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1. Introduction 

The demand for reliable, secure and efficient digital data transmission and 

storage system has been accelerated by the emergence of large-scale and high 

speed communication networks. In 1948, Shannon demonstrated tha t  errors 

induced by a noisy channel or storage medium can be reduced to any desir- 

able level by proper encoding of the information [Shannon 481. Since 

Shannon's work, a great deal of developments have contributed toward 

achieving data  reliability and the use of coding for error control has become an 

integral part in t he  design of modern communication systems and digital com- 

puters. 

Information transmitted through communication channel or stored in 

storage system is particularly vulnerable to eavesdropping and tampering. 

Although information can be protected by several ways (e.g., physical control 

-- data  are stored in physically secure place; or computer system control - the 

operating system provides access control mechanisms to check user's authenti- 

cation), data encryption is the most cost-effective way to provide data secrecy  

[Diffie 7 6 ,  Wood 81, Denning 821. 

A s  computer communications are expanding to many applications, 

assurance of both data  reliability and data secrecy becomes an important 

issue. To achieve this purpose, conventionally the first step is to  encipher a 

plaintext (M) into a ciphertext and the second step is to encode the ciphertext 

into a codeword (C). To recover the plaintext (hl), the receiver decodes the 

received word (C' = C + noise) first and then deciphers the ciphertext (see 

Figure 1.) Combining these two steps into one may obtain faster and more 

efficient implementations. 
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Fig. 1 Conventional approach for data reliability and data secrecy. 

1.1 Joint Encryp t ion  and Error Correction ( J E E C )  Scheme 

In his public-key cryptosystem, McEliece applied error-correcting capability of 

Goppa codes to provide data  secrecy [McEliece 781. His idea is to introduce a 

random error vector to each encoded plaintext before transmission. The 

Hamming weight ( t ’  ) of the error vector is equal to the number ( t )  of errors 

the code cAn correct. Therefore, the receiver can remove the error vector and 

recover the plaintext by applying the decoding of the code. 

If t f  < t  , then up to  t - t f  errors may occur in the channel and these 

errors can be corrected by the receiver. Thus, the system provides both data 

secrecy and data  reliability simultaneously. Since the system becomes less 

secure if t ’  is small but provides less error correcting capability if t f  is large, 

there is a trade-off between data secrecy and data reliability. This approach, 

t o  obtain both data  secrecy and data reliability while providing a trade-off 

between them, is called the Joint Encryption and Error Correction (JEEC) 

scheme [Rao 851. 

Definit ion 1. The J E E C  Scheme  

A scheme that combines data encryption wi th  data encoding into one process 

while providing a trade-off between data secrecy and data reliability is called 

a JEEC scheme. 
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1.2 Secret  Error-Correcting Codes (SECC) 

Conventional approach to obtain both data reliability and data secrecy has the 

disadvantage of inefficiency in the implementation because data encoding and 

data enciphering are implemented as two different steps. JEEC scheme combines 

both transformations into one process while providing only a trade-off between 

data reliability and da ta  secrecy. Large distance and also large block length 

codes are required in JEEC to combat with problems in an insecure and unreli- 

able channel. However, such codes have low information rates and a relatively 

high amount of decryption overhead. Therefore, they may not be cost-effective. 

This leads us to introduce the SECC scheme which may use simple algebraic 

codes (e.g., d - 5 6 )  and also provides both data reliability and data security in 

one process. The SECC scheme can be defined as follows (see Figure 2). 

Definit ion 2. T h e  SECC Scheme  

A scheme that combines data encryption with data encoding into one process 

to obtain both data  secrecy and data reliability, while retaining the full 

error correction capability of the introduced code for possible channel errors, 

is called an SECC scheme. Also i n  an SECC scheme, the cryptanalyst is 

unable to correct channel errors systematically. By that we mean it is com- 

putationally infeasible for the cryptanalyst to correct channel errors without 

decoding keys. 
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Fig. 2 The SECC scheme 

Note that JEEC scheme preserves only partial error-correcting ability, 

whereas SECC scheme preserves full error-correcting ability of the code. 

