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Secret key capacity of the thermal-loss channel:

Improving the lower bound

Carlo Ottaviani, Riccardo Laurenza, Thomas P. W. Cope, Gaetana Spedalieri,

Samuel L. Braunstein, Stefano Pirandola

Computer Science and York Centre for Quantum Technologies,

University of York, York YO10 5GH, United Kingdom

ABSTRACT

We consider the secret key capacity of the thermal loss channel, which is modeled by a beam splitter mixing
an input signal mode with an environmental thermal mode. This capacity is the maximum value of secret bits
that two remote parties can generate by means of the most general adaptive protocols assisted by unlimited and
two-way classical communication. To date, only upper and lower bounds are known. The present work improves
the lower bound by resorting to Gaussian protocols based on suitable trusted-noise detectors.
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1. INTRODUCTION AND RELATIONS WITH PREVIOUS WORKS

In recent years, the field of quantum information and communication has witnessed a growing interest in the area
of continuous variable (CV) quantum systems.1 Particularly successful has been the development of Gaussian
quantum information2 and the area of Gaussian quantum key distribution (QKD).3 The latter focuses on the
implementation of protocols exploiting Gaussian states and operations. Gaussian states are easy to study because
they are just characterized by their first two statistical moments, i.e., mean value and covariance matrix (CM).2

Furthermore, they are the easiest states that can be generated in quantum optics labs.

The research in Gaussian QKD has led to the design, the theoretical analysis and the experimental imple-
mentation of secure protocols in one-way,4–18 two-way19–22 and, more recently, measurement-device-independent
configurations.23, 24 Today state-of-the-art implementations of Gaussian QKD have been proven to be secure
over distances of about 80 km.25 More so than distance, high rates are the promise of Gaussian protocols, with
potential performances which are orders of magnitude higher than their discrete-variable (DV) counterpart.26

High rates are important not only for secure quantum networks but, more generally, for any realistic design of a
quantum Internet.27, 28

From a theoretical point of view, it is therefore of fundamental importance to determine the optimal secret key
rate that is achievable by two remote parties, say Alice and Bob, at the two ends of a quantum channel, especially
if this channel is Gaussian. This optimal rate (capacity) is achieved by optimizing over the most general QKD
protocols, which are based on local operations (LOs) assisted by unlimited two-way classical communication
(CC), briefly called adaptive LOCCs. The presence of feedback makes these protocols very hard to study but,
recently, Ref. 29 has introduced a novel methodology which fully simplifies the analysis of such protocols for the
most important quantum channels for both CV and DV systems.

In fact, Ref. 29 has brought two important advances: (i) it has extended the notion of relative entropy of
entanglement (REE) from quantum states to quantum channels; (ii) it has devised a novel technique based
on teleportation,30–32 called ‘teleportation stretching’, able to reduce an arbitrary adaptive protocol into a
much simpler block form, as long as the protocol is implemented at the ends of a quantum channel which
suitably commutes with teleportation. By combining these two ingredients, Ref. 29 has computed the tightest-
known upper bounds for the two-way quantum capacity Q2 and the secret key capacity K of many quantum
channels, including DV Pauli channels, DV erasure channels and CV bosonic Gaussian channels. In particular,
by showing coincidence with suitable lower bounds, Ref. 29 has established the secret-key capacities of dephasing
channels, erasure channels, quantum-limited amplifiers and lossy channels. (For the erasure channel see also the
independent derivation of Ref. 33 based on the different tool of the squashed entanglement.34–36)



In the specific case of a lossy channel with arbitrary transmissivity η, Ref 29 has derived

Q2(η) = K(η) = −log2(1− η). (1)

For high loss (i.e., long distances), this provides about 1.44 secret bits per use, which is the fundamental rate-loss
scaling which restricts any secure quantum optical communications. This is also the benchmark that a quantum
repeater must surpass in order to be a meaningful device. The generalization of this scaling to repeater-assisted
quantum communications and multi-hop quantum networks has been recently provided by Ref. 37. (See also
Ref. 38 for the specific study of single-hop quantum communication networks.)

