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Abstract—We evaluate the effectiveness of secret key extraction, for private communication between two wireless devices, from the

received signal strength (RSS) variations on the wireless channel between the two devices. We use real world measurements of

RSS in a variety of environments and settings. The results from our experiments with 802.11 based laptops show that (i) in certain

environments, due to lack of variations in the wireless channel, the extracted bits have very low entropy making these bits unsuitable

for a secret key, (ii) an adversary can cause predictable key generation in these static environments, and (iii) in dynamic scenarios

where the two devices are mobile, and/or where there is a significant movement in the environment, high entropy bits are obtained

fairly quickly. Building on the strengths of existing secret key extraction approaches, we develop an environment adaptive secret key

generation scheme that uses an adaptive lossy quantizer in conjunction with Cascade-based information reconciliation [9] and privacy

amplification [15]. Our measurements show that our scheme, in comparison to the existing ones that we evaluate, performs the best in

terms of generating high entropy bits at a high bit rate. The secret key bit streams generated by our scheme also pass the randomness

tests of the NIST test suite [1] that we conduct. We also build and evaluate the performance of secret key extraction using small, low-

power, hand-held devices - Google Nexus One phones - that are equipped 802.11 wireless network cards. Last, we evaluate secret key

extraction in a multiple input multiple output (MIMO)-like sensor network testbed that we create using multiple TelosB sensor nodes. We

find that our MIMO-like sensor environment produces prohibitively high bit mismatch, which we address using an iterative distillation

stage that we add to the key extraction process. Ultimately, we show that the secret key generation rate is increased when multiple

sensors are involved in the key extraction process.

Index Terms—wireless networks, multipath fading, physical layer, cryptography, key generation
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1 INTRODUCTION

Secret key establishment is a fundamental requirement
for private communication between two entities. Cur-
rently, the most common method for establishing a secret
key is by using public key cryptography. However,
public key cryptography consumes significant amount
of computing resources and power which might not
be available in certain scenarios (e.g., sensor networks).
More importantly, concerns about the security of public
keys in the future have spawned research on methods
that do not use public keys. Quantum cryptography [7],
[26] is a good example of an innovation that does not
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use public keys. It uses the laws of Quantum theory,
specifically Heisenberg’s uncertainty principle, for shar-
ing a secret between two end points. Although quan-
tum cryptography applications have started to appear
recently [12], they are still very rare and expensive.

A less expensive and more flexible solution to the
problem of sharing secret keys between wireless nodes
(say Alice and Bob) is to extract secret bits from the
inherently random spatial and temporal variations of the
reciprocal wireless channel between them [6], [20], [18], [5],
[24]. Essentially, the radio channel is a time and space-
varying filter, that at any point in time has the identical
filter response for signals sent from Alice to Bob as for
signals sent from Bob to Alice.

Received signal strength (RSS) is a popular statistic of
the radio channel and can be used as the source of secret
information shared between a transmitter and receiver.
We use RSS as a channel statistic, primarily because of
the fact that most of the current of-the-shelf wireless
cards, without any modification, can measure it on a
per frame basis. The variation over time of the RSS,
which is caused by motion and multipath fading, can
be quantized and used for generating secret keys. The
mean RSS value, a somewhat predictable function of
distance, must be filtered out of the measured RSS signal
to ensure that an attacker cannot use the knowledge of
the distance between key establishing entities to guess
some portions of the key. These RSS temporal variations,
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as measured by Alice and Bob, cannot be measured by an
eavesdropper (say Eve) from another location unless she
is physically very close to Alice or Bob. However, due to
non-ideal conditions, including limited capabilities of the
wireless hardware, Alice and Bob are unable to obtain
identical measurements of the channel. This asymmetry
in measurements brings up the challenge of how to make
Alice and Bob agree upon the same bits without giving
out too much information on the channel that can be
used by Eve to recreate secret bits between Alice and
Bob.

Azimi-Sadjadi et al. [6] suggested using two well-
known techniques from quantum cryptography - infor-
mation reconciliation and privacy amplification, to tackle
the challenge caused by RSS measurement asymmetry.
Information reconciliation techniques (e.g., Cascade [9])
leak out minimal information to correct those bits that
do not match at Alice and Bob. Privacy amplification [15]
reduces the amount of information the attacker can have
about the derived key. This is achieved by letting both
Alice and Bob use universal hash functions, chosen at
random from a publicly known set of such functions, to
transform the reconciled bit stream into a nearly perfect
random bit stream.

Most of the previous research work on RSS-based
secret key extraction, including that of Azimi-Sadjadi
et al. [6], is based on either simulations or theoretical
analysis. Other than the recent work by Mathur et al. [20]
that was performed in a specific indoor environment,
there is very little research on evaluating how effective
RSS-based key extraction is in real environments under
real settings. We address this important limitation of the
existing research in this paper with the help of wide-
scale real life measurements in both static and dynamic
environments. In order to perform our measurements
and subsequent evaluations, we implement different RSS
quantization techniques in conjunction with information
reconciliation and privacy amplification.

We first collect measurements under different environ-
ments to generically evaluate the effectiveness of secret
key generation. We find that under certain environments
due to lack of variations in the channel, the extracted key
bits have very low entropy making these bits unsuitable
for a secret key. Interestingly, we also find that an
adversary can cause predictable key generation in these
static environments. However, in scenarios where Alice
and Bob are mobile, and/or where there is a significant
movement in the environment, we find that high entropy
bits are obtained fairly quickly. Next, building on the
strengths of the existing schemes, we develop an envi-
ronment adaptive secret key generation scheme that uses
an adaptive lossy quantizer in conjunction with Cascade-
based information reconciliation and privacy amplifica-
tion. Our measurements show that our scheme performs
the best in terms of generating high entropy bits at a
high bit rate in comparison to the existing ones that we
evaluate. The secret key bit streams generated by our
scheme also pass the randomness tests of the NIST test

suite [1] that we conduct. We also build and evaluate the
performance of secret key extraction using small, low-
power, hand-held devices - Google Nexus One phones -
that are equipped 802.11 wireless network cards. Finally,
we also evaluate secret key extraction in a multiple input
multiple output (MIMO)-like sensor network testbed
that we create using multiple TelosB sensor nodes. We
find that our MIMO-like sensor environment produces
prohibitively high bit mismatch, which we address using
an iterative distillation stage that we add to the key
extraction process. Ultimately, we show that the secret
key generation rate is increased when multiple sensors
are involved in the key extraction process.

