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Abstract—This paper considers a secure non-orthogonal mul-
tiple access system, where confidential messages are transmitted
from a base station to multiple legitimate destinations and
wiretapped by multiple illegitimate receivers. It is assumed that
all the channels experience Nakagami-m fading model and all
the nodes are equipped with multiple antennas, respectively.
Both non-colluding and colluding eavesdroppers are respectively
considered. Max-min (MM) transmit antenna selection (TAS)
strategy is adopted to improve the secrecy performance of the
target system, in which both users in user paring are considered
simultaneously. In particular, closed-form expressions for the
cumulative distribution function of the signal-to-interference-
noise ratio at the legitimate user are derived firstly. Then we
obtain the exact and asymptotic analytical results in a closed
form for the secrecy outage probability of MM TAS scheme.
Monte-Carlo simulation results are presented to corroborate the
correctness of the analysis. The results show that the secrecy
diversity order is zero and non-zero for fixed and dynamic power
allocations, respectively.

Index Terms—Non-orthogonal multiple access, multiple-input
multiple-output, secrecy outage probability, transmit antenna
selection.

I. INTRODUCTION

A. Background and Related Works

In last several decades, many technology, such as co-

operative communication[1], cognitive radio [2], etc., were

proposed to improve the availability of wireless communica-

tions. Due to high spectral efficiency, non-orthogonal multiple
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access (NOMA) is accepted as a promising band-efficient

candidate technology for the future mobile networks [3] -

[7]. In NOMA systems, superposition coding is applied at

source nodes and successive interference cancellation tech-

nology is adopted at destinations. The signals for different

users with different channel gains are allocated with different

transmission power, respectively. Thus the communications

between the base station and multiple users can be proceeded

in the same time/frequecy/code simultaneously. The authors

of [8] analyzed the outage probability (OP) and ergodic

sum rate of a downlink NOMA system and their results

demonstrated that NOMA technology can obtain significantly

superior performance than the orthogonal multiple access

(OMA). The authors of [9] investigated the performance of

a downlink NOMA system at a fairness standpoint and the

results show that NOMA systems can guarantee high fairness

requirements with appropriate power allocation (PA) scheme.

The performance of a underlay NOMA large-scale cognitive

radio networks was investigated in [10] and the closed-form

expressions of OP were derived using stochastic geometry. The

performance of an amplify-and-forward (AF) relaying NOMA

system over Nakagami-m fading channels was studied in [11]

and the closed-form expressions for the exact and bound of

OP and ergodic sum rate were derived.

Multiple-antenna technology has been testified as an effi-

cient scheme to improve the performance of NOMA systems

[12]-[14]. The ergodic capacity for multiple-input multiple-

output (MIMO) NOMA systems was studied in [15], [16]

and the capacity superiority of MIMO-NOMA over MIMO-

OMA was proved. Moreover, transmit antenna selection (TAS)

scheme has been verified as a low complexity solution to im-

prove performance of NOMA systems when multiple antennas

are available at the base station [17]-[22]. The authors of [17]

and [18] investigated the performance of an energy harvesting

AF relaying NOMA system with TAS scheme and closed-

form expressions for OP was obtained. A new TAS scheme

for multiple-input single-output (MISO) NOMA systems was

proposed in [19] and their result testified that higher perfor-

mance can be obtained with multiple antennas at base station.

The authors in [20] proposed an antenna selection algorithm to

achieve near-optimal performance and reduce complexity. Two

TAS algorithms for MIMO-NOMA systems were proposed

and the average sum-rates were analyzed in [21]. The same

authors also proposed a joint TAS and PA scheme for a

cognitive MIMO-NOMA system and the asymptotic OP was

studied in [22].

The openness of wireless channels makes the communi-
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cations become easy and vulnerable to eavesdrop. Physical

layer security has been regarded as a promising safeguard

technology for wireless communications through utilizing the

time-varying nature of the wireless fading channels [23], [24].

In the last several years, the secrecy performance of wireless

fading systems was studied in many literatures [25]-[33]. In

these great works, the fundamental theories of physical layer

security were introduced and the state-of-the-art works on

physical layer security technologies were provided. Then the

challenges, potential solutions, and future research directions

were given, respectively. Many efficient schemes, such as

cooperative jamming [34] and interference alignment [35],

[36], were proposed to enhance the security of wireless

communications.

Nowadays, the secrecy issue of NOMA has been studied

in several works [37] - [44]. The security performance of

a single-input single-output (SISO) NOMA system was in-

vestigated in [37], and the results testified that the secrecy

performance of NOMA with optimal PA policy is superior

to the one of the conventional OMA. The physical layer

security of a downlink NOMA systems was analyzed in [38].

