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Secrecy Sum Rate Maximization in Non-Orthogonal Multiple Access
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Abstract—Non-orthogonal multiple access (NOMA) has been
recognized as a promising technique for providing high data rates
in 5G systems. This letter is to study physical layer security in a
single-input single-output (SISO) NOMA system consisting of a
transmitter, multiple legitimate users and an eavesdropper. The
aim of this letter is to maximize the secrecy sum rate (SSR)
of the NOMA system subject to the users’ quality of service
(QoS) requirements. We firstly identify the feasible region of
the transmit power for satisfying all users’ QoS requirements.
Then we derive the closed-form expression of an optimal power
allocation policy that maximizes the SSR. Numerical results are
provided to show a significant SSR improvement by NOMA
compared with conventional orthogonal multiple access (OMA).

Index Terms—Non-orthogonal multiple access, physical layer
security, power allocation, optimization.

I. INTRODUCTION

NOMA has been recognized as a promising band efficient

candidate for 5G wireless systems [1]. Different from conven-

tional orthogonal multiple access (OMA) such as time-division

multiple access (TDMA), NOMA exploits the power domain

to serve multiple users simultaneously. Early work on NOMA

has mainly focused on the enhancement of spectral efficiency.

In [2], [3], different cooperative NOMA schemes have been

investigated, respectively, for improving transmission relia-

bility. In [4], resource allocation has been considered in a

relaying system using the NOMA principle. In [5], multiple-

antenna technologies have been used to further improve the

performance of NOMA systems.

Due to the broadcast nature of wireless communications,

information exchange between transceivers is vulnerable to

eavesdropping, which poses a challenge to realize secure

wireless transmission. Recently, physical layer security, which

achieves secure transmissions by exploiting the dynamics in

the physical layer, has drawn considerable attention [6], [7].

Naturally, this new concept of security can be applied to

NOMA in order to realize robust secure transmission.

In this letter, we investigate the maximization of the secrecy

sum rate (SSR) of a SISO NOMA system, where each user has

a predefined quality of service (QoS) requirement. To the best
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of our knowledge, this is the first effort to study physical layer

security in NOMA. We firstly identify the feasible region of

the transmit power for satisfying all users’ QoS requirements.

Then we derive the closed-form expression of an optimal

power allocation policy that maximizes the SSR. Numerical

results are provided to show a significant SSR improvement

by NOMA compared with conventional orthogonal multiple

access (OMA).

II. SYSTEM MODEL

Consider a downlink system consisting of a transmitter, M

legitimate users and a passive eavesdropper. Each node in

the system is equipped with a single antenna. The channel

gain from the transmitter to the m-th user is denoted by

hm = d
−α

2

m gm, where gm is the Rayleigh fading channel

gain, dm is the distance between the m-th user and the

transmitter, and α is the path loss exponent. Similarly, the

channel gain from the transmitter to the eavesdropper is

modeled as he = d
−α

2

e ge. The instantaneous channel state

information (CSI) of each user is known at the transmitter

while that of the eavesdropper is unknown. Without loss of

generality, the channel gains can be sorted as 0 < |h1|2 ≤
|h2|2 ≤ ... |hMe

|2 ≤ |he|2 < |hMe+1|2 ... ≤ |hM |2, where

Me denotes the number of the legitimate users whose channel

gains are not greater than that of the eavesdropper. It should be

pointed out that the transmitter neither knows |he|2 nor Me.

Employing the NOMA scheme [1], [8], the transmitter

broadcasts a linear combination of M signals to its users.

The transmitted superposition signal can be expressed as
∑M

m=1

√
γmPsm, where sm is the message for the m-th user,

P denotes the total transmit power, and γm represents the

power allocation coefficient, i.e., it is the ratio of the transmit

power for the m-th user’s signal to the total transmit power P .

Each user has a predefined QoS requirement, which demands

the transmitter to send the message to each user with a

minimum data rate, respectively. Meanwhile, the eavesdropper

tries to intercept all legitimate users’ messages1.

