in Rg2 as a function of the number
of existing secondary transmitters.

region of secondary networks, the primary utilities have higher values than in the
previous case, since the potential eavesdroppers are located further away.
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5.6 Conclusions

In this chapter we extended our cognitive channel model to larger cognitive ra-
dio networks with multiple secondary pairs. Based on this newly defined network
model we investigated several spectrum sharing mechanisms using a game theo-
retic perspective to model the interactions between the secondary transmitters. In
particular we analyzed:

• A single-leader multiple-follower Stackelberg game (MF-SG) with T1 as the
leader and the secondary transmitters as followers.

• A non-cooperative power control game (PC-G) between secondary transmit-
ters accessing the channel simultaneously.

• A Vickrey auction (VA) between a primary auctioneer and secondary bidders
which allows the primary transmitter to exploit the competitive interaction
between the secondary transmitters.

We characterized the game theoretic equilibrium of each game, and we illustrated
how the primary transmitter can exploit the competition between secondary trans-
mitters via the Vickrey auction compared to the (MF-SG) game. Intuitively, we
could have expected the secrecy performance to be negatively affected by the pres-
ence of multiple potential eavesdroppers in the cognitive radio network. Instead,
our results highlight the fact that the primary network can exploit the competition
between secondary users aiming at accessing the spectrum for their transmissions to
increase its secrecy performance, even if the secondary transmitters are potentially
eavesdropping the primary message.

Note that the study in this chapter can be pursued in several promising direc-
tions, such as:

• The use of other game theoretic concepts (e.g., social welfare maximization).

• The use of different auction mechanisms than Vickrey auction for spectrum
sharing, (e.g., a share auction where multiple secondary transmitters can
access the spectrum simultaneously).

• The perspective of cooperative game theory for the optimization of the sec-
ondary users’ strategies.
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5.A Proof of Proposition 5.3

Let aM , 1 + P1, bM , ckkρ, cM , c1,2kc2k,1, and dM , c1,2k − 1 as defined in
Proposition 5.3. First we solve

∂R1

∂P2,k
(P2,k = 0) > 0, (5.26)

with

R1 = C
(

P1

1 + c2k,1P2,k

)

− C
(

c1,2kP1

1 + ckkρP2,k

)

. (5.27)

Solving Equation (5.26) yields to the condition (5.21). Then, assuming the condi-
tion (5.21) is satisfied, we have

PM
2,k , arg max

P2,k∈[0,Pmax
2,k ]

U1(ρ, P2,k) (5.28)

=⇒ PM
2,k ∈ [0, Pmax

2,k ] and
∂R1

∂P2,k
(P2,k = PM

2,k) = 0. (5.29)

Proposition 5.3 follows from solving Equation (5.29), which reduces after stan-
dard calculations to solving a polynomial equation in PM

2,k. This concludes the proof
of the proposition.





Chapter 6

Energy Efficiency Analysis of

Cognitive Radio Channels with

Secrecy

In this chapter we investigate energy efficiency for cognitive radio channels with
secrecy. First, we present the list of the chapter’s goals.

• Introduce the energy efficiency (EE) performance measure for cogni-
tive radio networks with secrecy constraints.

• Investigate the optimal power allocation and power splitting at the
secondary transmitter for our cognitive model to maximize the sec-
ondary EE under secrecy constraints.

• Formulate and analyze an important EE Stackelberg game between
the two transmitters aiming at maximizing their utilities.

• Illustrate the analytical results through our geometrical model high-
lighting the EE performance of the system as well as the role of the
optimization parameters and the impact of the Stackelberg game on
the performance.

Objectives of the Chapter.

Organization of the Chapter This chapter consists of 6 sections. In Section
6.1 we introduce the notion of energy efficiency and we motivate the study of this
chapter. In Section 6.2 we recall our system model and we provide the necessary
definitions for this chapter. In Section 6.3 we investigate and solve the maximization

185
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of the secondary energy efficiency. In Section 6.4 we study a competitive interac-
tion modeled as a Stackelberg game between both transmitters. In Section 6.5 we
illustrate our results through numerical simulations which highlight the optimal pa-
rameters, the impact of the Stackelberg game and the energy efficiency performance
of cooperation for secrecy in CRNs. Section 6.6 concludes this chapter.

6.1 Introduction on Energy Efficiency in Cognitive Radio

Networks

Spectrum efficiency and energy efficiency (EE) are two fundamental issues for wire-
less communication networks. While cognitive radio is a promising paradigm to
tackle the spectrum scarcity problem and thus improve the spectral efficiency of
wireless networks, not much attention had been paid to the optimization of power
consumption in cognitive radio networks until recently. Power consumption opti-
mization, and hence energy efficient communication, is of crucial importance for
CRNs as it reduces the environmental impact while simultaneously cutting deploy-
ment costs necessary to the development of green wireless networks [FJL+13]. The
EE criterion has gained considerable attention lately, as highlighted by the publi-
cation of a recent special issue on energy efficient cognitive radio networks in the
IEEE Communications Magazine [sur14], see references therein.

Several definitions of EE exist in the literature. The most common definition
of the energy efficiency of a communication link is the benefit-cost ratio, where the
benefit is the amount of data that can be reliably transmitted per unit of time
while the cost is the resulting consumed energy per unit of time. It can therefore
be seen as minimizing the energy consumption of the secondary users while guar-
anteeing QoS requirements, such as the secondary data rate R2. An approach to
energy efficient spectrum allocation in cognitive radio ad hoc networks is described
in [YLH10] where the channel access problem is formulated as a joint power-rate
control and channel optimization problem, with the objective to maximize the to-
tal capacity and minimize the power consumption of the system. In [LWM11] the
problem of channel assignment in cognitive radio sensor networks is studied from
an energy efficiency perspective as the sensor networks are energy constrained by
nature. For further references on the spectrum allocation in cognitive radio net-
works with energy efficiency constraints, we refer the interested reader to [TZFS13]
and references therein.

6.2 System Model, Transmission Schemes and Achievable

Rate Regions

In this section we introduce the system model investigated in this chapter and we
remind the achievable rate regions for the considered schemes in our scenario.
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Figure 6.1: Cognitive channel with secrecy constraints.

6.2.1 Network Model

In this chapter we investigate the cognitive radio network defined in Chapter 3 and
depicted in Figure 6.1. We remind the assumptions for the ease of the reader. The
cognitive radio network consists of the following single antenna nodes: a primary
transmitter T1, a cognitive secondary transmitter T2, a primary receiver U1 and
a secondary receiver U2. T1 wishes to transmit the secret message w1, which is
intended to U1, and which should be kept secret from U2, whereas T2 wants to
transmit the message w2 (without secrecy constraints) to the secondary receiver
U2.

6.2.2 Transmission Model and Notations

We consider the following transmission scheme. T1 encodes its message w1 into x1

independently of the encoding at the secondary transmitter. T2 encodes (w1, w2)
into x2. We have:

y1 = x1 +
√
c21x2 + n1,

y2 =
√
c12x1 +

√
c22x2 + n2,

As in the previous chapters, a rate pair (R1, R2) for the messages w1 and w2 is
achievable, if Pe,1 , P{ŵ1 6= w1} and Pe,2 , P{ŵ2 6= w2} can be made arbitrarily
small, while the message w1 stays secure from the secondary receiver, i.e.:

max{Pe,1, Pe,2} ≤ ε, (6.1a)

I(w1;y2) ≤ nε. (6.1b)

When T2 does not transmit, the maximum achievable rate RWT
1 such that both

the reliability and secrecy conditions are fulfilled is known as the secrecy capacity
of the wiretap channel and is given by RWT

1 = (C(P1)− C(c12P1))
+
.
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6.2.3 Transmission Schemes and Achievable Rate Regions

In this section we remind the achievable rate region from Chapter 3 depending on
the transmitting scheme of the secondary transmitter.

Without Knowledge of w1 at T2 This scenario will be our main case of study
throughout the chapter. Only the cooperative jamming strategy is available at
T2 since the secondary transmitter cannot relay w1. We parameterize the power
fraction devoted to jamming as P2j = ρP2, where the parameter ρ ∈ [0, 1] denotes
the fraction of the power used for jamming. The achievable rate region Rjam is
given by:

R1 <

(

C
(

P1

1 + c21P2

)

− C
(

c12P1

1 + c22ρP2

))+

, (6.2)

R2 < C
(

c22(1− ρ)P2

1 + c12P1 + c22P2ρ

)

. (6.3)

With Knowledge of w1 at T2 The secondary transmitter T2 knows the primary
message w1 perfectly in this scenario. This scenario will only be considered for
numerical comparison purposes in Section 6.5, as the intractability of the rate
region makes an analytical optimization of the EE over the transmission parameters
difficult. With the knowledge of w1, T2 is encoding (w1, w2) into x2. In particular
T2 splits its available transmission power P2 into three parts: w2 encoded into V2,
the jamming signal encoded into J2, and w1 is encoded into V1, to be decoded only
by the primary user U1. In other words, we have:

x2(t) = V2(t) + V1(t) + J2(t).

For convenience, we parameterize the power fractions devoted to jamming, re-
laying and own message as P2j = ρP2, P2,1 = γ(1−ρ)P2 and P2,2 = (1−γ)(1−ρ)P2,
respectively. We consider the scheme where w1 is encoded into V1 and independent
of the other Gaussian random variables as considered in Chapter 3, and we refer
the reader to this chapter for further details. The achievable rate region Rrel is
given by:

R1 <

(

C
(

P1 + c21(1− ρ)γP2

1 + c21(1− γ + γρ)P2

)

− C
(

c12P1 + c22(1− ρ)γP2

1 + c22ρP2

))+

, (6.4)

R2 < C
(

c22(1− ρ)(1− γ)P2

1 + c12P1 + c22P2(ρ+ γ − ργ)

)

. (6.5)
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6.3 Optimization of the Secondary Energy Efficiency

In this section we investigate the optimization of the secondary user’s energy ef-
ficiency for the underlay scenario where T2 does not have the knowledge of the
primary message.

6.3.1 Definitions and Optimization Problem

First, we give some necessary definitions for our system study.

We define the energy efficiency of the secondary user as:

EE2 ,
R2

P2 + Pc
,

where Pc denotes the hardware-dissipated power at the secondary trans-
mitter.

Definition 6.1 (Secondary Energy Efficiency).

We then define the optimization problem investigated throughout the chapter.

Considering the rate region Rjam defined by (6.2) and (6.3), we define the
optimization problem PRjam

(EE2) as

PRjam
(EE2) , max

ρ,P2

EE2

s.t. R1 ≥ RWT
1 and P2 ≤ Pmax

2 .

Definition 6.2.

6.3.2 Main Result

In this section we derive our main result, stated in the following theorem.
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There exists a unique power allocation P ⋆
2 and a unique corresponding

power splitting ρ⋆ which are the solution of the optimization problem
PRjam

(EE2), i.e.,

(ρ⋆, P ⋆
2 ) , argmax

ρ,P2

EE2, (6.7)

assuming that the following constraint is satisfied:

c21(1 + c12P1)

c22c12(1 + P1)
< 1. (6.8)

Theorem 6.1.