The secure performance of the SISO and MISO NOMA

systems was analyzed and both the exact and asymptotic

secrecy outage probability (SOP) were studied. The secure

performance of cooperative NOMA networks was investigated

in [39]. Then, two TAS schemes were proposed for enhancing

security performance and the closed-form expressions for the

ergodic secrecy rate were obtained. The optimal design of

secure NOMA schemes was studied to minimize the transmit

power or maximize the minimum confidential information rate

subject to the SOP and quality of service constraints in [40].

The physical layer security of a large-scale NOMA network

was analyzed in [41], in which all the destinations (both

legitimate and illegitimate) are spatially deployed at random

locations. Furthermore, the work in [41] was extended in [42]

and a MISO NOMA system was considered and artificial

noise was employed to heighten the secrecy performance. The

practical joint subcarrier assignment and power allocation were

firstly proposed by Zhang H. et al. in the secure AF two-way

relay NOMA systems with and without cooperative jamming

in [43], which can effectively enhance the secrecy energy

efficiency. Physical layer security for uplink NOMA scenario

was addressed in [44] and the coverage probability and the

effective secrecy throughput of each user were studied.

The prior works investigated secure NOMA systems either

with a multiple-antenna base station and two single-antenna

users [38], [39] or with multiple single-antenna users and a

single-antenna source [40]-[44]. Furthermore, all these works

focused on the NOMA systems over Rayleigh fading channels.

It is more challenging and important to study the secure

MIMO-MOMA systems with multiple users over Nakagami-m

fading channels due to the following reasons. Firstly, NOMA

technology was designed to improve the spectral efficiency,

which means that the transmitter can simultaneously send

message to multiple (more than two) users. Secondly, as stated

before, multiple antennas technology and TAS scheme were

proved as an effective method to enhance the security of

wireless communication. Finally, as we known, Nakagami-m

model describes the wireless fading channel’s characteristics

more generalized compared with Rayleigh model, which is a

special case of Nakagami-m fading.

B. Motivation and Contributions

To the best of the authors’ knowledge, it is still absent to

investigate the SOP of MIMO-NOMA systems over Nakagam-

m fading channels. We list our main contributions of this work

as follows.

1) We study the secure communications with a MIMO-

NOMA system. The confidential messages are trans-

mitted from the base station to multiple legitimate

destinations and wiretapped by multiple illegitimate re-

ceivers. It is assumed that all the channels experience

Nakagam-m model and all the nodes are assumed with

multiple antennas, respectively. Both non-colluding and

colluding eavesdroppers are considered. We propose the

max-min (MM) TAS strategy to improve the secure

performance, in which both users in user paring are

considered simultaneously. The statistical properties of

signal-to-interference-noise ratio (SINR) for legitimate

nodes are derived firstly. Then we obtain the SOP for

MIMO-NOMA systems when MM TAS is utilized at the

base station. Monte-Carlo simulations was proceeded to

validate the correctness of our results.

2) Furthermore, we analyze the asymptotic secure perfor-

mance and derive the secrecy diversity order (SDO) for

fixed and dynamic PA schemes, which enable a better

understanding of the analysis results. The results provide

that the SDO with fixed PA is zero and non-zero SDO

can be obtained by the dynamic PA scheme.

3) Different from [41] and [42], all the nodes are equipped

with multiple antennas and the MM TAS scheme is uti-

lized in our work. Moreover, we consider the Nakagami-

m fading channel, which is more generalized and accu-

rate wireless model.

4) Compared with [38] and [40], not only multiple le-

gitimate and illegitimate users with multiple antenna

are considered in our model, but also a different TAS

scheme is considered to improve the secrecy perfor-

mance. Furthermore, the Nakagami-m fading channel

is considered.

The rest of this article is organized as follows. Sec. II

introduced the MIMO-NOMA system model and the statistical

properties of SINR are given. Sec. III analyzes the SOP of

the MM TAS in MIMO-NOMA system. In Section IV, we

investigate the asymptotic SOP in MIMO-NOMA system with

fixed PA scheme and studied the SDO for the MIMO-NOMA

systems with dynamic PA scheme in Section V. The simulation

results are resented and discussed in Section VI. Finally, Sec.

VII concludes the paper.

II. SYSTEM MODEL

In this paper, we consider a MIMO-NOMA system, as

depicted in Fig. 1, where the base station (S), M legitimate

destinations (D), Q eavesdroppers (E) are equipped with

NS (NS ≥ 1), ND (ND ≥ 1), and NE (NE ≥ 1) antennas,
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Fig. 1. System model consisting of a base station (S), M legitimate desti-
nation nodes (D), and Q illegitimate eavesdropper nodes (E), all equipped
with multiple antennas.

respectively. All the main and eavesdropping channels are

assumed to undergo quasi-static independent and identically

distributed Nakagami-m fading with integer parameters mD

and mE , respectively. Maximal ratio combining (MRC) is

employed at all the legitimate and illegitimate destinations

since MRC can maximize the output SNR. We also assume

that mD and mE are integer and all the instantaneous channel

state information (CSI) is known at S.