An important bosonic Gaussian channel which has not been fully solved by Ref 29 is the thermal-loss chan-
nel, which can be modeled by a beam splitter with transmissivity η, mixing the input signal mode with an
environmental mode described by a thermal state with variance ω = 2n̄th + 1, with n̄th being the mean number
of thermal photons. W still do not know the two-way quantum capacity Q2(η, ω) and the secret key capacity
K(η, ω) of this channel. We only know an upper bound, provided by the REE+teleportation method of Ref. 29,
and a lower bound, first computed by Ref. 39 by using the notion of reverse coherent information.40 In particular,
these bounds provide the following sandwich for the secret key capacity

− log2 (1− η)− h(ω) ≤ K(η, ω) ≤ Φ(η, ω) , (2)

where

h(x) :=
x+ 1

2
log2

x+ 1

2
− x− 1

2
log2

x− 1

2
, (3)

and

Φ(η, ω) :=





− log2[(1− η)ηn̄th ]− h(ω) for n̄th < η
1−η

0 otherwise

(4)

In this paper, we improve the lower bound present in Eq. (2). Our improved bound applies to the secret
key capacity only (and not to the two-way quantum capacity), because it is based on the optimization of a class
of QKD protocols. In fact, we consider a type of noise-assisted Gaussian QKD protocol which is a coherent
version of the one considered in Ref. 8 (because it involves a quantum memory) and a direct generalization of
the one studied in Ref. 39 (because it considers more general noise at the detection stage). In this protocol, Alice
distributes one mode of a two-mode squeezed vacuum (TMSV) state through the thermal-loss channel, while
keeping the other mode in a quantum memory. This is repeated many times. At the output of the channel,
Bobs measurement setup consists of a beam splitter with arbitrary transmissivity and subject to a trusted-noise
thermal environment; this is followed by homodyne detection, randomly chosen in one of the two quadratures.
At the end of the quantum communication, Bob communicates which quadrature he has measured in each round.
As a consequence, Alice performs the same sequence of homodyne detections on her systems and tries to infer
Bob outcomes (reverse reconciliation). We compute the rate of this protocol, and we consider its optimization
over the free parameters at Bob’s side. This will provide our improved lower bound.

The paper is structured as follows. In Sec. 2, we review the definition of the secret key capacity of a quantum
channel. In Sec. 3, we review the main techniques and results of Ref. 29, which have led to the lower and upper
bounds for the secret key capacity of the thermal-loss channel. In Sec. 4, we show the result of this work, i.e.,
how to improve the lower bound by means of the noise- and memory-assisted Gaussian QKD protocol. Finally,
Sec. 5 is for the conclusions.

2. SECRET KEY CAPACITY OF A QUANTUM CHANNEL

Assume that Alice and Bob are connected by a quantum channel E over which they perform an adaptive protocol
(see Ref. 29 for full details). After n transmissions through E , the two parties share an output state ρn

ab
:=

ρab(E⊗n) which depends on the sequence L = {Λ0,Λ1, . . . ,Λn} of adaptive LOCCs performed. The protocol
is characterized by the triplet (n, ǫ, Rn) where ǫ and the rate of the protocol Rn are such that ||ρn

ab
− φn|| ≤ ǫ



where φn is a target state with a content of information equal to nRn bits. By optimizing over all the possible
LOCC-sequences L and by taking the limit of infinite channel uses n → ∞, one defines the generic two-way
capacity of the channel as follows

C(E) := sup
L

lim
n→∞

Rn . (5)

Here we are interested in the optimal performance that can be achieved by QKD protocols over the quantum
channel E . In this scenario the two parties aim at generating secret bits, so that the target state φn is a private
state.41 The generic two-way capacity of Eq. (5) automatically defines the secret key capacity C(E) = K(E) of
the channel: This is the maximum achievable number of secret bits that can be transmitted per channel use. In
general the computation of the two-way capacities defined in Eq. (5) is extremely demanding. This is mainly
due to the fact that we have to optimize over a family of LOCCs which entails feedback, which are exploited to
optimize the subsequent inputs to the channel.