Therefore SECC scheme can provide better error correcting capabilities than 

JEEC does under the use of the same algebraic codes. In a noisy channel, 

before the plaintext can be recovered the cryptanalyst has to correct channel 

errors (if any) first. If he cannot correct these errors, then he cannot also 

recover the plaintext. This is because any uncorrected error in the received 

ciphertext C’ will only generate an M’ totally different from the plaintext M 

(due t o  the -called “Avalanche effect” in any good cryptosystem.) Therefore, 

the presence of noise errors would only increase the security of the system. 

However, the strength of an SECC system should not depend on the presence 

of channel errors because they are random in nature. On the other hand, in a 

conventional system since the coding scheme is public, the cryptanalyst is able 

to correct channel errors. Therefore, the presence of channel errors doesn’t 
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increase the security of the system. We will study an SECC scheme using 

nonlinear codes in Sec. 2 and an SECC scheme using block chaining technique 

in Sec. 3. Along with each scheme discussed, we investigate various cryptana- 

lytic attacks to show how the scheme can be secure. 

2. SECC Scheme Using Nonlinear Codes 

Nonlinear codes with high degree of nonlinearity and whose decoding highly 

depends on the structure of the codeword, are particularly promising to  con- 

struct SECC systems. In this section, we investigate Preparata-based non- 

linear codes to construct SECC systems. Nonlinear codes, such as Vasil'yev 

nonlinear codes vasil 'yev 621 which have only one nonlinear bit in each code- 

word, are not very useful in this application. We begin with a brief introduc- 

tion to  Preparata codes. Then, we review a code construction technique to 

construct nonlinear codes with large minimum distances from old codes. 

Finally, we propme an SECC scheme using nonlinear codes and investigate i ts  

security level. 

2.1 Preparata Nonlinear Codes [Preparata 681 

Preparata has constructed a class of nonlinear double error-correcting 

(2" -1, 2" -2m ) codes, for each even m 2 4 ,  with some interesting features. 

They contain twice as many codewords as the double error-correcting BCH 

codes of the same length and they are optimal. Moreover, their decoding can 

be based on the calculation of syndrome-like quantities and thus the complex- 

ity is comparable to the corresponding BCH codes. The encoding and decod- 

ing are given here without proof. However, they can be found in [Preparata 

681. 
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Assume that  all polynomials discussed here belong to the algebra of poly- 

nomials modulo (zZm-'-' + 1) over GF(?). Let B = { m ( z ) }  be a single-error- 

correcting BCH code generated by a primitive polynomial gl(z)  of degree m-1 

that has a primitive element Q as its root. Let C = { ~ ( z ) }  be the BCH code 

whose generator polynomial has roots a, a3, and 1. The polynomial u ( 2 )  will 

denote (z*'"-'-~ + I) / (Z+I) .  Consider a linear code c, given by the vectors of 

the form 

v = [ m ( z ) ,  i ,  m(z)+ (m(~)+ i )u (z )+u(z ) ] ,  where i E G F ( 2 ) .  

C ,  can be shown to  be a (zn -1, ~ " ' - 3 m  +I)  linear code of minimum distance 6. 

""-1 

Let @ ( I )  = (2- -* + l ) / g l ( z ) .  Then, there exists an u ( O ~ U  5 ~ " ' - ~ - 2 )  such 

that z 'd(z)  = ( z ' O ( t ) ) * .  Let f ( 2 )  = z ' ~ ( z )  and q ( z )  be a monomial of degree 

less than or equal to Y - l - 2 .  m ( z ) ,  s ( z ) ,  a ,  and q ( z )  are independently chosen. 

Then, the code K, of the form 

is an (n , k )  = (?."-I, ?"-Zrn ) Preparata nonlinear code of distance 5. To 

encode a (2"-?m)-bit information, the first (?"'-'-m) bits are encoded into 

m ( z ) ;  the nest (?"-'-2rn) bits are encoded into s(z ) ;  the following one bit is 

interpreted as i and the last (m-1)  bit are encoded into q ( z ) .  

For decoding, assume that the vector w was sent and that the vector 

is received. Given the following definitions 
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H3 = [(u3)2--1-z, (,3)-3, ...,( 4, 11 

u = [l, 1, ...) 1, 11 

the syndrome S = (uQ ul, u, d )  of r can be computed in the following manner. 

where q ( z )  = a z p  is the monomial in the codeword. 