Similar to [40], [41], [42], it is assumed that all the links

between S and D have been ordered as
ND∑

k=1

∣
∣hSgD1,k

∣
∣
2 ≤

· · · ≤
ND∑

k=1

∣
∣hSgDi,k

∣
∣
2 ≤ · · · ≤

ND∑

k=1

∣
∣hSgDj,k

∣
∣
2 ≤ · · · ≤

ND∑

k=1

∣
∣hSgDM,k

∣
∣
2
, where hSgDi,k

denotes the channel coeffi-

cient. It is also assumed that all the users are divided into

multiple orthogonal pairs to perform NOMA and each pair is

randomly allocated to a specific orthogonal resource slot [41],

[42]. For simplicity, a typical pair of users (the i-th user and

j-th user, i < j) are focused on in our work.

The received instantaneous SINRs of the i-th and j-th

receivers from g-th antenna of S are given as [42]

γ
g
Di

=

ai
ND∑

k=1

∣
∣hSgDi,k

∣
∣
2

aj
ND∑

k=1

∣
∣hSgDi,k

∣
∣
2
+ 1

ρD

, (1)

γ
g
Dj

= ajρD

ND∑

k=1

∣
∣hSgDj,k

∣
∣
2
, (2)

respectively, where ρD = PS

/
σ2
D, PS is the transmit power

at S, and σ2
D is the noise variance at Dk, al (l ∈ {i, j})

represents the PA coefficients, and ai + aj = 1.

Lemma 1: The cumulative distribution function (CDF) of

γDi
and γDj

can be expressed as

Fγ
g
Di

(γ) =







M−i∑

k=0

∑

Φi

ADi
e−BDi

ϕ(γ)(ϕ (γ))
CD , γ < ai

aj

1, γ ≥ ai

aj

,

(3)

Fγ
g
Dj

(γ) =

M−j
∑

k=0

∑

Φj

ADj
(ajρD)

−CDe
−

BDj
ajρD

γ
γCD , (4)

respectively, where Φl ={

(n1, · · · , nτD+1) ∈ Z
≥
∣
∣
τD+1∑

p=1
np = l + k

}

, Z
≥ denotes

a non-negative integer set, l ∈ {i, j}, τD = mDND,

ADl
= (−1)kM !(l+k−1)!

(l−1)!(M−l−k)!k!
τD+1
∏

k=1

nk!

τD∏

p=1

(

− 1
(p−1)!

(
mD

ΩD

)p−1
)np

,

BDl
=

(l+k−nτD+1)mD

ΩD
, CD =

τD∑

p=1
np (p− 1), and

ϕ (γ) = γ
ρD(ai−ajγ)

.

Proof : See Appendix A.

We consider the worst-case case, in which

El (l = 1, · · · , Q) are assumed to have the detection

capabilities to detect multiuser data and extract the message

to Dk
1. As a result, the SNR at the v-th eavesdropper (Ev)

which detects the transmitted signal for Dl is expressed as

γ
g
Ev,l

= alρE

NE∑

k=1

∣
∣hSgEv,k

∣
∣
2
, v = {1, · · · , Q} , (5)

where hSgEv,k
means the channel coefficients, ρE = PS

/
σ2
E .

To simplify analysis, we assume σ2
D = σ2

E = σ2, then ρE =
ρD = ρ.

In this work, two cases are considered. One is that the

eavesdropper works independently, and the other is that they

collude. In the scenarios that there is no collusion among all

the eavesdroppers, the strongest case is considered. That means

γ
g,N
E,l = max

v∈{1,··· ,Q}

{

γ
g
Ev,l

}

. (6)

If there is a collusion among all the eavesdroppers, we have

γ
g,Y
E,l =

Q
∑

v=1

γ
g
Ev,l

. (7)

Using (6), and making use of multinomial theorem [47], we

can achieve the probability density function (PDF) of γ
g,N
E as

f
γ
g,N
E,l

(γ) =
QλEl

τE

Γ (τE)

∑

ΦE

AEl
e−(BEl

+λEl)γγCE+τE−1, (8)

where ΦE =

{

(n1, , · · · , nτE+1) ∈ Z
≥
∣
∣
τE+1∑

p=1
np = Q− 1

}

,

AEl
= (Q−1)!