Proof. The proof of Theorem 6.1 is given in Appendix 6.A. �

We can make the following interesting remark.

We notice that the necessary condition (6.8) (i.e., ρ⋆(0) ∈ [0; 1], see Ap-
pendix 6.A) implies that

c21(1 + c12P1)

c22c12(1 + P1)
< 1 −−−−→

P1→∞
c21
c22

< 1. (6.9)

That is, with unlimited power available at the primary transmitter, the
necessary condition for the existence of an optimal power splitting for the
energy efficiency is to have a better channel from T2 to U2 than to U1 which
is intuitively correct since it means that the jamming is more hurtful to the
eavesdropper than the legitimate receiver of the protected message.

Remark 6.1.

6.3.3 Numerical Evaluation of P ⋆
2

While Theorem 6.1 guarantees the existence of an optimal power allocation P ⋆
2

under certain constraints, it does not provide an efficient way to obtain the opti-
mal value numerically. In this section we introduce an algorithm adapted to this
challenge.

The energy efficiency is defined as in Definition 6.1 by

EE2 =
R2

P2 + Pc
, (6.10)

wherein P2 and Pc denote the transmit power and hardware-dissipated power, re-
spectively. Given the fractional nature of (6.10), it is clear that a key tool in the
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analysis and optimization of energy efficiency is fractional programming, a math-
ematical technique which provides a framework for the optimization of fractional
functions [Sch83]. We give in the following the results from fractional programming
theory which will be used in the numerical simulations.

In its more general form, a fractional problem can be defined as follows.

Let C ⊆ R
n be a convex set and consider the functions, f : C → R

+
0 and

g : C → R
+. A fractional program is the optimization problem







max
x

f(x)

g(x)
s.t. x ∈ C

(6.11)

Definition 6.3.

A fundamental result of fractional programming relates the solution of (6.11) to
the auxiliary function F (λ) = max{f(x)− λg(x) : x ∈ C}.

Consider Problem (6.11) and the auxiliary function F (λ). An x⋆ ∈ C solves
(6.11) if and only if x⋆ = argmax{f(x) − λ⋆g(x) : x ∈ C}, with λ⋆ the
unique zero of F (λ).

Proposition 6.1.

Proof. The result has first been proved in [Jag66, Din67] with additional assump-
tions on f(x) and g(x) and then extended to general fractional programs in [RLV99].

�

Proposition 6.1 implies that we can solve (6.11) by finding the zero of F (λ) and
then solving the associated auxiliary problem. An algorithm to do so is Dinkelbach’s
algorithm [Din67].

Algorithm 1 Dinkelbach’s Algorithm

Set ε > 0; λ = 0;
repeat

x⋆ = argmax{f(x)− λg(x) : x ∈ C}
F = f(x⋆)− λg(x⋆);

λ =
f(x⋆)

g(x⋆)
;

until F ≤ ε
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Leader T1

Follower T2

maxU1 = R1 maxU2 = EE2

ρ

P2

Figure 6.2: Stackelberg game between T1 and T2.

If we assume that f(x) and g(x) are concave and convex, respectively, then
in each iteration we need to solve a convex problem, which means that we can
solve (6.11) by solving a sequence of convex problems. Moreover, it is known that
Dinkelbach’s algorithm converges with a super-linear rate.

6.4 Game Theoretic Analysis: a Stackelberg Game

Perspective

In this section we consider a more realistic cooperation between both transmitters
as a non-cooperative Stackelberg game, represented in Figure 6.2. Indeed since T1

and T2 have their own interests and do not cooperate unconditionally, and T1 is
the legacy owner of the spectrum, the Stackelberg game is a natural approach to
model their competitive interaction.

Definition of the Stackelberg Game

As in the previous section, T2 aims at maximizing its energy efficiency. Therefore
its utility function is defined as

U2(ρ, P2) = EE2, (6.12)

T2 intends to maximize its utility, i.e., to solve the following maximization problem:

max
P2

U2(ρ, P2). (6.13)

However, unlike in the previous section where T1 was satisfied with R1 > RWT
1 ,

in the Stackelberg model, T1 aims at maximizing its achievable secrecy rate by
adapting the jamming power provided by the secondary transmitter. We define its
utility function as

U1(ρ, P2) = R1 − θρP2, (6.14)

where θ represents the cost paid by T1 for the jamming power. We will elaborate
on the role of the penalty −θρP2 in Section 6.5. Similarly, T1 wants to maximize
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its utility; i.e., it wants to solve:

max
ρ

U1(ρ, P2). (6.15)

The SE of the game is then given by

P ∗
2 (ρ) = argmax

P2

U2(ρ, P2), (6.16a)

ρ∗ = argmax
ρ

U1(ρ, P
∗
2 ). (6.16b)

The corresponding equilibrium utilities are (USE
1 (ρ∗, P ∗

2 (ρ
∗)),USE

2 (ρ∗, P ∗
2 (ρ

∗))).
T1, as a leader, sets some value to the parameter ρ, which T2, as a follower, takes

into account. The secondary transmitter then optimizes P2 to maximize its own
utility U2(ρ, P2). As shown in the proof in Appendix 6.A, we have that EE2(ρ, P2)
is a concave function of P2 and therefore, the optimal power as a function of the
jamming power fraction is found by setting the derivative ∂

∂P2
U2(ρ, P2) to zero.

The optimal power allocation is then given by P ∗
2 (ρ). Numerically, we can find the

optimal power allocation P ∗
2 (ρ) using Algorithm 1.

T1 can then compute the optimal jamming fraction ρ∗ maximizing its own utility
function U1(ρ, P

∗
2 ):

ρ∗ = argmax
0≤ρ≤1

U1(ρ, P
∗
2 (ρ)). (6.17)

The optimal jamming fraction ρ∗ is then plugged into P ∗
2 (ρ) to obtain the optimal

power level of the secondary transmitter P ∗
2 (ρ

∗). Thus, a pair (ρ∗, P ∗
2 (ρ

∗)) deter-
mines the Stackelberg equilibrium for the game, i.e., the optimal power allocation
for the secondary user.

6.5 Numerical Results

In this section we present numerical results and related discussions. We will il-
lustrate the energy efficiency and corresponding rate results, as well as the power
splitting and power consumption using a specific topology of interest. In particular,
we are interested in how the system behaves for different locations of the secondary
transmitter. The region of interest for the possible locations of T2 is shrinked com-
pared to the previous chapters as represented in Figure 6.3. From Chapter 3 we
know that CJ performs better when T2 is located close to U2 and therefore we re-
duce the possible locations of T2 to the rectangle REE compared to the illustrative
examples in previous chapters. The locations of the primary transmitter T1 and
receiver U1 are still fixed at the coordinates (0, 0) and (1, 0), respectively while the
secondary receiver is fixed at (1,−1). We assume a path-loss model with path-loss
exponent α = 3, i.e., cij = d−3

ij . The power constraints at both transmitters are
Pmax
1 = Pmax

2 = 10 dB. In every figure in this section the x-axis represents the x
coordinate of T2 inside REE , i.e., varying from x = 0.5 to x = 1.1 while the y-axis
of each plot represents the y coordinate of T2 inside REE , i.e. for y ∈ [−1.1, 0.1].
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Figure 6.3: Topology of the cognitive radio channel: T1 = (0, 0), U1 = (1, 0),
U2 = (1,−1) and T2 in the rectangle REE .
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Figure 6.4: Secondary energy efficiency depending on the position of T2.

First we illustrate the secondary energy efficiency performance of our scheme
in Figure 6.4. A darker coordinate (xT2

, yT2
) in the figure represents a low value

for EE2 while lighter colors represent higher energy efficiencies. We observe, as
expected, that the secondary energy efficiency is the highest for T2 being located
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close to U2. This is due to several reasons.

1. The secondary transmitter needs to use less transmission power when it is
located close to its receiver for its own message. Thus the denominator in the
expression of EE2 is reduced.

2. Similarly R2 is increased when T2 is close to U2, which increases EE2.

3. Jamming is more efficient when the target of the jamming is located closer to
the source of the interference.
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Figure 6.5: Comparison of the energy efficiency EE2 obtained for the optimizations
PRjam

(EE2) and maxR2.

In Figure 6.5 we compare the energy efficiency EE2 obtained for the optimiza-
tions PRjam

(EE2) and when T2 maximizes its achievable rate, i.e., solves maxR2.
For the region located above the blue line, both energy efficiencies are zero. For the
region under this line, we observe that as T2 gets closer to U2, there is a considerable
improvement of the energy efficiency performance when T2 maximizes EE2 instead
of R2, which shows that some power P2 is wasted when T2 aims at maximizing its
rate instead of considering PRjam

(EE2).
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6.5.2 Power Allocation and Power Splitting

1

1 1

5

5 5

1
0

10 10

15
15

20
2030

3
0

50

50
U2

x of T2

y
o
f
T
2

P2(maxR2)
P ∗

2

 

 

0

5

10

15

20

25

30

35

40

45

50

Figure 6.6: Comparison of the power consumption of T2 for the optimizations
PRjam

(EE2) and maxR2.

In Figure 6.6 we illustrate our previous observation by representing the ratio
P2(maxR2)

P⋆
2

of the transmission power of the secondary transmitter used to maximize

R2 over the transmission power maximizing the secondary energy efficiency. We
observe that the largest savings are obtained when T2 is located close to its receiver,
as the power ratio goes up to 50 in an area around U2.

In Figure 6.7 we show the optimal jamming power which maximizes EE2 for
the optimization problem PRjam

(EE2). First, as depicted in the previous figures,
no EE2 > 0 is achievable for locations of T2 in the upper part of the rectangle
REE , which explains the zero power allocated to jamming in that region. Further
we observe that in the relevant region, the power allocated to jamming decreases
as T2 gets closer to U2. This can be explained by two main reasons.

1. The total power consumed by T2 decreases as T2 gets closer to U2 when
PRjam

(EE2) is considered, and thus, even if the power splitting parameters ρ
is kept constant, the total power allocated to CJ is decreased.



6.5 Numerical Results 197

U2

x of T2

y
o
f
T
2

Jamming Power ρ
∗P2

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.7: Optimal power splitting ρ⋆ for PRjam
(EE2).

2. As T2 approaches U2, jamming becomes more efficient, and thus the propor-
tion of jamming needed to efficiently confuse U2 about the primary message
is decreased.

6.5.3 Impact of the Stackelberg Game

In this section we evaluate the influence of the competitive interaction between T1

and T2, modeled as a Stackelberg game, on the energy efficiency performance of
the system. We evaluate first the impact of the game on the primary performance.
Since T1 is the leader of the Stackelberg, and now aims at maximizing its utility
U1 instead of only requiring the constraint R1 ≥ RWT

1 to be satisfied, we expect its
performance to be improved in the Stackelberg game. We first consider the case
where θ = 0. From Equation (6.14) we have U1 = R1 and T1 does not pay any price
for the jamming power. This is therefore the best case scenario for T1 which is the
leader of the Stackelberg game and maximizes its achievable secrecy rate without
any penalty for the jamming power sacrificed by T2.