3. BOUNDS FOR THE SECRET KEY CAPACITY

3.1 Lower bound

The best-known lower bounds for the secret key capacity K(E) are given by the (reverse) coherent information
I(RC)C(E) of the channel. Consider a maximally entangled state of systems A and B, i.e. an EPR state ΦAB.
The propagation of half of such a state through the channel E defines its Choi matrix42 ρE := (I ⊗E)ΦAB . This
allows us to introduce the coherent information43, 44 of the channel IC(E) and its reverse counterpart39, 40 IRC(E)
which are defined as

IC(RC)(E) := S[TrA(B)(ρE)]− S(ρE) , (6)

where S is the von Neumann entropy. As a consequence of the hashing inequality,45 one may write (see Ref. 29
for more details)

max{IC(E), IRC(E)} ≤ K(E) . (7)

For the specific case of the thermal-loss channel, the best lower bound is that provided by the reverse coherent
information. In a thermal-loss channel E(η, ω), the input signals are combined with thermal noise ω = 2n̄th + 1,
i.e., the input quadratures are transformed according to

x̂ → √
ηx̂+

√
1− ηx̂E , (8)

where 0 ≤ η ≤ 1 is the transmissivity and x̂E is the environment in a thermal state with n̄th mean photon
number. The Choi matrix of this bosonic channel is energy-unbounded, so that it should be intended as an
asymptotic limit of a suitable sequence of finite-energy states. In particular, the CV EPR asymptotic state Φ is
defined as the limit for µ → ∞ of two-mode squeezed vacuum (TMSV) states2 Φµ = |Φµ〉〈Φµ|. In other words,
we have

ρE := lim
µ→∞

ρµ , ρµ = (I ⊗ E)Φµ . (9)

As a consequence, the reverse coherent coherent information of Eq. (6) is computed as follows

IRC(E) = lim
µ→∞

IRC(E , ρµ) = lim
µ→∞

S[TrB(ρ
µ)]− S(ρµ) . (10)

A direct evaluation for the thermal-loss channel leads to the following expression29, 39

IRC(η, ω) = − log2 (1− η)− h(ω). (11)



3.2 Upper bound

As previously mentioned, a general upper bound for the secret key capacity of a quantum channel can be designed
by extending the notion of relative entropy of entanglement (REE) from quantum states to quantum channels.
Recall that for any bipartite state ρ the REE is defined as ER(ρ) = minσ S(ρ||σ), where the minimization is
taken over the set of all the possible separable states and S(ρ||σ) := Tr[ρ(log2 ρ− log2 σ)] is the relative entropy.
By exploiting the properties of the REE, Ref. 29 showed that, at any dimension, the generic two-way capacity
of Eq. (5) is upper bounded as follows

C(E) ≤ E⋆
R(E) := sup

L
lim sup
n→∞

ER(ρ
n
ab
)

n
, (12)

where E⋆
R(E) is called the adaptive REE of the channel. The latter is very hard to compute. However, for a

wide class of quantum channels, called teleportation-covariant or ‘stretchable’ channels,29 the adaptive REE of
the channel E is simply bounded by the REE of its Choi matrix, i.e., one may write29

E⋆
R(E) ≤ ER(ρE ) , (13)

so that the computation of the upper bound in Eq. (12) is reduced to the much simpler computation of the
single-letter quantity ER(ρE). Because this quantifies the amount of entanglement (REE) distributed through
the channel by an EPR state, it can be called the entanglement flux of the channel29 and is denoted as follows

Φ(E) := ER(ρE) . (14)

Let us provide more details behind the crucial simplification of Eq. (13) which relies on the technique of telepor-
tation stretching devised in Ref. 29.

3.2.1 Teleportation simulation of a channel and teleportation stretching of an adaptive protocol

Teleportation stretching allows us to reduce an adaptive protocol with an arbitrary associated quantum task
(quantum information transmission, entanglement distribution or QKD) into an equivalent non-adaptive proto-
col, performing exactly the same original task but whose output state is expressed in a convenient block form.
This reduction process can be exploited at any dimension, finite or infinite, whenever the quantum channel suit-
ably commutes with the set Ud of the teleportation unitaries in dimension d. At finite dimension, the elements
of Ud are represented by generalized Pauli operators. For CV systems (d → ∞), the set U∞ is composed of
displacement operators.32

By definition, a quantum channel E is called “teleportation-covariant” or simply “stretchable” if, for any
teleportation unitary U ∈ Ud, we can write29

E(UρU †) = V E(ρ)V † (15)

for some unitary V . The key property of stretchable channels is represented by the fact that the teleportation
unitaries can be pushed out of the channel and mapped into generally-different unitaries that can still be cor-
rected. As a consequence of this property, the transmission of a quantum state through the channel E can be
simulated by teleporting the state using the Choi matrix of the channel ρE . Ref. 29 developed this teleportation-
simulation argument for both DV and CV channels. (Note that the teleportation simulation of the specific class
of DV Pauli channels was previously discussed in Refs. 46, 47).