τE+1
∏

k=1

nk!

τE∏

p=1

(

− 1
(p−1)! (λEl

)
p−1

)np

, BEl
=

(Q− 1− nτE+1)λEl
, CE =

τE∑

p=1
np (p− 1), and

τE = mENE , and λEl
= mE/(ΩEalρ).

The PDF of γ
g,Y
E,l can be easily obtained as [48]

f
γ
g,Y
E,l

(γ) =
λEl

QτE

Γ (QτE)
γQτE−1e−λEl

γ . (9)

1Since the capabilities of the eavesdroppers are often unknown, it is
reasonable to presume that they can perform multiuser decoding (e.g.,
successive interference cancellation). Similar assumptions were utilized in
[41], [42], [45], and [46]. Definitely, the assumption is pessimistic because
the eavesdropper’s capability is overestimated. As a consequence the results
in this work would be a lower bound of actual cases.



0018-9545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2018.2824310, IEEE

Transactions on Vehicular Technology

4

III. SECRECY PERFORMANCE ANALYSIS

In this work, we assume that the base station has perfect

CSI of all the channels. In these scenarios, selecting the best

antenna aims at achieving the optimal secrecy performance

[49], [50], [51]. To improve the secrecy performance, a new

TAS scheme called MM is proposed, in which both users in

the user pair are considered simultaneously.

The instantaneous secrecy capacity (SC) of MIMO-NOMA

system can be expressed as

CMM
s = max

g∈NS

(
min

(
C

g
i , C

g
j

))
, (10)

where C
g
l = max

{
log2

(
1 + γ

g
Dl

)
− log2

(
1 + γ

g
El

)
, 0
}

(l ∈ {i, j}) is the instantaneous SC of Dl when only the g-th

antenna at S is utilized to transmit signal. The SOP of MIMO-

NOMA systems can be expressed as 2

PMM
out = Pr

{

max
g∈NS

(
min

(
C

g
i , C

g
j

))
≤ Rs

}

=
(
Pr

{
min

(
C

g
i , C

g
j

)
≤ Rs

})NS

=
(
1− Pr

{
min

(
C

g
i , C

g
j

)
> Rs

})NS

=
(
1− Pr {Cg

i > Rs}Pr
{
C

g
j > Rs

})NS

=
(
1−

(
1− P

g
out,i

) (
1− P

g
out,j

))NS
,

(11)

where P
g
out,i and P

g
out,j signify the SOP of Di and Dj where

S is equipped with the g-th antenna (a single antenna) and Rs

denotes the target rate.

The instantaneous SC from the g-th antenna is expressed as

[23]

C
g
l =

[
log2

(
1 + γ

g
Dl

)
− log2

(
1 + γ

g
El

)]+
, (12)

where [x]
+

= max {x, 0}. Then we have the SOP from the

g-th antenna

P
g
out,l = Pr {Cg

l ≤ Rs}

=

∫ ∞

0

Fγ
g
Dl

(Θγ +Θ− 1)fγg
El

(γ) dγ,
(13)

where Θ = 2Rs ≥ 1.

A. Eavesdroppers without collusion

Substituting (4) and (8) into (13), and employing (3.381.4)

in [52], we have

P
g,N
out,j =

QλτEEj

Γ (τE)

M−j
∑

k=0

∑

Φj

∑

ΦE

CD∑

p=0

AEj
ψ

× Γ (CE + τE + p)
(

BEj
+ λEj

+
BDj

Θ

ajρD

)CE+τE+p
e
−

BDj
(Θ−1)

ajρ .

(14)

where ψ =
ADj

CD!(Θ−1)CD−pΘp

p!(CD−p)!(ajρ)
CD

.

2Note it is assumed that C
g
i is independent on C

g
j and vice versa, which

was widely-adopted in some important works [38], [40], [41], [42], and [44].
The case that consider C

g
i and C

g
j dependence will be investigated in our

future work based on the results in this paper.

Making use of (13), the SOP at Di can be rewritten as

P
g,N
out,i =

∫ ̟

0

Fγ
g
Di

(Θ + Θγ − 1)fγg
Ei

(γ) dγ

︸ ︷︷ ︸

I1

+

∫ ∞

̟

fγg
Ei

(γ) dγ

︸ ︷︷ ︸

I2

,

(15)

where ̟ = 1
ajΘ

− 1 ≤ ai

aj
.