A. Achievable Rates of Legitimate Users

The users apply the successive interference cancellation

(SIC) to decode their own signals: the m-th user will first

detect the i-th user’s message, i < m, and then eliminate this

message from its observed mixture, in a successive way. The

i-th user’s message, i > m, will be treated as noise. Thus, the

achievable rate of the m-th user, 1 ≤ m ≤ M , is given by [8]

Rm
b = log2

(

1 +
P |hm|2 γm

P |hm|2∑M
i=m+1

γi + σ2
n

)

, (1)

where σ2
n is the power of additive noise.

1The eavesdropper may be interested only in a specific user’s message. But
in this work, we make a more conservative assumption that the eavesdropper
intercepts each user’s message, because the transmitter neither knows which
user the eavesdropper wants to wiretap nor the eavesdropper’s CSI.



2

B. Secrecy Sum Rate of the NOMA System

We denote Rm
e as the achievable rate of the eavesdropper

to detect the m-th user’s message. Let Rm
s and Rs represent

the secrecy rate of the m-th user and the SSR, respectively.

In this work, we make a pessimistic assumption that the first

m− 1 users’ messages have already been decoded before the

eavesdropper tries to decode the m-th user’s message, which

overestimates the eavesdropper’s capability. Thereby, Rs given

below serves as a lower bound on the SSR correspondingly.

Then, Rm
e , Rm

s and Rs can be given by

Rm
e = log2

(

1 +
P |he|2 γm

P |he|2
∑M

i=m+1
γi + σ2

n

)

, (2a)

Rm
s = [Rm

b −Rm
e ]

+
, (2b)

Rs =
∑M

m=1
Rm

s , (2c)

respectively, where [·]+ , max(0, ·). It can be verified that

Rm
b ≤ Rm

e when |hm|2 ≤ |he|2 [8], making Rm
s be zero

when 1 ≤ m ≤ Me
2. Then, Rs can be rewritten as

Rs =
∑M

m=Me+1
(Rm

b −Rm
e ) . (3)

III. SECRECY SUM RATE MAXIMIZATION

In this section, we propose a power allocation policy to

maximize the SSR of the system subject to all users’ QoS

requirements. Particularly, the closed-form expressions for

the optimal power allocation coefficients {γOpt
m }Mm=1, which

maximize the SSR, are derived analytically.

We denote Qm as the minimum data rate required by the

m-th user and then the QoS constraints are characterized as

Rm
b ≥ Qm, 1 ≤ m ≤ M, (4)

which can be retransformed as

γm ≥ Am

(

P |hm|2
∑M

i=m+1
γi + σ2

n

)

, 1 ≤ m ≤ M, (5)

where Am , 2
Qm−1

P |hm|2
. Then, the SSR maximization problem

can be formulated as

max
γm,1≤m≤M

Rs (6a)

s.t.
∑M

m=1
γm ≤ 1 and (5). (6b)

Due to the QoS requirements, there must exist a minimum

transmit power, denoted by Pmin, that satisfies all users’ QoS

requirements. Then problem (6) is feasible only when P ≥
Pmin. As a result, it is important to identify the feasible region

of the transmit power before dealing with problem (6).

A. Minimum Transmit Power to Satisfy QoS Requirements

Let Pm represent the power of the m-th user’s signal, then

the problem of seeking out Pmin is formulated as

Pmin , min
Pm,1≤m≤M

∑M

m=1
Pm (7a)

s.t. Pm ≥ Bm

(

|hm|2
M
∑

i=m+1

Pi + σ2
n

)

, 1 ≤ m ≤ M, (7b)

2Particularly, in the considered problem, the secure transmission for the
m-th user, 1 ≤ m ≤ Me, should be guaranteed by using conventional
cryptography implemented at upper layers.

where Bm , 2
Qm−1

|hm|2
and (7b) is from the QoS constraints (4).

Theorem 1: The objective function in (7a) is minimized

when all the constraints in (7b) are active.