2 ADVERSARY MODEL

In our adversary model we assume that the adver-
sary Eve can listen to all the communication between
Alice and Bob. Eve can also measure both the chan-
nels between herself and Alice and Bob at the same
time when Alice and Bob measure the channel between
themselves for key extraction. We also assume that Eve
knows the key extraction algorithm and the values of
the parameters used in the algorithm. However, we
assume that Eve cannot be very close (less than a few
multiples of the wavelength of the radio waves being
used [20]) to either Alice or Bob while they are extracting
their shared key. This will ensure that Eve measures a
different, uncorrelated radio channel [11]. We assume
that Eve can neither jam the communication channel
between Alice and Bob nor can she modify any messages
exchanged between Alice and Bob. Essentially, Eve is not
interested in disrupting the key establishment between
Alice and Bob. However, in our model Eve is free to
move intermediate objects between Alice and Bob and
affect their communication channel although we assume
that Eve is unable to restrict other movements in the
channel and thus will not be able to significantly increase
the coherence time of the channel. We also assume that
Eve cannot cause a person-in-the-middle attack, i.e., our
methodology does not authenticate Alice or Bob. In other
words, our proposed scheme works against passive ad-
versaries. Even without an authentication mechanism,
the Diffie-Hellman secret key establishment scheme has
found widespread use in network security protocols
and standards (e.g., for providing Perfect Forward Se-
crecy, Strong password protocols, etc.). We expect that
our scheme will provide a strong alternative to the
Diffie-Hellman scheme in wireless networks. There is
a growing amount of work in authenticating wireless
devices based on their physical and radiometric prop-
erties (e.g., [10], [16]). These and future authentication
mechanisms can be used in conjunction with our secret
key establishment scheme.

3 METHODOLOGY

In this section, we first describe the three components
of our wireless RSS-based secret key extraction. Next,
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we briefly describe two classes of existing quantization
approaches. Last, we develop a new approach by com-
bining the advantages of the existing approaches.

3.1 Components of RSS-Based Secret Key Extrac-

tion

To establish a shared secret key, Alice and Bob measure
the variations of the wireless channel between them
across time by sending probes to each other and measur-
ing the RSS values of the probes. Ideally, both Alice and
Bob should measure the RSS values at the same time.
However, typical commercial wireless transceivers are
half duplex, i.e., they cannot both transmit and receive
the signals simultaneously. Thus, Alice and Bob must
measure the radio channel in one direction at a time.
However, as long as the time between two directional
channel measurements is much smaller than the inverse
of the rate of change of the channel, they will have
similar RSS estimates.

Most of the existing literature on key extraction from
RSS measurements either use some or all of the following
three steps:

3.1.1 Quantization

As multiple packets are exchanged between Alice and
Bob, each of them builds a time series of measured RSS.
Then, each node quantizes its time series to generate an
initial secret bit sequence. The quantization is done based
on specified thresholds. Figure 1 shows a sample RSS
quantizer with two thresholds. Different quantizers have
been proposed in the existing literature [5], [6], [20], [24].
The difference in these quantizers mainly results from
their different choices of thresholds and the different
number of thresholds that they use.
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Fig. 1. A sample RSS quantizer. The values between the

lower and upper threshold are dropped, the value greater

than the upper threshold is encoded as 1 and the value

less than the lower threshold is encoded as 0. In this

example, the quantizer will output 1010011.

3.1.2 Information Reconciliation

Once both Alice and Bob extract the bit stream from the
RSS measurements they collect using quantizers, to agree
upon the same key, they must correct the bits where the
two bit streams differ. Differences in their bit streams

primarily arise due to the following - presence of noise
and interference, hardware limitations, manufacturing
variations, vendor-specific differences including differ-
ences in implementing automatic gain control, and the
lack of sampling at the same time at Alice and Bob, pri-
marily due to the half-duplex mode of communication
in commercial transceivers.

Cascade [9] is an iterative, interactive information
reconciliation protocol. In this protocol, Alice permutes
the bitstream randomly, divides it into small blocks and
sends permutation and parity information of each block
to Bob. Bob permutes his bitstream in the same way,
divides it into small blocks, computes parities and checks
for parity mismatches. For each mismatch, Bob performs
a binary search on the block to find if a few bits can
be changed to make the block match the parity. These
steps are iterated a number of times to ensure a high
probability of success.

3.1.3 Privacy Amplification

When the probe packets are exchanged at a rate greater
than the inverse of the coherence interval of the channel,
there may be short-term correlation between subsequent
quantized bits. Moreover, the information reconciliation
stage reveals a certain fraction of information to correct
the mismatching bits of Alice and Bob; the leaked por-
tion needs to be removed so that an adversary cannot
use this information to guess portions of the extracted
key. Privacy amplification solves the above two prob-
lems by reducing the size of output bit stream. This is
achieved by letting both Alice and Bob use universal
hash functions, chosen at random from a publicly known
set of such functions, to obtain fixed size smaller length
output from longer input streams. Essentially, privacy
amplification generates a shorter secret bit stream with
a higher entropy rate from a longer secret bit stream with
a lower entropy rate. Most of the popular methods used
for privacy amplification are based on the leftover hash
lemma, a well known technique to extract randomness
from imperfect random sources [15]. We implement this
technique in this paper.

3.2 Existing Approaches

We classify the existing approaches into the following
two categories:

Lossy-quantization-based approach: In this approach,
bits extracted from the RSS measurements are dropped
probabilistically to maintain a high bit entropy. This
approach does not use privacy amplification. The goal
of this approach is to output a high entropy bit stream
so that the output bit stream can be used directly as
the shared secret key. This approach has a low output
bit rate. Examples of this approach include quantization
methods of Aono et al. [5], Tope et al. [24] and Mathur
et al. [20].

Lossless-quantization-based approach: This approach
does not drop any bits but uses privacy amplification
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to increase the bit entropy. This approach produces a
high rate output bit stream (e.g., Azimi-Sadjadi et al.’s
method [6]).

Note that quantization is inherently lossy. However, in
this paper lossless quantization corresponds to obtaining 1
bit or more per sample and lossy quantization corresponds
to obtaining less than 1 bit per sample. Also note that we
compare these different approaches for the quality of the
bit streams they generate. This quality is quantified by
three performance metrics -

1) Entropy: Entropy characterizes the uncertainty as-
sociated with a random variable. We estimate the
entropy of a bit stream using NIST test suite’s
approximate entropy test [1].

