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Secrecy in Cooperative Relay Broadcast Channels
Ersen Ekrem, Student Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—We investigate the effects of user cooperation on the
secrecy of broadcast channels by considering a cooperative relay
broadcast channel. We show that user cooperation can increase
the achievable secrecy region. We propose an achievable scheme
that combines Marton’s coding scheme for broadcast channels
and Cover and El Gamal’s compress-and-forward scheme for
relay channels. We derive outer bounds for the rate-equivocation
region using auxiliary random variables for single-letterization.
Finally, we consider a Gaussian channel and show that both users
can have positive secrecy rates, which is not possible for scalar
Gaussian broadcast channels without cooperation.

Index Terms—Cooperation, cooperative relay broadcast
channel, information theoretic security, secrecy.

I. INTRODUCTION

T HE open nature of wireless communications facilitates
cooperation by allowing users to exploit the overheard in-

formation to increase achievable rates. However, the same open
nature of wireless communications makes it vulnerable to secu-
rity attacks such as eavesdropping and jamming. In this paper,
we investigate the interaction of these two phenomena, namely
cooperation and secrecy. In particular, we investigate the effects
of cooperation on secrecy.

The eavesdropping attack was first studied from an informa-
tion theoretic point of view by Wyner in [1], where he estab-
lished the secrecy capacity for a single-user degraded wire-tap
channel. Later, Csiszar and Korner [2] studied the general,
not necessarily degraded, single-user eavesdropping channel,
and found the secrecy capacity. More recently, multi-user ver-
sions of the secrecy problem have been considered for various
channel models. [3]–[7] consider multiple-access channels
(MAC), where in [3], [4] the eavesdropper is an external entity,
while in [5]–[7] the users in the MAC act as eavesdroppers on
each other. [8], [9] consider broadcast channels (BCs) where
both receivers want to have secure communication with the
transmitter; in here as well, each receiver of the BC is an eaves-
dropper for the other user. [10]–[16] consider secrecy in relay
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channels, where in [10]–[13], the relay is the eavesdropper,
while in [14], [15] there is an external eavesdropper. In [16], the
relay helps the transmitter to improve its rate while it receives
confidential messages that should be kept hidden from the main
receiver.

In a wireless medium, since all users receive a version of all
signals transmitted, they can cooperate to improve their commu-
nication rates. The simplest example of a cooperative system is
the relay channel [17] where the relay helps increase the com-
munication rate of a single-user channel using its over-heard in-
formation. Multi-user versions of cooperative communication
have been studied more recently. The cooperative MAC is in-
troduced in [18]. In a cooperative MAC, both users overhear a
noisy version of the signal transmitted by the other user, and
transmit in such a way to increase the achievable rates. The co-
operative relay broadcast channel (CRBC) model is introduced
in [19], [20]. In a CRBC, cooperation is done on the receiver
side, where in a BC, one or both of the receivers transmit co-
operative signals to the other receiver to improve the achievable
rates of both users [19]–[21].

Our goal is to study the effects of cooperation on the se-
crecy of multiple users where secrecy refers to simultaneous in-
dividual confidentiality of all users against each other. In our
model, users eavesdrop on each other; there are no external
eavesdroppers. One of the simplest models to study this inter-
action is the CRBC, where there is a single transmitter and two
receivers, and each receiver would like to keep its message se-
cret from the other user; see Figs. 1 and 2. In this model, in
order to incorporate the effects of cooperation, there is either a
single-sided (see Fig. 1) or double-sided (see Fig. 2) coopera-
tive link between the users. For clarity of ideas and simplicity
of presentation, for a major part of this paper, we will assume a
CRBC with a single-sided cooperation link from the first user to
the second user. We will investigate the effects of two-sided co-
operation in Section VIII. Focusing on the single-sided CRBC,
we note that if we remove the cooperation link, our model re-
duces to the BC with confidential messages in [8], [9], and if
we set the rate of the first user to zero, our model reduces to
the relay channel with confidential messages in [10]–[13], and
if we both set the rate of the first user to zero and remove the
cooperation link between the users, our model reduces to the
single-user eavesdropper channel in [1], [2]. Our model is the
simplest model (except perhaps for the “dual” model of coop-
erating transmitters in a MAC with per-user secrecy constraints
[7]) that allows us to study the effects of cooperation (or lack
thereof) of the first user (the transmitting end of the cooperative
link) on its own equivocation rate as well as on the equivocation
rate of the other user (receiving end of the cooperative link).

We note that, in our channel model each user eavesdrops as
well as helps the other user. That is, the users are untrusted but
nonmalicious. There can be such communication scenarios. For
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Fig. 1. Cooperative relay broadcast channel (CRBC) with single-sided coop-
erative link.

Fig. 2. Cooperative relay broadcast channel (CRBC) with a two-sided cooper-
ation link.

instance, a transmitter can broadcast two different contents in-
tended for two different receivers. The transmitter would want
each receiver to decode only the content they paid for (or sub-
scribed to) but be unable to decode the other content they have
not paid for (or not subscribed to). However, since both receivers
are valid members of the transmitter’s network, they have incen-
tive to (or be required to) help each other. Similarly, there can
be military or other organizational networks, where even though
multiple users are valid members of a network (hence are non-
malicious), they may have different clearance levels with respect
to the transmitted information. In this scenario also, users would
want to (or be required to) help each other, but would not be al-
lowed to decode each other’s message.

Our motivation to study this problem in a CRBC setting can
be best explained in a Gaussian example. Imagine a two-user
Gaussian BC. This BC is degraded in one direction, hence both
users cannot have positive secrecy rates simultaneously [1], [8],
[9]. This has motivated [9] to use multiple antennas at the trans-
mitter in order to remove this degradedness in either of the di-
rections and provide positive secrecy rates to both users simulta-
neously. We wish to achieve a similar effect with a single trans-
mitter antenna, by introducing cooperation from one user to the
other. Imagine now a Gaussian CRBC [19], [20] as in Fig. 1,
where user 1 acts as a relay for user 2’s message, i.e., that there
is a cooperative link from user 1 to user 2. Let us assume that in
the underlying BC, user 1 has a better channel. Without the co-
operative link, user 2 cannot have secure communication with
the transmitter. We show that user 1 can transmit cooperative
signals and improve the secrecy rate of user 2. Our main idea
is that user 1 can use a compress-and-forward (CAF) based re-
laying scheme to help user 2, and increase user 2’s rate to a level
which is not decodable by user 1. (This is possible because in the
CAF scheme, user 1 does not decode the message of user 2 to
help, instead, user 1 forms the compressed version of its obser-
vation and sends it to the second user.) Thus, the CAF scheme

improves user 2’s secrecy. Now, let us assume that in the under-
lying BC, user 1 has the worse channel. Without cooperation,
user 1 cannot have secure communication with the transmitter.
We show that user 1 can transmit a jamming signal in the co-
operative channel first to guarantee a positive secrecy rate for
itself assuming it has enough power. This essentially brings the
system to the setting described in the previous case, and now
user 1 can send a cooperative signal to user 2 to help it achieve
a positive secrecy rate as well.