Utilizing (3), (8), (15), (25.4.38) of [53], we have

IN1 =
QλτEEi

Γ (τE)

M−i∑

k=0

∑

Φi

∑

ΦE

H∑

h=1

π̟ADi
AEi

√
1 + ςh2

2H

×
(

Θ+Θϑh − 1

ρ (ai − aj (Θ + Θϑh − 1))

)Cm

× ϑh
CE+τE−1e

−
BDi

(Θ+Θϑh−1)
ρ(ai−aj(Θ+Θϑh−1))

−(BEi
+λEi)ϑh

,

(16)

where H is the number of terms, ςh = cos
(

(2h−1)π
2H

)

, and

ϑh = ̟(ςh+1)
2 .

Using (3.351.1) of [52], we obtain

IN2 = 1−
QλτEEi

Γ (τE)

∑

ΦE

AEi

(BEi
+ λEi

)
CE+τE

×Υ(CE + τE , (BEi
+ λEi

)̟) ,

(17)

where Υ(α, x) =
∫ x

0
e−ttα−1dt is the lower incomplete

Gamma function, as defined by (8.350.1) in [52].

So we can obtain P
g,N
out,i by substituting (16) and (17) into

(15). Finally, the SOP of the MIMO-NOMA system for this

case that eavesdroppers wiretap independently is obtained by

substituting (14) and (15) into (11).

B. Eavesdroppers with collusion

Putting (4) and (9) into (13), and utilizing (3.351.3) of [52],

we obtain the closed-form of Dj as

P
g,Y
out,j =

λEj

QτE

Γ (QτE)

M−j
∑

k=0

∑

Φj

CD∑

p=0

ψ

× (QτE + p− 1)!
(

BDj
Θ

ajρ
+ λEj

)QτE+p
e
−

BDj
(Θ−1)

ajρ .

(18)

Using (3), (9), (15), and (25.4.38) of [53], we have

IY1 =
λ
QτE
Ei

Γ (QτE)

M−i∑

k=0

∑

Φi

H∑

h=1

e
−

BDi
(Θ+Θϑh−1)

ρ(ai−aj(Θ+Θϑh−1))
−λEi

ϑh

× π̟ADi
ϑh

QτE−1
√
1− ςh2

2H
(

(Θ+Θϑh−1)
ρ(ai−aj(Θ+Θϑh−1))

)CD
.

(19)

Using (3.351.1) of [52], we have

IY2 = 1− Υ(QτE , λEi
̟)

Γ (QτE)
. (20)

Obviously, P
g,Y
out,i is obtained based on (15), (19), and (20).

Then the SOP of the MIMO-NOMA system with MM TAS is

achieved by substituting (18) and (15) into (11).
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IV. ASYMPTOTIC SECRECY OUTAGE PROBABILITY

ANALYSIS

To get more insights, we study the asymptotic SOP in

this section. The SDO for both non-colluding and colluding

eavesdroppers cases are derived when the average SNR of the

main channel tends to infinity.

Based on (38) and ex =
k∑

m=0

xm

m! +O
(
xk

)
, F∞

H̃SgDj

(x) can

be written as

F∞
H̃SgDj

(x) =
λτDD xτD

(τD)!
+O (xτD ) , (21)

where λD = mD/ΩD.

Then the asymptotic CDF of the ordered HSgDj
is derived

as

F∞
HSgDj

(x) =
M !λτDj

D xτDj

(M − j)! (j − 1)!j((τD)!)
j
. (22)

Therefore, we obtain

F∞
γ
g
Dj

(γ) = ∆jγ
τDj , (23)

where ∆j =
M !(ajρ)

−τDjλ
τDj

D

(M−j)!(j−1)!j((τD)!)j
.

Similarly, we have

F∞
γ
g
Di

(γ) =
∆iγ

τDi

(ai − ajγ)
τDi

, (24)

where ∆i =
M !ρ−τDiλ

τDi

D

(M−i)!(i−1)!i((τD)!)i
.

Substituting (8), (9) and (23) into (13), and using (3.351.3)

of [52], the asymptotic SOP at Dj can be rewritten as

P
∞,g,N
out,j =

∆jQλ
τE
Ej

Γ (τE)

∑

ΦE

τDj
∑

p=0

φAEj
Γ (CE + τE + p)

(
BEj

+ λEj

)CE+τE+p
, (25)

P
∞,g,Y
out,j =

∆jλ
QτE
Ej

Γ (QτE)

τDj
∑

p=0

φΓ (QτE + p)

λEj

QτE+p
, (26)

respectively, where φ = (τDj)!(Θ−1)τDj−pΘp

p!(τDj−p)! .

