Secret Key Agreement:

General Capacity and Second-Order Asymptotics

Masahito Hayashi Himanshu Tyagi Shun Watanabe

Two party secret key agreement

Maurer 93, Ahlswede-Csiszár 93

A random variable K constitutes an (ϵ, δ)-SK if:

$$
\begin{aligned}
\mathrm{P}\left(K_{x}=K_{y}=K\right) & \geq 1-\epsilon: \text { recoverability } \\
\frac{1}{2}\left\|\mathrm{P}_{K \mathbf{F}}-\mathrm{P}_{\mathrm{unif}} \mathrm{P}_{\mathbf{F}}\right\| & \leq \delta: \text { security }
\end{aligned}
$$

Two party secret key agreement

Maurer 93, Ahlswede-Csiszár 93

A random variable K constitutes an (ϵ, δ)-SK if:

$$
\begin{aligned}
\mathrm{P}\left(K_{x}=K_{y}=K\right) & \geq 1-\epsilon: \text { recoverability } \\
\frac{1}{2}\left\|\mathrm{P}_{K \mathbf{F}}-\mathrm{P}_{\mathrm{unif}} \mathrm{P}_{\mathbf{F}}\right\| & \leq \delta: \text { security }
\end{aligned}
$$

Two party secret key agreement

Maurer 93, Ahlswede-Csiszár 93

A random variable K constitutes an (ϵ, δ)-SK if:

$$
\begin{aligned}
\mathrm{P}\left(K_{x}=K_{y}=K\right) & \geq 1-\epsilon: \text { recoverability } \\
\frac{1}{2}\left\|\mathrm{P}_{K \mathbf{F}}-\mathrm{P}_{\mathrm{unif}} \mathrm{P}_{\mathbf{F}}\right\| & \leq \delta: \text { security }
\end{aligned}
$$

What is the maximum length $S(X, Y)$ of a SK that can be generated?

Where do we stand?

Maurer 93, Ahlswede-Csiszár 93
$S\left(X^{n}, Y^{n}\right)=n I(X \wedge Y)+o(n) \quad$ (Secret key capacity)

Csiszár-Narayan 04
Secret key capacity for multiple terminals

Renner-Wolf 03, 05
Single-shot bounds on $S(X, Y)$

Where do we stand?

Maurer 93, Ahlswede-Csiszár 93
$S\left(X^{n}, Y^{n}\right)=n I(X \wedge Y)+o(n) \quad$ (Secret key capacity)

Csiszár-Narayan 04
Secret key capacity for multiple terminals

Renner-Wolf 03, 05
Single-shot bounds on $S(X, Y)$

Typical construction: X sends a compressed version of itself to Y, and the K is extracted from shared X using a 2-universal hash family

Where do we stand?

Maurer 93, Ahlswede-Csiszár 93
$S\left(X^{n}, Y^{n}\right)=n I(X \wedge Y)+o(n) \quad$ (Secret key capacity)

Csiszár-Narayan 04
Secret key capacity for multiple terminals

Renner-Wolf 03, 05
Single-shot bounds on $S(X, Y)$

Typical construction: X sends a compressed version of itself to Y, and the K is extracted from shared X using a 2-universal hash family

Converse??

Where do we stand?

Maurer 93, Ahlswede-Csiszár 93 Fano's inequality
$S\left(X^{n}, Y^{n}\right)=n I(X \wedge Y)+o(n) \quad$ (Secret key capacity)
Csiszár-Narayan 04 Fano's inequality
Secret key capacity for multiple terminals

Renner-Wolf 03, $05 \sim$ Potential function method
Single-shot bounds on $S(X, Y)$

Typical construction: X sends a compressed version of itself to Y, and the K is extracted from shared X using a 2-universal hash family

Converse??