2) Bit mismatch rate: We define the bit mismatch
rate as the ratio of the number of bits that do not
match between Alice and Bob to the number of bits
extracted from RSS quantization.

3) Secret bit rate: We define secret bit rate as the
average number of secret bits extracted per col-
lected measurement. This rate is measured in terms
of final output bits produced after taking care of
bit losses due to information reconciliation and
privacy amplification.

Note that the bit mismatch rate value we calculate
is based on the bits we obtain immediately after the
quantization step, and not after the privacy amplification
step. In fact, the bit mismatch rate is expected to be zero
after the information reconciliation step.

3.3 Adaptive Secret Bit Generation (ASBG)

Our experimental results in Section 5 suggest that some
lossy quantizers like Aono et al.’s quantizer or Tope
et al.’s quantizer that aim to achieve high bit rate can
output bit streams with low entropy in certain settings,
especially in those that have minimal movement. On the
other hand, some other lossy quantizers like Mathur et
al.’s quantizer, can output bit streams with reasonably
high entropy but sacrifice the bit rate to achieve this
or vice versa. The lossless quantizer described above
also generates secret bits at a low rate. In summary, the
existing approaches that use RSS measurements do not
generate secret bits at a high rate and/or with high en-
tropy. We develop a method, that we call Adaptive Secret
Bit Generation (ASBG), that builds on the strengths of the
existing approaches. In our method, we use a modified
version of Mathur’s quantizer [20] in conjunction with
two well-known information reconciliation and privacy
amplification techniques.

We first describe our quantizer and then identify
the differences with Mathur’s scheme. Our modified
quantizer is described as follows. (i) Alice and Bob
consider a block of consecutive measurements of size
block size which is a configurable parameter1. For each

1. The Cascade block size is not related to the block size we use for
determining the quantization thresholds.

block, they calculate two adaptive thresholds q+ and q−
independently such that q+ = mean+ α ∗ std deviation
and q− = mean − α ∗ std deviation, where α ≥ 0. (ii)
Alice and Bob parse their RSS measurements and drop
RSS estimates that lie between q+ and q− and maintain a
list of indices to track the RSS estimates that are dropped.
They exchange their list of dropped RSS estimates and
only keep the ones that they both decide not to drop. (iii)
Alice and Bob generate their bit streams by extracting a
1 or a 0 for each RSS estimate if the estimate lies above
q+ or below q−, respectively.

Our modified quantizer divides the RSS measure-
ments into smaller blocks of size block size and calculates
the thresholds for each block separately. The adaptive
thresholds allows our quantizer to adapt to slow shifts of
RSS. Mathur et al. [20] subtract a running windowed av-
erage of RSS measurements before computing thresholds
q+ and q− to make their scheme adaptive to the slow
variations of RSS. We also perform experiments to find
the optimal block size. The results of these experiments
are shown in Section 6. Unlike the Mathur quantizer that
preserves only a single bit from m consecutive 1s or 0s
and drops the other repeating m − 1 bits, our modified
quantizer extracts a bit out of each measurement that
falls above the upper threshold or below the lower
threshold but depends on the privacy amplification step
to remove the effect of correlated bits.

Various single bit quantization methods drop a large
amount of RSS samples that lie in between the upper
and lower thresholds. These dropped samples constitute
a loss of valuable information that can be used by Alice
and Bob to generate secret bits and also result in an
inefficient utilization of the wireless medium because
more probes must be sent and received. Furthermore,
privacy amplification also reduces the secret bit rate
while increasing entropy. To increase the secret bit rate,
we propose an adaptive scheme for extracting multiple
bits from a single RSS measurement. Our multiple bit
extraction scheme is described as follows.

Once Alice and Bob collect the RSS measurements,
they perform the following steps - (i) determine the
Range of RSS measurements from the minimum and the
maximum measured RSS values, (ii) find N , the number
of bits that can be extracted per measurement, where
N ≤ ⌊log

2
Range⌋, (iii) divide the Range into M = 2N

equal sized intervals, (iv) choose an N bit assignment
for each of the M intervals (for example use the Gray
code sequence [30]), and (v) for each RSS measurement,
extract N bits depending on the interval in which the
RSS measurement lies. After completing the above steps,
as in the single bit extraction case, Alice and Bob use in-
formation reconciliation to correct the mismatching bits,
and finally, apply privacy amplification to the reconciled
bit stream and extract a high entropy bit stream.

Our results, as presented in Section 6, show that our
single bit extraction in conjunction with information rec-
onciliation and privacy amplification is able to achieve
higher entropy in comparison to existing schemes, and
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our multiple bit enhancement (evaluated in Section 7)
allows us to significantly increase the secret bit rate as
well.

4 IMPLEMENTATION

We implement the key extraction scheme consisting
of three components, namely quantization, informa-
tion reconciliation, and privacy amplification, on two
laptops (Alice and Bob) equipped with in-built Intel
PRO/Wireless 3945ABG wireless network cards, oper-
ating in the 802.11g mode. Both laptops run the Ubuntu
Linux operating system. In order to establish a secret
key, Alice and Bob exchange probe packets periodically
and use these probe packets to measure the RSS values.

In our implementation, we use specially crafted 802.11
management frames as probe packets. We prefer to use
management frames as a communication mechanism
over standard data frames because in the case of data
frames, acknowledgement frames are sent by the receiv-
ing wireless card. On the other hand, in the case of
management frames, no acknowledgement frame is sent
by the receiving wireless card. Moreover, management
frames are prioritized over data frames and are queued
separately. These facts motivate us to design our own
acknowledgement scheme using management frames
instead of data frames to better control the probing rate.
In our implementation, among the different management
frames, we choose to use the beacon frames for the
communication between the initiator and the responder.
The sequence number field of beacon packet is used
as our protocol’s sequence number to handle packet
loss and retransmissions. We use raw packet injection in
the monitor mode to send these specially crafted beacon
frames. We utilize ipwraw [2], a wireless card driver for
Intel 3945 cards, for raw packet injection. We also use the
monitor mode to receive the beacon frames. In any other
mode (e.g., the AP, or STA mode), the wireless device
driver does not forward these frames to any upper
layer applications. In our implementation, the endpoints
exchange beacon frames at a rate of approximately 20
frames per second, and measure the RSS values on a
per-frame basis. The RSS measurements we collect are
reported by ipwraw driver in the radio tap header of
each received frame [3].