In this paper, we propose an achievable scheme that com-
bines Marton’s coding scheme for BCs [22] and Cover and El
Gamal’s CAF scheme for relay channels [17]. A similar achiev-
able scheme has appeared in [23] which does not consider any
secrecy constraints, hence ours can be viewed as a generaliza-
tion of [23] to a secrecy context. A similar achievable scheme
also appeared in [11]–[13], where CAF is applied to a relay
channel to provide improved secrecy for the main transmitter. A
relay channel can be considered as a special case of the single-
sided CRBC where the rate of the first user is set to zero.

In this paper, we also develop a single-letter outer bound on
the rate-equivocation region; we accomplish singe-letterization
by using tools proposed in [2], namely by determining suitable
auxiliary random variables. Besides this outer bound, for the
second user, that is being helped in the single-sided CRBC, we
develop another single-letter outer bound which depends only
on the channel inputs and outputs.

To visualize the effects of cooperation on secrecy, we con-
sider a Gaussian CRBC and show that both users can have pos-
itive secrecy rates through user cooperation. To obtain positive
secrecy rates for both users, we provide different assignments
for the auxiliary random variables appearing in the achievable
rates. These auxiliary random variable assignments have dirty
paper coding (DPC) interpretations [24]. In addition, we com-
bine jamming and relaying to provide secrecy for both users
when the relaying user is weak. Finally, we consider the CRBC
with a two-sided cooperation link and provide an achievable
scheme for this channel.

II. THE CHANNEL MODEL AND DEFINITIONS

From here until the beginning of Section VIII, we will focus
on a single-sided CRBC, and refer to it simply as CRBC. The
CRBC can be viewed as a relay channel where the transmitter
sends messages both to the relay node and the destination.
Therefore, one of the users, user 1 in our case, in a CRBC
both decodes its own message and also helps the other user. A
CRBC consists of two message sets , , two
input alphabets, one at the transmitter and one at user

, and two output alphabets , , where
the former is for user 1 and the latter is for user 2. The channel
is assumed to be memoryless and its transition probability
distribution is .

A code for this channel consists of two mes-
sage sets as and ,
an encoder at the transmitter with mapping ,
a set of relay functions at user 1,
for , two decoders, one at each user with the map-
pings and . The probability
of error is defined as where
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, . The secrecy
of the users is measured by the equivocation rates which are

and . Since user 1 has its own
channel input, we condition the entropy rate of user 2’s mes-
sages on this channel input.

A rate tuple is said to be achievable if
there exists a code with and

(1)

(2)

III. AN ACHIEVABLE SCHEME

We now provide an achievable scheme which combines
Marton’s coding scheme for BCs [22], the random binning
scheme of [1], [2] for wiretap channels, and Cover and El
Gamal’s CAF scheme for relay channels [17]. A similar
achievable scheme has appeared in [23] without any secrecy
considerations. The corresponding achievable rate-equivoca-
tion region is given by the following theorem.

Theorem 1: The rate tuples satisfying

(3)

(4)

(5)

(6)

(7)

(8)

(9)

are achievable for any distribution of the form

(10)

subject to the constraint

(11)

This theorem is a special case of Theorem 4 and obtained from
the latter by setting . Therefore, we will omit the proof
of Theorem 1 here and will provide the proof of Theorem 4 in
Appendix IV. In (7) and (9), is the positivity operator, i.e.,

.

In the achievable scheme given in Theorem 1, the transmitter
uses a coding scheme that blends Marton’s coding scheme
and the random binning scheme of [1], [2]. Intuitively, the
transmitter divides each user’s message into two parts as the
confidential and nonconfidential parts, where the confidential
part needs to be transmitted in perfect secrecy whereas there is

no secrecy constraint on the nonconfidential part. The division
of each message into two parts forms the basis of the random
binning scheme used in [1], [2] to provide confidentiality.
In particular, the nonconfidential message can be viewed as
the necessary randomness to protect the confidential mes-
sage. The transmitter encodes all these messages by using
Marton’s coding scheme, where the messages of one user,
say user 1, are first encoded by using a standard single-user
codebook, and the messages of the other user, say user 2, are
encoded by using Gelfand–Pinsker’s scheme [25]. While using
Gelfand–Pinsker’s scheme [25] for user 2’s messages, the
knowledge of user 1’s codeword is exploited to improve the
rate of user 2. Furthermore, to enlarge the achievable region, the
transmitter can reverse the order of encoding, i.e., first encode
user 2’s messages, next encode user 1’s messages by using the
knowledge of user 2’s codeword, and also use time-sharing
between the two possible encoding orders. In the achievable
scheme given in Theorem 1, user 1 first decodes its own mes-
sage, and next uses the CAF scheme to help user 2, i.e., forms a
compressed version of its own observation and sends it to user
2. However, there are slight differences between the CAF used
in the achievable scheme given in Theorem 1 and the original
form of the CAF scheme in [17]. These differences originate
from the secrecy concerns in our model, and are outlined in the
following remark.

Remark 1: We note that both the form of the probability dis-
tribution in (10) and the constraint in (11) in Theorem 1 are
somewhat different than those of the classical CAF scheme in
[17]. First, we condition the distribution of on to prevent
the compressed version of to leak any additional informa-
tion regarding user 1’s message on top of what user 2 already
has through its own observation. The constraint in (11) also re-
flects this concern. Similar constraints on the distribution of
and on the compression rate have appeared in [23], where these
modifications are not due to secrecy constraints contrary to here.
In [23], these are imposed to obtain higher rates for user 2 by
removing user 1’s private message from the compressed signal,
whereas here, they are imposed not to let leak any additional
information regarding user 1’s message. Moreover, if we let
user 1 compress its observation without erasing its own message
from the observation, i.e., if we change the conditional distribu-
tion of to , we can recover the constraint in [17]
(see (29)–(31) in [23]).