Making use of (8), (9), (15), (24), and (25.4.38) of [53], we

obtain

I
∞,N
1 =

∆iQλ
τE
Ei

Γ (τE)

∑

ΦE

H∑

h=1

π̟AEi

√
1− ςh

2H

× (Θ + Θϑh − 1)
τDi

ϑh
CE+τE−1

(ai − aj (Θ + Θϑh − 1))
τDi

e−(BEi
+λEi)ϑh ,

(27)

I
∞,Y
1 =

∆iλ
QτE
Ei

Γ (QτE)

H∑

h=1

π̟
√
1− ςh2

2H

× (Θ + Θϑh − 1)
τDi

ϑh
QτE−1

(ai − aj (Θ + Θϑh − 1))
τDi

e−λEi
ϑh ,

(28)

respectively.

Note we have I
∞,N
2 = IN2 and I

∞,Y
2 = IY2 since I2 only

depend on the PDF of γE . Then the SOP for MIMO-NOMA

systems with MM TAS can be achieved by substituting P
∞,g
out,i

and P
∞,g
out,j into (11).

The SDO can be expressed as [50]

Gd,l = − lim
ΩD→∞

lnP∞
out,l

lnΩD

, (29)

where P∞
out,l denotes the asymptotic SOP. Then SDO in both

case can be easily obtained as

G
MM,1
d = NS (min {Gd,i, Gd,j}) = 0. (30)

Remark 1: Based on (15), (17), (20), (25)-(29), one can

easily achieve the SDO of the j-th and i-th receivers in MIMO-

NOMA systems with fixed PA in both cases are τDj and 0,

respectively. That is to say, multiple antennas only improve

the SDO of the near user but has no influence on the far user.

Furthermore, whether collusion between eavesdroppers or not

does not affect the SDO of each user.

This phenomenon is comprehensible. The SOP of user i was

given by (15), which equates the sum of I1 and I2. Obviously,

increasing main channel gains (ΩD) will decrease I1 but has

no influence on I2. That is to say, I2 will be the dominant part

of Pout,i and is constant when ΩD → ∞. From another point

of view, using (1), we can achieve that while ΩD increasing,

the received SNR at i has an upper bound, which is a constant
ai

aj
. Namely, we have γ

g
Di

ΩD→∞→ ai

aj
. Thus Pout,i will be a

constant when ΩD → ∞. Further, the SDO of user i is zero.

V. SECRECY OUTAGE PROBABILITY WITH DYNAMIC

POWER ALLOCATION METHOD

The results in Section IV show that the SDO of NOMA

systems is determined by the far user (user i in this work).

To improve the SDO of the user i, I2 must decrease with

increasing ΩD. Fortunately, it can be realized by adjusting

̟, which has an upper bound as ai

aj
. A new dynamic PA

scheme has been proposed in [38] and the results there verified

that it can obtain non-zeros SDO. The main idea of this

dynamic PA scheme is to let ai

aj
increase with the increasing

of ΩD. Thereby I2 will decrease since the integration interval

diminishes. In this section, we analyze the SOP and SDO

of MIMO-NOMA systems when this dynamic PA scheme is

utilized on all the legitimate users.

Let ai

aj
= αλD

−ω (0 < ω < 1, α > 1) 3. As ai + aj = 1,

we obtain
{

aj =
1

1+αλD
−ω

ai =
αλD

−ω

1+αλD
−ω

. (31)

Using (24), (31), and ex =
k∑

m=0

xm

m! + O
(
xk

)
, we obtain

F∞
γD2

(γ) as

F
∞,non
γ
g
Di

(γ) =
∆iγ

τDi

aiτDi
. (32)

3α > 1 is to obtain the fairness and make sure that user i has more power
than user j (ai > aj ) and 0 < ω < 1 is to make sure that the SNR and
SINR at user i and j increases with ΩD simultaneously.
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Substituting (31) into (25) and (26), we obtain the asymp-

totic SOP at D1 as

P
∞,g,non,N
out,j =

∆non
j

(
1 + αλD

−ω
)τDj

λD
τDjQλEj

τE

Γ (τE)

×
∑

ΦE

τDj
∑

p=0

φAEj
Γ (CE + τE + p)

(
BEj

+ λEj

)CE+τE+p
,

(33)

P
∞,g,non,Y
out,j =

∆non
j

(
1 + αλD

−ω
)τDj

λD
τDjλEj

QτE

Γ (QτE)

×
τDj
∑

p=0

φΓ (QτE + p)

λEj

QτE+p
,

(34)

respectively, where ∆non
j = M !ρ−τDj

(M−j)!(j−1)!j((τD)!)j
.