We implement our key extraction scheme in a modular
way so that different methods of performing quantiza-
tion, information reconciliation or privacy amplification
can be put together to build different schemes using the
same basic framework. To compare the performance of
different quantizers, we implement them as pluggable
modules to our key extraction scheme. For privacy
amplification, we use the 2-universal hash family of
functions. Alice and Bob use these hash functions to
generate the output secret bits. For implementing these
hash functions, we use the BigNumber routines from the
OpenSSL library. These routines allow us to treat chunks
of 32 bytes from the input bit stream as very large 256 bit

numbers. We describe our implementation in a greater
detail in our earlier work [17].

For information reconciliation, we implement the well-
known interactive Cascade [9] protocol. In Cascade, the
information leakage depends on the block size used in
each pass. For optimal information leakage the probabil-
ity of mismatch should be known a priori as the suitable
block size can be determined based on the mismatch
probability. However, in our case the mismatch probabil-
ity is variable and unknown. If the selected block size is
too small, a large amount of information will be leaked.
On the other hand if the block size is too big, very few bit
mismatches will be corrected. We address this problem
by using two thresholds (one upper and one lower) and
choose random block sizes within those thresholds. We
find that the amount of leaked information by Cascade
when using random block sizes between 50 and 400

is quite close to the optimal information leakage by
Cascade when the probability of mismatch is known a
priori.

We also use an Atheros based card to evaluate the
effect of heterogeneous hardware on the key extraction
process. We present the results that we obtain using the
Atheros card in Section 5.5.

5 MEASUREMENTS

In this work, we use the variation of the wireless channel
by measuring RSS on a per frame basis. An RSS mea-
surement represents the average of the energy arriving
during the preamble sequence. The wireless card drivers
report the RSS values as integers, and the calculation of
RSS is vendor dependent. For example, Atheros devices
report RSS values from −35 dB to −95 dB, Symbol
devices report RSS values from −50 dB to −100 dB,
in 10 dB steps, and Cisco devices report RSS values
in the range −10 dB to −113 dB [4]. Each of our RSS
measurements is quantized into one or more bits for
secret key extraction.

We conduct eight experiments in a variety of envi-
ronments that are classified into three categories - (i)
stationary endpoints and stationary intermediate objects,
(ii) mobile endpoints, and (iii) stationary endpoints and
mobile intermediate objects. We refer to these three
categories henceforth as stationary, mobile and interme-
diate settings respectively. Due to space limitations, we
describe only one representative experiment under each
category in this section; a more thorough description of
all our experiments is available in [17].

We expect that with increased mobility of either the
endpoints or of the objects in the environment, the
channel variations become more pronounced. As we
will see in Section 6, mobile environments offer higher
bit rates, higher entropy and fewer bit mismatch rates
across all the quantization schemes. We show that secret
key extraction can work with reasonable efficiency even
when Alice and Bob use wireless cards from two dif-
ferent vendors, despite the differences in the manner in
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which the RSS values are calculated by each vendor. Very
interestingly, we also show that static environments can
be exploited by an adversary to cause predictable key
generation.

5.1 Stationary Endpoints and Intermediate Objects

Fig. 2. Underground Concrete Tunnel Measurements

We perform our first experiment inside an under-
ground concrete tunnel that runs between two Engi-
neering buildings inside the University of Utah campus.
The concrete tunnel provides an environment that is free
from most of the external interference sources, and the
effects of mobility of any objects in the environment.
Therefore, even though this is an atypical environment,
it provides us the opportunity to study the amount of
channel variation observed in a completely stationary
environment. The two laptops are separated by a dis-
tance of about 10 feet during the experiment. Figure 2
shows the variations in RSS measurements collected
by Alice and Bob. As expected, there are not much
noticeable variations in the channel - at each instant
the RSS values vary only as much as 2 dB from the
mean. We also note that the curves for Alice and Bob
do not follow each other indicating a channel with low
reciprocity. This happens because the variations in a
static channel are primarily generated by hardware im-
perfections and thermal effects which are non-reciprocal.
RSS measurements in this type of environment contain
very low inherent entropy. Therefore, it is not possible
to extract secret bits at a fast rate in this type of setting.
In fact, using our measurements, we find that it would
take 7-8 minutes to generate a 256 bit secret key in this
environment.

5.2 Mobile Endpoints

To examine the effect of mobility of nodes in indoor
environments, we carry around two laptops at normal
walking speed on the third floor of an Engineering
Building and record the RSS measurements. The laptops
are carried along the corridors in the third floor in such
a way that one trails the other and are separated by a
distance of 10−15 feet for the most part. Figure 3 depicts
the variations in RSS values measured by Alice and Bob.
As we can clearly observe, the channel varies often with
a wide variation window (−49 dB to −73 dB) and with

Fig. 3. Measurements while walking inside an Engineer-

ing Building

a high degree of reciprocity. This experiment shows that
mobility in indoor settings can help achieve fast secret
key extraction from RSS measurements by increasing the
inherent entropy of the measurements and by improving
the reciprocity of the channel.

5.3 Mobile Intermediate Objects

Fig. 4. Crowded Cafeteria Measurements

As we find from our other experiments that mobile
nodes result in a variable and highly reciprocal channel,
we expect to observe similar effects if we have mo-
bile intermediate objects in the environment instead of
the nodes moving themselves. To verify this, we first
perform an experiment where we study the effects of
randomly moving intermediate objects at low speed.
We conduct this experiment during a busy lunch hour
in a crowded cafeteria. We keep our laptops stationary
on two tables separated by a distance of 10 feet across
the main entrance of the cafeteria. In this setting, we see
many people frequently walk between these two tables.
The channel variations measured by Alice and Bob are
shown in Figure 4. As expected, even though the laptops
are stationary, the random movements of people pro-
duces enough reciprocal channel variations. However,
the range of measurements is smaller in comparison
to settings with mobile endpoints, but much larger in
comparison to stationary settings.

5.4 Predictable Channel Attack

As mentioned earlier, stationary environments cannot
support fast secret key extraction. However, another
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significant drawback of stationary environments is that
an adversary can use planned movements in such envi-
ronments causing desired and predictable changes in the
channel between the actual sender and receiver nodes.

We show that the adversary can, in fact, cause desired
changes in the channel between the sender and receiver
by controlling the movements of some intermediate ob-
ject or of the actual radios. We conduct an experiment in
a student lab in one of the Engineering buildings with
two laptops; the separation between the two laptops is
about 10 feet and the intermediate object is moved at
about the halfway point in between the laptops.