Remark 2: If we disable the assistance of user 1 to user 2
by setting , the channel model reduces to the BC
with secrecy constraints, and the achievable equivocation region
becomes

(12)

(13)

where we require the Markov chain .
This result was derived in [9].

Remark 3: If we disable both cooperation between receivers
by setting , and also the confidential messages
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sent to user 1 by setting , the channel model reduces to
the single-user eavesdropper channel, and the achievable equiv-
ocation rate for the second user becomes

(14)

and the Markov chain is required by the
probability distribution in (10). This is exactly the secrecy ca-
pacity of the single-user eavesdropper channel given in [2].

Remark 4: If we disable the confidential messages sent to
user 1 by setting , the channel model reduces to a relay
channel with secrecy constraints, and the achievable equivoca-
tion rate for the second user becomes

(15)

subject to

(16)

and the corresponding joint distribution reduces to
. Further, if we

make the potentially suboptimal selection of , the
corresponding achievable secrecy rate and the constraint
coincide with their counterparts found in [11], [13] for the
relay channel.

Remark 5: By comparing the equivocation rates of the users
in (7) and (9) and the equivocation rates of the users in the corre-
sponding BC given in (12) and (13), we observe that the equivo-
cation rate of user 1 may decrease depending on the information
contained in and the equivocation rate of user 2 may increase
depending on the channel conditions.

Remark 6: We will show in the next section, where we de-
velop outer bounds for the rate-equivocation region, that if the
channel of user 2 is degraded with respect to the channel of user
1 then (see Remark 8), where degradedness is defined
through the Markov chain . Here, we show,
as an interesting evaluation, that this achievable scheme cannot
yield any positive secrecy rates in this case, as expected

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

where in (19), we used the fact that and are in-
dependent, i.e., , in (22), we used
the Markov chain which implies

, and in (24), we used the Markov
chain which is due to the as-
sumed degradedness.

IV. AN OUTER BOUND

We now provide an outer bound for the rate-equivocation re-
gion. Our first outer bound in Theorem 2 uses auxiliary random
variables. Next, in Theorem 3, we provide a simpler outer bound
for user 2 using only the channel inputs and outputs, without em-
ploying any auxiliary random variables.

Theorem 2: The rate-equivocation region of the CRBC lies
in the union of the following rate tuples1:

(25)

(26)

(27)

(28)

where

(29)

(30)

(31)

(32)

where the union is taken over all joint distributions satisfying
the Markov chain

(33)

The proof of this theorem is given in Appendix I.
The outer bounds on the equivocation rates given in Theorem

2 are reminiscent of the outer bound for the secrecy capacity of
the discrete memoryless wiretap channel obtained in [2]. While
the outer bound in [2] is tight for the wiretap channel, the outer
bounds here for the CRBC are generally not tight. However, our
outer bounds can be interpreted by referring to the outer bound
in [2]. For example, user 1’s equivocation rate is bounded by the
minimum of three terms, see (27), where the first term, see (29),
can be viewed as an outer bound for the secrecy capacity of the
wiretap channel between the transmitter, user 1 (main receiver)
and user 2 (eavesdropper), when one ignores the message sent to
user 2, because this outer bound does not involve . The second
term, see (31), can be viewed similarly. This outer bound now
considers the message sent to user 2, however, eliminates it by
conditioning both mutual information terms in (31) on .

Remark 7: The bounds on the equivocation rates in Theorem
2 and those in [9], where the outer bounds are for the equivo-
cation rates in a two-user BC with per-user secrecy constraints
as in here, have the same expressions. The only difference be-
tween the two outer bounds is in the Markov chain over which
the union is taken. The Markov chain in (33) contains the one
in [9], which is

(34)

1Unfortunately, in the conference version [26] of this paper, the outer bound
appeared with some typos.
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which means that our outer bound here evaluates to a larger
region than the one in [9]. This should be expected since the
achievable rate-equivocation region here in our CRBC contains
the achievable region in the BC.

We also provide a simpler outer bound for the equivocation
rate of user 2 which does not involve any auxiliary random vari-
ables.

Theorem 3: The equivocation rate of user 2 is bounded as
follows:

(35)

The proof of this theorem is given in Appendix II.

This outer bound is obtained by providing extra (i.e., side)
information to user 2. In particular, to obtain the outer bound
in Theorem 3, we consider a new channel where user 2 has ac-
cess to user 1’s observation. Thus, in this new channel, user 2’s
observation is improved as compared to the original channel.
Consequently, an outer bound for the new channel also serves
as an outer bound for the original channel.

Remark 8: If the channel is degraded, then the equivocation
rate of user 2 is zero, since

(36)

which follows from the Markov chain
which is a consequence of the degradedness.

Remark 9: We generally expect the outer bound in Theorem
3 to be loose because it essentially assumes that user 2 has a
complete access to user 1’s observation2 whereas, in reality, user
2 has only limited information about user 1’s observation, which
it obtains through the cooperative link. However, if the link from
user 1 to user 2 is strong enough, user 1 may be able to convey
its observation to user 2 precisely in which case the outer bound
in Theorem 3 can be close to the achievable rate obtained via the
CAF scheme. For example, such a situation arises if the channel
satisfies the following Markov chain

(37)

For such channels, by selecting , in the
achievable scheme, we get the following equivocation rate for
user 2

(38)

(39)

where the first equality is due to the Markov chain in (37).
Hence, the outer bound in (35) gives the secrecy capacity for
channels satisfying (37).

2In fact, this Sato-type [27] upper-bounding technique is used as a first step
(before introducing noise correlation to tighten the upper bound) in finding the
secrecy capacity of the MIMO wiretap channel [28]–[31].

Remark 10: Although we are able to provide a simple outer
bound for the equivocation rate of user 2, that depends only
on the channel inputs and outputs, finding such a simple outer
bound for the equivocation rate of user 1 does not seem to be
possible. One reason for this is that, user 1 can use its observa-
tion, i.e., , for encoding its input, i.e., , and create correla-
tion between its channel inputs and outputs across time. Conse-
quently, this correlation cannot be accounted for without using
auxiliary random variables. Another reason will be discussed in
Remark 13.