Converse: Conditional independence testing bound

The source of our rekindled excitement about this problem:

Theorem (Tyagi-Watanabe 2014)

Given $\epsilon, \delta \geq 0$ with $\epsilon+\delta<1$ and $0<\eta<1-\epsilon-\delta$. It holds that

$$
S_{\epsilon, \delta}(X, Y) \leq-\log \beta_{\epsilon+\delta+\eta}\left(\mathrm{P}_{X Y}, \mathrm{P}_{X} \mathrm{P}_{Y}\right)+2 \log (1 / \eta)
$$

Converse: Conditional independence testing bound

The source of our rekindled excitement about this problem:

Theorem (Tyagi-Watanabe 2014)

Given $\epsilon, \delta \geq 0$ with $\epsilon+\delta<1$ and $0<\eta<1-\epsilon-\delta$. It holds that

$$
S_{\epsilon, \delta}(X, Y) \leq-\log \beta_{\epsilon+\delta+\eta}\left(\mathrm{P}_{X Y}, \mathrm{P}_{X} \mathrm{P}_{Y}\right)+2 \log (1 / \eta)
$$

$$
\beta_{\epsilon}(\mathrm{P}, \mathrm{Q}) \triangleq \inf _{\mathrm{T}: \mathrm{P}[\mathrm{~T}] \geq 1-\epsilon} \mathrm{Q}[\mathrm{~T}],
$$

where

$$
\mathrm{P}[\mathrm{~T}]=\sum_{v} \mathrm{P}(v) \mathrm{T}(0 \mid v) \quad \mathrm{Q}[\mathrm{~T}]=\sum_{v} \mathrm{Q}(v) \mathrm{T}(0 \mid v)
$$

Converse: Conditional independence testing bound

The source of our rekindled excitement about this problem:

Theorem (Tyagi-Watanabe 2014)

Given $\epsilon, \delta \geq 0$ with $\epsilon+\delta<1$ and $0<\eta<1-\epsilon-\delta$. It holds that

$$
S_{\epsilon, \delta}(X, Y) \leq-\log \beta_{\epsilon+\delta+\eta}\left(\mathrm{P}_{X Y}, \mathrm{P}_{X} \mathrm{P}_{Y}\right)+2 \log (1 / \eta)
$$

$$
\beta_{\epsilon}(\mathrm{P}, \mathrm{Q}) \triangleq \inf _{\mathrm{T}: \mathrm{P}[\mathrm{~T}] \geq 1-\epsilon} \mathrm{Q}[\mathrm{~T}],
$$

where

$$
\mathrm{P}[\mathrm{~T}]=\sum_{v} \mathrm{P}(v) \mathrm{T}(0 \mid v) \quad \mathrm{Q}[\mathrm{~T}]=\sum_{v} \mathrm{Q}(v) \mathrm{T}(0 \mid v)
$$

In the spirit of meta-converse of Polyanskiy, Poor, and Verdu

Single-shot achievability?

Recall the two steps of SK agreement:
Step 1 (aka Information reconciliation).
Slepian-Wolf code to send X to Y
Step 2 (aka Randomness extraction or privacy amplification). "Random function" K to extract uniform random bits from X as $K(X)$

Example. For $(X, Y) \equiv\left(X^{n}, Y^{n}\right)$
Rate of communication in step $1=H(X \mid Y)=H(X)-I(X \wedge Y)$
Rate of randomness extraction in step $2=H(X)$
The difference is the secret key capacity

Single-shot achievability?

Recall the two steps of SK agreement:
Step 1 (aka Information reconciliation).
Slepian-Wolf code to send X to Y
Step 2 (aka Randomness extraction or privacy amplification). "Random function" K to extract uniform random bits from X as $K(X)$

Example. For $(X, Y) \equiv\left(X^{n}, Y^{n}\right)$
Rate of communication in step $1=H(X \mid Y)=H(X)-I(X \wedge Y)$
Rate of randomness extraction in step $2=H(X)$
The difference is the secret key capacity
Are we done?

Single-shot achievability?

Recall the two steps of SK agreement:
Step 1 (aka Information reconciliation).
Slepian-Wolf code to send X to Y
Step 2 (aka Randomness extraction or privacy amplification). "Random function" K to extract uniform random bits from X as $K(X)$

Example. For $(X, Y) \equiv\left(X^{n}, Y^{n}\right)$
Rate of communication in step $1=H(X \mid Y)=H(X)-I(X \wedge Y)$
Rate of randomness extraction in step $2=H(X)$
The difference is the secret key capacity
Are we done? Not quite. Let's take a careful look

Step 1: Slepian-Wolf theorem

Miyake Kanaya 95, Han 03

Lemma (Slepian-Wolf coding)