Fig. 5. Schematic of the attack. In the top portion of this

figure, there is a line of sight path. In the bottom portion,

the attacker intermittently blocks the line of sight path

causing a predictable drop in the RSS values.

Fig. 6. Predictable variations of the RSS values when an

adversary repeatedly blocks and unblocks the line of sight

path using an intermediate object.

The schematic of the experiment is shown in Figure 5.
One of the authors (say X), sitting on a chair and inter-
mittently leaning backward and forward, takes the role
of the intermediate object. Sitting on the chair, whenever
X leans backward obstructing the line of sight path, the

RSS drops and whenever X leans forward so that there
is no obstruction along the line of sight path, the RSS
regains its original value. Figure 6 shows the variations
of the RSS values and the pattern of variation follows
the movements of X . Under these circumstances, when
any key extraction scheme is used on such a data set, it
produces a predictable pattern of secret bits.

For the RSS values shown in Figure 6, our quantization
scheme, actually generates an alternating sequence of
multiple 0s and 1s, e.g., 0000111100001111 . . .. Alice and
Bob could possibly use random sub-sampling of the bit
sequence, as in [20], or use privacy amplification, to
ensure that the resulting bit pattern is random. However,
if an adversary is able to completely control the bit
sequence coming out of the quantization process, then
no post-processing technique will be able to ensure the
security of the resulting bit sequence. Consequently,
it is important to weigh the relationship between the
adversary’s ability to control the environment and the
block size used in sub-sampling or privacy amplification.

It is very important to note that we obtain the above
results even with coarse movements, without the use of
any precision machinery to create the movements. Thus,
our experiments demonstrate that it is quite easy for an
adversary to launch a “predictable channel” attack in a
stationary environment and cause desired changes in the
channel between the sender and receiver making them
extract a predictable sequence of secret key bits. One
of the possible ways to avoid this attack is to use the
RSS measurement based secret extraction scheme only
in places where multiple moving objects are present so
that the attacker’s movement alone will not be able to
change the channel predictably. The effectiveness of the
predictable channel attack on key extraction methods
using other channel characteristics (e.g., channel impulse
response) will be explored in the future.

5.5 Heterogeneous Devices

Fig. 7. Measurements from heterogeneous devices while

walking inside an Engineering Building

The experiments described so far use identical hard-
ware for both transmitter and receiver. However in
reality, different users could have different hardware. To
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investigate the effects of using heterogeneous devices,
we perform an experiment in a setting similar to that of
Section 5.2 (walk inside an Engineering Building). For
this experiment, Alice is equipped with an Intel 3945
ABG card and Bob with an Atheros chipset based card.
Figure 7 depicts the variations in RSS values measured
by Alice and Bob. We can clearly see that even with
heterogeneous endpoints, the channel measurements ex-
hibit a very high degree of reciprocity. Alice’s RSS val-
ues range from −80 dB to −51 dB while Bob’s RSS
values range from −70 dB to −46 dB. We find that
with heterogeneous hardware, when using our quantiza-
tion method, the mismatch fraction between Alice’s and
Bob’s bit streams is about 11%. In our implementation,
information reconciliation can handle this mismatch rate.
Therefore, even though heterogeneous hardware intro-
duces higher bit mismatch rates than using homoge-
neous ones, we can still perform secret key extraction
with reasonable efficiency.

6 COMPARISON OF KEY EXTRACTION AP-
PROACHES

Fig. 8. Variation of Mismatch rate against Block size for

ASBG method.

In this section, we compare the performance of ASBG
with other existing schemes in terms of entropy, secret bit
rate and bit mismatch rate. Although ASBG is capable
of multiple bit extraction, we evaluate only single bit
extraction in this section. We show that ASBG not only
outputs a secret bit stream with the highest entropy
but also the secret bit rate and bit mismatch fraction of
ASBG are comparable, if not better than all the existing
methods.

Various key extraction approaches that we compare
in this work use one or more configurable parameters.
We choose the parameters for all these quantization
schemes such that they help strike a balance between
the entropy and the secret bit rate. For the results
shown in this section, we use the following configurable
parameters. In Aono et al.’s scheme, the configurable
parameter β is chosen such that at most 15% of the
RSS measurements are deleted from the data set. Tope et
al.’s method uses two thresholds - γl and γh. We choose

Fig. 9. Entropy comparison between existing quantization

schemes and ASBG under various settings.

Fig. 10. Bit Mismatch rate comparison

γl = avg of delta values + 0.4 ∗ std deviation, and
γh = avg of delta values + std deviation. In Mathur
et al.’s scheme, two thresholds q+, q− and m, the
minimum number of measurements on an excursion
above or below the thresholds, are used such that
q+ = mean + α ∗ standard deviation and q− = mean −
α ∗ standard deviation. In order to remove the affects
of slowly moving average signal power, as suggested
in [20], we subtract a windowed average from each RSS
measurement. We choose α = 0.2 and m = 2 to ensure
that a large fraction of measurements is considered for
bit extraction. We do not implement the random sub-
sampling step because although this step improves the
entropy of the extracted bit stream, it negatively impacts
the secret bit rate. In Azimi et al.’s scheme, a threshold
value of 10 is used to determine the deep fades. When
extracting one bit per measurement, ASBG uses two
thresholds q+, q− with α = 0.8 and block size = 25. Fig-
ure 8 shows the variation of the bit mismatch rate with
block size for our ASBG scheme. We observe that the
mismatch rate gradually falls and becomes very small
after a certain block size threshold and stays small even
when the block size is increased beyond the threshold.
We pick a block size (= 25) where the mismatch rate is
low.

The performance of the different secret key extraction
schemes is shown in Figures 9, 10 and 11. Aono et al.’s
scheme has the highest secret bit rate. However, their
scheme produces bit streams with very low entropy.
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TABLE 1

P-values from NIST statistical test suite results. Experiments {A,B,C} ∈ stationary category, {D,E, F} ∈ mobile

category and {G,H} ∈ intermediate category.