V. AN EXAMPLE: GAUSSIAN CRBC

We now provide an example to show how the proposed
achievable scheme can enlarge the secrecy region for a
Gaussian BC. The channel outputs of a Gaussian CRBC are

(40)

(41)

where , and are indepen-
dent, , . In this section, we assume
that , i.e., user 1 has a stronger channel in the corre-
sponding BC. Note that, in this case, if user 1 does not help user
2, e.g., in the corresponding BC, . We present two dif-
ferent achievable schemes for this channel where each one cor-
responds to a particular selection of the underlying random vari-
ables in Theorem 1 satisfying the probability distribution con-
dition in (10). Proposition 1 assigns independent channel inputs
for each user, whereas Proposition 2 uses a DPC scheme. For
simplicity, we provide only the achievable equivocation region
in the following propositions.

Proposition 1: The following equivocation rates are achiev-
able for all

(42)

(43)

where and is subject to

(44)

Proof: This achievable region can be obtained by selecting
, , ,

, and
, where , , and are independent. The rates

are found by direct calculation of the expressions in Theorem 1
using the above selection of random variables.

This achievable region can be enlarged by introducing corre-
lation between , . Since a joint encoding is performed at
the transmitter, one of the users’ signals can be treated as a non-
causally known interference, and DPC [24] can be used. In the
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following proposition, the transmitter treats user 2’s signal as a
noncausally known interference.

Proposition 2: The following equivocation rates are achiev-
able for any and all

(45)

(46)

where and is subject to

(47)

where

(48)

(49)

(50)

Proof: These equivocation rates are obtained by applying
DPC for user 1. Let the channel input of the transmitter be

where ,
and are independent. The auxiliary random variables are se-
lected as , , where for user 1, the
signal of user 2 is treated as noncasually known interference at
the transmitter. The channel output of user 1 is compressed as

where
is the compression noise. The channel input of user 1 is selected
as . Here, again, , , , and are all in-
dependent. The rates are then found by direct calculation of the
expressions in Theorem 1 using the above selection of random
variables.

We note that, in both of the propositions above, is
a monotonically decreasing function of . Consequently,
achievable depends on the quality of the cooperative
link between the users. If this link gets better allowing user
1 to convey its observation in a finer form, user 2’s secrecy
increases. For illustrative purposes, the rate regions given by
Propositions 1 and 2 are evaluated for the parameters ,

, , and the corresponding plots are given
in Figs. 3 and 4. Note that since , if there was no
cooperation between the users, user 2 could not have a positive
secrecy rate. We observe from these figures that, thanks to
the cooperation of the users, both users enjoy positive secrecy
rates. However, we observe that a positive secrecy for user 2
comes at the expense of a decrease in the secrecy of user 1.
In particular, for both propositions, maximum secrecy rate for

Fig. 3. Achievable equivocation rate region for single-sided CRBC using
Proposition 1 where � and � are independent. � � �, � � �, � � �,
i.e., user 2 has no secrecy rate in the underlying BC.

Fig. 4. Achievable equivocation region for single-sided CRBC using Propo-
sition 2 where � , � are correlated, admitting a DPC interpretation. � � �,
� � �, � � �, i.e., user 2 has no secrecy rate in the underlying BC.

user 2 is achieved when user 1 does not have any message itself
and acts as a pure relay for user 2. Similarly, user 1 achieves the
maximum secrecy rate when user 2 does not have any message.

We also note that the achievable secrecy rate regions for both
Proposition 1 and Proposition 2 are monotonically increasing
in , i.e., the available power at user 1. In fact, for any given

, there exist threshold values for , denoted by
and , for Propositions 1 and 2,

respectively, such that if (respectively
), Proposition 1 (respectively Proposition

2) cannot provide any positive secrecy rate for user 2, and if
(respectively ), Propo-

sition 1 (respectively Proposition 2) can provide a positive
secrecy rate for user 2. Since the rate expressions involved in
Propositions 1 and 2 are rather complicated, it does not seem
that admits a simple closed form expression.
However, we numerically evaluated the threshold values for

(which is the parameter set that
we use to obtain Figs. 3 and 4) as and

. Thus, for , the
minimum power required at user 1 to provide a positive secrecy
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rate for user 2 by Proposition 2 is less than the minimum
power required by Proposition 1. In fact, since Proposition 1
corresponds to a special case of Proposition 2, i.e., Proposition
1 can be recovered from Proposition 2 by setting , in
general, we have .

Next, we note that, for both achievable schemes, as ,
the equivocation rate of user 2 approaches a limit. This is due
to the fact that, as , the achievable equivocation rates are
limited by the link between the transmitter and user 1. Moreover,
as , user 1 can send its observation to user 2 perfectly.
Thus, in this case, user 2 can be assumed to have a channel
output of , which makes the channel of user 1 degraded
with respect to the channel of user 2. Consequently, following
the analysis carried out in Remark 9, we expect the outer bound
in Theorem 3 to become tight as , which is stated in the
next corollary.

Corollary 1: As , the maximum achievable equivoca-
tion rate for user 2 becomes

(51)

The proof of this corollary is given in Appendix III.

VI. JOINT JAMMING AND RELAYING

The proposed achievability scheme and its application to
Gaussian CRBC show us that user cooperation can enlarge the
secrecy region. However, this achievability scheme and the
Gaussian example provide us with only a limited picture of
what can be achieved. In particular, the achievability scheme
proposed in Section III is designed with the cooperating user
(user 1) being the stronger of the two users in mind. Next, we
want to explore what can be done when the cooperating user
(user 1) is the weaker of the two users. In this case, without
the cooperative link, user 1 cannot have a positive secrecy rate.
Therefore, the first question to ask is, whether user 1 can have
a positive secrecy rate by utilizing the cooperative link. The
answer to this question is positive if user 1 uses the cooperative
link to send a jamming signal to user 2. However, a more
interesting question is whether both users can achieve positive
secrecy simultaneously. The following theorem provides an
achievable scheme, where user 1 performs a combination of
jamming and relaying, to provide both users with positive
secrecy rates.

Theorem 4: The rate quadruples satis-
fying

(52)

(53)

(54)

(55)

(56)

(57)

(58)

are achievable for any distribution of the form

(59)
subject to the following constraint

(60)

The proof of this theorem is given in Appendix IV.

