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Abstract�—We study the capacity of secret-key agreement over a

wiretap channel with state parameters. The transmitter, the legit-

imate receiver, and the eavesdropper are connected by a discrete

memoryless wiretap channel with a memoryless state sequence.

The transmitter and the legitimate receiver generate a secret-key

that must be concealed from the eavesdropper. We assume that

the state sequence is known noncausally to the transmitter and

no public discussion channel is available. We derive lower and

upper bounds on the secret-key capacity. The lower bound in-

volves a source-channel codebook for constructing a common

reconstruction sequence at the legitimate terminals and then map-

ping this sequence to a secret-key using a secret-key codebook.

For the special case of Gaussian channels with additive inter-

ference (secret-keys from dirty paper channel) our bounds differ

by 0.5 bit/symbol and coincide in the high signal-to-noise-ratio

and high interference-to-noise-ratio regimes. In another special

case�—symmetric channel state information (CSI)�—when the le-

gitimate receiver is also revealed the state sequence, we establish

optimality of our lower bound. In addition, only causal side

information at the transmitter and the receiver sufces to attain

the secret-key capacity in the case of symmetric CSI.

Index Terms�—Channel reciprocity, channels with state param-

eters, fading channels, information-theoretic security, secret-key
generation, secret sharing, wireless channels, wire-tap channels.

I. INTRODUCTION

S ECRET-KEYS are a fundamental requirement for any ap-

plication involving secure communication or computation.

An information theoretic approach to secret-key generation be-

tween two or more terminals was pioneered in [3] and [4] and

subsequently extended in [5]�–[8]. There has also been a signif-

icant interest in developing practical approaches for generating
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shared secret-keys between two ormore terminals based on such

techniques; see, e.g., [9]�–[15] and references therein.

We study the secret-key agreement capacity over a

wiretap-channel with a state variable. Channels with state

variables [16]�–[18] are used in several important applications

such as fading channels [19], broadcast channels [20], and

digital watermarking systems [21]. In fading channels, the state

variable captures the instantaneous fading coefcient of the

channel. In broadcast channels, the state sequence models an

interfering message to another receiver. In watermarking sys-

tems, the state sequence represents a host sequence on which

the information message needs to be embedded. In fading

channels, we assume that the state sequence is revealed to the

terminals causally while in the other two applications, the entire

state sequence is known to the transmitter in advance. Unless

otherwise stated, we assume the noncausal model. As we dis-

cuss in the sequel, the seemingly more general case when each

receiver also has a side information can be easily incorporated

in this model. We also treat the case when the transmitter and

receiver have symmetric and causal channel state information

(CSI) and establish the secret-key capacity. This setup is mo-

tivated by the application to fading channels where there has

been a signicant interest already. In yet another application,

lower bounds on secret-message transmission over channels

with state parameters that exploit secret-key agreement as a

building block have been recently proposed [22].

In the present paper we only focus on the case when there is

no discussion channel available. We point the reader to [1], [2]

for some results on the case when a public discussion channel

is available. Notice that a different setup, the wiretap channel

with side information, is studied in [23]�–[25]. Our results indi-

cate that the achievable rates are higher than those reported in

[23]�–[25], albeit for a different problem.

After the conference papers [1], [2] appeared, on which this

paper is based, the authors also became aware about a recent

work [26] which studies a similar secret-key agreement scheme

for establishing a trade-off between secret-key and secret-mes-

sage transmission for a problem involving correlated sources.

To our knowledge, our results on the upper bound on the se-

cret-key capacity, the asymptotic optimality of the lower bound

for the Gaussian case, and the secret-key capacity for the case

of symmetric CSI are not included in [26].

The rest of the paper is structured as follows. Section II intro-

duces the statement of the main problem whereas Section III in-

troduces themain results of the paper. Proofs for the case of non-

causal CSI, Gaussian model, and the symmetric CSI appear in

Sections IV�–VI, respectively. A numerical example involving

an on�–off fading channel is provided in Section VII.

1556-6013/$26.00 © 2011 IEEE
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Fig. 1. Wiretap channel controlled by a state parameter. The channel transition
probability is controlled by a state parameter . The entire source
sequence is known to the sender but not to the receiver or the eavesdropper.
The sender and receiver generate a secret-key at the end of the transmission.