Let p = u + (u,, + u ~ ) ~ .  If p = u j  ( j  = OJ) and d =o, then r is a member of 

the nonlinear code. If the above condition is not true, then let c = 

[cO(z), c , c 1 ( ~ ) ]  be the "correction" vector that can be added to r to get the 

codeword w. The vector c can be found by the following rules, if j is taken 

modulo 2. 

Rule 1: If p = u j 3  and p + u j + ,  then C ~ + ~ ( Z ) = Z *  where uA =u,, +a, and 

c = d i- c l ( l ) .  

If pfu; ,  then we have the following rules. 

Rule 2: If d = 1 then e -0 and c j ( z )  = zkj where 

akJ = Q .  J + l  + "0 + U@*(UO + OJ. 

Rule 3: If d = O  and oo+a,#O then set c =o, c j ( z )  =o, and 

C ~ + ~ ( Z )  = z k l  + z k z  where a k l  and a':' are the solutions of 

r*+(ao + a& + ( p  + bj3)/(UO+Ul) = 0 

Ruie 4: If d = 0 and a0 + 01 = 0 then r is at a distance 2 3 from any 

codeword. 



548 

If Preparata codes are to be used in the cryptosystems, then the only practi- 

cal values of m are 6, 8 and 10. Therefore, the codes that will be considered here 

are (63, 52), (255, 240) and (1023, 1004) Preparata codes. 

2.2 Construction of New Code From Old Codes WacWilliams 771 

We have given a very brief introduction to Preparata nonlinear codes which can 

only correct double errors. In this section, we review a code construction tech- 

nique to construct nonlinear codes that can correct more than two errors. 

Let Ki be an ( T ,  N i ,  d i )  code where ni is the code length, Ni is the number 

of codewords and di is the minimum distance between any two codewords of the 

code ( l s i 5 2 ) .  A new code K' can be constructed from both K, and K2, called 

the base codes of EL' here, as follows. 

where Ei is the encoding of Ki and M = ( M I ,  M 2 )  is a plaintext block which is 

divided into two subblocks M ,  and M 2  over GF(2). Then, K' is a 

( z ( m a z { n , ,  n,}), N , . N ,  d = m i n  { 2 d , ,  d , } )  code [MacWilliams 771. If n1#n2, then 

enough zeros can be added to the end of the shorter code. Note that K' is a 

linear code if and only if both KI and K, are linear codes, otherwise it is a non- 

linear code. This procedure can be iterated to construct nonlinear codes with 

large minimum distances. Here, we suggest the use of Preparata codes as base 

codes to construct new nonlinear codes, or we assume that either K, or K, or both 

are nonlinear codes constructed from Preparata codes. The decoding of the 

newly developed code is rather straightforward and is omitted here. 
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2.5 Encryption and Decryption of SECC Scheme Using Nonlinear Codes 

The SECC scheme using nonlinear codes is a block encryption and error correc- 

tion combined into one that  also preserves the full error correction capability of 

the code for possible channel errors. Each block is enciphered and deciphered 

independently under this scheme. 

Encryption 

Let E,. denote the encoding of a nonlinear code that encodes a k-bit information 

into an n-bit codeword. Let 9 be an invertible function that transforms a k-bit 

block into a k-bit block in either a linear or nonlinear manner. The matrix P is a 

random permutation matrix of size n . A k-bit plaintext block (M) is enciphered 

into an n-bit ciphertext (C)  by the following equation 

C = EK.(9(M)).P. (1) 

The cryptographic parameters that are secretly held in the system are 9,  P 

and EK.. Since ciphertext-only attacks are much weaker attacks than known- 

plaintext or chosen-plaintext attacks, constructing a cryptosystem which can 

withstand ciphertext-only attacks is considered to be much easier than construct- 

ing a cryptosystem which can withstand either known-plaintext or chosen- 

plaintext attacks. In the proposed scheme, we assume that the function rIr can 

withstand ciphertext-only attacks and may be broken by a known-plaintext 

attack. Hence the security of the scheme should depend on the strength of the 

combination of functions 9, Ek and P and not on the strength of either or Ek 

or P alone. This also illustrates the difference between SECC and the conven- 

tional approach to provide both data secrecy and data reliability. 
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Decryp t  ion 

Let D,. be the  decoding of the nonlinear code and Ei be a correctable error vec- 

tor which occurs due to channel noise when the i-th ciphertext block is transmit- 

ted. The  deciphering procedure is given below. 