We note that the achievable scheme given in Theorem 4
corresponds to the generalization of the achievable scheme
given in Theorem 1 by using channel pre-fixing [2] at user 1.
Channel pre-fixing refers to the construction of a hypothetical
channel between the encoding scheme used at user 1 and the
channel input of user 1. By means of this hypothetical channel,
additional randomness can be introduced, and this randomness
might be useful to improve the equivocation rates [2]. Besides
channel pre-fixing, both achievable schemes use the same
techniques, namely Marton’s achievable scheme and random
binning at the transmitter, and CAF scheme at user 1.

Remark 11: In Theorem 4, denotes the actual help signal,
while the channel input , which is correlated with , may
include an additional jamming attack. The intuition behind this
achievable scheme is that, although user 2 should be able to de-
code , it cannot decode the entire . Therefore, since user 2
cannot decode and eliminate from , its channel becomes
an attacked one, where decoding may be impossible. There-
fore, in this scheme, user 1 first attacks user 2 to make its channel
worse by associating with many (hence, it confuses user
2), and then helps it to improve its secrecy rate.

Remark 12: We note that this achievable scheme is reminis-
cent of “cooperative jamming” [32]. In [32], the focus is on a
two user MAC with an external eavesdropper, where one of the
users attacks both the legitimate receiver and the eavesdropper,
with the hope that it hurts the eavesdropper more than it hurts
the legitimate receiver, and improves the secrecy of the legiti-
mate receiver. In contrast, in our work, the relay (user 1) attacks
user 2 to improve its own secrecy.

VII. GAUSSIAN EXAMPLE REVISITED

Consider again the Gaussian CRBC, now with .
The scheme proposed in Theorem 4 works as follows: user 1
divides into two parts. The first part carries the noise and
the second part carries the bin index of . Although Theorem
4 is valid for all cases, assume here that user 1 has large enough
power. Then, the first part makes user 2’s channel noisier than
user 1’s channel. This brings the situation to the case studied in
Section V. Consequently, we can now have a positive secrecy
rate for user 1, and also provide a positive secrecy rate to user
2, by sending a compressed version of to it, as in Section V.
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Proposition 3: The following equivocation rates are achiev-
able for all

(61)

(62)

where , , and is subject to

(63)

Proof: This achievable region is obtained by selecting
the random variables in Theorem 4 as where

, , where
, ,

where . Moreover, , , ,
, are all independent. Here, serves as the jamming

signal, and serves as the helper signal. User 1 first jams user
2 and makes its channel noisier than its own by using and
then helps user 2 through sending a compressed version of its
observation by using . The rates are then found by direct
calculation of the expressions in Theorem 4 using the above
selection of random variables.

Moreover, as in Section V, we can use DPC based schemes in
this case also. The following proposition characterizes the DPC
scheme for Theorem 4.

Proposition 4: The following equivocation rates are achiev-
able for any and for all

(64)

(65)

where , and is subject to

(66)

where

(67)

(68)

(69)

Proof: All random variable selections are the same as in
Proposition 2 except for , . Here, we choose
and , . , are indepen-
dent.

We first note that Propositions 3, 4 reduce to Propositions 1,
2, respectively, by simply selecting , i.e., no jamming.
We provide a numerical example in Figs. 5 and 6 for ,

, . Since , a positive secrecy rate for
user 1 would not be possible if the cooperative link did not exist.
However, if user 1 has enough power to make user 2’s channel
noisier by injecting Gaussian noise to it, user 1 can provide se-
crecy for itself. For user 1 to have positive secrecy, we need

(70)

Otherwise, user 1 cannot have positive secrecy by using strate-
gies employed in Propositions 3, 4. In addition, contrary to
Section V, we observe from Figs. 5 and 6 that here DPC
based schemes do not provide any gain with respect to the
independent selection of , . Furthermore, we also apply
Propositions 3 and 4 to the case where user 1 is stronger than
user 2 by selecting the noise variances as , as
in Section V to show that propositions presented in this section
cover the ones in Section V. We provide the corresponding
graphs in Figs. 7 and 8. Comparing Fig. 3 (respectively 4) and
7 (respectively 8), we observe that even though the maximum
secrecy rate of user 2 remains the same, the maximum secrecy
rate of user 1 is improved significantly. This improvement
comes, because through Propositions 3 and 4, user 1 jams the
receiver of user 2.

Next, we examine Figs. 3 and 7 in more detail. In Fig. 3, for
instance when , the largest , which is about 0.25
bits/channel use, is obtained when . This corresponds
to the case where user 1’s rate and secrecy rate are set to zero.
In this case, user 1 serves as a pure relay for user 2. The secrecy
rate we obtain at this extreme is the same as [11]–[13]. At the
other extreme, the largest , which is about 0.42 bits/channel
use, is obtained when . In this case, user 2 is just an
eavesdropper in a single-user channel from the transmitter to
user 1. The secrecy rate we obtain at this extreme is the same
as [1], [2], [33]. Moreover, as we see from Fig. 3, whenever
user 1 helps user 2 to have positive secrecy, it needs to deviate
from this extreme point. Thus, user 2’s positive secrecy rates
come at the expense of a decrease in user 1’s secrecy rate. If we
consider Fig. 7, the largest is the same as that in Fig. 3,
which is again achieved when , i.e., when user 1 acts
as a pure relay for user 2. However, in Fig. 7, user 1’s max-
imum secrecy rate increases dramatically due to its jamming
capabilities in Proposition 3. In Fig. 7, user 1 achieves its max-
imum secrecy rate, which is about 1.58 bits/channel use, when
it uses all of its power for jamming user 2’s receiver and when
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Fig. 5. Achievable equivocation rate region using Proposition 3 where user 1
jams and relays, and � , � are independent. � � �, � � �, � � �, i.e.,
user 1 cannot have any positive secrecy in the underlying BC.

Fig. 6. Achievable equivocation rate region using Proposition 4 where user
1 jams and relays, and � , � are correlated, admitting a DPC interpretation.
� � �, � � �, � � �, i.e., user 1 cannot have any positive secrecy in the
underlying BC.

Fig. 7. Achievable equivocation rate region using Proposition 3 where user 1
jams and relays, and � , � are independent. � � �, � � �, � � �, i.e.,
user 1’s channel is stronger than user 2.