There exists a code (e, d) of size M with encoder $e: \mathcal{X} \rightarrow\{1, \ldots, M\}$, and a decoder $d:\{1, \ldots, M\} \times \mathcal{Y} \rightarrow \mathcal{X}$, such that

$$
\begin{aligned}
& \mathrm{P}_{X Y}(\{(x, y) \mid x \neq d(e(x), y)\}) \\
& \leq \mathrm{P}_{X Y}\left(\left\{(x, y) \mid-\log \mathrm{P}_{X \mid Y}(x \mid y) \geq \log M-\gamma\right\}\right)+2^{-\gamma} .
\end{aligned}
$$

Step 1: Slepian-Wolf theorem

Miyake Kanaya 95, Han 03

Lemma (Slepian-Wolf coding)

There exists a code (e, d) of size M with encoder $e: \mathcal{X} \rightarrow\{1, \ldots, M\}$, and a decoder $d:\{1, \ldots, M\} \times \mathcal{Y} \rightarrow \mathcal{X}$, such that

$$
\begin{aligned}
& \mathrm{P}_{X Y}(\{(x, y) \mid x \neq d(e(x), y)\}) \\
& \leq \mathrm{P}_{X Y}\left(\left\{(x, y) \mid-\log \mathrm{P}_{X \mid Y}(x \mid y) \geq \log M-\gamma\right\}\right)+2^{-\gamma} .
\end{aligned}
$$

$$
-\log \mathrm{P}_{X \mid Y}=-\log \mathrm{P}_{X}-\log \left(\mathrm{P}_{Y \mid X} / \mathrm{P}_{Y}\right)
$$

Compare with

$$
H(X \mid Y)=H(X)-I(X \wedge Y)
$$

The second term is a proxy for the mutual information

Step 1: Slepian-Wolf theorem

Miyake Kanaya 95, Han 03

Lemma (Slepian-Wolf coding)

There exists a code (e, d) of size M with encoder $e: \mathcal{X} \rightarrow\{1, \ldots, M\}$, and a decoder $d:\{1, \ldots, M\} \times \mathcal{Y} \rightarrow \mathcal{X}$, such that

$$
\begin{aligned}
& \mathrm{P}_{X Y}(\{(x, y) \mid x \neq d(e(x), y)\}) \\
& \leq \mathrm{P}_{X Y}(\{(x, y) \mid \geq \log M-\gamma\})+2^{-\gamma} \\
& -\log \mathrm{P}_{X \mid Y}=-\log \mathrm{P}_{X}-\log \left(\mathrm{P}_{Y \mid X} / \mathrm{P}_{Y}\right)
\end{aligned}
$$

Compare with

$$
H(X \mid Y)=H(X)-I(X \wedge Y)
$$

The second term is a proxy for the mutual information
Communication rate needed is approximately equal to
(large probability upper bound on $\left.-\log \mathrm{P}_{X}\right)-\log \left(\mathrm{P}_{Y \mid X} / \mathrm{P}_{Y}\right)$

Step 2: Leftover hash lemma

Lesson from the step 1: Communication rate is approximately
(large probability upper bound on $\left.-\log \mathrm{P}_{X}\right)-\log \left(\mathrm{P}_{Y \mid X} / \mathrm{P}_{Y}\right)$
Recall that the min entropy of X is given by

$$
H_{\min }\left(\mathrm{P}_{X}\right)=-\log \max _{x} \mathrm{P}_{X}(x)
$$

Impagliazzo et. al. 89, Bennett et. al. 95, Renner-Wolf 05

Lemma (Leftover hash)

There exists a function K of X taking values in \mathcal{K} such that

$$
\left\|\mathrm{P}_{K Z}-\mathrm{P}_{\mathrm{unif}} \mathrm{P}_{Z}\right\| \leq \sqrt{|\mathcal{K} \| \mathcal{Z}| 2^{-H_{\min }\left(\mathrm{P}_{X}\right)}}
$$

Step 2: Leftover hash lemma

Lesson from the step 1: Communication rate is approximately (large probability upper bound on $\left.-\log \mathrm{P}_{X}\right)-\log \left(\mathrm{P}_{Y \mid X} / \mathrm{P}_{Y}\right)$