(1) Remove the permutation matrix P (P' is the transpose matrix of P). 

(C +Ei )-Pr = E, .(@(M))+Ei .Pr. 

(2) Decoding. 

D,.(E,.(@(iW))+EiP') = rIr(M). 

(3) Recover the  plaintext kf. 

M = *-'(*(A4)). 

Notice tha t  the  error-correcting capability of the code is fully preserved to correct 

channel errors (Ei 's) as a property required in an SECC scheme. Since the  decod- 

ing of Preparata  codes highly depends on the structure of the codeword, cryp- 

tanalyst cannot correct channel errom without knowing the matrix P. This is 

another property required in an SECC scheme. 

2.4 Security of SECC Scheme Using Preparata-Based Nonlinear Codes 

We have discussed both the enciphering and deciphering of the SECC scheme 

using Preparata-based nonlinear codes. What remains to be studied is the  secu- 

rity of the scheme. For simplicity we investigate the security of the  SECC 

scheme using Prepara ta  codes mainly. The security of the  SECC scheme using 

extended nonlinear codes follows directly. Let E, and D, represent the encoding 

and decoding of a Prepara ta  code respectively. 

As we mentioned earlier that  the function 9 can either be a linear or a non- 

linear transformation. If the system using a linear function 9 could provide an  

acceptable level of security (= Po operations), then the system could provide even 
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a better security if \Ir is a nonlinear function. 

First, we consider the case that both and P are removed from the original 

scheme. In the following lemma, we shall show that the simplified scheme can be 

broken by a known-plaintext attack. For this discussion, we assume that no 

error occurs in the channel. 

Lemma 1. 

The encryption scheme 

C = E,(M) 

can be broken by a known-plaintext attack in 0 (nZ) bit operations. 

<Proof> 

The generator polynomial g I ( z )  can be derived from a pair of plaintext and 

ciphertext as follows. The cryptanalyst obtains q ( r )  from the last m-1 bits of the 

plaintext. Hence, m ( z )  can be computed from the first part (zrn-l-l bits) of the 

ciphertext. Subsequently, he can derive g l ( t )  from m ( z )  and the first (zrn-'-rn) 

bits of the plaintext under a known-plaintext attack. Obviously, this requires 

only O(n2) bit operations. 

Q.E.D 

Let N ( g , )  denote the number of primitive polynomials (gl(z)'s) in a class of 

Preparata codes of a given code length (n).  Then, N ( q J  can be computed by the 

where 6 is the Euler totient function and rn-I is the 
formula N ( g  1)=[ 6(?rn-'-l)1, 

degree of the primitive polynomial g i ( 1 ) .  Therefore, we have 

rn -1 

N(g,)=Z if n =IS, 

N ( g , ) = 6  if n=63, 

N(gl )=18 if n=255,  

N(g , )=48  if n=1023. 
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The number of choices of the primitive polynomials gl (z) ' s  in Preparata  

codes of practical lengths is too small for the simplified scheme to be secure. 

We may introduce a secret, linear function 3 to scramble the plaintext 

before encoding. However, the modified system is still insecure under a chosen- 

plaintext a t tack a s  can be shown in the following lemma. 

Lemma 2. 

T h e  encryption scheme 

C = EP(9(,W)) 

c a n  be broken by a chosen-plaintezt  attack in 0 (n2) bit operations. 

<Proof> 

Let M , ,  M 2  and M 3  be the three plaintext blocks to  be enciphered in the sys- 

tem where M , = M 2 + M 3 .  Let C,, C, and C 3  be their ciphertexts respectively. 

Then, 

clcc2+c3 = ( q  ) fq2(Z  )+43(2  1 9  11 (z )+92 (+  11 ($ )+qdZ  )f (' 1 1 9  

4) 
where q i ( z )  is a monomial whose poweriis taken from the decimal equivalent of 

the last m-1 bits of the  scrambled plaintext * (M i ) .  Let qi(z)=o if j=zrn-'-l. 