Proof: We prove this theorem by contradiction. Suppose

that a set of transmit power of all users’ signals {P ∗
m}Mm=1 is

the optimal solution to problem (7) with at least one constraint

in (7b) inactive. Without loss of generality, we suppose that

the k-th constraint in (7b) is inactive, i.e.,

P ∗
k > Bk

(

|hk|2
∑M

i=k+1
P ∗
i + σ2

n

)

. (8)

Now, we create a new set {P ∗∗
m }Mm=1 by defining P ∗∗

m = P ∗
m

for m 6= k while P ∗∗
k is set to the right-hand side (RHS) of

(8). Observing the structure of the constraints (7b), we find out

that the RHS of (7b), for an arbitrary m, is a monotonically

non-decreasing function of Pi for 1 ≤ i ≤ M . As a result, the

setting of P ∗∗
k , whose value is less than P ∗

k , ensures that all the

constraints in (7b) hold for the newly created set {P ∗∗
m }Mm=1.

However, with the definition of {P ∗∗
m }Mm=1, we can obtain

∑M
m=1

P ∗∗
m <

∑M
m=1

P ∗
m, which contradicts to the assumption

that {P ∗
m}Mm=1 is the optimal solution to problem (7). Thereby,

we conclude that all the constraints in (7b) must be active for

minimizing (7a) and thus the proof is complete.

Note that when all the constraints in (7b) are active, the

optimal solution to problem (7), denoted by {PMin
m }Mm=1, can

be calculated sequentially in the order M,M − 1, ..., 1, since

PMin
m is determined by {PMin

i }Mi=m+1 and PMin
M = BMσ2

n is

a deterministic quantity. Then, we have Pmin =
∑M

m=1
PMin
m

and the feasible region of the transmit power is P ≥ Pmin.

B. Optimal Power Allocation Policy

Having obtained Pmin, we are going to deal with the SSR

maximization problem in (6) given P ≥ Pmin. By substituting

(1) and (2a) into (3), Rs can be reformulated as follows.

Rs = log2

(

P |hMe+1|2
∑M

i=Me+1
γi + σ2

n

)

− log2

(

P |he|2
∑M

i=Me+1
γi + σ2

n

)

(9)

+
∑M−1

m=Me+1

[

log2

(

P |hm+1|2
∑M

i=m+1
γi + σ2

n

)

− log2

(

P |hm|2
∑M

i=m+1
γi + σ2

n

)]

.

For notational simplicity, we define

Cm ,

{

P |he|2 , m = Me,

P |hm|2 , Me + 1 ≤ m ≤ M,

tm ,
∑M

i=m+1
γi, Me ≤ m ≤ M − 1,

Jm(tm) , log2
(

Cm+1tm + σ2
n

)

− log2
(

Cmtm + σ2
n

)

.

Then Rs in (9) can be recast as

Rs =
∑M−1

m=Me

Jm(tm). (10)

After the reformulation, we can see that problem (6) has two

important properties: 1) the objective function Rs is the sum of

M −Me non-convex subfunctions with a uniform expression;
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and 2) the arguments {γm}Mm=1 are coupled with each other

in the constraints (5) in a complicated way.

In the following we propose an algorithm to solve problem

(6) by exploiting the properties of the optimization problem.

Our basic idea is: we firstly solve the maximization problem of

each subfunction Jm(tm) for Me ≤ m ≤ M − 1 individually

subject to the constraints (6b). Then we prove that the set of the

optimal solutions to each maximization problem possesses a

unique common solution. In other words, we can find a unique

solution that simultaneously maximizes Jm(tm) for each m

from Me to M − 1 and satisfies all the constraints in (6b),

which consequently solves the problem. More specifically, let

ℑm represent the set of the optimal solutions that maximize

Jm(tm) subject to all the constraints in (6b), where Me ≤
m ≤ M − 1, then our goal is to prove ℑMe

∩ ℑMe+1 ∩
... ∩ ℑM−1 = {{γOpt

m }Mm=1}, where {γOpt
m }Mm=1 is the unique

common solution of the M −Me optimization problems.

We now solve these optimization problems. We first trans-

form the original problem of maximizing Jm(tm) by using its

monotonicity. The first-order derivative of Jm(tm) is given by

dJm(tm)

dtm
=

(Cm+1 − Cm)σ2
n

ln 2 (Cm+1tm + σ2
n) (Cmtm + σ2

n)
≥ 0. (11)

This indicates that Jm(tm) is a monotonically increasing

function of tm. Thus, the maximization of Jm is equivalent

to the maximization of tm. Then, the M − Me optimization

problems mentioned above can be uniformly formulated as

max
γi,1≤i≤M

tm (12a)

s.t. γi ≥ Ai



P |hi|2
M
∑

j=i+1

γj + σ2
n



 , 1 ≤ i ≤ M, (12b)

∑M

i=1
γi ≤ 1. (12c)

Problem (12) is solved by the following proposition.