II. PROBLEM STATEMENT

A. Channel Model

The channel model has three terminals�—a sender, a receiver,

and an eavesdropper. The sender communicates with the other

two terminals over a discrete-memoryless channel controlled

by a random state parameter. The transition probability of

the channel is , where denotes the channel input

symbol, whereas and denote the channel output symbols

at the receiver and the eavesdropper, respectively. The symbol

denotes a state variable that controls the channel transition

probability. This is illustrated in Fig. 1. We assume that it is

independent and identically distributed (i.i.d.) with the dis-

tribution . Further, the entire sequence �—the channel

state information (CSI)�—is known to the sender before the

communication begins.

B. Secret-Key Capacity

A length encoder is dened as follows. The sender sam-

ples a random variable from some conditional distribution

. The random variable is a source of external ran-

domness. The encoding function produces a channel input se-

quence

(1)

and transmits it over uses of the channel. At time the

symbol is transmitted and the legitimate receiver and the

eavesdropper observe output symbols and , respectively,

sampled from the conditional distribution . The

sender and receiver compute secret-keys

(2)

A rate is achievable if there exists a sequence of encoding

functions such that for some sequence that vanishes as

, we have that and

(3)

and

(4)

The largest achievable rate is the secret-key capacity.

C. Extended Model

In our proposed model, we are assuming the state variable is

only known to the transmitter and not to the receiving termi-

nals. A more general model involves a state variable that can be

decomposed into , where the sequence is

revealed noncausally to the sender, whereas and are re-

vealed to the legitimate receiver and the eavesdropper, respec-

tively, while is not revealed to any of the terminals. It turns

out that the model in Section II-A includes this extended model.

The secret-key capacity for this new model is identical to the se-

cret-key capacity of a particular model in Section II-A dened

by: and and the channel transition

probability

(5)

The equivalence can be established by noting that the modied

channel preserves the same knowledge of the side information

sequences as the original problem, the rate and equivocation

terms only depend on the joint distribution

and for any input distribution , the extended channel

satises

(6)

where each term on the right-hand side of (6) obeys (5).

We omit a detailed proof in interest of space and point to

the reader to [27, pp. 17�–25] and [28, Ch. 7, pp. 7�–54] for an

analogous observation.

III. MAIN RESULTS

We summarize the main results of this paper in this section.

A. Capacity Bounds

We rst provide an achievable rate (lower bound) on the se-

cret-key capacity.

Theorem 1: A lower bound on the secret-key capacity, de-

ned in Section II-B, is

(7)

where the maximization is over all auxiliary random variables

that satisfy the Markov condition and

furthermore satisfy the constraint that

(8)

The intuition behind the coding scheme is as follows. Upon

observing , the sender communicates the best possible repro-

duction of the state sequence to the receiver. The receiver

produces with high probability provided that (8) is satised.
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The set of all codewords is binned into bins and the

bin-index is declared to be the secret-key.

We next provide an upper bound to the secret-key capacity

that is amenable to numerical evaluation.

Theorem 2: The secret-key capacity is upper bounded by

, where

(9)

where denotes all the joint distributions that have

the same marginal distribution as the original channel.

The intuition behind the upper bound is as follows. We create

a degraded channel by revealing the output of the eavesdropper

to the legitimate receiver. We further assume a channel with two

inputs , i.e., the state sequence is not arbitrary, but

rather a part of the input codeword with distribution . The

secrecy capacity of the resulting wiretap channel is then given

by .

In related literature, we note that our coding scheme is sim-

ilar to [29] and [30] that studies the problem of communicating

a state sequence, under common knowledge, and under a dis-

tortion constraint. The slight difference here is that we use the

common reconstruction sequence in this problem only as an in-

termediate step to generate a common secret-key and do not im-

pose any distortion constraint.

It is also interesting to compare our lower bound in Theorem

1 with the secret-message transmission problem [23]�–[25] over

wiretap channels with state parameters. While the secret-key

can be an arbitrary function of the state sequence (known only

to the transmitter), the secret-message must be independent

of the state sequence, thus imposing a stricter constraint. A

lower bound on the secret message transmission capacity is (cf.