Consequently, f (2) can be derived from the first ?"-l-1 bits and the last T"-l-1 

bits of the ciphertext in O ( n 2 )  bit operations. Once f (z) is obtained, g l ( z )  can be 

derived easily (see Sec. 2.1). Therefore, the security of the system totally 

depends on the strength of the function 9 which, unfortunately, can be broken 

by a known-plaintext attacks a s  mentioned previously. 

Q .E.D. 

The simplified scheme in Lemma 2 is insecure because the structure of the 

code is revealed. Therefore, the cryptanalyst can remove the linear component of 

the codewords and  then break the system. In order to avoid this weakness, a 



553 

permutation matrix may be introduced to scramble the structure of the code. 

However, the following lemma shows that the modified scheme can be broken by 

a chosen-plaintext attack if the function @ is not introduced to the scheme. 

Lemma 3. 

The encryption scheme 

C = E,(M).P 

can be broken b y  a chosen-plaintext attack in O ( n 3 )  operations. 

<Proof> 

0 0  . ' .  1 1  be a matrix of plaintexts. 
0 0  . . .  

. . .  
0 I 1 1  . . .  

Let Mi ( 1 s i s 2 m - * - 1 ) ,  the i-th row in M, be the i-th plaintext to be enciphered in 

the system. Let CY denote the matrix of ciphertexts of M. Then, the following 

relation holds where TY is the matrix of codewords of M encoded by the 

Preparata code. 

00 . . .  0 1 0  f ( 2 )  

00 ' . .  1 0 0  z ' f ( 2 )  

1 0  . . . 0 0 0 22"-1-2 

. . .  . . .  I C M  = T M ' P  = 

Notice that  the columns in the matrix TM are all distinct. Therefore. by 

trying all possible f ( 2 ) ' s  (i.e., N(g l )  of them), the cryptanalyst can obtain both 

the function f (z) and the permutation matrix P used in the system. The work 

factor of this attack is dominated by the overhead of enciphering 2m-1-1 chosen 

plaintexts, i.e. 0 (n 3). 

Q.E.D. 

From these lemmas, we see if both the function Q and the permutation 

matrix P are introduced to the system as a portion of the key, then these attacks 
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cannot break the resulting scheme. 

Since there are only a small number of primitive polynominals for a given 

code length n ,  the cryptanalyst may try to guess the generator polynomial gl(z)  

used in the system. However, the work factor to check the correctness of each 

guess involves a very large amount of overhead to figure out both functions 3 

and P. That is a hopeless task. 

The SECC scheme using Preparata codes is a block encryption and error 

correction combined into one that  also preserves the full error correction capabil- 

ity of the code for possible channel errors. This is a major distinction from 

McEliece’s scheme, which has no error correcting capability or has only a partial 

error correcting capability when used as JEEC. While somewhat simpler SECC 

schemes given by Lemmas 1-3 are shown to be breakable under known-plaintext 

or chosen-plaintext attacks, the proposed scheme with both functions of * and P 

appears to be secure. It would be a challenge indeed to find cryptanalytic attacks 

to break this scheme. 

These attacks are performed under the assumption that there is no error 

occurs in the channel. If there exist channel errors, then it will be much more 

difficult to perform these attacks against the SECC system. Therefore, the pres- 

ence of channel errors introduces additional level of data security t o  the system 

as required in an SECC scheme. 

There are several types of cryptanalytic attack against algebraic-code cryp- 

tosystems discussed in [Rao 87, Struik 871. These attacks are performed based on 

the linearity of the system. They will not be applicable for this nonlinear coding 

scheme. 
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3. SECC Scheme Using Block Chaining Technique 

In this section, we proposed an SECC scheme based on block chaining technique. 

In this scheme because each ciphertext is a function of all previous plaintexts, 

decoding error of one ciphertext will propagate all the way through the last  

block. This “error propagation” property can be applied to detected any illegal 

modification to the ciphertext thus provides data integrity [Meyer 821. Therefore, 

this scheme can provide not only data reliability and data secrecy but also data 

integrity in one enciphering. But any decoding error requires the retransmission 

of all blocks chained together. 

9.1 Encryption and Decryption of the Proposed Scheme 

Rao and Nam have suggested a private-key algebraic code cryptosystem ( Rao- 

Nam scheme) using simple linear codes [Rao 871. By simple codes we mean small 

distance codes,,i.e. d d 5 6 .  In this scheme, a k-bit plaintext block Mi is enci- 

phered to  an n-bit ciphertext block Ci by the foilowing equation. 

