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Two party secret key agreement

Maurer 93, Ahlswede-Csiszár 93
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A random variable K constitutes an (ϵ, δ)-SK if:

P (Kx = Ky = K) ≥ 1− ϵ : recoverability
1

2
∥PKF − PunifPF∥ ≤ δ : security
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Two party secret key agreement

Maurer 93, Ahlswede-Csiszár 93

YX

F

Kx
Ky

A random variable K constitutes an (ϵ, δ)-SK if:

P (Kx = Ky = K) ≥ 1− ϵ : recoverability
1

2
∥PKF − PunifPF∥ ≤ δ : security

What is the maximum length S(X,Y ) of a SK that can be generated?
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Where do we stand?

Maurer 93, Ahlswede-Csiszár 93

S(Xn, Y n) = nI(X ∧ Y ) + o(n) (Secret key capacity)

Csiszár-Narayan 04

Secret key capacity for multiple terminals

Renner-Wolf 03, 05

Single-shot bounds on S(X,Y )
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Where do we stand?

Maurer 93, Ahlswede-Csiszár 93 Fano’s inequality

S(Xn, Y n) = nI(X ∧ Y ) + o(n) (Secret key capacity)

Csiszár-Narayan 04 Fano’s inequality

Secret key capacity for multiple terminals

Renner-Wolf 03, 05 ∼ Potential function method

Single-shot bounds on S(X,Y )

Typical construction: X sends a compressed version of itself to Y , and
the K is extracted from shared X using a 2-universal hash family

Converse??
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Converse: Conditional independence testing bound

The source of our rekindled excitement about this problem:

Theorem ( Tyagi-Watanabe 2014)

Given ϵ, δ ≥ 0 with ϵ+ δ < 1 and 0 < η < 1− ϵ− δ. It holds that

Sϵ,δ (X,Y ) ≤ − logβϵ+δ+η

(

PXY ,PXPY

)

+ 2 log(1/η)
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(
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)

+ 2 log(1/η)

βϵ(P,Q) ! inf
T :P[T]≥1−ϵ

Q[T],

where

P[T] =
∑

v

P(v)T(0|v) Q[T] =
∑

v
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Converse: Conditional independence testing bound

The source of our rekindled excitement about this problem:

Theorem ( Tyagi-Watanabe 2014)

Given ϵ, δ ≥ 0 with ϵ+ δ < 1 and 0 < η < 1− ϵ− δ. It holds that

Sϵ,δ (X,Y ) ≤ − logβϵ+δ+η

(

PXY ,PXPY

)

+ 2 log(1/η)

βϵ(P,Q) ! inf
T :P[T]≥1−ϵ

Q[T],

where

P[T] =
∑

v

P(v)T(0|v) Q[T] =
∑

v

Q(v)T(0|v)

In the spirit of meta-converse of Polyanskiy, Poor, and Verdu
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Single-shot achievability?

Recall the two steps of SK agreement:

Step 1 (aka Information reconciliation).

Slepian-Wolf code to send X to Y

Step 2 (aka Randomness extraction or privacy amplification).

“Random function” K to extract uniform random bits from X as K(X)

Example. For (X,Y ) ≡ (Xn, Y n)

Rate of communication in step 1 = H(X | Y ) = H(X)− I(X ∧ Y )

Rate of randomness extraction in step 2 = H(X)

The difference is the secret key capacity
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Single-shot achievability?

Recall the two steps of SK agreement:

Step 1 (aka Information reconciliation).

Slepian-Wolf code to send X to Y

Step 2 (aka Randomness extraction or privacy amplification).

“Random function” K to extract uniform random bits from X as K(X)

Example. For (X,Y ) ≡ (Xn, Y n)

Rate of communication in step 1 = H(X | Y ) = H(X)− I(X ∧ Y )

Rate of randomness extraction in step 2 = H(X)

The difference is the secret key capacity

Are we done? Not quite. Let’s take a careful look
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Step 1: Slepian-Wolf theorem

Miyake Kanaya 95, Han 03

Lemma (Slepian-Wolf coding)

There exists a code (e, d) of size M with encoder e : X → {1, ...,M},
and a decoder d : {1, ...,M}× Y → X , such that

PXY ({(x, y) | x ̸= d(e(x), y)})
≤ PXY

(

{(x, y) | − log PX|Y (x | y) ≥ logM − γ}
)

+ 2−γ .
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Step 1: Slepian-Wolf theorem

Miyake Kanaya 95, Han 03

Lemma (Slepian-Wolf coding)

There exists a code (e, d) of size M with encoder e : X → {1, ...,M},
and a decoder d : {1, ...,M}× Y → X , such that

PXY ({(x, y) | x ̸= d(e(x), y)})
≤ PXY ({(x, y) | ≥ logM − γ}) + 2−γ .