[23]�–[25])

(10)

B. Secret-Keys From Dirty Paper Coding

We study the Gaussian case under an average power con-

straint. The channel to the legitimate receiver and the eaves-

dropper is expressed as

(11)

where and denote the addi-

tive white Gaussian noise and are assumed to be sampled inde-

pendently. The state parameter is also sampled

i.i.d. at each time instance and is independent of both and

. Furthermore, the channel input satises an average power

constraint . We assume that the CSI is revealed

noncausally to the sender but not to any other terminals.

In this model, also denotes the signal-to-noise ratio (SNR),

denotes the interference-to-noise ratio (INR), whereas

denotes the degradation level of the eavesdropper. While we

do not elaborate, possible applications of this model include

secret-key generation in multimedia communication systems

and in broadcast channels, where connections to the dirty paper

coding channel already exist.

Propositions 1 and 2, stated next, provide the lower and upper

bounds on the secret-key capacity. For the lower bound, we limit

our analysis to the case when .1

Proposition 1: Assuming that , a lower bound on the

secret-key agreement capacity is

(12)

where and

(13)

Proposition 2: An upper bound on the secret-key capacity is

given by

(14)

It can be readily veried that the upper and lower bounds are

close in several interesting regimes. In Fig. 2, we numerically

plot these bounds as a function of SNR and the degradation level

at the eavesdropper. Proposition 3, whose proof is omitted due

to space constraints, states that the bounds are close in several

regimes.

Proposition 3: Our bounds on the secret-key capacity in

Propositions 1 and 2 satisfy the following:

(15)

(16)

(17)

C. Symmetric CSI

In the special case where the state sequence is also revealed

to the legitimate receiver, we have a complete characterization

of the secret-key capacity, as stated below.

Theorem 3: The secret-key capacity for the channel model in

Section II-A when the state sequence is also revealed to the

decoder is given by

(18)

where the maximization is over all auxiliary random variables

that obey the Markov chain . Addition-

ally, it sufces to limit the cardinality of the auxiliary variable

to .

The achievability in (18) follows from (7) by augmenting

. Observe that the condition in (8) is redundant,

as holds for any input distribution

. The expression in (7) simplies as follows:

(19)

(20)

1The choice that simply guarantees that (13) has a solution in . The
lower bound is valid for any and for which (13) has a solution in .
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where the last relation follows by noting that if is an optimal

choice in (19) then by selecting will leave the dif-

ference in the two mutual information terms unchanged but in-

crease the second term as specied in (20). In this case,

the expression in (20) is identical to (18). The converse follows

by an application of Csiszar�’s Lemma [28, Ch. 2] and is pro-

vided in Section VI-B.

It is also possible to provide another coding scheme for The-

orem 3 that only requires a causal knowledge of at the en-

coder. The scheme is based on the following interpretation of

(18). The term is the rate of a multiplexed

wiretap codebook constructed assuming that all the three termi-

nals have knowledge of . The second term is the rate

of the additional secret-key that can be produced by exploiting

the fact that is only known to the sender and the legitimate

terminal. This scheme only requires that the CSI sequence be

revealed causally to the terminals.

Observe that the capacity expression (18) involves a tension

between two competing effects. To maximize the contribution

of the rate obtained from the multiplexed wiretap codebook, it is

desirable to select to be correlated with in a certain positive

manner. However, doing so will leak more information about

to the wiretapper. To maximize , we need an input

that masks the state sequence from the eavesdropper. The op-

timal distribution is required to strike a balance between the two

terms. We illustrate this trade-off via an example in Section VII.

Finally, it can be easily veried that the expression (18) simpli-

es in the following special case.

Corollary 1: Suppose that for each the channel

is such that the eavesdropper�’s channel

is less noisy compared to the legitimate receiver�’s channel.

Then the secret-key capacity with revealed to both the

legitimate terminals is

(21)

Intuitively, when the wiretap channel cannot contribute to the

secrecy, (21) states that transmitter should select an input that

masks the state from the output as much as possible. We omit a

formal proof of Corollary 1 due to space constraints.

IV. NONCAUSAL CSI

In this section we provide proofs of Theorems 1 and 2.