In Figure 6.8 we plot the difference between the utility USE
1 = RSE

1 of T1 in the
Stackelberg equilibrium and RWT

1 which can be referred to as its utility without
the Stackelberg competition. We observe a large increase of the SE utility USE

1

as T2 gets closer to U2. This is due to the fact that T1 is maximizing its utility
over the jamming power ρ and can thus set a large proportion of the secondary
power to be allocated to jamming as T2 approaches U2 leading to a higher primary
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Figure 6.8: Difference between USE
1 = RSE

1 in the Stackelberg equilibrium and RWT
1 .

utility defined as the secrecy rate. We should expect this to affect the secondary
energy efficiency EE2 in the Stackelberg equilibrium, as the power splitting are
now singularly different than for PRjam

(EE2).

In order to confirm our previous observation, we represent in Figure 6.9 the dif-
ference between the secondary energy efficiency obtained previously for PRjam

(EE2)
and the energy efficiency EESE

2 = USE
2 in the Stackelberg equilibrium. We observe

a large decrease of EE2 in the SE compared to the maximized secondary energy
efficiency. The decrease gets more significant as T2 gets closer to U2. In fact, by
comparing the values of the difference maxEE2 − EESE

2 with maxEE2 in Figure
6.4, we notice that EE2 is almost zero everywhere in the Stackelberg equilibrium,
which is a consequence of T1 being the leader of the game choosing ρ to maximize
its own utility. However this model does not take account the penalty −θρP2 on
the primary utility for the jamming power as θ = 0, i.e., we considered the most
optimistic scenario for T1.

A fairer Stackelberg model is investigated in the following as we consider θ = 0.9.
Due to the penalty introduced for the jamming power, we should expect a decrease
in the utility performance of T1. To verify this expected behavior, we represent in
Figure 6.10 the difference between USE

1 (θ = 0.9) and USE
1 (θ = 0). First we note

that in the upper part of the plane we had USE
1 (θ = 0) = RSE

1 = RWT
1 , i.e., the

achievable secrecy rate in the Stackelberg equilibrium was unchanged and equal to
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Figure 6.9: Difference between EE2 for PRjam
(EE2) and USE

2 , EESE
2 in the

Stackelberg equilibrium.

the wiretap rate. As a consequence, we also have USE
1 (θ = 0.9) = RWT

1 since T1

will not buy any jamming power when it is not for free if it already did not buy
any jamming power when the cost was θ = 0, i.e., for “free”. Therefore in the upper
part of the rectangle REE we have:

USE
1 (θ = 0.9)− USE

1 (θ = 0) = RWT
1 −RWT

1 = 0. (6.18)

In the lower part of the plot we observe that the difference is always negative
which was the predicted behavior. The magnitude of the difference grows as T2

goes further away from U2. A possible explanation of this result is that when T2 is
further away from U2, the “value” of the jamming power decreases as the cooperative
jamming is less efficient. Therefore, since T1 is paying for the jamming power for
a fixed cost θ regardless of the efficiency of jamming, its utility in the Stackelberg
equilibrium decreases as the influence of ρ on R1 decreases since U1(ρ, P2) = R1 −
θρP2. In addition to this explanation, we should also note that since less jamming
power is needed when T2 is close to U2, (see, e.g., Figure 6.7,) then the value of
the penalty −θρP2 decreases in the area around U2 and thus the difference between
USE
1 (θ = 0.9) and USE

1 (θ = 0) is reduced.

Finally we depict in Figure 6.11 the influence of the penalty applied on U1

over the energy efficiency performance of the secondary user. As remarked from
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1 (θ = 0.9) and USE

1 (θ = 0).

combining the observations from Figure 6.4 and Figure 6.9, EE2 = 0 everywhere
in the Stackelberg equilibrium when θ = 0. However when we have θ = 0.9 we
observe that the secondary user’s performance increases as there now exists an area
around U2 for which EE2 > 0 with increasing values as T2 gets closer to U2. By
comparing the numerical values with those in Figure 6.4, we observe that EESE

2

is roughly half of EE2 for PRjam
(EE2), while EE2 increases from around 0 when

θ = 0 to 2.5 for its maximum value.

6.5.4 Comparison with the Overlay Scenario

In order to investigate the impact of message knowledge at T2 in terms of energy
efficiency, we consider here the rate region Rrel defined by (6.4) and (6.5).

1. Maximization of Secondary Energy Efficiency PRrel
(EE2)

max
γ,ρ,P2

EE2

s.t. R1 ≥ RWT
1 and P2 ≤ Pmax

2 .

Interestingly we obtained in our numerical simulations that

max
γ,ρ,P2

EE2(PRrel
(EE2)) = max

ρ,P2

EE2(PRjam
(EE2)), (6.20)
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which means that the energy efficiency performance of the secondary network is not
improved by having knowledge of the message w1 at T2. Furthermore we observed,
as seen, e.g., in Chapter 3, that

max
γ,ρ,P2

R2(PRrel
(R2)) ≥ max

ρ,P2

R2(PRjam
(R2)), (6.21)

which means that while having w1 at T2 benefits the secondary network in terms of
achievable rate, this rate improvement is obtained at the cost of more transmission
power being spent as the optimal energy efficiency EE2 stays unchanged.
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6.6 Conclusions

In this chapter we investigated our cognitive radio scenario with secrecy constraints
from the perspective of energy efficiency, which is a fundamental criterion for the
design of power efficient wireless networks. We investigate and solved the max-
imization of the secondary energy efficiency EE2 under the constraint that the
secrecy rate of the primary user should stay unchanged. Furthermore we studied
the optimization problem using a Stackelberg game model between both transmit-
ters where the primary transmitter aims at maximizing its secrecy rate while the
secondary transmitters utility is the energy efficiency. We illustrated our results
by using our geometrical model, and highlighted with these numerical examples
several aspects of our study, such as

• the energy efficiency performance of the system,

• the optimal parameters and the power savings induced by the energy efficiency
maximization,

• the impact of the Stackelberg game on the primary and the secondary utilities
defined as the secrecy rate and the energy efficiency, respectively,

• the impact of the cost of the jamming power on the Stackelberg equilibrium
outcome.

In previous chapters, we showed that the primary users could benefit from
the cooperation of secondary users in order to improve, or at least preserve, their
secrecy performance while the secondary users achieved positive rates for their own
messages. The results in this chapter show that if the secondary network aims at
maximizing its energy efficiency instead of its achievable rate, i.e., the important
criterion of power consumption is taken into account by T2, then a cooperation
between primary and secondary network is still advantageous to both networks.
Indeed, assuming the secondary users are located close enough to each other, the
secondary network achieves strictly positive energy efficiency while the primary
secrecy rate is kept unchanged; and the secrecy performance is even increased if a
Stackelberg competition is considered between both networks.
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6.A Proof of Theorem 6.1

Proof. Since EE2 is a decreasing function of ρ, we find first the jamming threshold
which satisfies the wiretap constraint, i.e., R1 ≥ RWT

1 . We have

R1 ≥ RWT
1 ⇔ C

(

P1

1 + c21P2

)

− C
(

c12P1

1 + c22ρP2

)

≥ (C(P1)− C(c12P1))
+

⇔ ρ ≥ ρ⋆ ,
c21(1 + c12P1)

c22 (c12(1 + P1)− c21P2(1− c12))
∈ [0; 1]

Defining a ,
(1+c12P1)

c22
, b , c12(1 + P1), and c , c21(1 − c12) with a, b, c > 0 we

have

ρ⋆ =
c21a

b− cP2
(6.22)

R2 = C
(

(1− ρ)P2

a+ P2ρ

)

= C
(−cP 2

2 + (b− c21a)P2

ab− (ac− ac21)P2

)

(6.23)

From (6.22), we have that ρ⋆(P2) ∈ [0; +∞[⇒ P2 ≤ Pmax
2 = b

c .
Furthermore, we notice that ρ⋆(P2) is a positive increasing function of P2 ∈

[0;Pmax
2 ]. If ρ⋆(0) = c21a

b > 1, then the maximization problem is infeasible. There-
fore in the following, we assume that ρ⋆(0) ∈ [0; 1] i.e., b− c21a ≥ 0.

We now solve

ρ∗(P2) = 1 ⇔ P2 =
b− c21a

c
, P thr

2 .

The previous steps of the proof are illustrated in Figure 6.12. We then analyze
the rate expression in (6.23) for P2 ∈ [0;P thr

2 ]. By defining t , b − c21a > 0 and
d , c21c12 > 0, we can analyze equivalently the function defined as

f(P2) =
−cP 2

2 + tP2

b+ dP2
.

We easily calculate that

∂2f(P2)

∂P 2
2

<0, (6.24)

∂f(P2 = 0)

∂P2
> 0, (6.25)

∂f(P2 = P thr
2 )

∂P2
< 0. (6.26)

Therefore f has a unique maximum for P2 ∈ [0;P thr
2 ], attained for (after deriva-

tions)

P opt
2 =

√

bc(bc+ td)− bc

cd
. (6.27)
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Figure 6.12: Illustration of P thr
2 and ρ⋆.

We now come back to our energy efficiency maximization:

max
ρ,P2,R1≥RWT

1

EE2 ⇔ max
ρ=ρ⋆(P2),P2

EE2 ⇔ max
ρ=ρ⋆(P2),P2

R2

P2 + Pe
.

Similarly, we calculate:

∂2EE2

∂P 2
2

= (Pc + P2)
∂2R2

∂P 2
2

< 0, (6.28)

∂EE2(P2 = 0)

∂P2
> 0, (6.29)

∂EE2(P2 = P thr
2 )

∂P2
< 0. (6.30)
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Therefore, there is a unique P ⋆
2 s.t. ∂EE2

∂P2
(P2 = P ⋆

2 ) = 0 and ∂2EE2

∂P 2
2

< 0. Conse-

quently, there exists a unique power allocation and power splitting maximizing the
energy efficiency of the secondary transmitter, assuming Equation (6.8) is satisfied.
This proves the theorem. �





Chapter 7

A Key Agreement Perspective on

Secrecy in Wireless Networks

In this chapter we investigate information theoretic secrecy using key agreement
techniques in wireless networks. We present first the list of the chapter’s goals.

• Motivate the study of the pairwise secret key agreement schemes and
establish the connection with the focus of this thesis, i.e., secure com-
munications in CRNs.

• Derive achievable secret key rate regions for two different key agree-
ment schemes in Gaussian channels using several transmission strate-
gies such as power control and cooperative jamming.

• Analyze the complex interaction between both transmitting users
from a game theoretic perspective using non-cooperative games.

• Illustrate our results to characterize the performance of the key agree-
ment schemes and to evaluate the impact of the game between both
users.

Objectives of the Chapter.