Recall that the min entropy of X is given by

$$
H_{\min }\left(\mathrm{P}_{X}\right)=-\log \max _{x} \mathrm{P}_{X}(x)
$$

Impagliazzo et. al. 89, Bennett et. al. 95, Renner-Wolf 05

Lemma (Leftover hash)

There exists a function K of X taking values in \mathcal{K} such that

$$
\left\|\mathrm{P}_{K Z}-\mathrm{P}_{\mathrm{unif}} \mathrm{P}_{Z}\right\| \leq \sqrt{|\mathcal{K}||\mathcal{Z}| 2^{-H_{\min }\left(\mathrm{P}_{X}\right)}}
$$

Randomness can be extracted at a rate approximately equal to

$$
\text { (large probability lower bound on }-\log \mathrm{P}_{X} \text {) }
$$

Step 2: Leftover hash lemma

Lesson from the step 1: Communication rate is approximately (large probability upper bound on $\left.-\log \mathrm{P}_{X}\right)-\log \left(\mathrm{P}_{Y \mid X} / \mathrm{P}_{Y}\right)$

Randomness can be extracted at a rate approximately equal to
(large probability lower bound on $-\log \mathrm{P}_{X}$)

Spectrum slicing

A slice of the spectrum

Slice the spectrum of X into L bins of length Δ and send the bin number to Y

Single-shot achievability

Theorem

For every $\gamma>0$ and $0 \leq \lambda \leq \lambda_{\min }$, there exists an ($\left.\epsilon, \delta\right)$-SK K taking values in \mathcal{K} with

$$
\begin{aligned}
\epsilon \leq & \mathrm{P}\left(\log \frac{\mathrm{P}_{X Y}(X, Y)}{\mathrm{P}_{X}(X) \mathrm{P}_{Y}(Y)} \leq \lambda+\gamma+\Delta\right) \\
& +\mathrm{P}\left(-\log \mathrm{P}_{X}(X) \notin\left(\lambda_{\min }, \lambda_{\max }\right)\right)+\frac{1}{L}
\end{aligned}
$$

$$
\delta \leq \frac{1}{2} \sqrt{|\mathcal{K}| 2^{-(\lambda-2 \log L)}}
$$

Secret key capacity for general sources

Consider a sequence of sources $\left(X_{n}, Y_{n}\right)$
The SK capacity C is defined as

$$
C \triangleq \sup _{\epsilon_{n}, \delta_{n}} \liminf _{n \rightarrow \infty} \frac{1}{n} S_{\epsilon_{n}, \delta_{n}}\left(X_{n}, Y_{n}\right)
$$

where the sup is over all $\epsilon_{n}, \delta_{n} \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \epsilon_{n}+\delta_{n}=0
$$

Secret key capacity for general sources

Consider a sequence of sources $\left(X_{n}, Y_{n}\right)$
The SK capacity C is defined as

$$
C \triangleq \sup _{\epsilon_{n}, \delta_{n}} \liminf _{n \rightarrow \infty} \frac{1}{n} S_{\epsilon_{n}, \delta_{n}}\left(X_{n}, Y_{n}\right)
$$

where the sup is over all $\epsilon_{n}, \delta_{n} \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \epsilon_{n}+\delta_{n}=0
$$

The inf-mutual information rate $\underline{I}(\mathbf{X} \wedge \mathbf{Y})$ is defined as

$$
\underline{I}(\mathbf{X} \wedge \mathbf{Y}) \triangleq \sup \left\{\alpha \mid \quad \lim _{n \rightarrow \infty} \mathrm{P}\left(Z_{n}<\alpha\right)=0\right\}
$$

where

$$
Z_{n}=\frac{1}{n} \log \frac{\mathrm{P}_{X_{n} Y_{n}}\left(X_{n}, Y_{n}\right)}{\mathrm{P}_{X_{n}}\left(X_{n}\right) \mathrm{P}_{Y_{n}}\left(Y_{n}\right)}
$$

General capacity

Theorem (Secret key capacity)
The SK capacity C for a sequence of sources $\left\{X_{n}, Y_{n}\right\}_{n=1}^{\infty}$ is given by

$$
C=\underline{I}(\mathbf{X} \wedge \mathbf{Y})
$$

General capacity

Theorem (Secret key capacity)