Proof of Theorem 1

The coding theorem involves constructing a common se-

quence at the legitimate terminals and using it to generate

a secret-key.

1) Codebook Generation: Assume that the input distribution

is such that as required in Theorem 1. Let

be a sequence of nonnegative numbers that goes to zero such

that .

�• Generate a total of sequences. Each

sequence is sampled i.i.d. from a distribution . Label

them .

�• Select a rate and randomly

partition the set of sequences selected in the previous step

into bins. There will be sequences in

each bin. This is illustrated in Fig. 3.

2) Encoding:

�• Given a state sequence , the encoder selects a sequence

randomly from the list of all possible sequences that are

jointly typical with . Let the index of this sequence be .

�• At time , the encoder transmits symbol

generated by sampling the distribution .

3) Secret-Key Generation:

�• The decoder upon observing nds a sequence jointly

typical with .

�• Both encoder and the decoder declare the bin-index of

to be the secret-key.

4) Error Probability Analysis: An error occurs only if one of

the following events occur:

(22)

(23)

(24)

Since the number of sequences , it follows

from the Covering Lemma [28, Ch. 3] that as

. Furthermore, let

and as for any . Since

it follows

from the conditional typicality Lemma [28, Ch. 2] that

as . Finally, since every is

generated i.i.d. and is independent of for , it

follows from the Packing Lemma [28, Ch. 3] that

if .

5) Secrecy Analysis: We need to show that for the proposed

encoder and decoder, the equivocation at the eavesdropper sat-

ises

(25)

where is a term that goes to zero as .

Note that while the key in general can be a function of

as indicated in (1), in our coding scheme the secret-key

is a deterministic function of and hence we have

where the last step follows from the fact that there are

sequences in each bin. Again applying

the packing lemma we can show that with high probability

the eavesdropper uniquely nds the codeword jointly

typical with in this set and hence Fano�’s Inequality implies

that

It remains to show that
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Fig. 2. Bounds on the capacity of the �“secret-keys from dirty paper�” channel. In the left gure, we plot the bounds on capacity as a function of SNR (decibels)
where the INR dB and the degradation level at the eavesdropper, dB. The uppermost curve is the capacity with public-discussion [1] whereas
the successively lower curves denote the upper and lower bounds on the capacity as stated in Proposition 2 and Proposition 1. The lowermost curve is the secret
message transmission lower bound (10) evaluated for a jointly Gaussian input distribution. In the right gure, we vary the degradation level at the eavesdropper
in decibels and compute the secret-key rates for dB and dB . The uppermost curve is the secret-key capacity with public discussion [1], the

successively lower curves are the upper and the lower bounds, whereas the lowermost curve is the secret-message transmission rate evaluated for Gaussian inputs.

Fig. 3. Codebook for the secret-key agreement problem. A total of
codewords are generated i.i.d. and partitions into bins so that there
are sequences in each bin. Given , a jointly typical sequence
is selected and its bin index constitutes the secret-key.

Using the chain rule of the joint entropy, we have

(26)

(27)

We now appropriately bound each term in (27). First note that

since the sequence is uniformly distributed among the set of

all possible codeword sequences, it follows that

(28)

Next, as veried below, the channel to the eavesdropper

, is memoryless

The second step above follows from the fact that the channel

is memoryless and the symbol at time is generated as a

function of . Hence we have that

(29)

Furthermore, note that

(30)

Finally, in order to lower bound the last term in (27), we let

be a random variable which equals 1 if are jointly

typical. Note that .

(31)

(32)
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where (31) follows from the fact that is an i.i.d. sequence and

hence conditioned on the fact that is a pair of typical

sequence there are possible sequences .

Substituting (28), (29), (30), and (32) in the lower bound (27)

and using the fact that as , the summation converges to

the mean values

as required.

Proof of Theorem 2

A sequence of length- code satises

(33)

(34)

where (33) follows from the Fano�’s inequality since the receiver

is able to recover the secret-key given and (34) is a conse-

quence of the secrecy constraint. Furthermore, note that

holds as the encoder generates the se-

cret-key . Thus we can bound the rate as

below

(35)

(36)

(37)

where (35) follows from the Fano Inequality because can

be obtained from , (36) from the fact that the channel

is memoryless and the last step follows from the concavity

in the input distribution (see, e.g., [31]).