Fig. 8. Achievable equivocation rate region using Proposition 4 where user
1 jams and relays, and � , � are correlated, admitting a DPC interpretation.
� � �,� � �,� � �, i.e., user 1’s channel is stronger than user 2.

the rate of user 2 is set to zero. We note that this rate is larger
than that is achievable in the corresponding single-user eaves-
dropper channel from the transmitter to user 1, while user 2 is
an eavesdropper. We observe from Fig. 7 that when user 1 is
able to jam and relay jointly, it can provide secrecy for user 2
while its own secrecy rate is still larger than that of the corre-
sponding single-user eavesdropper channel. Thus, as opposed to
the case where it can only relay, i.e., Proposition 1, both users
enjoy secrecy in Proposition 3, while user 1 does not have to
compromise from its own secrecy rate that is achievable in the
underlying eavesdropper channel.

At first sight, this result may seem counterintuitive, because
although user 1 spends some of its available power to jam user 2,
user 2 still gets the same equivocation rate as if user 1 helps user
2 by using all its available power. However, this surprising result
can be better understood by noting the fact that jamming and
helping do not occur simultaneously, i.e., user 1 does not jam
and help at the same time, instead, it uses time-sharing between
jamming and relaying. In particular, Fig. 7 clearly demonstrates
the fact that user 1 uses time-sharing between two extreme oper-
ating points of Proposition 3 in order to provide a larger achiev-
able secrecy rate region than the one in Fig. 3. At one extreme
operating point, user 1, to which no message is sent, acts as a
pure relay for user 2, and at the other extreme operating point,
user 1 acts as a pure jammer for user 2, to which no message is
sent. The same conclusion holds for Fig. 8, i.e., Proposition 4,
as well. However, in this case, at the extreme point where the
maximum equivocation rate of user 2 is obtained, the equivoca-
tion rate of user 1 is not always zero, see the cases
in Figs. 4 and 8. In particular, Fig. 9 shows the fact that user
1 employs time-sharing between two extreme operating points,
where two extreme points, points A and B, are also noted.

Remark 13: We are now ready to discuss why we could not
find an outer bound for the equivocation rate of user 1 that relies
only on the channel inputs and outputs. To understand this, we
first examine the outer bound we found on the equivocation rate
of user 2 in Theorem 3. This outer bound is obtained by giving
the entire observation of user 1 to user 2 (i.e., ). Hence,
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Fig. 9. Achievable equivocation rate regions using Propositions 2 and 4 where
user 1 jams and relays, and � , � are correlated, admitting a DPC interpreta-
tion. � � �, � � �, � � �, � � �, i.e., user 1’s channel is stronger than
user 2.

this is the best possible scenario as far as the channel of user
2 is concerned, and thus, it yields an outer bound. However,
a similar approach cannot work for user 1, because although
user 1 can have access to the observation of user 2, user 1 still
has additional freedom (and opportunities) to increase its own
secrecy rate by sending jamming signals over the cooperative
link, as shown in this section. This is the main reason why we
could not find a simple outer bound for user 1’s secrecy rate
using only the channel inputs/outputs.

VIII. TWO-SIDED COOPERATION

In this section, we provide an achievable scheme for the
CRBC with two-sided cooperation. In this case, each user can
act as a relay for the other one; see Fig. 2. The corresponding
channel consists of two message sets , ,
three input alphabets, one at the transmitter , one at user
1 and one at user 2 . The channel consists
of two output alphabets denoted by , at the
two users. The channel is assumed to be memoryless and its
transition probability distribution is .

A code for this channel consists of two mes-
sage sets as and ,
an encoder at the transmitter which maps each pair

to a codeword , a set of relay functions at
user 1, , and a set of
relay functions at user 2,

, two decoders, one at user 1 and one at user 2 with
the mappings , . Definitions for
the error probability for this two-sided case are the same as in
the single-sided case. The secrecy of the users is again mea-
sured by the equivocation rates which are and

. In this case, since user 2 has a channel input
also, we condition the entropy rate of user 1’s messages on this
channel input.

A rate tuple is said to be achievable if
there exists a code with
and

(71)

(72)

The following theorem characterizes an achievable region for
this channel model.

Theorem 5: The rate tuples satisfying

(73)

(74)

(75)

(76)

(77)

(78)

(79)

are achievable for any distribution of the form

(80)

subject to the following constraints

(81)

(82)

The proof of this theorem is given in Appendix V.
Similar to the achievable schemes given in Theorems 1 and

4, the achievable scheme in Theorem 5 also blends Marton’s
achievable scheme for BCs [22], the random binning scheme
of [2] to provide confidentiality, and the CAF scheme [17]. In
particular, the transmitter uses Marton’s achievable scheme and
random binning, and each user employs a CAF-based cooper-
ation scheme to help the other user. Similar to Theorem 4, in
Theorem 5, channel pre-fixing is used as well. The main differ-
ence between the previous achievable schemes in Theorems 1, 4
and the achievable scheme in Theorem 5 comes from how CAF
is performed as a cooperation strategy, and in particular, how
compression is performed. Contrary to the previous achievable
schemes given in Theorem 1 and 4, here users do not compress
their observations after erasing their codewords from the ob-
servations; this is why we did not condition (respectively

) on (respectively ) in (80). In fact, they cannot re-
move their own codewords from their observations because each
user employs a sliding-window type decoding scheme, i.e., they
should wait until the next block to decode their own codewords,
whereas compression should be performed right after the recep-
tion of the previous block, at which time they have not yet de-
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coded their own messages. However, we note that this achiev-
able scheme also provides opportunities for jamming as did the
achievable scheme provided in Section VI.

IX. GAUSSIAN EXAMPLE FOR TWO-SIDED COOPERATION

The channel outputs of a Gaussian CRBC with two-sided co-
operation are

(85)

(86)

where , and are independent,
, , .

We present the following proposition which characterizes an
achievable equivocation region.

Proposition 5: The equivocation rate pairs sat-
isfying (83)–(84) at the bottom of the page are achievable for all

where , , ,
and , are subject to

(87)

(88)

and

(89)

(90)

(91)

(92)

(93)

(94)

Proof: This achievable region is obtained by selecting
where , and are in-

dependent, where ,
and independent, and

Fig. 10. Achievable equivocation rate region using Proposition 5 where each
user can jointly jam and relay. � � �, � � �, � � �, i.e., user 2 cannot
have any positive secrecy in the underlying BC.

where and are independent of all
other random variables. Direct calculation of rates in Theorem 5
with these random variable selections yields the achievable re-
gion.