Organization of the Chapter The chapter is organized as follows. In Section
7.1 we introduce the concept of secret key agreement and give motivations to com-
plement the results obtained in this thesis by a study on key agreement schemes
in wireless networks. In Section 7.2 we present the system model and the discrete
memoryless results for the pairwise key agreement over the noisy channel. In Sec-
tion 7.3 we consider Gaussian channels and we derive our main results, i.e., the

207
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achievable rate regions for both schemes in the Gaussian setup and we illustrate
the achievable key rate performance by using both schemes through numerical sim-
ulations. In Section 7.4 we study the interaction between the transmitting users
from a game theoretic approach. We conclude the chapter in Section 7.5.

7.1 Introduction to Secret Key Agreement and Motivation

for CRNs

In this section we introduce the concept of secret key agreement in communication
networks and we explain the motivations behind the study in this chapter under
the scope of the thesis.

A Case for Secret Key Agreement The physical layer approach of exploiting
the inherent randomness of wireless channels to generate secret keys has gained
considerable interest in recent years. One reason for this interest resides in the
information theoretic security level attained by this technique compared to crypto
schemes for which the security level depends on assumptions on the intractability of
mathematical problems. Furthermore usual cryptography techniques rely on secure
distribution of keys through noiseless links, which is not well adapted to decentral-
ized networks. Moreover, generating secret keys at the physical layer provides two
advantages over classical cryptographic methods:

• The keys are already shared during the key agreement process, which solves or
at least simplifies the difficult challenge of key distribution and management
in networks.

• The keys are generated dynamically as users join the network and as channels
vary over time.

In Figure 7.1, adapted from [BB11], we illustrate how information theoretic
secrecy techniques can be integrated into the security architecture of wireless devices
and networks in combination to existing techniques at the above layers. In other
terms, the approach of using the randomness of wireless channels can be deployed in
combination with existing security encryptions. While transmitting secure messages
using secure codes can be viewed as an independent security feature, key-agreement
is a technique which can be combined with the classic cryptographic schemes as
the secret keys generated using the channel transmissions can be passed to above
layers as described in Figure 7.1.

For these reasons we consider in this chapter the information theoretic approach
to secret key agreement/generation as a system aspect complement to the study
in this thesis. We refer the interested reader to the fundamental works [AC93],
[Mau93] and [CN00] for further details on information theoretic models for key
sharing.
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Figure 7.1: Information theoretic secrecy integration into wireless networks’ archi-
tecture. Table adapted from [BB11].

Background on Secret Key Agreement in Wireless Networks In recent
years, the problem of secret key sharing in wireless networks has been investigated
from an information theoretic point of view in different scenarios. Ahlswede and
Csiszár [AC93] and Maurer [Mau93] considered the problem of secret key sharing
in a basic network of three users where two legitimate users intended to share a
secret key in the presence of an eavesdropper. The two legitimate users exploited
source or channel common randomness to share the key where a noiseless public
channel with unlimited capacity is available for communications between the two
legitimate users through which all communications can be overheard by the eaves-
dropper. Thereafter secret key sharing has been investigated in different scenarios
in [CN00], [YN05], [SSAG11], [SSSA12] and [SGS14]. Among these works, [SSSA12]
and [SGS14] consider pairwise key sharing in a network, i.e., each pair of the users
intends to agree on a key hidden from the remaining users. This provides a high
level of security since it facilitates secure communication between each pair of the
users. The pairwise key sharing in the physical layer is a promising technique that
eliminates the need to symmetric key infrastructure and public key infrastructure
which impose high burden to the network and are based on unproven mathemat-
ical assumptions. In [SSSA12], pairwise key sharing is considered in a network of
3 users who access to correlated sources while in [SGS14] pairwise key sharing is
performed through a noisy channel.

Channel Model for Secret Key Agreement Secret key agreement in the
channel model is depicted in Figure 7.2. In addition to the classic channel defined by
the transition probabilities p(y, z|x), there exists a public authenticated channel of
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Figure 7.2: Channel model for secret key agreement.

unlimited capacity. Note that this channel does not provide any additional secrecy
since Eve can intercept all messages transmitted over this channel. The goal for
Alice and Bob is to use their transmission over the noisy channels to agree on a
secret key K. This key could then be used by Alice and Bob e.g., on above layers for
cryptographic applications as explained previously. We define the following secrecy
measures for secret key agreement.

The three concepts for security measures in secret key agreement problems
are reliability, information leakage, and uniformity defined as:

Reliability:
P (n)
e = P{K̂ 6= K},

Information Leakage:
L(n) = I(K;Zn, C),

Uniformity:
U (n) = log(2nR)−H(K),

respectively.

Definition 7.1.

Based on those secrecy measures, we are able to define achievability for secret key
rates.
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A secret key rate R is achievable if

P (n)
e −−−−→

n→∞
0 (Reliability)

1

n
L(n) −−−−→

n→∞
0 (Secrecy)

1

n
U (n) −−−−→

n→∞
0 (Uniformity)

Definition 7.2.

Our Contribution In this chapter we consider two pairwise key sharing schemes
in a 3-user network where the users communicate through a generalized multiple
access channel. In the first scheme, namely pre-generated keys scheme, the channel
inputs are stochastic functions of pre-generated keys. In the second scheme, namely
generalized scheme, the channel inputs are functions of not only pre-generated keys
but also the previous channel outputs. In particular we investigate the important
practical case where the channels between the three users are AWGN channels. We
derive achievable secret key rate regions for both encoding schemes by specifying
the corresponding auxiliary random variables. These new results allow us to design
adapted transmission strategies for Users 1 and 2 to maximize the achievable secret
key rates and give us a good insight on the achievable rates and the transmission
schemes. We propose in particular two different strategies of power splitting, one
based on power control at Users 1 and 2, and the second including a cooperative
jamming part in the input signals. The rate regions of different schemes and power
splitting strategies are compared through numeric examples. Furthermore we con-
sider the interaction between User 1 and User 2 in the pre-generated keys scheme
where both users aim at maximizing their utilities, defined for each of them as
the sum of their own achievable secret key rates. This competitive interaction be-
tween both users is naturally analyzed using a non-cooperative game perspective,
as this tool which analyzes the competitive interaction between selfish players is
particularly adapted to networks with secrecy constraints. We analyze the Nash
equilibrium of the game and we furthermore illustrate our results using numerical
simulations.

Application to Cognitive Radio Networks While the network model in-
vestigated in this chapter is different than the cognitive radio network analyzed
throughout this thesis, we can actually justify that this 3-user network is indeed
particularly relevant to our model of interest. The key agreement setup for the
3-node network investigated in this chapter can be viewed as a canonical example
for larger networks, e.g., cognitive radio networks. For instance, User 1 and User
2 could represent a secondary transmitter/receiver pair (T2, U2) from the previous
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chapters wanting to use the spectrum of a primary user T1 which is represented by
User 3. Thus, they need to agree on a secret key- which can be used as well at
upper layers- with User 1 in order to be allowed to access the spectrum. Moreover,
they agree on a secret key for their own transmission to be hidden from the primary
network, as well as the potential other secondary users due to the broadcast nature
of larger cognitive radio networks. This application highlights the advantages of
key sharing using information theoretic techniques in dynamic networks such as the
cognitive radio networks studied in this thesis.

7.2 Key Agreement Schemes and Main Results

In this section we introduce the system model of the pairwise key sharing in the
general case of discrete memoryless case. In particular, two pairwise key agreement
schemes, namely the pre-generated keys scheme and the generalized scheme are
described along with the achievable secret key rate regions for both schemes. In
both of the schemes, each pair of the three users intends to share a secret key while
keeping it concealed from the remaining user. There is a generalized multiple access
channel with probability distribution PY1,Y2,Y3|X1,X2

, where Users 1 and 2 govern
the inputs X1 and X2 and then the outputs Y1, Y2 and Y3 are received by Users 1,
2, and 3 respectively.

7.2.1 Pre-Generated Keys Scheme

In the pre-generated keys scheme, each of the Users 1 and 2 generates two secret
keys to share with the other two users and sends the required information through
the generalized multiple access channel as shown in Figure 7.3. In this scheme,
secret key sharing is performed as follows:

Step 1: n uses of the generalized multiple access channel: Keys K12 and K13 are
randomly generated by User 1 to be shared with Users 2 and 3, respectively.
Then, the ith channel input X1,i is generated as stochastic function of keys
K12 and K13 by User 1. Similarly, User 2 generates keys K21 and K23, to be
shared with User 1 and 3, respectively, and then X2,i as the ith channel input
for i = 1, 2, ..., n. The outputs Y1,i, Y2,i and Y3,i are then observed by Users
1, 2, and 3, respectively.

Step 2: Decoding of the corresponding keys: User 3 makes estimates K̂13 and K̂23

as a deterministic function of Y n
3 . Also, estimates K̂21 and K̂12 are made by

Users 1 and 2, respectively, as stochastic functions of Y n
1 and Y n

2 .

After these two steps, the key pair K1,2 = (K12,K21) is shared between User l and
User 2, K13 between User 1 and User 3, and K23 between User 2 and User 3. All
the above keys take values in some finite sets. Now, we state the conditions that
should be met in the described secret key sharing framework.
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K̂21 User 1 P (Y1, Y2, Y3|X1, X2) User 2 K̂12

User 3

Xn
1 Y n

2

Y n
1 Xn

2

Y n
3

(K̂13, K̂23)

(K12,K13) (K21,K23)

K1,2 , (K12,K21)

K23 K13

Figure 7.3: Pairwise key sharing over the generalized multiple access channel.

In the pairwise secret key sharing of the proposed model, the rate triple
(R12, R13, R23) is an achievable key rate triple if for every ε > 0 and suffi-
ciently large n, we have:











1
nH(K1,2) =

1
nH(K12,K21) > R12 − ε,

1
nH(K13) > R13 − ε,
1
nH(K23) > R23 − ε

(7.1)















P{(K12,K21) 6= (K̂12,K̂21)} < ε,

P{K13 6= K̂13} < ε,

P{K23 6= K̂23} < ε

(7.2)























1
nI(K12,K21;Y

n
3 ) < ε,

1
nI(K13;X

n
2 , Y

n
2 ) < ε,

1
nI(K23;X

n
1 , Y

n
1 ) < ε

(7.3)

Equations (7.1) mean that the rates R12, R13 and R23 are the rates of
the secret keys between Users 1 and 2, Users 1 and 3, and users 2 and 3,
respectively. Equations (7.2) mean that each user can correctly estimate
the related keys. Equations (7.3) mean that each user effectively has no
information about the remaining users’ secret key.

Definition 7.3.
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The region containing all the achievable secret key rate triples
(R12, R13, R23) is the secret key capacity region.

Definition 7.4.

In the following, we give an achievable secret key rate region for the pre-
generated keys scheme.