− log PX|Y = − logPX − log(PY |X/PY )

Compare with
H(X |Y ) = H(X)− I(X ∧ Y )

The second term is a proxy for the mutual information

Communication rate needed is approximately equal to

(large probability upper bound on − log PX)− log(PY |X/PY )
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Step 2: Leftover hash lemma

Lesson from the step 1: Communication rate is approximately

(large probability upper bound on − log PX)− log(PY |X/PY )

Recall that the min entropy of X is given by

Hmin (PX) = − logmax
x

PX (x)

Impagliazzo et. al. 89, Bennett et. al. 95, Renner-Wolf 05

Lemma (Leftover hash)

There exists a function K of X taking values in K such that

∥PKZ − PunifPZ∥ ≤
√

|K||Z|2−Hmin(PX)
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Step 2: Leftover hash lemma

Lesson from the step 1: Communication rate is approximately

(large probability upper bound on − log PX)− log(PY |X/PY )

Recall that the min entropy of X is given by

Hmin (PX) = − logmax
x

PX (x)

Impagliazzo et. al. 89, Bennett et. al. 95, Renner-Wolf 05

Lemma (Leftover hash)

There exists a function K of X taking values in K such that

∥PKZ − PunifPZ∥ ≤
√

|K||Z|2−Hmin(PX)

Randomness can be extracted at a rate approximately equal to

(large probability lower bound on − log PX)

− log PX(X)

Information Spectrum of X

Loss in SK rate
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Spectrum slicing

− log PX(X)

A slice of the spectrum

∆

λmaxλmin

Slice the spectrum of X into L bins of length ∆ and send the bin
number to Y

7



Single-shot achievability

Theorem
For every γ > 0 and 0 ≤ λ ≤ λmin, there exists an (ϵ, δ)-SK K taking
values in K with

ϵ ≤ P

(

log
PXY (X,Y )

PX (X)PY (Y )
≤ λ+ γ +∆

)

+P (− logPX (X) /∈ (λmin,λmax)) +
1

L

δ ≤
1

2

√

|K|2−(λ−2 logL)
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Secret key capacity for general sources

Consider a sequence of sources (Xn, Yn)

The SK capacity C is defined as

C ! sup
ϵn,δn

lim inf
n→∞

1

n
Sϵn,δn (Xn, Yn)

where the sup is over all ϵn, δn ≥ 0 such that

lim
n→∞

ϵn + δn = 0
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Secret key capacity for general sources

Consider a sequence of sources (Xn, Yn)

The SK capacity C is defined as

C ! sup
ϵn,δn

lim inf
n→∞

1

n
Sϵn,δn (Xn, Yn)

where the sup is over all ϵn, δn ≥ 0 such that

lim
n→∞

ϵn + δn = 0

The inf-mutual information rate I(X ∧Y) is defined as

I(X ∧Y) ! sup

{

α | lim
n→∞

P (Zn < α) = 0

}

where

Zn =
1

n
log

PXnYn
(Xn, Yn)

PXn
(Xn) PYn

(Yn)
9



General capacity

Theorem (Secret key capacity)

The SK capacity C for a sequence of sources {Xn, Yn}∞n=1 is given by

C = I(X ∧Y)
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General capacity

Theorem (Secret key capacity)

The SK capacity C for a sequence of sources {Xn, Yn}∞n=1 is given by

C = I(X ∧Y)

Converse. Follows from our conditional independence testing bound with:

Lemma (Verdú)

For every ϵn such that
lim
n→∞

ϵn = 0

it holds that

lim inf
n

−
1

n
log βϵn (PXnYn

,PXn
PYn

) ≤ I(X ∧Y)
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General capacity

Theorem (Secret key capacity)

The SK capacity C for a sequence of sources {Xn, Yn}∞n=1 is given by

C = I(X ∧Y)

Achievability. Use the single-shot construction with

λmax = n
(

H(X) +∆
)

λmin = n (H(X)−∆)

λ = n (I (X ∧Y)−∆)
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Towards characterizing finite-blocklength performance

We identify the second term in the asymptotic expansion of S(Xn, Y n):

Theorem (Second order asymptotics)

For every 0 < ϵ < 1 and IID RVs Xn, Y n, we have

Sϵ (X
n, Y n) = nI(X ∧ Y )−

√
nV Q−1(ϵ) + o(

√
n)

The quantity V is given by

V = Var

[

log
PXY (X,Y )

PX (X) PY (Y )

]
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Towards characterizing finite-blocklength performance

We identify the second term in the asymptotic expansion of S(Xn, Y n):

Theorem (Second order asymptotics)

For every 0 < ϵ < 1 and IID RVs Xn, Y n, we have

Sϵ (X
n, Y n) = nI(X ∧ Y )−

√
nV Q−1(ϵ) + o(

√
n)

The quantity V is given by

V = Var

[

log
PXY (X,Y )

PX (X) PY (Y )

]

Proof relies on the use of Berry-Esseen theorem as in
Polyanskiy-Poor-Verdu 10

What about Sϵ,δ(Xn, Y n)?
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Looking ahead ...

What if the eavesdropper has side information Z?

Best known converse bound on SK capacity due to Gohari-Ananthram 08

Recently we obtained a one-shot version of this bound

Tyagi and Watanabe, Converses for Secret Key Agreement and Secure
Computing, preprint arXiv:1404.5715, 2014 - arxiv.org

Also, we have a single-shot achievability scheme that is asymptotically
tight when X,Y, Z form a Markov chain
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