A numerical example is given in Fig. 10 for the case ,
, . Comparing Fig. 10 with Figs. 7 and 8, we ob-

serve that user 2’s secrecy rate improves significantly because
now user 2 can jam user 1 to improve its own secrecy rate. We
also observe that user 1’s secrecy rate improves as well, com-
pared to Section VII. The increase in user 1’s secrecy in this
two-sided case is due to the fact that user 2 now acts as a relay
for user 1. However, when user 1 jams user 2 using all of its
power, it limits the help that comes from user 2, hence Theorem
5 provides only a modest secrecy rate increase for user 1 on top
of what Theorem 4 already provides.

X. CONCLUSION

In this paper, we investigated the effects of cooperation on
secrecy. We showed that user cooperation can increase secrecy,
i.e., even an untrusted party can help. An important point to ob-
serve though is that whether cooperation can improve secrecy or
not depends on the cooperation method employed. For instance,
even though a decode-and-forward (DAF) based cooperation

(83)

(84)
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scheme can increase the rate, it cannot improve the secrecy, be-
cause in this case the cooperating party, which is also the eaves-
dropper, needs to decode the message it forwards. However, in
CAF, we do not require the cooperating party to decode the mes-
sage. In fact, in CAF, the cooperating party helps increase the
rate of the main transmitter to levels which it itself cannot de-
code, hence improving the secrecy of the main transmitter-re-
ceiver pair against itself.

APPENDIX I
PROOF OF THEOREM 2

Here we prove the outer bound on the capacity-equivocation
region of the CRBC given in Theorem 2 which closely follows
the converse given in [2] and the outer bound in [9]. First, define
the following random variables:

(95)

(96)

(97)

which satisfy the following Markov chain

(98)

but do not satisfy the following one:

(99)

because of the encoding function employed at user 1 which can
generate correlation between and through

that cannot be resolved by conditioning on .
For a similar discussion, the reader can refer to [19].

We start with the achievable rate of user 1

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)

where (101) is due to Fano’s lemma, (104) follows from the
Markov chain , (105), (107) and (108) are
due to the fact that conditioning cannot increase entropy, and
(109) follows from the definition of in (96). Similarly, for
the achievable rate of user 2, we have

(110)

(111)

(112)

(113)

(114)

where (110) is due to Fano’s lemma, (113) is due to the fact that
conditioning cannot increase entropy, and (114) follows from
the definition of given in (97).

We now derive the outer bounds on the equivocation rates.
We start with user 1

(115)

(116)

(117)

(118)

(119)

where (117) is due to Fano’s lemma. Using [2]

(120)
in (119), we obtain

(121)
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(122)

Now, using [2]

(123)

in (122), we obtain

(124)

(125)

(126)

(127)

where (125) and (127) follow from the definitions of and
given in (95) and (96), respectively. Similarly, we can use

the preceding technique for user 2’s equivocation rate as well
after noting that

(128)

which leads to

(129)

The other bounds on the equivocation rates can be derived as
follows:

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

where (132) and (134) are due to Fano’s lemma, and (136) and
(137) are due to the following identities [2]:

(141)

(142)

respectively. Finally, (138) and (140) follow from the definitions
of , and given in (95), (96) and (97), respectively.
Similarly, we can use this technique to bound user 2’s equiv-
ocation rate after noting that ,
which leads to

(143)

(144)

To express the outer bounds obtained above in a single-letter
form, we define , , , ,

, , where is a random
variable which is uniformly distributed over . Using
these new definitions, we can reach the single-letter expressions
given in Theorem 2, hence completing the proof.

APPENDIX II
PROOF OF THEOREM 3

The proof is as follows:

(145)

(146)

(147)
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(148)

(149)

(150)

(151)

(152)

(153)

(154)

where (147) is due to Fano’s lemma, (150) follows from the fact
that given , is independent of all other random variables,
(152) is due to the fact that conditioning cannot increase entropy,
and (153) follows from the Markov chains

(155)

(156)

Thus, after defining an independent random variable , that is
uniformly distributed over , and ,

, , , we can obtain the single-letter
expression in Theorem 3, completing the proof.

APPENDIX III
PROOF OF COROLLARY 1

In Propositions 1 and 2, if we take , then the secrecy
rate in (51) can be shown to be achievable. As a notational re-
mark, denotes the differential entropy in this section. We
now compute an outer bound for using Theorem 3,

(157)

(158)

(159)

(160)

(161)

(162)

where in (159), we used the fact that conditioning cannot in-
crease entropy and that due to the inde-
pendence of and . Equation (160) is again due to the fact
that conditioning cannot increase entropy, (161) comes from the
fact that Gaussian distribution maximizes entropy subject to a

power constraint, and (162) is obtained by using the power con-
straint on . Finally, we note that (162) is a valid outer bound
for every and if we select as

(163)

we get (51), completing the proof.

APPENDIX IV
PROOF OF THEOREM 4

The transmitter uses the joint encoding scheme of Marton
[22] and user 1 uses a CAF scheme [17]. User 2 employs list
decoding to find which is sent. Let and de-
note the sets of strongly typical independent and identically
distributed (i.i.d.) length- sequences of and , respec-
tively. Let (respectively, ) denote the set
of length- sequences (respectively ) that are jointly typ-
ical with (respectively, ). Furthermore, let (respec-
tively, ) denote the set of (respectively, ) sequences
for which (respectively, ) are nonempty.
Fix the probability distribution as

(164)

Codebook structure:
1) Select sequences through

if
otherwise

(165)

in an i.i.d. manner and index them as
where , and

for . , , , and are
related through

(166)

Furthermore, we set

(167)

to ensure that for given pairs and
, we can find a jointly typical pair

for some , .
2) For each , the transmitter randomly picks

and finds a pair
that is jointly typical. Such a pair exists with high prob-
ability due to (167). Then, given this pair of ,
the transmitter generates its channel inputs through

.
3) User 1 generates length- sequences through

and labels them as where
.

4) For each , user 1 generates length- sequences
through and indexes them

as where .
5) For each , user 1 generates length- sequences

through and indexes them
as where .
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Partitioning:
• Partition into cells where .
Encoding:
The transmitter sends corresponding to the pair .