We first define the following rates:

r12 = [I(S12;X2, Y2|S23)− I(S12;Y3, S13|S23)]
+, (7.4)

r21 = [I(S21;X1, Y1|S13)− I(S21;Y3, S23|S13)]
+, (7.5)

I12 = I(S12;S21|Y3, S13, S23), (7.6)

r13 = [I(S13;Y3|S23)− I(S13;X2, Y2, S12|S23)]
+, (7.7)

r23 = [I(S23;Y3|S13)− I(S23;X1, Y1, S21|S13)]
+, (7.8)

I3 = I(S13;S23|Y3) (7.9)

In the described setup, the closure of the convex hull of the set of all key
rate triples (R12, R13, R23) that satisfy the following region is achievable
[SGS14]:

R12 ≥ 0, R13 ≥ 0, R23 ≥ 0, (7.10)

R12 ≤ r12+r21 − I12, (7.11)

R13 ≤ r13, (7.12)

R23 ≤ r23, (7.13)

R13 +R23 ≤ r13+r23 − I3, (7.14)

for random variables taking values in finite sets according to
a distribution of the form: p(s12,s13, s21,s23,x1,x2,y1,y2,y3) =
p(s12,s13)p(s21,s23)p(x1|s12,s13)p(x2|s21,s23)p(y1,y2,y3|x1,x2).

Theorem 7.1.

Proof. The proof of Theorem 7.1 is given in [SGS14]. �

7.2.2 Generalized Scheme

In the generalized key sharing scheme, the channel outputs as induced sources are
involved in key generation. In contrast to the pre-generated keys scheme, the chan-
nel outputs are used at Users 1 and 2 as inputs to encoders and hence, the channel
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inputs are functions of not only pre-generated keys but also the previous channel
outputs. We describe the corresponding steps of key sharing in the following.

Step 1: n uses of the generalized multiple access channel: The i-th channel input
X1,i is generated as stochastic function of the previous channel outputs Y i−1

1

by User 1. User 2 similarly generates X2,i for i = 1, 2, ..., n. Subsequently,
the outputs Y1,i, Y2,i and Y3,i are observed by Users 1, 2, and 3, respectively.

Step 2: Decoding of the corresponding keys: User 3 makes estimates K̂13 and K̂23

as a deterministic function of Y n
3 . Also, estimates K̂21 and K̂12 are made by

Users 1 and 2, respectively, as stochastic functions of Xn
1 , Y

n
1 and Xn

2 , Y
n
2 .

After these steps, the key pair K12 is shared between User l and User 2, K13 between
User 1 and User 3, and K23 between User 2 and User 3. All the above keys take
values in some finite sets. In the pairwise secret key sharing of the generalized
scheme, the rate triple (R12, R13, R23) is an achievable key rate triple if Equations
(7.1)-(7.3) in Definition 7.3 are satisfied and the secret key capacity region is defined
the same as in Definition 7.4. In the following, we give an achievable secret key
rate region for the generalized scheme.

We define the following rates:

r12,p = [I(S12;X2, Y2)− I(S12;Y3, S13, S23, T13, T23)]
+, (7.15)

r21,p = [I(S21;X1, Y1)− I(S21;Y3, S13, S23, T13, T23)]
+, (7.16)

I12,p = I(S12;S21|Y3, S13, S23, T13, T23), (7.17)

r13,p = [I(S13;Y3|S23)− I(S13;X2, Y2, S12, T12|S23)]
+, (7.18)

r23,p = [I(S23;Y3|S13)− I(S23;X1, Y1, S21, T21|S13)]
+, (7.19)

I3,p = I(S13;S23|Y3) (7.20)

r12,s = [I(T12;X2, Y2|S12, S21)− I(T12;Y3, S13, S23, T13, T23|S12, S21)]
+, (7.21)

r21,s = [I(T21;X1, Y1|S12, S21)− I(T21;Y3, S13, S23, T13, T23|S12, S21)]
+, (7.22)

I12,s = I(T12;T21|Y3, S13, S23, T13, T23, S12, S21), (7.23)

r13,s = [I(T13;Y3|S13, S23, T23)− I(T13;X2, Y2, S12, T12|S13, S23, T23)]
+, (7.24)

r23,s = [I(T23;Y3|S13, T13, S23)− I(T23;X1, Y1, S21, T21|S13, T13, S23)]
+, (7.25)

I3,s = I(T13;T23|Y3, S13, S23) (7.26)
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In the generalized scheme of the pairwise secret key sharing, all rate
triples in the closure of the convex hull of the set of all key rate triples
(R12, R13, R23) that satisfy the following conditions are achievable:

R12 ≥ 0, R13 ≥ 0, R23 ≥ 0, (7.27)

R12 ≤ [r12,p + r21,p − I12,p]
+ + [r12,s + r21,s − I12,s]

+, (7.28)

R13 ≤ r13,p + r13,s, (7.29)

R23 ≤ r23,p + r23,s, (7.30)

R13 +R23 ≤ [r13,p+r23,p − I3,p]
+ + [r13,s+r23,s − I3,s]

+, (7.31)

for random variables taking values in finite sets according to a dis-
tribution of the form: p(s12,s13, s21,s23, t12,t13, t21,t23,x1,x2,y1,y2,y3) =
p(s12)p(s13)p(s21)p(s23)p(x1|s12,s13)p(x2|s21,s23)p(y1,y2,y3|x1,x2)
p(t12|x1,y1,s12)p(t13|x1,y1, s13)p(t21|x2,y2,s21)p(t23|x2,y2, s23).
and subject to the constraints:

I(T12;X1, Y1|X2, Y2, S12, S21, S23) ≤ I(S12;X2, Y2), (7.32)

I(T13;X1, Y1|Y3, S13, S23, T23) ≤ I(S13;Y3|S23), (7.33)

I(T21;X2, Y2|X1, Y1, S12, S21, S13) ≤ I(S21;X1, Y1), (7.34)

I(T23;X2, Y2|Y3, S13, S23, T13) ≤ I(S23;Y3|S13), (7.35)

I(T13, T23;X1, Y1, X2, Y2|Y3, S13, S23) ≤ I(S13, S23;Y3). (7.36)

Theorem 7.2.

Proof. The proof of Theorem 7.2 is given in [SGS14]. �

The achievability of the rate region in Theorem 7.2 is based on two-stage key
generation; the first parts of the keys are randomly generated and the required in-
formation is sent through the channel as in the pre-generated keys scheme and the
second parts are shared between the users considering the channel outputs as corre-
lated sources. Each individual rate bound in Theorem 7.2 consists of two parts; the
primary part and the secondary part, denoted by subscripts ’p’ and ’s’, respectively.
The primary parts are associated with the pre-generated keys randomly generated
and sent by Users 1 and 2 through the channel and are justified as in Theorem
7.1. The secondary parts are generated by Users 1 and 2 after receiving the chan-
nel outputs. In fact, the received outputs at the users are exploited as induced
sources to generate keys in addition to the pre-generated keys. This procedure is
performed in multiple blocks. At each block, by n uses of the channel, Users 1
and 2 encode the pre-generated keys and send them over the channel and then,
exploiting the channel outputs received at the end of the block, they generate the
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second parts of the keys where the required information is sent over the channel
in the next block. In particular, T12 and T13 are the auxiliary random variables
associated with the secondary keys generated by User 1 to be shared with Users 2
and 3, respectively. Symmetrically, T21 and T23 are the auxiliary random variables
related to the secondary keys generated by User 2 to be shared with Users 1 and
3, respectively.

7.3 Main Results for Gaussian Channels

In this section we describe our Gaussian setup and we then derive the achievable
secret key rate regions for Gaussian channels. We consider AWGN channels in
which the relationships between the channel inputs and outputs are given by

Y1 = X1 +
√
c21X2 +N1,

Y2 =
√
c12X1 +X2 +N2,

Y3 =
√
c13X1 +

√
c23X2 +N3.

The additive noise Ni at user i = 1, 2, 3 is zero-mean unit-variance white Gaussian.
We denote by Pi the transmission power of User i such that E[|Xi|2] ≤ Pi, ∀i ∈
{1, 2}. By standard arguments corresponding to the discrete channel arguments,
the results in Theorem 7.1 and 7.2 can be extended to the Gaussian case. In the
following, we describe how the auxiliary random variables in these theorems are
substituted to obtain the obtain Gaussian rate regions. The key rate regions for
the pre-generated keys scheme and the generalized scheme are derived in Section
7.3.1 and Section 7.3.2, respectively.

7.3.1 Pre-Generated Keys Scheme

We investigate first the pre-generated keys scheme. For this scheme, we consider
two strategies, namely power control and cooperative jamming.

Power Control

User 1 and User 2 transmit

X1 = S12 + S13,

X2 = S21 + S23,

where S12 ∼ N (0, P12), S13 ∼ N (0, P13), S21 ∼ N (0, P21) and S23 ∼ N (0, P23).
Power allocation parameters α and β and power control parameters γ1 and γ2 are
defined as

α ,
P12

P1
, β ,

P21

P2
,

γ1 ,
P1

P
, γ2 ,

P2

P
,
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where P1 and P2 are the consumed powers at Users 1 and 2, respectively, and P is
the fixed available power for each transmitter. Substituting the auxiliary random
variables of Theorem 7.1 as above, we obtain the following result.

The achievable secret key rate region of the pre-generated keys scheme for
the power control strategy is given as:

R12 ≥ 0, R13 ≥ 0, R23 ≥ 0,

R12 ≤ r12 + r21 −
(

C(c13αγ1P )− C
(

c13αγ1P

1 + c23βγ2P

))

,

R13 ≤ r13, R23 ≤ r23,

R13 +R23 ≤ r13 + r23 − C
(

c13(1− α)γ1P

1+c13αγ1P + c23βγ2P

)

+C
(

c13(1− α)γ1P

1+c13αγ1P+c23γ2P

)

where

r12 ,

(

C
(

c12αγ1P

1 + c12(1− α)γ1P

)

− C
(

c13αγ1P

1 + c23βγ2P

))+

,

r21 ,

(

C
(

c12βγ2P

1 + c12(1− β)γ2P

)

− C
(

c23βγ2P

1 + c13αγ1P

))+

,

r13,

(

C
(

c13(1− α)γ1P

1+c13αγ1P+c23βγ2P

)

−C (c12(1−α)γ1P )

)+

,

r23,

(

C
(

c23(1− β)γ2P

1+c23βγ2P+c13αγ1P

)

−C (c12(1−β)γ2P )

)+

.

Theorem 7.3.

Proof. The proof of Theorem 7.3 is included in the proof of Theorem 7.4 in Ap-
pendix 7.A, as the power control scheme is included in the cooperative jamming
scheme, by setting the power allocated to CJ as η1 = η2 = 0. �

Cooperative Jamming

For this strategy, Users 1 and 2 implement cooperative jamming, i.e., they also
transmit the Gaussian jamming signals J1 and J2 to increase the rate of the key
between themselves by confusing the eavesdropping node, i.e., User 3. In fact, there
is a two-way channel between Users 1 and 2 while User 3 acts as an eavesdropper.
Cooperative jamming involves splitting of the transmission power of the transmit-
ters into two parts; the first is allocated to encode the keys with the other two
users and the other part is used as artificial noise to confuse User 3 in order to
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achieve higher key rate with other transmitter. Then, X1 = S12 + S13 + J1 where
S12 ∼ N (0, (1− η1)αP1), S13 ∼ N (0, (1− η1)(1− α)P1) and J1 ∼ N (0, η1P1) and
X2 = S21 +S23 + J2 where S21 ∼ N (0, (1− η2)βP2), S23 ∼ N (0, (1− η2)(1− β)P2)
and J2 ∼ N (0, η2P2).