Ci =(Mi S G t  Z; )P, 

where 

S : an arbitrary (k xk) nonsingular matrix, 

G : an (n , k )  code generator matrix, 

P : a random (n x n )  permutation matrix, 

Zi : an error vector of length n randomly selected from a predetermined 

syndrome-error table. 

S, G and P are private keys. 

Struik and van Tilburg proposed chosen-plaintext attacks (ST-type attacks) 

on Rao-Nam scheme. Their attacks are based on estimating the rows of the enci- 

pher matrix G’ =SGP by constructing unit vectors from the chosen plaintext or 
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by solving a set  of linear equations (Struik 871. They also proposed a modified 

scheme to withstand these attacks. In their modified scheme, the matrix S in 

Rao-Nam scheme is replaced by an invertible, nonlinear function f such tha t  

M i = f - ' (  j (M.,Zi),Zi). In  the modified scheme, Mi is enciphered into Ci by the fol- 

lowing equation. 

C i = f  (Mi ,Z i )GP+Zi .  

These schemes are proposed mainly for providing data  secrecy. They  are not 

designed to realize JEEC or SECC and therefore do not provide data reliability. 

However, by modifying the way the error vectors ( Z i ' s )  is introduced, a n  SECC 

system can be constructed. Block chaining technique will be applied to facilitate 

this construction. The  proposed system is described below and is shown in Figure 

3. 

Encryption. 

The cryptographic parameters ( that  are secretly held) for this scheme are 

f : a n  invertible, nonlinear function which transforms a k-bit block to 

a k-bit block, 

G : an (n , k )  code generator matrix, 

g : a k-bit to n-bit block expanding function. 

The  following symbols are used for this scheme. 

Xi : the i - t h  output  of 1 , ( i = i , z  ,... ). 

Zi : the i - t h  error vector, Z i + l = g ( X , ) .  Z I  is a correctable 

error randomly generated by the system. 

Ei : error vector due to channel noise occurs when the i - th  block is 

transmitted. 

Ci' =Ci+E,  is the  i - th  block received at the 

receiver end. 
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Fig.3 SECC Scheme Using Block Chaining Technique 



558 

D : the decoding of the introduced code. 

6 : a one-cycle delay register used to  store Xi. 

The data stream consists of k-bit blocks M I ,  M 2 ,  . . . A4. At time 1, the first 

plaintext M1 is transformed into XI by the function f . Then, X1 will be 

stored at the register 6 and also encoded by G simultaneously. Before the first 

codeword XIG is sent to the receiver, a randomly generated errors Zl,  that  

can be corrected by the code, is added to the codeword XIG. The result, 

C1=XIG+Z1, is the first ciphertext transmitted to  the receiver, At  time i, the 

plaintext Mi is exclusive-oring with X,.-l taken from the register 6. Then, 

x;: =/ is computed and stored at 6. At that time, 4 =q(X. -J  is also 

computed. After XiG is obtained, the ciphertext Ci=Xi+Zi can be con- 

structed. In general, the  encryption sequence is given as follows. 

C1=f (Ml)G+Zl, 

C,=f (M,+X*)G+Z,,  

C3=f (M,+XdG+Z,, 

(X,=f W l ) ,  Z2=e (Xl)), 

( X F !  (M?+Xi), z,=q (X2)) ,  

Due t o  the block chaining feature, the same plaintext blocks will be enci- 

phered to  different ciphertexts. Therefore, the cryptanalysis would be more 

difficult. Since the ciphertexts are not codewords, the cryptanalyst cannot 

construct a combinatorially equivalent generator matrix of the code from the 

ciphertexts. Therefore, he cannot correct errors systematically a s  required for 

an SECC scheme. 

De c ryp tion. 

Here, we assume that  the receiver could synchronize with the sender on the 
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sequence of vectors X. and Zi added to both plaintext and the corresponding 

codeword respectively. Furthermore, we a s u m e  that the decoding is correctly 

carried out. The decryption sequence is given below. 