Proposition 1: The necessary and sufficient condition for the

optimal solution to problem (12) is that both the constraints

in (12b) for 1 ≤ i ≤ m and the constraint (12c) are active.

The closed-form solution to problem (12) is given by

γi =
Ai

[

P |hi|2
(

1−∑i−1

j=1
γj

)

+ σ2
n

]

2Qi
, 1 ≤ i ≤ m. (13a)

tm = 1−
∑m

i=1
γi. (13b)

Proof: It is obvious that problem (12) is convex and then

the Karush-Kuhn-Tucker (KKT) conditions are necessary and

sufficient for the optimal solution to problem (12):

λ =

{

µk −∑k−1

i=1
µiAiP |hi|2 , 1 ≤ k ≤ m,

µk −∑k−1

i=1
µiAiP |hi|2 + 1, m < k ≤ M,

(14)

µi

[

Ai

(

P |hi|2
∑M

j=i+1
γj + σ2

n

)

− γi

]

= 0, 1 ≤ i ≤ M,

(15)

µi ≥ 0, 1 ≤ i ≤ M, (16)

λ

(

∑M

i=1
γi − 1

)

= 0, (17)

λ ≥ 0, (18)

where {µi}Mi=1 and λ are the Lagrange multipliers for the

inequality constraints (12b) and (12c), respectively. In order to

prove that the constraints in (12b) are active for 1 ≤ i ≤ m and

that the constraint (12c) is active, it is necessary and sufficient

to prove µi 6= 0 for 1 ≤ i ≤ m and λ 6= 0, respectively. To

this end, we firstly demonstrate µ1 6= 0 by contradiction:

Supposing µ1 = 0 and setting k = 1 in (14), we obtain

λ = µ1 = 0. (19)

Substituting (19) into (14) yields

µk =
∑k−1

i=1
µiAiP |hi|2 , 1 ≤ k ≤ m. (20)

Obviously, (20) implies that µk = 0 for 1 ≤ k ≤ m, because

µ1 = 0 and µk can be calculated sequentially in the order

2, 3, ..., k. However, under the condition that µk = 0, 1 ≤
k ≤ m, we set k = m + 1 in (14) and then obtain λ =
µm+1 + 1 > 0, which contradicts to (19) obtained using the

assumption µ1 = 0. Thus, we conclude that µ1 6= 0 and

λ = µ1 6= 0, (21)

which indicates the inequality constraint (12c) must be active.

We then substitute (21) into (14) for 1 ≤ k ≤ m and obtain

µk =
∑k−1

i=1
µiAiP |hi|2 + λ, 1 ≤ k ≤ m, (22)

which demonstrates that µk > 0 for 1 ≤ k ≤ m, since λ is

a positive number according to (18) and (21). Thereby, the

constraints in (12b) are active when 1 ≤ k ≤ m.

In order to obtain the closed-form solution of problem (12),

we replace
∑M

j=i+1
γj with 1−∑i

j=1
γj in (12b) since (12c)

is proved to be active. Setting the constraints in (12b) active

for 1 ≤ i ≤ m, we have the expressions of {γi}mi=1 and

of tm given by (13a) and (13b), respectively. According to

(13a), γi can be obtained by recursive calculation in the order

1, 2, ...,m. Thereby, the closed-form expression for the optimal

solution, which maximizes tm, can be obtained when both the

constraints in (12b) for 1 ≤ i ≤ m and the constraint (12c)

are active. The proof is complete.

Based on Proposition 1, which solves problem (12) with

the closed-form solution given by (13), the following theorem

gives the unique solution for maximizing Rs.

Theorem 2: The unique optimal power allocation coeffi-

cients {γOpt
m }Mm=1, which maximize Rs, are given by

γOpt
m =







Am[P |hm|2(1−
∑m−1

i=1
γ

Opt

i )+σ2

n]
2Qm

, 1 ≤ m < M,

1−∑M−1

i=1
γ

Opt
i , m = M.