Test A B C D E F G H
Frequency 0.35 0.03 0.51 0.14 0.51 0.37 0.98 0.95

Block Frequency 0.52 0.57 0.82 0.66 0.38 0.94 0.63 0.03
Cumulative sums(Fwd) 0.46 0.05 0.78 0.19 0.34 0.68 0.55 0.18
Cumulative sums (Rev) 0.27 0.03 0.46 0.09 0.89 0.39 0.52 0.21

Runs 0.21 0.54 0.74 0.41 0.74 0.38 0.55 0.07
longest run of ones 0.08 0.1 0.49 0.65 0.76 0.4 0.78 0.96

FFT 0.71 0.74 0.28 0.59 0.51 0.52 0.23 0.65
Approx. Entropy 0.06 0.34 0.56 0.67 0.65 0.21 0.55 0.25

Serial 0.84, 0.50 0.40, 0.23 0.84, 0.64 0.50, 0.59 0.50, 0.64 0.43, 0.59 0.60, 0.36 0.16, 0.50

Fig. 11. Secret bit rate comparison between existing

quantization schemes and ASBG under various settings.

On the other hand Mathur et al.’s scheme generates
bit streams with relatively high entropy at a moderate
rate. Note that when random sampling step is employed
in Mathur et al.’s scheme, the secret bit rate will be
correspondingly lower than what we report in Figure 11.
Azimi-Sadjadi et al.’s scheme results in bit streams with
highest entropy. However, the bit rate of their scheme
is very low. ASBG produces bit streams with highest
entropy like Azimi-Sadjadi’s scheme while still main-
taining the bit rate as high as Mathur et al.’s scheme.
In Figure 9, the plots corresponding to Azimi-Sadjadi et
al.’s scheme and ASBG are one behind the other.

To ensure the randomness of the bit streams generated
by ASBG, we also run randomness tests available in
the NIST test suite [1]. There are a total of 16 different
statistical tests in the NIST test suite. Of these 16 tests, we
run only 8 tests. The bit streams that we obtain from our
experiments, meet the input size recommendation [1] of
the 8 NIST tests only. We find that the ASBG generated
bit streams pass all the 8 tests. The results of these test are
shown in Table 1. The remaining 8 tests require a very
large input bit stream (specifically, 6 of the 8 remaining
tests require ≈ 106 bits). We plan to collect large traces
in the future to run these remaining tests.

We briefly describe the purpose of these statistical
tests in the NIST test suite [1] as follows. The frequency
test determines whether the number of ones and zeros
in a sequence are approximately the same. The block
frequency test checks whether the frequency of ones in a
given M -bit block is approximately M/2. Using numeric

values −1 and +1 in place of bits 0 and 1, the cumulative
sums test determines whether the cumulative sum of
the partial sequences occurring in the tested sequence is
too large or too small relative to the expected behavior
of the cumulative sum for random sequences. The runs
test verifies whether the number of runs of ones and
zeros of various lengths is as expected for a random
sequence. The purpose of the longest run of ones (LRO)
test is to determine whether the length of the LRO within
the tested sequence is consistent with the length of the
LRO that would be expected in a random sequence.
The FFT test checks for periodic features that would
indicate a deviation from the assumption of randomness.
The approximate entropy test compares the frequency of
overlapping blocks of two consecutive lengths against
the expected result for a random sequence. The serial
test determines whether the number of occurrences of
the 2m m-bit overlapping patterns is approximately the
same as would be expected for a random sequence.

Each of these statistical tests outputs a P-value; the P-
value summarizes the strength of the evidence against
the null hypothesis, which corresponds to the sequence
being tested is random. P-value denotes the probability
that a perfect random number generator would have
produced a sequence less random than the input se-
quence that is tested. For a P-value ≥ 0.01, the sequence
is considered as random with a confidence of 99%. Note
that all the P-values shown in Table 1 are at least 0.01,
which demonstrates that the secret bit streams are in fact
random with a very high degree of confidence.

7 MULTIPLE BIT EXTRACTION

In this section, we evaluate the performance of extracting
multiple bits from a single RSS sample. The goal here is
to find whether or not the extraction of multiple bits
from a single RSS sample increases the secret bit rate in
comparison to single bit extraction.

In Section 5, we have shown that the measurements
from static settings exhibit a very narrow RSS range
(for example, only 2 dB variation in the experiment of
Section 5.1). Extracting even 2 bits from an RSS sample
requires a range of at least 4 dB when RSS is reported
in 1 dB steps. Further, in Section 6 we have shown
that the mismatch rate in the static settings is as high
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as 50%. Attempting to extract multiple bits will cause
the mismatch rate to increase further. Therefore, we
apply our multiple bit extraction method only to mobile
settings that do not suffer from these problems of narrow
range and very high mismatch rates.

Fig. 12. Bit Mismatch rate comparison

Recall from Section 3 that N is the number of bits
extracted per RSS measurement, and M (= 2N ) is the
number of equi-sized intervals the RSS range is divided
into. Figure 12 shows the mismatch rates for extracting
N = 2−4 bits respectively from each RSS measurement.
Observe that the mismatch fraction increases with N ,
the number of bits extracted per measurement. Further,
the way in which the N bits are assigned to each of
the M intervals also affects the mismatch fraction. For
example, the use of Gray codes results in a substantially
lower mismatch fraction compared to the use of a regular
binary sequence as shown in Figure 12. Due to non-
perfect channel reciprocity, if an RSS measurement of
Alice and that of Bob belong to adjacent intervals, use of
Gray codes ensures that the N bits extracted by Alice and
Bob differ by at most one bit, where as using a regular
binary sequence, causes the bits extracted by Alice and
Bob to potentially differ in all the N bits. This accounts
for a lower mismatch rate and subsequently higher secret
bit rate when using a Gray code sequence.

Figure 13 shows a comparison of secret bit rates for
our single and multiple bit extraction methods under
various mobile settings. Notice that for the mobile set-
tings, the secret bit rate for single bit extraction is about
16%, whereas for two bits extraction (N = 2) using
gray coding, the secret bit rate is about 67%. Notably,
the secret bit rate of the multiple bit extraction method
is at least four times higher than that of the single bit
extraction method even when only 2 bits are extracted
from each measurement. This substantial improvement
accounts for the fact that the single bit extraction method
drops all the RSS measurements that lie within the upper
and lower thresholds, while the multiple bit extraction
method utilizes most of the measurements. Furthermore,
similar to our single bit extraction method, the extracted
bit streams have an entropy value close to 1 due to
privacy amplification. To summarize, the multiple bit

Fig. 13. Secret bit rate comparison when extracting

different number of bits under various settings.

quantization scheme substantially improves the secret bit
rate in environments with mobile devices.