Because the errors introduced deliberately at the sender end can be removed 

at the receiver end by this synchronization, the error-correcting capability of 

the code is fully preserved for possible channel errors. By this chaining 

feature, errors due to intruder's tampering which cannot be corrected by the 

code will propagate all the way through the last block. However, this may 

serve as a checksum t o  detect illegal modification to the ciphertext by the 

intruder [Denning 82). Hence the proposed scheme provides not only data 

reliability and data secrecy but also data integrity (data authenticity) [Meyer 

831. That  is, the SECC scheme using block chaining technique can provide 

two levels of error control. The first level is the correction of channel errors; 

the second level is the detection of uncorrectable modification to the cipher- 

text by the intruder. But, the presence of such errors requires the retransmis- 

sion (or reenciphering) of all blocks chained together. 

9.2 Security of the Proposed SECC Scheme 

If we define errors in one block of binary information as the bits different 

from the original block sent by the sender, then both channel errors and 

intruder's tampering are regarded as errors. However, the manner of the 

errors introduced by channel noise is different from that of intruder's 
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tampering. The errors introduced by intruder’s tampering are primarily mul- 

tiple errors. In binary symmetric channels, the probability of multiple ran- 

dom errors is very small b i n  831. Algebraic codes are designed for correcting 

random errom due to channel noise. They are not designed to correct multi- 

ple errors due to intruder’g tampering. In the presence of multiple errors, 

erroneous decoding might occur. Consequently, to combat with problems in 

an insecure and unreliable channel, a scheme which is capable of hiding infor- 

mation, correcting channel errors and also detecting any illegal modification 

to the  ciphertext is desirable. The SECC scheme based on block chaining 

technique could provides these characteristics and hence is very useful in an 

insecure and unreliable environment. 

The SECC scheme withstands ST-type chosen-plaintext attacks because 

of the plaintext is transformed by a nonlinear function f before encoding and 

also because of the chaining feature. This prevents the cryptanalyst from 

constructing unit vectors from the chosen plaintexts to derive G. 

Simplified versions of the SECC Scheme 

To show how this scheme provides a high level of security, we may consider 

two simplified versions of the original one. First, if 4.’ the output of f , is fed 

forward to  the function g only (i.e., x; is not fed back to  f ), then the encryp- 

tion sequence is given as follows. 

A chosen-plaintext attack can break G if g is a public linear function that has 



a left inverse. For example, let Mi=Mi+l  and M j + p i K + 3 .  Then 

Thus (f (M;+J+f (Mi+,))-g-'(Ci+z+C;+9). If the cryptanalyst could obtain k 

such distinct pairs, then G can be derived. However, if g is a secret nonlinear 

function or g has no left inverse then this attack does not work. 

On the other hand, if Xi is fed back to f only (i.e., & is not fed forward 

to  g ), then the encryption sequence is given as follows. 

To attack the scheme, the cryptanalyst may find the equivalent ciphertexts. 

For example, if Ci=Cj, then f (Mi+&-,)=/ ( M , . C X ~ - ~ )  i.e., X.=Xj. If 1 is a 

linear transformation, then Ci+l+Cj+l=f (Mi+JG+f (Mj+JG. Thus, f .G can 

be figured out by a known plaintext attack. 

If f is a nonlinear transformation, then this line of attack may not work. 

However, the cryptanalyst could collect k linearly independent codewords to 

construct a generator matrix (G) which is combinatorially equivalent to G .  

Let G=PG for any nonsingular matrix S of rank k. Since the number of 

nonsingular matrices of rank k is about 0 . 3 ~ 2 ~ ~ ~  it is computationally infeasi- 

ble t o  estimate the matrix G used if k is large enough. Thus, the scheme 

appears secure. But, the cryptanalyst may be able to correct channel errors if 

t is small (e,g. t 53). Thus, it is important to feed X, forward to g in order to 
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construct an SECC system. As a result, the SECC scheme can be very secure 

if f is an invertible, nonlinear function and g is a nonlinear, one-way func- 

tion. It will be a challenge to design other lines of attack to  break this 

scheme. 

4. Conclusion 

For the very first time, we introduce the concept of secret error-correcting 

codes in this paper. An SECC scheme combines data encoding with data 

encryption into one process and enables the system to correct channel errors 

aa well as conceal information from unauthorized user simultaneously. The 

main purpose of this research is t o  construct SECC schemes to facilitate a 

rel iable,  secure and efficient digital transmission. 