The achievable secret key rate region of the pre-generated keys scheme for
the cooperative jamming strategy is given as:

R12 ≥ 0, R13 ≥ 0, R23 ≥ 0,

R12 ≤ r12 + r21

−C
(

c13(1− η1)αP1

1 + c13η1P1 + c23η2P2

)

+ C
(

c13(1− η1)αP1

1 + c13η1P1 + c23(η2P2 + (1− η2)βP2)

)

,

(7.37)

R13 ≤ r13,

R23 ≤ r23,

R13 +R23 ≤ r13 + r23

+C
(

c13(1− α)(1− η1)P1

1 + c13gP1(η1, α) + c23P2

)

− C
(

c13(1− α)(1− η1)P1

1 + c13gP1(η1, α) + c23gP2(η2, β)

)

,

(7.38)

where

r12 , C
(

c12(1− η1)αP1

1 + c12gP1
(η1, 1− α)

)

− C
(

c13(1− η1)αP1

1 + c13η1P1 + c23gP2
(η2, β)

)+

,

(7.39)

r21 , C
(

c12(1− η2)βP2

1 + c12gP2
(η2, 1− β)

)

− C
(

c23(1− η2)βP2

1 + c23η2P2 + c13gP1
(η1, α)

)+

,

(7.40)

r13 , C
(

c13(1− α)(1− η1)P1

1 + c13gP1(η1, α) + c23gP2(η2, β)

)

− C
(

c12(1− α)(1− η1)P1

1 + c12η1P1

)+

,

(7.41)

r23 , C
(

c23(1− β)(1− η2)P2

1 + c13gP1(η1, α) + c23gP2(η2, β)

)

− C
(

c12(1− β)(1− η2)P2

1 + c12η2P2

)+

,

(7.42)

in which gPi
(ηi, x) = Pi(ηi + (1− ηi)x) for i ∈ {1, 2}.

Theorem 7.4.
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Figure 7.4: Comparison of the three schemes for User 3 in (0.55, 0) in the R12 = 0
plane.

Proof. The proof of Theorem 7.4 is given in Appendix 7.A. �

7.3.2 Generalized Scheme

In this section we consider the generalized scheme described in Section 7.2.2. For
this scheme, Users 1 and 2 need to implement cooperative jamming since the part
of the power dedicated to cooperative jamming is used as a source of secrecy gen-
eration. Using the main result in Theorem 7.2, we obtain the following achievable
rate region.
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The achievable secret key rate region of the generalized scheme for the
cooperative jamming strategy is given as:

R12 ≥ 0, R13 ≥ 0, R23 ≥ 0,

R12 ≤ r12 + r21 + rs12

−C
(

c13(1− η1)αP1

1 + c13η1P1 + c23η2P2

)

+ C
(

c13(1− η1)αP1

1 + c13η1P1 + c23(gP2
(η2, β))

)

,

R13 ≤ r13,

R23 ≤ r23,

R13 +R23 ≤ r13 + r23

+C
(

c13(1− α)(1− η1)P1

1 + c13gP1
(η1, α) + c23P2

)

− C
(

c13(1− α)(1− η1)P1

1 + c13gP1
(η1, α) + c23gP2

(η2, β)

)

,

where

rs12 = C
(

c12P
′
12η2P2

(c12(gP2(η2, 1− β)) + 1)2 − c12P ′
12η2P2

)

+ C
(

c12P
′
21η1P1

(c12(gP1
(η1, 1− α)) + 1)2 − c12P ′

21η1P1

)

− log

(

P ′
21P

′
12(1 + c23η2P2 + c13η1P1)

det(M)

)

, (7.43)

M ,









P ′
12 0

√
c12c23(1−η2)(1−β)P2P

′
12

c12(gP2
(η2,1−β))+1

0 P ′
21

√
c12c13(1−η1)(1−α)P1P

′
21

c12(gP1
(η1,1−α))+1√

c12c23(1−η2)(1−β)P2P
′
12

c12(gP2
(η2,1−β))+1

√
c12c13(1−η1)(1−α)P1P

′
21

c12(gP1
(η1,1−α))+1 1 + c23η2P2 + c13η1P1









with the power constraints

P ′
12 ≤ (1− η1)αP1(c12(gP2

(η2, 1− β)) + 1)2

(1− η1)αP1(c12(gP2
(η2, 1− β)) + 1) + 1 + c12(gP1

(η1, 1− α))
,

P ′
21 ≤ (1− η2)βP2(c12(gP1

(η1, 1− α)) + 1)2

(1− η2)βP2(c12(gP1
(η1, 1− α)) + 1) + 1 + c12(gP2

(η2, 1− β))
,

and r12, r21, r13, and r23 are given by Equations (7.39), (7.40), (7.41) and
(7.42), respectively.

Theorem 7.5.
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The above rate region is obtained by substituting X1 = S12 + S13 + J1, X2 =
S21 + S23 + J2 and T13 = T23 = ∅ in Theorem 7.2. Users 1 and 2, respectively,
dedicate powers P ′

12 and P ′
21 from the received output powers to the auxiliary

random variables T12 and T21.

Proof. The proof of Theorem 7.5 is given in Appendix 7.B. �

7.3.3 Numerical Illustration

In this section we illustrate how different encoding schemes and power allocation
strategies in Sections 7.3.1 and 7.3.2 affect the key rate region. For this analysis,
two different cases of users’ physical location are considered. First we consider the
case where User 3 is located between the two transmitters, i.e., User 1 and User 2.
Then, we analyze the rate region in the opposite scenario where User 3 is further
away from the two transmitters. We use the path-loss model

√
cij = |hij |=1/dαij ,

where α represents the path-loss exponent and dij is the Euclidian distance between
node i and node j. In our setup, Users 1 and 2 are located, respectively, in (0, 0)
and (1, 0). The maximum transmitting powers are fixed as P1 = P2 = 10 dB.

User 3 between User 1 and User 2

In this case, we assume User 3 is located in (0.55, 0). Since User 3 is located between
User 1 and User 2, we intuitively expect R13 and R23 to be strictly positive while
R12 = 0. For better visibility of the results, we choose to illustrate the achievable
secret key rate region by projecting the 3D rate region into the planes R12 = 0
and R23 = 0 in Figure 7.4 and Figure 7.5, respectively, since depicting the 3D rate
region in an informative way was not possible in a satisfying manner. We also
omit the projection into the R13 = 0 as it provides the same information as the
projection in the R23 = 0 plane. First we observe in Figure 7.4 that in the (R13, R23)
plane, the three encoding schemes and power allocation strategies result in the same
performance, i.e., neither cooperative jamming nor the generalized scheme improves
the rate of the secret keys with User 3. This is expected since in the pre-generated
keys scheme with cooperative jamming, Users 1 and 2 sacrifice a part of power to
increase the rate of the key shared between themselves and not with User 3. For
the generalized scheme, as described in Section 7.3.2, we need to use cooperative
jamming as the power allocation strategy and we choose T13 = T23 = ∅. This
explains why the three rate regions in Figure 7.4 are the same. Figure 7.5 depicts
the projection of the key rate region in R23 = 0 plane. We observe that using the
pre-generated keys scheme with power control results in R12 = 0 which is due to
the fact that User 3 is between Users 1 and 2 and hence, they can not agree on a
secret key hidden from User 3. On the other hand, using cooperative jamming, one
or both of Users 1 and 2 dedicate a part of power to confuse User 3 and therefore,
they can share a secret key even though User 3 is between them. In the generalized
scheme, the part of power dedicated to cooperative jamming increase the rate of
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Figure 7.5: Comparison of the three schemes for User 3 in (0.55, 0) in the R23 = 0
plane.

the secret key between Users 1 and 2 by creating correlation between the channel
outputs at Users 1 and 2.

User 2 between User 1 and User 3 and User 3 in (1.6, 0)

In this case, we assume User 3 is located in (1.6, 0). This case is fundamentally
different than the previous one, since User 2 is now located between User 1 and User
3, and it is expected that no strictly positive R13 can be achieved. Furthermore, the
cooperative jamming strategy in both of the pre-generated keys and the generalized
schemes is aimed at increasing the rate of the key between Users 1 and 2 and hence,
does not increase R13. Thus, in all the three rate regions we have R13 = 0. In Figure
7.6 the 3D-plot is reduced into a 2D-plot in the R13 = 0 plane. It is observed
that there is a significant performance improvement in terms of R12 by applying
the generalized scheme instead of the pre-generated keys scheme. Furthermore,
the figure shows the importance of allocating some power to the transmission of
a jamming signal, since the pre-generated keys scheme with cooperative jamming
outperforms the one with only the power control strategy available.
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Figure 7.6: Comparison of the three schemes for User 3 in (1.6, 0).

7.4 Game Theoretic Analysis with Numerical Illustrations

In this section we consider a non-cooperative game between both transmitting users,
i.e., User 1 and User 2. Due to the similarity of the analysis, we only consider
the pre-generated keys scheme, for which both the power control and cooperative
jamming strategies are investigated. We should note that a similar game theoretical
analysis could be performed for the generalized scheme.

In all scenarios, each of the Users 1 and 2 splits its available power such that
their own total key rate is maximized. To analyze the interaction between the
users, we formally define a non-cooperative game between User 1 and User 2 with
respective utility functions [HNS+12]:

U1 , R12 +R13, (7.44)

U2 , R12 +R23. (7.45)
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The non-cooperative game in strategic form is then formally defined as the
triplet G = (N , (Si)i∈N , (Ui)i∈N ) where:

• N is the set of players. Here, N , {User1,User2}.

• Si is the set of available strategies for player i.

• Ui : S → R is the utility function of User i, with S , S1 × S2. Here
U1 , R12 +R13 and U2 , R12 +R23.

Definition 7.5.

7.4.1 Power Control Game

The set of available strategies for each player is such that S1 , (α, γ1) with
(α, γ1) ∈ [0, 1]2, and S2 , (β, γ2) with (β, γ2) ∈ [0, 1]2. We then define the
Nash equilibrium (NE) of this game, which is the most accepted solution for non-
cooperative games.

The Nash equilibrium of the game GP is given by the strategy profile
((α∗, γ∗

1 ), (β
∗, γ∗

2 )) ∈ SP , such that we have:

U1((α
∗, γ∗

1 ), (β
∗, γ∗

2 )) ≥U1((α, γ1), (β
∗, γ∗

2 )) ∀(α, γ1) ∈ S1,

U2((α
∗, γ∗

1 ), (β
∗, γ∗

2 )) ≥U2((α
∗, γ∗

1 ), (β, γ2)) ∀(β, γ2) ∈ S2.