User 1 (relay) sends if the estimate of ,
i.e., , falls into and is chosen randomly from

. The use of many for actual help signal
aims to confuse user 2 and to decrease its decoding

capability.
Decoding:
a. Decoding at user 1:

1) User 1 seeks a unique typical pair of
which can

be achieved with vanishingly small error probability
if

(168)

2) User 1 decides that is received if
there exists a jointly typical pair

which
can be guaranteed to occur if

(169)

b. Decoding at user 2:
1) User 2 seeks a unique jointly typical pair of

which can be found with vanish-
ingly small error probability if

(170)

2) User 2 employs list decoding to decode
. It first calculates its ambiguity

set as

is jointly typical (171)

and takes its intersection with which results in a
unique and correct intersection point if

(172)

Equation (169) and (172) lead to the compression
constraint in (60).

3) User 2 decides that is
received if there exists a unique jointly typical pair

,
which can be found with vanishingly small error
probability if

(173)

Equivocation computation:
We now show that and satisfying (55)–(58) are

achievable with the coding scheme presented. To this end, we
treat several possible cases separately. First, assume that

(174)

(175)

For this case, we select the total number of codewords, i.e.,
, as

(176)

(177)

With this selection, we have

(178)

(179)

We start with user 1’s equivocation rate

(180)

(181)

(182)

(183)

(184)

where each term will be treated separately. First term is

(185)

where the first equality is due to the independence of and
. The second equality follows from the fact that can take

values with equal probability. The third equality comes
from our selection in (176). The second term of (184) can be
bounded as

(186)

using the approach devised in Lemma 3 of [9]. To bound the
last term in (184), we assume that user 2 is trying to decode

given the side information . Since can take
less than values (see (178)) given

, user 2 can decode with vanishingly small error
probability as long as is given. Consequently, the use
of Fano’s lemma yields

(187)

Plugging (185), (186) and (187) into (184), we get

(188)
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(189)

where (189) follows from the independence of and ,
i.e., . Similarly, we can bound equivo-
cation of user 2 as follows:

(190)

(191)

(192)

(193)

(194)

where the first term is

(195)

where the first equality is due to the independence of and
, the second equality comes from the fact that can take

values with equal probability and the last equality is a
consequence of our choice in (177). The second term of (194)
can be bounded as

(196)

following the approach of Lemma 3 of [9]. To bound the last
term of (194), we assume that user 1 is trying to decode
given the side information . Since can take at most

values (see (179)) given ,
user 1 can decode with vanishingly small error probability
as long as this side information is available. Consequently, the
use of Fano’s lemma yields

(197)

Plugging (195), (196) and (197) into (194), we get

(198)

(199)

where (199) follows from the independence of and ,
i.e., .

We have completed the equivocation calculation for the case
described by (174)–(175). The proofs of other cases involve no
different arguments besides decreasing the total number code-
words in (176)–(177). For example, if

(200)

then we select the total number of codewords for user 1 as

(201)

which is equivalent to saying that

(202)

In this case, following the steps from (180) to (184), we can
bound the equivocation of user 1 as follows,

(203)

where the first term is now

(204)

(205)

(206)

where the first equality is due to the independence of and
, the second equality is due to the fact that can take at

most values with equal probability and the last equality
is a consequence of our choice in (201). An upper bound on
the second term was already obtained in (186). The third term
can also be shown to decay to zero as goes to infinity consid-
ering the case that user 2 is decoding using side informa-
tion . Since can take
values given , user 2 can decode with vanishingly
small error probability as long as this side information is avail-
able. Therefore, the use of Fano’s lemma implies

(207)

Plugging (186), (206), (207) into (203), we get

(208)

(209)

where we used the fact that and are independent, i.e.,
. The other cases leading to different

equivocation rates can be proved similarly, hence omitted.

APPENDIX V
PROOF OF THEOREM 5

Fix the probability distribution as
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(210)

Codebook structure:
1) Select sequences through

if
otherwise

(211)

in an i.i.d. manner and index them as
where , and

for . and are
related through

(212)

Furthermore, we set

(213)

to ensure that for given pairs and
, we can find a jointly typical pair

for some , .
2) For each , the transmitter randomly picks

and finds a pair
that is jointly typical. Such a pair exists with high prob-
ability due to (213). Then, given this pair of ,
the transmitter generates its channel inputs through

.
3) User generates length- sequences through

and labels them as where
where .

4) For each , user generates length- se-
quences through
and indexes them as where

.
5) For each , user generates length-

sequences through
and indexes them as where

.
Partitioning:
• Partition into cells where

.
Encoding:
The transmitter sends corresponding to the pair .

User sends if the estimate of , i.e., ,
falls into and is chosen randomly from .
The use of many for actual help signal aims
to confuse the other user and to decrease its decoding capability.

Decoding:
We only consider decoding at user 1. Final expressions re-

garding user 2 will follow due to symmetry.
1) User 1 seeks a unique jointly typical pair of

which can be found with vanish-
ingly small error probability if

(214)

2) User 1 decides on by looking for a jointly
typical pair
which can be ensured to exist if

(215)

3) User 1 employs list decoding to decode .
It first calculates its ambiguity set as

is jointly typical (216)

and then takes its intersection with which results in a
unique and correct intersection point if

(217)

4) User 1 decides that is re-
ceived if there exists a unique jointly typical pair

which can be found with vanishingly small error proba-
bility if

(218)

Equivocation computation:
Similar to the previous proofs, we treat each case separately.

Due to symmetry, we only consider user 1. If the rate of user 1
is such that

(219)

then we select the total number of codewords as

(220)

which implies that

(221)

The equivocation rate can be bounded as follows:

(222)

(223)

(224)

(225)

(226)
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We treat each term in (226) separately. The first term is

(227)

(228)

(229)

where the first equality is due to the independence of and
, the second equality follows from the fact that can

take values with equal probability and the last equality
is due to our choice in (220). The second term of (226) can be
bounded as

(230)

following Lemma 3 of [9]. To bound the last term of (226),
we consider the case that user 2 is trying to decode
given the side information . Since can take

values at most, user 2 can
decode with vanishingly small error probability as long
as this side information is available. Hence, the use of Fano’s
lemma yields

(231)

Plugging (229), (230), (231) into (226), we get

(232)

(233)

where (233) follows from the independence of and
, i.e., .

For the other case, i.e., if the rate of user 1 is such that

(234)

we select the total number of codewords as

(235)

and following the same lines of computation, we can show that

(236)

completing the proof.
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