After putting (6), (7) and (32) into (13) and employing

(3.381.4) of [52], we get

P
∞,g,non,N
out,i =

∑

ΦE

τDi∑

p=0

∆non
i QλEi

τEAEi
λD

τDi
(
1 + αλD

−ω
)τDi

Γ (τE)αλD
−ωτDi

× Υ(CE + τE + p, (BEi
+ λEi

)̟)

(BEi
+ λEi

)
CE+τE+p

,

(35)

P
∞,g,non,Y
out,i =

τDi∑

p=0

∆non
i λEi

QτEλD
τDi

(
1 + αλD

−ω
)τDi

Γ (QτE)αλD
−ωτDi

× Υ(QτE + p, λEi
̟)

λEi

CE+τE+p
,

(36)

respectively, where ∆non
i = M !ρ−τDi(τDi)!(Θ−1)τDi−pΘp

(M−i)!(i−1)!i((τD)!)ip!(τDi−p)!
.

Based on (33) - (36), the SDO of user i and j with the

dynamic PA scheme is obtained as τDi and (1− ω) τDj,
respectively. Then we get the SDO of the MIMO-NOMA

systems with dynamic PA is improved as

G
MM,2
d = NS min {τDi, (1− ω) τDj} . (37)

Remark 2: From (37), ω exhibits a strong influence on the

SDO of user j, which means enhancing the SDO of user i

is at the cost of reducing the SDO of user j. Furthermore,

the SDO for MIMO-NOMA systems with dynamic PA will

reduce as ω increases and there is a ceiling as NSτDi, which

is proved by Fig. 8 in this work.

Remark 3: Another interesting phenomenon can be ob-

served from (37), i.e., the SDO of each user not only depend on

the number of antennas at base station, the number of antennas

at himself, and the fading parameter of the main channels, but

also depend on their ordered index. Moreover, the SDO is

independent of the number of eavesdropper, the number of

antennas at each eavesdropper, and the fading parameter of

the wiretap channels.

VI. NUMERICAL RESULTS

Monte-Carlo simulation is given to corroborate our results.

The main adopted parameters are set as Rs = 0.1 bit/s/Hz,

σ2 = 1, mD = mE = 2, and PS = 0dB. The PA scheme in

Figs. 2-5 is fixed and in Figs. 6-8 is dynamic. One can observe

that the analysis results match perfectly with simulation.
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Fig. 2. SOP for various PS with ΩD = 10dB, ND = NE = NS = 3,
Q = 2, M = 4, i = 1, j = 4, aj = 0.2, and ai = 0.8,

It is showed in Fig. 2 that the SOP is improved while

the transmit power increasing. Then it degrades in the high

PS region before becomes a constant, which is similar to

the results in [38]. We can also observe that the SOP with

eavesdropper-collusion is inferior compared to the case that

without collusion, this is because collusion can enhance the

performance of the eavesdroppers. Furthermore, one can find

that the SOP for a lower ΩE are better than the ones for a

higher ΩE since larger ΩE means better channel conditions

at the eavesdropper. From Fig. 2, we can draw an interesting

conclusion that there is an optimal transmit power that can ob-

tain the best secrecy performance for MIMO-NOMA system,

similar to [38].

It is verified in Fig. 3 that the SOP is enhanced by increasing

ΩD, since the increased ΩD means that the channel condition

of the legitimate destination is improved. Based on (15), we

know that the SOP equals to the summation of I1 and I2.

When ΩD increases, I2 will be dominant. Therefore, the SOP

will reach a floor when ΩD tends to infinity because there

exists a ceiling for the secrecy capacity, which is testified in

[54]. Moreover, the security outage performance is improved

as the number of antennas at the destination increases, since

the SNR at the destination will be increased.

Fig. 4 presents the SOP versus various number of antennas

at S. We can see that the SOP is enhanced as NS increases

or NE decreases, this is because the transmitting diversity of

legitimate users will be enhanced while increasing NS and the

receiving diversity of eavesdroppers will become weak with

decreasing NE .

Fig. 5 presents the SOP for different legitimate users with

fixed PA. One can observe that the SOP increases when i

increases. But the change of j almost has no influence on the

SOP, which means SOP of the MIMO-NOMA system mainly

depends on SOP of the i-th user, which has lower channel

gains. The secrecy performance of user i should be considered

emphatically if we want to enrich the security of the whole

NOMA systems.

The SOP with dynamic PA scheme is presented in Fig. 6. it
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Fig. 3. SOP for various ΩD with ΩE = 0dB, NS = 3, NE = 2, Q = 2,
M = 4, i = 1, j = 4, aj = 0.2, and ai = 0.8.
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Fig. 4. SOP for various NS with ΩD = 10dB, ΩE = 0dB, ND = Q = 2,
M = 4, i = 1, j = 3, aj = 0.2, and ai = 0.8.

can be found that the non-zero SDO is achieved, as confirmed

by (37). In addition, the SOP will degrade as increasing the

number of eavesdroppers (Q), which is equivalent to enhance

the quality of the eavesdropping channel.