We have proposed two SECC schemes to realize this new concept. The 

first one is a block encryption using Preparata-based nonlinear codes. In this 

scheme, each block can be enciphered and deciphered independently. 

The other SECC scheme is based on block chaining technique. This 

scheme provides not only data secrecy and data reliability but also data 

integrity due t o  the chaining feature. However, the decryption of each cipher- 

text cannot be carried out independently. The decoding error in one block 

requires retransmission of all blocks chained together. 

Although we have investigate various cryptanalytical attacks against 

these schemes, they are still not fully proven systems. Several problems relat- 

ing to the proposed schemes, such as the key generation and key management 

problems, still remain unsolved. Furthermore, there may exist other good 

techniques to realize the SECC concept. These indeed require further 

research. 



563 

References 

[Denning 821 Dorothy E. Denning, Cryptography and Data Szeurity A.ddison 
Wesley, 1982. 

[Diflie 761 Whitfield Difie and Martin E. Hellnan, “New Directions in Cryp 
tography,” IEEE Trans. on Information Theory, Vol, IT--22, No. 6, yp. 

[Lin 831 Shu Lin and Daniel J. Costello, Jr., Error Control Coding: Funda- 

[MacWiIliams 771 F.J. MacWiIliams and J.JA. Sloane, The Theory 01 Error- 

644-654, NOV. 1976 

mentals and Applications, Prentice-Hall, 1983. 

Correcting Codes, North-Holland, Amsterdam, 1997. 

R.J. McEliece, “A Public-Key Cryptmystem Based on Alge- 
braic Coding Theory”, DSN Progress Report, Jet Propulsion Labora- 
tory, CA., Jan. & Feb. 1978, pp. 42-44. 

(Meyer 821 Meyer C.H. and Matyas S.M., Cryptography: A New Dimension in 
Computer Data Security, John Wiley & Sons, Inc., 1982. 

[Peterson 721 W. Wesley Peterson and E.J. Weldon, Jr., Error-Correcting 
Codes, Second Edition, The MIT Press, 1972. 

[Preparata 681 
Error-Correcting Codes,” Inform. and Control, 13, pp. 378-400, 1968. 

[Rao 8.31 T.R.N. Rao, “Cryptosystems Using Algebraic Codes,” IEEE Inter- 
national Symp. on  Injo. Theory,, Brighton, England, June, 1985. 

[Rao 871 T.R.N. Rao and K.H. Nam “A Private-Key Algebraic-Coded Cryp- 
tosystem”, Advances in Cryptology CRYPTO ’86, editor A.M. Odlyzko, 
Sew l -ork,  Springler Verlag, pp. 35-48, 1987. 

[Shannon 481 C.E. Shannon. “A Mathematical Theory of Communication,” 
Bell Syst. Tech. J ,  27, pp. 379423 (Part I), 623-656 (Part 11), July 1948. 

[Struik 871 R. Struik and van Tilburg J., “The Rao-Nam Scheme is Insecure 
Against a Chosen-plaintext Attack,” Advances in Cryptology CRYPTO 

[McEliece 781 

F.P. Preparata, “-4 Class of Optimum Nonlinear Double- 

‘87, pp. 445-457, 1987. 

[Wood 811 Charles C. Wood, “Future ,ipplication of Cryptography,” Proc. oj 
the 1981 Symposzum on Securaty arid Privacy, pp. 70-74, Apr. 1981. 

[Vasil’yev 621 Vasil’yev, Jr. L. ”Nongroup Close-Packed Codes”, Probl. 
Cybernet. (CSSR) 8 ,  pp.  337-339, 19G2. 


	Abstract
	Key words
	Introduction
	Joint Encryption and Error Correction (JEEC) Scheme
	Secret Error-Correcting Codes (SECC)

	SECC Scheme Using Nonlinear Codes
	Preparata Nonlinear Codes [Preparata 681
	Construction of New Code From Old Codes WacWilliams 771
	Encryption and Decryption of SECC Scheme Using Nonlinear Codes
	Security of SECC Scheme Using Preparata-Based Nonlinear Codes

	SECC Scheme Using Block Chaining Technique
	Encryption and Decryption of the Proposed Scheme
	Security of the Proposed SECC Scheme

	References