Finally, since the secret-key capacity only depends on the

marginal distribution of the channel and not on the joint distri-

bution, we can minimize over all joint distributions with xed

marginal distributions.

V. GAUSSIAN CASE

We develop the lower and upper bounds on secret-key agree-

ment capacity for the Gaussian channel model.

Proof of Proposition 1

Recall that . Choose to be a

Gaussian random variable and let . The lower

bound follows by selecting :

Further evaluating each of the terms above with ,

note that

and

This yields that

(38)

Note that the rst term in the expression above is maximized

when . In this case we have that

(39)

(40)

as required.

To complete the proof, we show that the choice is

indeed feasible when and satisfy (13).

In particular, the constraint (8) requires that

Rearranging,

(41)

as required.

It is worth comparing the choice of the auxiliary variable

in the present problem with the choice of optimal

in the dirty paper coding problem [32]. While the input is

independent of in [32], as illustrated in Fig. 4, the optimal
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Fig. 4. Secret-key agreement codebook for the dirty paper channel. The
transmit sequence is selected so that is a sequence in
the codebook . The smaller spheres above denote the noise uncertainty at
the legitimate receiver. Their centers are the codewords in . Our binning of
smaller spheres guarantees that the noise uncertainty sphere of the eavesdropper
has all possible messages, resulting in (asymptotically) perfect equivocation.

in the secret-key problem has a component along . This is be-

cause scaling the interference sequence increases the secret-key

rate. Second, recall that in [32] we nd the auxiliary codeword

that is closest to , where . In contrast

this MMSE scaling is not performed in the secret-key problem.

Proof of Proposition 2

We evaluate the upper bound in Theorem 2 for the choice

, where is independent of

where we have used the fact that the conditional entropy

is maximized by a Gaussian distribution [33]. The

above expression gives (14).

VI. SYMMETRIC CSI

We establish the secret-key capacity for the case of symmetric

CSI, i.e., when is revealed to both the transmitter and the

legitimate receiver.

A. Achievability for Theorem 3

As explained in Section III-C, the achievability result follows

directly from Theorem 1 by replacing with in the

lower bound expression. We nevertheless provide an alternate

scheme that only requires the knowledge of causal CSI at the

transmitter. The idea is to use a different wiretap codebook for

each realization of the state variable. In particular, suppose that

denote the set of available states. Since the

encoder and the decoder are both aware of the state realization

and can use this common knowledge to select the appropriate

codebook for transmission. These codebooks are constructed

for an eavesdropper who is also aware of the state sequence

realization. Suppose that we x the distribution in

(18). Let

(42)

and . For each , a wiretap

codebook of length and rate is constructed and used to

transmit a message . Another independent key of rate

is then generated by exploiting the fact that is not

known to the eavesdropper.

1) Codebook Construction:

�• For each generate a codebook of rate

and length by sampling the

codewords i.i.d. from the distribution .

�• Construct a codebook , where the set of all typical

sequences of size is partitioned into

bins each containing sequences.

2) Encoding:

�• For each the transmitter selects a random

message and a random codeword sequence in the

corresponding bin of .

�• Upon observing at time , it selects the

next available symbol of and samples the channel input

symbol from the distribution .

�• At the end of the transmission, it looks for the bin index of

in and declares this to be .

�• The overall secret-key is .

3) Decoding:

�• The decoder divides into subsequences

, where the subsequences is

obtained by collecting the symbols of when .

�• For , it searches for a codeword in that

is jointly typical with . If no such codeword or multiple

codewords is found an error is declared. Otherwise the bin

index of is set to equal .

Through standard arguments it can be shown that the error

probability in decoding at the legitimate receiver vanishes as

provided we select the rates according to (42). We omit

the details due to space constraints.

4) Secrecy Analysis: First, consider splitting

, where the subsequence is obtained

by grouping the symbols of when . From the con-

struction of the wiretap codebook it follows that

(43)

Next since the messages are selected independently and the en-

coding functions are also independent, it follows that

(44)
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Thus by the chain rule we have that

(45)

where . The

secrecy analysis can be completed by combining (45) and (52)

which is established in Lemma 1 at the end of this section.