Teleportation-simulation is only the first step of teleportation stretching. The technique of teleportation
stretching involves the following main steps:29 (i) first the stretchable channel is replaced with teleportation over
its Choi matrix; (ii) teleportation is considered as an additional LOCC, while the Choi matrix is anticipated back
in time and stretched out of the adaptive LOCCs; (iii) all the adaptive LOCCs are collapsed into a single trace
preserving LOCC. By applying this procedure iteratively for all the n transmissions, the output state shared by
Alice and Bob can be expressed as follows29

ρn
ab

= Λ̄(ρ⊗n
E ) (16)



in terms of a single and very complicated trace preserving LOCC Λ̄. (Note that this result must not be confused
with the content of Section V of Ref. 46 which instead showed how to transform a quantum communication
protocol into an entanglement distillation protocol).

Let us now combine the Choi decomposition of Eq. (16) with Eq. (12). Using the properties of the REE, one
derives29

ER(ρ
n
ab
)
(1)

≤ ER(ρ
⊗n
E )

(2)

≤ nER(ρE), (17)

where (1) the REE is monotonically decreasing under trace preserving LOCCs and (2) it is subadditive over
tensor products. Thus, the complicated trace preserving LOCC Λ̄ disappears in the chain of Eq. (17). Then, by
substituting Eq. (17) into Eq. (12), one can also simplify the the upper limit and the supremum in the definition
of E⋆

R(E), obtaining29

C(E) ≤ E⋆
R(E) ≤ ER(ρE) := Φ(E) , (18)

Thus, the secret key capacity of a stretchable channel is upper bounded by its entanglement flux, which is a
single-letter computable quantity. This final result is achieved by combining the upper bound given by the
adaptive REE of the channel with the technique of teleportation stretching.

3.2.2 Entanglement flux of the thermal-loss channel

It is easy to verify that bosonic Gaussian channels are stretchable. For a Gaussian channel, we can formally
define its entanglement flux Φ(E) = ER(ρE) = minσ∈SEP S(ρE ||σ) as29

Φ(E) := min
{σµ}

lim inf
µ→∞

S(ρµ||σµ), (19)

where ρµ is given in Eq. (9) and the minimization is over all sequences {σµ} of separable states that converge
in trace norm. This formulation takes into account of the fact that the Choi matrix of a Gaussian channel is
energy unbounded. Therefore, the secret key capacity of a Gaussian channel satisfies29

K(E) ≤ E⋆
R(E) ≤ Φ(E) ≤ lim inf

µ→∞
S(ρµ||σ̃µ) (20)

for some (good) sequence of separable Gaussian states {σ̃µ}. This choice is indeed crucial for having a good
upper bound. By exploiting a simple formula for the relative entropy between Gaussian states proven in Ref. 29,
one may compute S(ρµ||σ̃µ). For the thermal-loss channel, one finds the upper bound

C(E) ≤ Φ(η, ω), (21)

where Φ(η, ω) is given in Eq. (4).

4. NEW LOWER BOUND FOR THE SECRET KEY CAPACITY OF THE
THERMAL-LOSS CHANNEL

In this paper, we show the following result.

Theorem 4.1. Consider a thermal-loss channel with transmissivity η and thermal noise ω. Its secret key rate

K(η, ω) is lower-bounded by

RM (η, ω) = max
ηd,γ

R (η, ω, ηd, γ) , (22)

where

R (η, ω, ηd, γ) :=
1

2
log2

ηdω + (1− ηd)(1 − η)γ

(1− η) [ηd(1− η)ω + (1− ηd) γ]
+ h

(√
ω [ηd + (1 − η) (1− ηd)ωγ]

ηdω + (1− η) (1− ηd) γ

)
− h(ω), (23)

and the maximization is over detection transmissivity ηd and thermal variance γ ≥ 1.