Definition 7.6.

The Nash equilibrium of the power control game GP is found as follows. For
all P1 ∈ [0, P ] and P2 ∈ [0, P ], we denote (α∗

P1,P2
, β∗

P1,P2
) as the NE of the fixed

power game, i.e., the NE of the subgame where User 1 and User 2 transmit with
respective fixed powers P1 and P2, that is:

α∗
P1,P2

= arg max
α∈[0,1]

U1(α, β
∗
P1,P2

),

β∗
P1,P2

= arg max
β∈[0,1]

U2(α
∗
P1,P2

, β).

Then we define the best response power functions as

P ∗
1 (P2) = arg max

P1∈[0,P ]
U1(α

∗
P1,P2

, β∗
P1,P2

),

P ∗
2 (P1) = arg max

P2∈[0,P ]
U2(α

∗
P1,P2

, β∗
P1,P2

).



226 A Key Agreement Perspective on Secrecy in Wireless Networks

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

β

(u1, u2) for c23, c13 > c12 with (x3, y3) = (0.7, 0)

α
 

u
1
,u

2

u2
u1

α∗(β)

β∗(α)

(u1, u2)NE = (0; 1, 337)

Figure 7.7: Fixed power subgame (x1, y1) = (0, 0), (x2, y2) = (1, 0), P1 = P2 = 10
dB.

The NE of the game GP is then ((α∗, γ∗
1 ), (β

∗, γ∗
2 )) with γ∗

1 ,
P∗

1 (P∗
2 )

P , γ∗
2 ,

P∗
2 (P∗

1 )
P ,

α∗ , α∗
P∗

1 (P∗
2 ),P∗

2 (P∗
1 ) and β∗ , β∗

P∗
1 (P∗

2 ),P∗
2 (P∗

1 ).

In our setup, Users 1, 2 and 3 are located respectively in (0, 0), (1, 0) and
(0.7, 0). We illustrate how to find the Nash equilibrium in Figure 7.8. In the figure,
we represent the NE utility outcomes U1(α

∗
P1,P2

, β∗
P1,P2

) and U2(α
∗
P1,P2

, β∗
P1,P2

) for
all powers (P1, P2) ∈ [0.5, 10]. Note that in all figures in this chapter, the notation
ui is used for the utility of User i.

First, in order to clarify how to find the NE utility outcomes in the subgame
where both users transmit with fixed powers P1 and P2, we illustrate the fixed-
power subgame in Figure 7.7. We choose the transmitting powers as P1 = P2 = 10
dB, i.e., we consider the case without power control at Users 1 and 2. In this
subgame denoted by G, the NE is given by the strategy profile (α∗, β∗) ∈ S, such
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Figure 7.8: Power control game (x1, y1) = (0, 0), (x2, y2) = (1, 0).

that we have:

U1(α
∗, β∗) ≥U1(α, β

∗) ∀α ∈ [0, 1],

U2(α
∗, β∗) ≥U2(α

∗, β) ∀β ∈ [0, 1].

The best response function β∗(α), respectively β∗(α), is represented in red,
respectively blue, in the plane z = 0. We find from the figure that (α∗, β∗) = (0, 0)
which leads to NE utility outcomes (0, 1.337).

The next step is to compute the NE utility outcomes for every possible trans-
mitting powers P1 and P2, as shown in Figure 7.8. We impose a minimal transmit
power of 0.5 (since the grid step for the power allocation is 0.5 in our numeri-
cal simulations) in our example since we want to consider a system model where
both User 1 and User 2 are transmitting, i.e., they cannot be silent. The best
response functions for the powers P ∗

1 (P2), respectively P ∗
1 (P2), is represented in

blue, respectively red, in the plane z = 0. The best response functions cross in
(P ∗

1 (P
∗
2 ), P

∗
2 (P

∗
1 )), which is the NE of the game represented with a green circle.

In Figure 7.8 it is observed that using all the available power (i.e., P1 = P2 = 10)
is a suboptimal strategy in this case, as U1 and U2 are decreasing functions of P1.
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Figure 7.9: Power control game (x1, y1) = (0, 0), (x2, y2) = (1, 0).

Moreover, we observe in Figure 7.8 that (P1, P2) = (0.5, 10) yields to the highest
utilities. Thus (P ∗

1 , P
∗
2 ) = (0.5, 10) is the NE of the game, i.e., (γ∗

1 , γ
∗
2 ) = (0.05, 1)

with NE outcomes (U1,U2)NE = (0.03, 2.22), which is strictly better than without
power control as observed in Figure 7.7. This behavior is in accordance with the
intuition since User 3 is in the middle of the other two users and closer to User 2.

Finally, for completeness, we represent in Figure 7.9 the corresponding util-
ity outcomes region depending on the power allocations parameters α and β for
(P ∗

1 , P
∗
2 ) = (0.5, 10). We observe that α∗ and β∗ are unchanged compared to the

fixed power scenario, i.e., α∗ = β∗ = 0.

7.4.2 Cooperative Jamming Game

Similarly, we could analyze the cooperative jamming (CJ) game where the strategies
of the users are defined by S1,CJ , (α, η1) with (α, η1) ∈ [0, 1]2, and S2,CJ , (β, η2)
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Figure 7.10: Cooperative jamming game (x1, y1) = (0, 0), (x2, y2) = (1, 0).

with (β, η2) ∈ [0, 1]2. For simplicity, we restrict ourselves to an illustration of the
Nash equilibrium of the cooperative jamming game in the same geographical setup
of users as in the power control game in Figure 7.10 where (U1,U2)NE = (1.68, 1.68).
In the Nash equilibrium, User 1 allocates all its available power to cooperative
jamming, while User 2 allocates none of its power to cooperative jamming. We
observe that cooperative jamming leads to higher utilities for User 1, as well as
higher sum rates, in the Nash equilibrium in our setup compared to the power
control solution, at the price of a higher power consumption. It should be noted
that our setup illustrates one particular example of node geometry, and therefore
the NE strategies would be changed depending if the nodes were located differently
in the space.
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7.5 Conclusions

In this chapter after introducing the secret key agreement concept in wireless net-
works and justifying its relevance for the network model considered in this thesis, we
investigated a Gaussian generalized multiple access channel with three users where
each pair of the users intends to share a secret key hidden from the remaining user.
We summarize our contributions:

• We derived achievable secret key rate regions for different coding schemes and
power allocation strategies where the rate regions were compared through
numerical simulations.

• We modeled the competitive interaction between the two transmitting users
as a non-cooperative game, in which both users intend to maximize their
secret key sum rates and we analyzed the Nash equilibrium of this game.

• We illustrated the non-cooperative game through numerical examples and we
also investigated the impact of a power control game on the Nash equilibrium
secret key rates outcomes as well as a cooperative jamming game. In par-
ticular we showed how both strategies can potentially lead to higher utilities
depending on the geometry of the nodes.

Our results show that strictly positive secret key rates are achievable for various
topologies of the 3-node network investigated in this chapter. This network can be
viewed as a canonical example for larger networks, e.g., the cognitive radio network
studied in the thesis where User 1 and User 2 represent the secondary pair (T2, U2)
and the primary transmitter T1 is represented by User 3. T2 and U2 need to
agree with T1 on a secret key, which can additionally be used at the above layers,
in order to be allowed to access the spectrum. Moreover, T2 and U2 agree on a
secret key for their own transmission to be hidden from the primary network, as
well as the other secondary pairs (T2,k, U2,k) if we consider the larger cognitive
radio networks of Chapter 5. Therefore the results in this chapter highlight the
possibility of successfully implementing a key agreement scheme to increase the
secrecy of cognitive radio networks in addition to using the secrecy transmission
schemes investigated in the previous chapters.
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7.A Proof of Theorem 7.4

Proof. We prove the expressions for r12, r13, I12, and I3 in Theorem 7.4. The
expressions of r21 and r23 follow from r12 and r13 by exchanging all subscripts 1
and 2 in the proof.

1. r12: We have r12 = [I(S12;X2, Y2|S23)− I(S12;Y3, S13|S23)]
+.

For the first term:

I(S12;X2, Y2|S23) = I(S12;X2|S23) + I(S12;Y2|S23, X2)

(a)
= I(S12;Y2|S23, X2)

= h(Y2|S23, X2)− h(Y2|S23, X2, S12).

in which (a) is deduced from the random variables’ distributions.

With X2 = S21 + S23 + J2, X1 = S12 + S13 + J1, Y2 =
√
c12X1 + X2 + N2

and Y3 =
√
c13X1 +

√
c23X2 + N3, where S12 ∼ N (0, (1 − η1)αP1), S13 ∼

N (0, (1 − η1)(1 − α)P1), J1 ∼ N (0, η1P1) and S21 ∼ N (0, (1 − η2)βP2),
S23 ∼ N (0, (1− η2)(1− β)P2), J2 ∼ N (0, η2P2) , we have

I(S12;X2, Y2|S23) = h(
√
c12X1 +N2)− h(

√
c12(S13 + J1) +X2 +N2)

= C
(

c12(1− η1)αP1

1 + c12gP1
(η1, 1− α)

)

.

where gPi
(ηi, x) , Pi(ηi + (1− ηi)x).

For the second term:

I(S12;Y3, S13|S23) = I(S12;S13|S23) + I(S12;Y3|S23, S13)

(b)
= I(S12;Y3|S23, S13)

= h(Y3|S23, S13)− h(Y3|S23, S13, S12).

= C
(

c13(1− η1)αP1

1 + c13η1P1 + c23gP2
(η2, β)

)

,

in which (b) is deduced from the random variables’ distributions.

2. I12: We have

I12 = I(S12;S21|Y3, S13, S23)

= I(S12;S21, Y3|S13, S23)− I(S12;Y3|S13, S23)

= I(S12;Y3|S13, S23, S21)− I(S12;Y3|S13, S23)

= h(Y3|S13, S23, S21)− h(Y3|S13, S23, S21, S12)

− (h(Y3|S13, S23)− h(Y3|S13, S23, S12))

= C
(

c13(1− η1)αP1

1 + c13η1P1 + c23η2P2

)

− C
(

c13(1− η1)αP1

1 + c13η1P1 + c23(η2P2 + (1− η2)βP2)

)
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3. r13: We have

r13 = [I(S13;Y3|S23)− I(S13;X2, Y2, S12|S23)]

= [(h(Y3|S23)− h(Y3|S23, S13))

− (h(Y2|S23, X2, S12)− h(Y2|S23, X2, S12, S13))]

= [h(
√
c13X1 +

√
c23(S21 + J2) +N3)

− h(
√
c13(S12 + J1) +

√
c23(S21 + J2) +N3)]

− (h(
√
c12(S13 + J1) +N2)− h(

√
c12J1 +N2)]

= C
(

c13(1− α)(1− η1)P1

1 + c13gP1
(η1, α) + c23gP2

(η2, β)

)

− C
(

c12(1− α)(1− η1)P1

1 + c12η1P1

)

.