(23)

Proof: According to Proposition 1, when both the con-

straints in (12b) for 1 ≤ i ≤ m and the constraint (12c) are

active, the arguments {γi}mi=1 are uniquely determined with

the formulas (13a). This implies that more power allocation

coefficients are uniquely determined with the growth of m.

In other words, the size of the set of the optimal solutions

to problem (12), i.e., ℑm, becomes smaller as m increases,

which can be characterized as

ℑMe
⊃ ℑMe+1 ⊃ ... ⊃ ℑM−1, (24a)

ℑMe
∩ ℑMe+1 ∩ ... ∩ ℑM−1 = ℑM−1. (24b)
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Accordingly, ℑM−1 is the set of the optimal solutions that

simultaneously maximize Jm(tm) for Me ≤ m ≤ M − 1,

which consequently solves problem (6). By setting m = M−1
in the closed-form solution provided by (13) in Proposition 1,

the first M−1 arguments {γOpt
i }M−1

i=1
are uniquely determined

with the formulas (13a) in the order 1, 2, ...,M − 1 and the

last argument γ
Opt
M is uniquely determined with γ

Opt
M = 1 −

∑M−1

i=1
γ

Opt
i since the constraint (12c) has been proved to be

satisfied at equality. Thus the proof is complete.

The analysis above demonstrates that with P ≥ Pmin, the

optimal power allocation policy for maximizing the SSR of

the NOMA system is to use the extra power (P − Pmin) only

for increasing the M -th user’s secrecy rate. This is because

the M -th user has the best channel condition and thereby it is

most likely to improve the SSR of the system. That is why the

terms he and Me do not appear in the closed-form solution

given by (23), namely, the proposed power allocation policy

does not need the eavesdropper’ CSI.

IV. NUMERICAL RESULTS

In this section, we provide numerical results to demonstrate

the SSR performance of the NOMA system by using the

proposed power allocation policy. A TDMA system, where the

time slots with equal duration are allocated to users individ-

ually, is used as a benchmark. We randomly generate 50,000

channel realizations with parameters gm, ge ∼ CN (0, 1),
1 ≤ m ≤ M , α = 3, dm = de = 80m, 1 ≤ m ≤ M , and

σ2
n = −70 dBm. Particularly, when the value of the transmit

power P is not in the feasible region, the transmitter will not

send the messages. In other words, when P is not large enough

to satisfy all users’ QoS requirements, we set Rs to zero.
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Fig. 1. Average SSR (bits/s/Hz) versus the transmit power P for different
numbers of users with parameters Qm = 1 bits/s/Hz, 1 ≤ m ≤ M .

Fig. 1 shows the average SSR versus the transmit power.

One can see that NOMA outperforms conventional OMA

and the performance gain becomes more significant as M

increases. This is because, a higher diversity gain is offered

when M is large, and higher spectral efficiency is achieved

when more users are served simultaneously.

Fig. 2 shows the effect of the QoS requirements on the

SSR performance. We can see that the SSR decreases as Qm

increases. This is because, the increase of Qm requires the
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Fig. 2. Average SSR (bits/s/Hz) versus Qm (bits/s/Hz) for different numbers
of users. The transmit power P is set to 20 dBm.

transmitter to use the extra power for improving the data

rate of the users with poor channel conditions, which will

obviously deteriorate the SSR performance. Further, as Qm

becomes very large, the SSR approaches zero, since P is not

large enough to satisfy all users’ QoS requirements and then

the transmitter does not send the messages to the users.

V. CONCLUSION

In this letter, we studied physical layer security in a SISO

NOMA system, in which each legitimate user has a predefined

QoS requirement. We firstly identified the feasible region of

the transmit power for satisfying all users’ QoS requirements.

Then, the optimal power allocation policy for maximizing

the SSR was obtained in closed-form expressions. Numerical

results showed that NOMA has the superior SSR performance

compared with conventional OMA and the performance gain

is more significant as the number of users increases. It is worth

pointing out that the highly demanding QoS requirements will

degrade the SSR performance of the system. One promising

future direction is to adopt multiple antenna settings to further

enhance the security of NOMA systems.
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