Proof. Consider the Gaussian protocol described in Fig. 1. Alice has a TMSV state Φµ of modes a and A.
This is a zero mean Gaussian state with CM

VaA =

(
µI

√
µ2 − 1Z√

µ2 − 1Z µI

)
:= VTMSV(µ), (24)

where I =diag(1, 1) and Z =diag(1,−1). Mode a is kept in a quantum memory (for later measurement). Mode
A is sent through the thermal-loss channel with transmissivity 0 ≤ η ≤ 1 and thermal noise ω = 2n̄th + 1. At
the output, Bob implements a noisy detection. He uses a beam splitter of transmissivity ηd to mix the output
mode B with a mode v in a thermal state with variance γ, i.e., with CM

Vv = γI. (25)

The output + of the beam splitter is then homodyned in the q or p quadrature, randomly. After (large) n
rounds, Bob communicates which quadrature he has measured in each round, so that Alice can perform exactly
the same sequence of homodyne detections on the a-modes she has kept. Her outcomes are finally used to infer
Bob’s outcomes (reverse reconciliation).

In the middle, between the two parties, the thermal-loss channel can be dilated into a beam splitter with
transmissivity η mixing the input mode A with an environmental mode E, which is described by a thermal
state with variance ω. This thermal state can then be purified into a TMSV state of modes e and E, which
is completely under Eve’s control. This is known as an entangling cloner.48 The CM of Eve’s input state is
VeE = VTMSV(ω). The output modes e and E′ are stored in a quantum memory which is coherently measured
by Eve at the end of the protocol (collective attack).

η
TMSV

TMSV

HOM HOM

EQM

EQM

AQM

Figure 1. Noise-assisted Gaussian protocol. HOM = homodyne detection, TMSV = two-mode squeezed vacuum state,
EQM = Eve’s quantum memory, AQM = Alice’s quantum memory. See text for explanations.

The initial global state of Alice, Bob and Eve is given by the tensor product ρ0 = ρaA ⊗ ρeE ⊗ ρv, with CM
V0 = VaA⊕VeE⊕Vv = VaAeEv. For our convenience, we rearrange the modes so to obtain V0 = VaeEAv. This
state is processed by a sequence of two beam-splitters (η and ηd). First we process mode E and A, by applying
the symplectic transformation Ṽ = SηV0S

T
η , where Sη := I⊕ I⊕T(η)⊕ I, with

T(η) :=

( √
ηI

√
1− ηI

−√
1− ηI

√
ηI

)
. (26)

Then, we compute

V = Sηd
ṼS

T

ηd
, Sηd

:= I⊕ I⊕ I⊕T(ηd) . (27)

The CM of Eq. (27) describes the global output state ρaeE′+−. Discarding mode − corresponds to considering
the reduced state ρaeE′+ = Tr−(ρaeE′+−) with CM VaeE′+. From this CM we may compute Alice and Bob’s
mutual information IAB as well as Eve’s Holevo information χEB on Bob’s outcomes (reverse reconciliation).
Under ideal conditions of perfect reconciliation efficiency, the key rate is R = IAB − χEB.



To compute IAB we select from VaeE′+, the block relative to mode + measured by Bob. This is given by
V+ = VBI, where

VB = ηd [ηµ+ (1− η)ω] + (1− ηd) γ := V (µ). (28)

Note that Alice’s homodyne detection on mode a of the TMSV state (after it is released by the memory) is
equivalent to preparing Gaussianly-modulated squeezed states on mode A. Thus Bob’s conditional variance
VB|A can be computed by simply setting 1/µ in Eq. (28), i.e., we may write VB|A = V (1/µ). Thus, we get

IAB =
1

2
log

VB

VB|A
→ 1

2
log

ηdηµ

ηd (1− η)ω + (1− ηd) γ
, for large µ. (29)

Eve’s Holevo function is χEB = ST − SC , where ST is the von Neumann entropy of ρeE′ , while SC is that of
the conditional state ρeE′|B. From Eq. (27) consider the block

VeE′+ =

(
VeE′ C

CT V+

)
, (30)

where

VeE′ =

(
ωI

√
η (ω2 − 1)Z√

η (ω2 − 1)Z [ηω + (1− η)µ] I

)
, C =

√
ηd(1− η)

( √
ω2 − 1Z√
η(ω − µ)I

)
. (31)