4. I3: We have

I3 = I(S13;S23|Y3) = I(S13;S23, Y3)− I(S13;Y3) = I(S13;Y3|S23)− I(S13;Y3)

= h(Y3|S23)− h(Y3|S23, S13)− (h(Y3)− h(Y3|S13))

= C
(

c13(1− α)(1− η1)P1

1 + c13gP1
(η1, α) + c23gP2

(η2, β)

)

− C
(

c13(1− α)(1− η1)P1

1 + c13gP1
(η1, α) + c23P2

)

.

This concludes the proof of Theorem 7.4. Note that the achievable region of
Theorem 7.3 is also proven by canceling the cooperative jamming, i.e., setting
η1 = η2 = 0. �

7.B Proof of Theorem 7.5

Proof. First we notice that since T13 = T23 = ∅, we have immediately r13,s =
r23,s = I3,s = 0. Furthermore we observe that r13,p = r13, r23,p = r23 and I3,p = I3
from the pre-generated keys scheme. Therefore the rate expressions for R13 and
R23 are the same as those in Theorem 7.4.

We need to prove the first inequality for R12. We equivalently show that r12,p+
r21,p − I12,p = r12 + r21 − I12, where r12, r21 and I12 are defined in Theorem 7.1.
Since T13 = T23 = ∅ we have clearly I12,p = I12.

Furthermore, we have:

r12,p = [I(S12;X2, Y2)− I(S12;Y3, S13, S23)]
+

= [I(S12;X2, Y2|S23)− I(S12;Y3, S13|S23)]
+

= r12,

where I(S12;X2, Y2) = I(S12;X2, Y2|S23) due to S12 and S23 being mutually in-
dependent given Y2 and X2 and I(S12;Y3, S13, S23) = I(S12;Y3, S13|S23) due to
chain rule and S12 and S23 being mutually independent. By symmetry, the result
is similar for r21,p and therefore r12,p + r21,p − I12,p = r12 + r21 − I12. We then
replace the random variables in X1 = S12 + S13 + J3 and X2 = S21 + S23 + J2
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with S12 ∼ N (0, (1 − η1)αP1), S13 ∼ N (0, (1 − η1)(1 − α)P1), J1 ∼ N (0, η1P1),
S21 ∼ N (0, (1− η2)βP2), S23 ∼ N (0, (1− η2)(1− β)P2), and J2 ∼ N (0, η2P2).
According to the generalized scheme, User 1 and User 2 compute

Y
′

1 = Y1 −X1 −
√
c21S21 =

√
c21(S23 + J2) +N1 , T12 +D12,

Y
′

2 = Y2 −X2 −
√
c12S12 =

√
c12(S13 + J1) +N2 , T21 +D21,

respectively. The powers P ′
12 and P ′

21 are then allocated for T12 and T21 respectively
while T13 = T23 = ∅. We obtain after manipulations:

I12,s = I(T12;T21|Y3, S13, S23, S12, S21) (7.46)

= log

(

P ′
21P

′
12(1 + c23η2P2 + c13η1P1)

det(M)

)

, (7.47)

and

r12,s = I(T12;X2, Y2|S12, S21)− I(T12;Y3, S13, S23|S12, S21) (7.48)

= C
(

c12P
′
12η2P2

(c12((1− η2)(1− β)P2 + η2P2) + 1)2 − c12P ′
12η2P2

)

, (7.49)

which proves that r12,s+ r21,s− I12,s = rs12 since r21,s is obtained in the same way
as r12,s by symmetry. To conclude the proof of Theorem 7.5, we need to express
the constraint (7.36) in Theorem 7.2. The second, fourth and fifth inequalities dis-
appear since T13 = T23 = ∅. The first inequality becomes the first power constraint
in Theorem 7.5 by expressing the mutual information with the Gaussian random
variable and tediously manipulating the resulting inequality. Finally the fifth in-
equality in (7.36) is equivalent to the second power constraint by symmetry of the
subscripts 1 and 2. This concludes the proof of Theorem 7.5. �





Chapter 8

Conclusions

In this chapter we summarize the main contributions of the thesis in Section 8.1.
We then suggest future promising research directions in Section 8.2.

8.1 Summary of Contributions and Conclusions

In this thesis we studied cooperation between users in cognitive radio networks
to enhance the secrecy of communications in the scenario where the secondary
receiver is treated as potential eavesdropper to the primary transmission. Cooper-
ation between the primary and secondary transmitters was shown to improve the
primary secrecy performance, while the secondary transmitter benefited from using
the spectrum for its own data transmission. We investigated this scenario from
multiple perspectives throughout this thesis. In Figure 8.1 we provide an overview
of the key questions investigated in the thesis and the different methods utilized to
answer those questions using a chronological chart. In addition to this illustrative
representation of our contribution, we summarize each chapter’s contributions in
the following.

Chapter 2: We gave a thorough review of the fundamentals needed for the un-
derstanding of this thesis and we investigated a case study of cooperation for
secrecy in wireless networks which allowed us to motivate the network model
considered in this thesis.

Chapter 3: We introduced and analyzed the cognitive radio channel with secrecy
constraints investigated in this thesis. In particular we derived the achievable
rate regions for the AWGN cognitive radio channel model with and without
primary message knowledge. We formulated and solved three relevant power
allocation problems: the maximization of the primary and the secondary
rates, and the minimization of the transmitting powers. We illustrated our
results through numerical examples based on a geometrical setup, highlighting
the impact of the node geometry on the achievable rates and on the optimal

235
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strategy of the secondary transmitter and compared those results to the game
theoretic interaction between transmitters.

Chapter 4: We introduced the clean relaying scheme for secrecy in cognitive radio
channels, generalizing the results of Chapter 3 in several ways. We derived
the achievable rate region for the multi-phase scheme investigated in this
chapter as well as for other signalling schemes. We then compared the secrecy
performance of the schemes numerically.

Chapter 5: We extended the cognitive channel model from previous chapters to
larger cognitive radio networks with multiple secondary transmitter-receiver
pairs. We investigated spectrum sharing mechanisms using several game the-
oretic models, such as, single-leader multiple-follower Stackelberg games, non-
cooperative power control games, and auction games. We illustrated the equi-
librium outcomes of the analyzed games and the impact of the competitive
interaction between the secondary transmitters through numerical simula-
tions.

Chapter 6: We investigated cognitive radio channels with secrecy from the impor-
tant aspect of energy efficiency. In particular we analyzed the optimal power
allocation and power splitting at the secondary transmitter in terms of en-
ergy efficiency. We compared these results to the outcomes of the Stackelberg
game between the two transmitters aiming at maximizing their utilities.

Chapter 7: We introduced system aspects of secrecy in wireless networks by dis-
cussing secret key agreement in wireless networks. In particular we derived
achievable secret key rate regions for two different key agreement schemes in
Gaussian channels using several transmission strategies such as power control
and cooperative jamming. We then analyzed the interactions between users
from a non-cooperative Nash game perspective.

8.2 Future Research Directions

In this section we first present the main topics of interest for future research. These
topics can be viewed as natural extensions of the work presented in the thesis. We
then discuss several other potential topics of investigation.

MIMO Techniques for Secrecy in Wireless Networks In this thesis we as-
sumed that the users in the networks were equipped with single antenna nodes,
i.e., that they could not benefit from the advantages of multi-antenna transmis-
sion. MIMO communications, such as multi-user MIMO and massive MIMO, have
gained considerable interest in recent years, both within the research community
and within industry. As a consequence of security issues becoming increasingly
important in wireless communications, many works have been focusing in the last
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Figure 8.1: A chart representation of the key questions and the solution concepts
investigated in the thesis.
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Alice Bob

Figure 8.2: Potential helpers and eavesdroppers in a large-scale network.

years in the applications of MIMO techniques to information theoretic secrecy. In
particular, the secrecy capacity of the MIMO wiretap channel has been character-
ized in [KW10], [LS09], [SLU09], and [OH08]. Many powerful tools exist to analyze
the performance of large MIMO communication systems, e.g., large-system analysis
as investigated in [Gir14]. Therefore, a natural extension to the work in this thesis
is the study of MIMO cognitive radio networks, in which the users are equipped
with multiple antennas, and hence can benefit from the advantages of multi-antenna
transmission for secrecy purposes.

Cooperation Against an Active Eavesdropper In this thesis we assumed a
particular attacker model, namely that the eavesdropper was passive in the sys-
tem; i.e., Eve did not attempt with the communications channels for instance via
jamming. This assumption is evidently restrictive and a generalization to an active
eavesdropper model is both of theoretical and practical interest.

Cooperative Game Theory for Networks with Secrecy Constraints In
this thesis we have focused on tools from non-cooperative game theory to analyze
the interaction between the competing transmitters in the system. However another
promising direction is to investigate their competitive interaction from a cooper-
ative game theory perspective, which is especially suitable for the cognitive radio
networks studied throughout the thesis. Coalitional game theory has already been
successfully used as a powerful tool for modeling cooperative behavior in many wire-
less communications applications related to those investigated in this thesis, such as
cognitive radio networks, cooperative communications, and information theoretic
secrecy [SHD+09].



8.2 Future Research Directions 239

Secrecy in a Network of Nodes with Random Topology A fundamental
limitation of the literature in the field of information theoretic secrecy is that it has
mostly considered scenarios with a small number of nodes. Consequently, recent
works have developed a framework based on secrecy graphs to account for large-scale
networks composed of multiple legitimate and eavesdropper nodes, e.g., in [PBW12]
and references therein. Using a similar approach, the cognitive radio networks
investigated in this thesis can be extended to larger networks, consisting of multiple
potential secondary helpers and eavesdroppers, as depicted in Figure 8.2. In this
model, the primary network, or Alice and Bob, try to communicate secretly while
multiple secondary nodes are present in the network and can be viewed as potential
helpers or eavesdroppers due to the broadcast nature of the wireless network. Again,
a game theoretical approach is the natural way to analyze the behavior of these
nodes and coalitional game theory, as discussed in the previous paragraph, could be
used as an analysis tool. This extension would constitute a general framework for
the analysis of the complex interaction between cooperation and secrecy in large
wireless networks with multiple nodes. It would as well generalize the works on
cooperation with an untrusted helper, e.g., in[HY10].

Other Topics of Interest Albeit information theoretic secrecy has been exten-
sively studied in numerous ways in the last years, many questions, both theoretical
and practical, remain open in this area. Multi-user networks with secrecy con-
straints, similar to the cognitive radio networks investigated in this thesis, are of
particular theoretical interest and an overview of the significant amount of possible
research directions for the secrecy of multi-user systems can be found in [LPSS09].
Integration of information theoretic secrecy techniques into the architecture of wire-
less networks also remains an important challenge, as today’s communication net-
works still rely heavily on cryptography-based security implemented at higher lay-
ers; see e.g., [BB11] for a related detailed discussion on practical implementations
of information theoretic secrecy.
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