8 SECRET KEY EXTRACTION USING HAND-
HELD DEVICES

Given the widespread prevalence of inexpensive and
low-power mobile devices, in this section, we evaluate
our secret key extraction using two mobile devices,
Google Nexus One smartphones, that are equipped with
Broadcom BCM 4329 chipset based 802.11 wireless net-
work cards. We first perform experiments similar to the
ones described in the previous section in two different
environments. Although not shown here, we obtain
high entropy secret bits fairly quickly when using these
smartphones and our secret bit streams also pass the
NISTs approximate entropy test, achieving an entropy
value close to the ideal value of one. In the rest of this
section, we examine the impact of distances between two
smartphones, Alice and Bob, on secret key extraction in
two different environments while they transmit at a very
low power.

8.1 Experimental Setup

We conduct a number of experiments in the University of
Utah campus under two different environments that are
changing with time. In each environment, we perform
four walk-experiments where the phones representing Al-
ice and Bob are carried at normal walking speeds. The
average distance (d) in feet between Alice and Bob is
varied with each experiment and d ∈ {25, 50, 75, 100}.

This first environment is a hallway on the third floor
of the Merrill Engineering building. In the experiments
conducted in this environment, our phones use the
lowest transmit power of 4 dBm.

We conduct a second set of experiments in an outdoor
environment across varying terrain, with many trees and
bushes in the path between Alice and Bob. Because of
the terrain and obstructions in this environment, the
path losses are higher. Due to greater path loss in this
environment, we use a higher transmit power of 8 dBm.
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TABLE 2

Bit Mismatch Rate as a function of Distance.

Distance Bit Mismatch Rate Bit Mismatch Rate

(feet) (Hallway) (Trees)

25 0.29% 2.46%

50 1.67% 3.60%

75 1.81% 3.63%

100 1.91% 5.29%

TABLE 3

Packet Loss Rate as a function of Distance.

Distance Packet Loss Rate Packet Loss Rate

(feet) (Hallway) (Trees)

25 1% 1%

50 4% 3%

75 4% 18%

100 9% 27%

8.2 Results

Fig. 14. Secret bits per probe as a function of distance.

In this subsection, we evaluate secret key extraction
as a function of distance between Alice and Bob. Our
results show that in the hallway environment, even
with the lowest transmit power, Alice and Bob can
extract about 0.25 secret bits per probe when they are
separated by about 25 feet. Figure 14 shows a plot
of secret bits per probe as a function of the distance
between Alice and Bob. Though we use a lower transmit
power in the hallway-environment, in comparison to the
trees-environment, the hallway-environment achieves a
higher performance due to lower signal attenuation –
from our measurements, we find that for a given dis-
tance, the average received powers are about 2 − 7 dB
higher in the hallway environment in comparison to
the obstructed outdoor environment. As we show in
Figure 14, secret bits per probe decreases with increase
in distance, which is attributed to the following reason:
As the distance increases the signal-to-noise ratio (SNR)
decreases, which consequently increases both the bit
mismatch rate (Table 2) and the packet drop probabilities
(Table 3); the increase in packet drop further contributes
to an increase in the time duration between channel mea-

surements. Nevertheless, on the whole, a comparison
of our results in Figure 14 and Figure 11 shows that
secret keys can be established efficiently even with low-
powered, mobile devices.

9 SECRET KEY EXTRACTION IN MIMO-LIKE

SENSOR NETWORKS

In the previous sections, we have investigated the ef-
fectiveness of secret key generation in various envi-
ronments using single antenna, single input and single
output (SISO) radios available in laptops/smartphones.
In order to understand how key extraction applies to
sensor nodes, and in a multi-antenna, multiple input
multiple output (MIMO) system, we first create a simple,
yet flexible, MIMO-like testbed with the help of multiple
sensor nodes. Next, we use this testbed to measure RSS,
and extract secret keys from RSS variations.

Wallace et al. [25] have recently proposed the use of
multiple-input and multiple-output (MIMO) for enhanc-
ing secret key extraction. However, their work is an
analytical study, presenting only the simulation results.
Further, they assume that multiple antennas belong to
the same node. However, due to size and power lim-
itations, sensor nodes do not typically have multiple
antennas. In this work, we propose to obtain the multi-
antenna capability using multiple sensors.

We find that our MIMO-like sensor environment has
a much higher bit mismatch rate in comparison to
our SISO setup using laptops. To solve this problem,
we introduce a distillation stage2 in our key extraction
methodology comprising the quantization, information
reconciliation, and privacy amplification stages. The
distillation stage, introduced between the quantization
and the information reconciliation stages, iteratively im-
proves the output from the quantizer by eliminating
measurements that are likely to cause mismatching bits
at Alice and Bob. This stage ensures that the percentage
of mismatching bits is low enough to be handled by in-
formation reconciliation without compromising security.
In fact, without the distillation stage, the information
reconciliation stage by itself is unable to reconcile the
bit mismatch.

9.1 Experimental Setup

In our experiments, we use 802.15.4−compliant Cross-
bow TelosB wireless sensors for the experiments. As
Wilson et al. [27]3 describe, the sensors, which form a
token ring, take turn in exchanging probe packets and
collecting RSS measurements. We use two sets of five
sensors each representing Alice and Bob respectively.

2. The distillation stage as described in this work does not involve
any exchange of parity information, and is different from the advantage
distillation in quantum cryptography.

3. We thank Joey Wilson for sharing his tinyos program for recording
the RSS measurements.
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This sensor network platform allows us to readily ex-
plore the impact of using multiple antennas on secret
key extraction.

For our implementation, we could have possibly used
devices equipped with 802.11n wireless cards based
on the MIMO technology. However, these off-the-shelf
wireless cards typically have 2−3 pre-installed antennas.
In comparison, our MIMO-like configuration allows us
to experiment with 1− 5 antennas using the same setup
in a flexible manner. Additionally, our platform also
allows us to examine RSS-based key extraction in sensor
networks.

We conduct our experiment in a student lab. Nodes
representing Alice remain stationary in one corner of the
lab while the other set of nodes (Bob) is carried around
at normal walking speed. The distance between Alice
and Bob is maintained between 2 m - 8 m. Nodes of
Alice and Bob are arranged in two parallel rows, with
each sensor separated from its neighbor by a distance of
about 12 cm, which is greater than the de-correlation
distance of 6.25 cm for signals transmitted in the 2.4
GHz band. This ensures that the measurements collected
at neighboring nodes are mutually uncorrelated. There-
fore, we use the secret bit extraction process (shown in
Figure 16) separately for each one of the N2 channels,
where N represents the number of nodes at Alice/Bob.
We extract two bits from each RSS measurement that we
collect in this setup.