We compute the symplectic spectrum of VeE′ which is given by {ν1, ν2}
µ→ {ω, (1− η)µ}. As a consequence, the

von Neumann entropy ST = h(ν1) + h(ν2) takes the asymptotic form

ST
µ→ h(ω) + log2

e

2
(1− η)µ. (32)

To compute the conditional term SC , we note that, after the homodyne detection of quadrature q (p), Eve’s CM
is projected onto the conditional form

VeE′|B = VeE′ −C (ΠV+Π)
−1

CT , (33)

with Π =diag(1,0) (Π =diag(0,1)). From the CM of Eq. (33), after some algebra and taking the asymptotic
limit, we obtain the following symplectic spectrum

ν̄1
µ→
√

(1− η) (ηdω + (1− η) (1− ηd) γ)

ηηd
µ, (34)

ν̄2
µ→
√

ω [ηd + (1 − η) (1− ηd)ωγ]

ηdω + (1− η) (1− ηd) γ
, (35)

which provides the conditional entropy SC = h(ν̄1) + h(ν̄2). Combining this with Eq. (32), we derive the asymp-
totic Holevo bound

χEB
µ→ h(ω)− h (ν̄2) +

1

2
log2

(1− η) ηηdµ

ηdω + (1− ηd) (1− η) γ
. (36)

Finally, using Eqs. (29) and (36), we find formula of the asymptotic key rate, which is given in Eq. (23). �

The secret key rate of Eq. (23) depends on Bob’s detection parameters, i.e., transmissivity ηd and variance
γ (besides the parameters η and ω of the channel). It can therefore be maximized over ηd ∈ [0, 1] and γ ≥ 1,
providing the optimized rate RM (η, ω) of Eq. (22) which is our improved lower bound. It is easy to check that
RM (η, ω) outperforms all previously-known lower bounds. It is sufficient to show that the previous bounds can
be retrieved for specific choices of the parameters ηd and γ in Eq. (23). By setting ηd = 1 (no trusted noise at
Bob’s side), it is easy to verify that we get R(η, ω, 1, γ) = − log2 (1− η)−h(ω), corresponding to the lower bound
of Eq. (2). According to the present derivation, a QKD protocol achieving − log2 (1− η)− h(ω) corresponds to
Alice distributing TMSV states through the channel, with Bob homodyning the output in q or p; then, after
many rounds, Bob informs Alice of his choices, so that she correspondingly homodynes the modes in her quantum



memory to infer Bob’s outcomes. Then, by setting ηd = 1/2 (balanced beam splitter) and γ = 1 (vacuum noise),
we also find

R(η, ω, 1/2, 1) =
1

2
log2

ω + 1− η

(1− η) [(1− η)ω + 1]
+ h

(√
ω [1 + (1 − η)ω]

ω + (1 − η)γ

)
− h(ω),

which is Eq. (4) of Ref. 39. In Fig. 2, we numerically compare the maximized key rate RM (η, ω) of Eq. (22) with
respect to the other bounds, considering a thermal-loss channel with n̄th = 1 thermal photon.

s
e

c
re

t 
b

it
s

η

Figure 2. Secret bits versus transmissivity η of a thermal-loss channel with n̄th = 1 mean photon (i.e., ω = 3). The main
plot compares the rate RM (η, ω) of Eq. (22) (black-dashed) with the upper bound (red line) and lower bound (blue) of
Eq. (2). In the inset we zoom a region of the main plot, where the optimal rate (black-dashed) is strictly greater than the
lower bound (blue) of Eq. (2). We also show the performance of the protocol in the case where Bob employs a balanced
beam splitter η = 1/2 in a vacuum γ = 1 (green dashed), which corresponds to Eq. (4) of Ref. 39.

5. CONCLUSIONS

In conclusion we have derived an improved lower bound for the secret key capacity of the thermal-loss channel,
by optimizing the asymptotic key rate of a noise- and memory-assisted Gaussian QKD protocol in reverse
reconciliation. There is a strict separation with respect to the previous best-known lower bounds derived in
Ref. 39. Unfortunately, the improvement is small and the gap with the upper bound is still open. Further efforts
must be devoted to close this gap and finally find the secret key capacity of this very important bosonic channel.
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