The SK capacity C for a sequence of sources $\left\{X_{n}, Y_{n}\right\}_{n=1}^{\infty}$ is given by

$$
C=\underline{I}(\mathbf{X} \wedge \mathbf{Y})
$$

Converse. Follows from our conditional independence testing bound with:

Lemma (Verdú)

For every ϵ_{n} such that

$$
\lim _{n \rightarrow \infty} \epsilon_{n}=0
$$

it holds that

$$
\liminf _{n}-\frac{1}{n} \log \beta_{\epsilon_{n}}\left(\mathrm{P}_{X_{n} Y_{n}}, \mathrm{P}_{X_{n}} \mathrm{P}_{Y_{n}}\right) \leq \underline{I}(\mathbf{X} \wedge \mathbf{Y})
$$

General capacity

Theorem (Secret key capacity)

The SK capacity C for a sequence of sources $\left\{X_{n}, Y_{n}\right\}_{n=1}^{\infty}$ is given by

$$
C=\underline{I}(\mathbf{X} \wedge \mathbf{Y})
$$

Achievability. Use the single-shot construction with

$$
\begin{aligned}
\lambda_{\max } & =n(\bar{H}(\mathbf{X})+\Delta) \\
\lambda_{\min } & =n(\underline{H}(\mathbf{X})-\Delta) \\
\lambda & =n(\underline{I}(\mathbf{X} \wedge \mathbf{Y})-\Delta)
\end{aligned}
$$

Towards characterizing finite-blocklength performance

We identify the second term in the asymptotic expansion of $S\left(X^{n}, Y^{n}\right)$:

Theorem (Second order asymptotics)

For every $0<\epsilon<1$ and IID RVs X^{n}, Y^{n}, we have

$$
S_{\epsilon}\left(X^{n}, Y^{n}\right)=n I(X \wedge Y)-\sqrt{n V} Q^{-1}(\epsilon)+o(\sqrt{n})
$$

The quantity V is given by

$$
V=\operatorname{Var}\left[\log \frac{\mathrm{P}_{X Y}(X, Y)}{\mathrm{P}_{X}(X) \mathrm{P}_{Y}(Y)}\right]
$$

Towards characterizing finite-blocklength performance

We identify the second term in the asymptotic expansion of $S\left(X^{n}, Y^{n}\right)$:

Theorem (Second order asymptotics)

For every $0<\epsilon<1$ and IID RVs X^{n}, Y^{n}, we have

$$
S_{\epsilon}\left(X^{n}, Y^{n}\right)=n I(X \wedge Y)-\sqrt{n V} Q^{-1}(\epsilon)+o(\sqrt{n})
$$

The quantity V is given by

$$
V=\operatorname{Var}\left[\log \frac{\mathrm{P}_{X Y}(X, Y)}{\mathrm{P}_{X}(X) \mathrm{P}_{Y}(Y)}\right]
$$

Proof relies on the use of Berry-Esseen theorem as in
Polyanskiy-Poor-Verdu 10

Towards characterizing finite-blocklength performance

We identify the second term in the asymptotic expansion of $S\left(X^{n}, Y^{n}\right)$:

Theorem (Second order asymptotics)

For every $0<\epsilon<1$ and IID RVs X^{n}, Y^{n}, we have

$$
S_{\epsilon}\left(X^{n}, Y^{n}\right)=n I(X \wedge Y)-\sqrt{n V} Q^{-1}(\epsilon)+o(\sqrt{n})
$$

The quantity V is given by

$$
V=\operatorname{Var}\left[\log \frac{\mathrm{P}_{X Y}(X, Y)}{\mathrm{P}_{X}(X) \mathrm{P}_{Y}(Y)}\right]
$$

Proof relies on the use of Berry-Esseen theorem as in
Polyanskiy-Poor-Verdu 10

$$
\text { What about } S_{\epsilon, \delta}\left(X^{n}, Y^{n}\right) \text { ? }
$$

Looking ahead ...

What if the eavesdropper has side information Z ?
Best known converse bound on SK capacity due to Gohari-Ananthram 08

Recently we obtained a one-shot version of this bound
Tyagi and Watanabe, Converses for Secret Key Agreement and Secure Computing, preprint arXiv:1404.5715, 2014 - arxiv.org

Also, we have a single-shot achievability scheme that is asymptotically tight when X, Y, Z form a Markov chain