(46)

(47)

(48)

(49)

(50)

(51)

where (47) and (49) follow from the fact that is a determin-

istic function of while (48) follows by substituting (45) and

(50) follows by substituting (52) while (51) follows from the

fact that as , since from the

construction of there are at most sequences as-

sociated with any given bin. Hence the decoder can decode

with high probability and hence Fano�’s inequality applies.

It only remains to establish the following.

Lemma 1: For any input distribution such that

, we have that

(52)

Proof: First observe that we can write

(53)

(54)

We now observe the following. Since the channel from

is memoryless

(55)

as . Next note that by construction

(56)

and since , it follows through standard

calculations that2

(57)

Combining the above two inequalities

(58)

Since the sequence is sample i.i.d., we have

(59)

and nally from the chain rule

(60)

as . Substituting (55), (58), (59), and (60) into (54)

completes the claim.

B. Converse

For any sequence of codes indexed by the codeword length

, we show that the secret-key rate is upper bounded by the

capacity expression (18) plus a term that vanishes to zero as

the block length goes to zero. By applying the Fano inequality

on the secret-key rate, we have that for some sequence that

approaches zero as goes to innity that

(61)

where the last step follows from the data processing inequality

since . Furthermore, from the secrecy condition

and hence

(62)

(63)

where the second step follows from the Csiszar sum-identity

[28, Ch. 2] applied to difference of mutual informations. The

derivation is analogous to [35] and is omitted. If we let

and note that

holds. Maximizing over each term in the

summation, we obtain that

(64)

(65)

where the second step follows from the fact that the maximizing

over is redundant since (64) involves a convex combination of

and hence we can replace

2Intuitively for any typical , the total number of sequences is
. The probability that a sequence is jointly typical with is
. A precise argument involves bounding the expected size of the

list and invoking a concentration result. See cf. [34, Lemma 1] for an analogous
calculation.
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with the term that results in the largest value. We recover (18)

from (65) by using an approach similar to (20).

VII. SYMMETRIC CSI: NUMERICAL EXAMPLE

In this section, we provide numerical computations of the

achievable secret-key rate for an on�–off channel

(66)

where both , , the random variables are mutually

independent and equiprobable. Furthermore, we assume that

is revealed to the legitimate terminals, whereas the eavesdropper

is revealed . The noise random variables are mu-

tually independent and Gaussian with zero mean and unit vari-

ance. The power constraint also holds.

We evaluate the rate expression for Gaussian inputs, i.e.,

when and when .

Further to satisfy the average power constraint we have that

. From Theorem 3, the following rate is achievable:

(67)

(68)

(69)

where

(70)

indicates the posterior distribution .

In Fig. 5, we numerically evaluate this rate for SNR dB.

For comparison, we also plot the corresponding rate with public

discussion [2]

(71)

In Fig. 5, the solid curves show the secret-key rate with and

without public discussion, while the dashed curve is the entropy

and the dotted curve denotes contribution of

the wiretap code. Note that in general there is a trade-off be-

tween these two terms. To maximize the conditional entropy,

we set , while to maximize the wiretap code-

book rate we need to set and . The resulting se-

cret-key rate is maximized by selecting a power allocation that

balances these two terms.

VIII. CONCLUSIONS

We investigated the secret-key agreement capacity over a

wiretap channel controlled by a state parameter. Lower and

upper bounds on the capacity are established when the state se-

quence is known noncausally to the encoder. The lower bound

is obtained by creating a common reconstruction sequence at

the legitimate terminals and binning the set of reconstruction

sequences to generate a secret-key. Our bounds coincide in

Fig. 5. Achievable secret-key rate as a fraction of power allocated to the state
and SNR dB. The solid curves denote the secret-key rate, the

dashed curve denotes the rate of the secret-message, while the dotted curve de-
notes the conditional entropy term in (69). The upper
solid and dashed curves denote the case of public discussion while the other
solid and dashed curves denote the case of no public discussion.

several special cases establishing the capacity results. While

the present paper only treats the case without public discussion,

we refer to the reader to [1] and [2] for some results on public

discussion.
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