In Fig. 7, we compare the SOP for different m versus ΩD.

One can find that the SOP with larger m outperforms the one

with a small m because a larger m implies that the channel

fading is weak.

Fig. 8 presents the SOP for different ω when there is

collusion among the eavesdroppers. We can observe that

decreasing ω will improve the SDO of systems with dynamic

PA, which is stated in Remark 2. There is a maximal SDO,

which is equal to NSτDi and does not depend on ω.

VII. CONCLUSION

In this work, we proposed the MM TAS scheme to im-

prove the SOP of a MIMO-NOMA system. The exact and

asymptotic closed-form expressions for SOP are derived when

non-colluding and colluding schemes are utilized for the
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Fig. 5. SOP for various ΩD with ΩE = 0dB, NS = ND = NE = 2,
Q = 2, M = 4, aj = 0.2, and ai = 0.8.
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Fig. 6. SOP with dynamic PA scheme for various ΩD with ΩE = 0dB,
NS = NE = ND = 2, M = 4, i = 1, j = 4, α = 11, and ω = 0.6.
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Fig. 7. SOP with dynamic PA scheme for various ΩD with ΩE = 0dB,
NS = NE = ND = 2, Q = 2, M = 4, i = 1, j = 4, α = 10, and
ω = 0.6.
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Fig. 8. SOP with dynamic PA scheme for various ΩD with ΩE = 0dB,
NS = NE = ND = 2, Q = 2, M = 4, i = 1, j = 2, and α = 10 when
there is a collusion among the eavesdroppers.

eavesdroppers. Monte-Carlo simulation results were given to

verify our analytical results. The results show that when the

MM TAS scheme is adopted, increasing the number of the

antennas at base station can significantly improve the SOP

of the MIMO-NOMA system. Further, the ordered index has

an important influence on the SDO of each user. Although

it was found that there is an optimal transmit power that can

obtain the minimum secrecy outage, how to obtain the closed-

form expression of the optimal transmit power would be an

interesting task. Moreover, there are some other important

research issues that could be done in future work based on

the results of this work, such as cooperative NOMA systems,

cognitive NOMA systems and NOMA systems with energy

harvesting. Another interesting future topic is to analyze the

impact of imperfect CSI on energy efficiency of secure NOMA

systems, whereas the energy-efficient optimization problem for

NOMA systems with imperfect CSI were solved in [56].

APPENDIX A

The CDF of the unordered power gains H̃SgDj
=

ND∑

k=1

∣
∣hSgDj,k

∣
∣
2

is obtained as [48]

FH̃SgDj
(x) = 1− e

(

−
mDx

ΩD

)τD−1∑

k=0

1

k!

(
mDx

ΩD

)k

, (38)

where ΩD means the average SNR.

Based on order statistics [55] and multinomial theorem [47],

the CDF of the ordered power gains HSgDj
is obtained as

FHSgDj
(x) =

M !

(j − 1)!

M−j
∑

k=0

(−1)
k

(j + k) (M − j − k)!k!

×
(

FH̃SgDj
(x)

)j+k

=

M−j
∑

k=0

∑

Φj

ADj
e−BDj

xxCD ,

(39)

where Φj =

{

(n1, · · · , nτD+1) ∈ Z
≥
∣
∣
τD+1∑

p=1
np = j + k

}

,

ADj
= (−1)k(j+k−1)!M !

(j−1)!(M−i−k)!k!
τD+1
∏

q=1
nq !

τD∏

p=1

(

− 1
(p−1)!

(
mD

ΩD

)p−1
)np

,

BDj
=

(j+k−nτD+1)mD

ΩD
, and CD =

τD∑

p=1
np (p− 1).

Making use of (2) and (39), we obtain

Fγ
g
Dj

(γ) =

M−j
∑

k=0

∑

Φj

ADj
(ajρD)

−CDe
−

BDj
ajρD

γ
γCD . (40)

Similarly, Fγ
g
Di

(γ) is obtained as

Fγ
g
Di

(γ) =







M−i∑

k=0

∑

Φi

ADi
e−BDi

ϕ(γ)(ϕ (γ))
CD , γ < ai

aj

1, γ ≥ ai

aj

,

(41)

where Φi =

{

(n1, · · · , nτD+1) ∈ Z
≥
∣
∣
τD+1∑

p=1
np = i+ k

}

,

ADi
= (−1)k(i+k−1)!M !

(i−1)!(M−i−k)!k!
τD+1
∏

q=1
nq !

τD∏

p=1

(

− 1
(p−1)!

(
mD

ΩD

)p−1
)np

,

BDi
=

(i+k−nτD+1)mD

ΩD
, and ϕ (γ) = γ

ρD(ai−ajγ)
.
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