9.2 Prohibitively High Bit Mismatch

When using multiple sensors, we find that the bit
mismatch rate is significantly higher in comparison to
our earlier experiments that use 802.11 single antenna
systems. Note that for a mismatch rate of about 22%, the
information reconciliation protocol essentially reveals all
the bits. So, the collected measurements that exhibit very
high bit mismatch are not useful in establishing a secret
key.
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Fig. 15. Bit Mismatch Rate vs Channel Distance

We identify the following reasons for such high mis-
match rates. First, when multiple nodes take turn in
exchanging probe packets, it increases the average time-
gap between any pair of measurements taken in each di-
rection of a channel, and also reduces the probing rate on

each channel. Both these factors contribute in increasing
the bit mismatch rate. This is also verified in a plot of bit
mismatch rate vs channel distance, where channel dis-
tance is the absolute difference between the node ids (as
defined by the token ring order) of the transmitting and
receiving sensors. Figure 15 clearly shows the general
increase in mismatch rate with channel distance. Time
gap between each unidirectional measurement pairs is
proportional to the channel distance. So, mismatch rate
increases with channel distance/multiple antennas.

Second, channels in 802.15.4 are much narrower in
comparison to 802.11. A non-reciprocal deep fade (per-
haps due to strong interference only at Alice) occurring
on a narrow channel significantly reduces the average
RSS computed at Alice while not affecting much at Bob.
This results in a greater likelihood of asymmetry in
measurements, and therefore higher bit mismatch when
using narrow channel measurements.

9.3 Distillation

Fig. 16. Secret Bit Extraction Process. a - RSS measure-

ments, b - quantization interval labels, c - distilled bits, d -

reconciled bits, e - secret bits.

To address the problem of very high bit mismatch
rates, we augment the secret key extraction process
with the distillation stage. Distillation ensures that the
percentage of mismatching bits is low enough for infor-
mation reconciliation to correct the differences without
revealing all the extracted bits. Figure 16 shows the
distillation stage in relation to the other stages of the
key extraction process.

Plotting the measurements from channels with large
channel distances, we find that a large fraction of con-
secutive measurements exhibit abrupt transitions from
one quantization level to another resulting in asymme-
try. The distillation stage seeks to iteratively eliminate
such measurements causing abrupt transitions. If the
mismatch is still too high even after one round of
eliminations, it is necessary to eliminate further; in which
case, the next best elimination candidates are those that
follow the previously eliminated measurements. When
this process is iterated over a number of times, it is
guaranteed to improve the bit mismatch rate. Note that
the number of iterations required depends on the current
expected mismatch rate of the channel, which can be
determined based on the history of mismatch rate of the
channel. Algorithm 1 succinctly expresses the steps taken
in each iteration. Essentially, in a given block of at least i
quantization labels, which are identical (e.g., consecutive
a’s), iteration number i removes the prefix of length i
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Algorithm 1 Distill Input

while there is input do
if current label = previous label then

Output current label
else

Output exclude label
previous label ← current label

end if
end while

from that block; in case the block length is less than i, it
removes the entire block.

Algorithm 1 assumes that the quantizer outputs the
labels (e.g., a, b, c, d) of each quantization interval
instead of the actual bit pattern assigned to each interval.
exclude label is a special label indicating an eliminated
measurement. In each iteration, the distiller processes the
input as shown in Algorithm 1. For the first iteration,
the distiller gets its input from the quantizer; and for
the successive iterations, the distiller’s output becomes
the input for the next iteration. In the last iteration,
the distiller outputs the bit patterns corresponding to
each quantization interval. The following example shows
two iterations of distillation; the symbol represents the
exclude label.

Distiller Input: aaaaabbaaaabbbbbaaaa · · ·
Iteration 1 output: aaaa b aaa bbbb aaa · · ·
Iteration 2 output: aaa aa bbb aa · · ·
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Fig. 17. Effectiveness of distillation in drastically reducing

the bit mismatch rate

Figure 17 shows the improvement in bit mismatch
rate with each iteration for the 5 × 5 configuration.
Without distillation, the average mismatch rate is about
23%, in which case information reconciliation leaks out
all the bits. But two iterations of distillation reduces
the mismatch rate to a sufficiently small value (< 5%)
for efficient information reconciliation. Thus, despite the
simplicity of the distillation approach, these results show
that it can reduce the bit mismatch rate very effectively.

9.4 Gain in Secret Bit Rate

Figure 18 shows a plot of the secret bit rate as a function
of number of nodes at Alice/Bob. It can be clearly seen
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Fig. 18. Secret bit rate vs Number of nodes

that the secret bit rate increases linearly with the num-
ber of nodes. We also measure the randomness of the
extracted bit streams using NIST’s approximate entropy
test. We find that the entropy values for the extracted
secret bit streams from all the N × N configurations
(1 ≤ N ≤ 5) are close to 1, the ideal value.

10 RELATED WORK

This paper advances the research area [14], [13], [23],
[20], [19], [22], [21], [31], [28] of generation of shared
secret keys from the observation and processing of radio
channel parameters. Amplitude or channel gain is the
most common reciprocal channel feature used for secret
generation in the literature [6], [18], [30], [5], [24], [20].
Amplitude can be measured more easily than time delay
or phase on most existing hardware, and thus is more
readily applicable to common wireless networks. In this
paper, we similarly use measurements of amplitude,
based on their universal availability in wireless net-
works.

In [28], several bi-directional UWB measurements are
made and used to compute the number of secret bits
which could be generated. In [18], an implementation
using the universal software radio peripheral (USRP)
and GNU software radio generates and receives the
required multi-carrier signal and evaluates the secret bit
rate of the system. In [5], researchers use a steerable
directional antenna in combination with Zigbee radio
hardware to generate a secret between two nodes and
test what an eavesdropper would have received. In [20],
Mathur et al. implement two different systems, one using
channel impulse response and another using amplitude
measurements, to generate secret keys and test how an
eavesdropper’s measurements differ from the original
measurements. Our work differs from Mathur’s in the
following significant ways. First, we perform extensive
real world measurements in a variety of environments
and settings to determine the effectiveness of RSS-based
secret key extraction. Second, we propose an adaptive se-
cret key extraction scheme that instead of dropping mis-
matched bits uses information reconciliation to reduce
the mismatched bits and also uses privacy amplification.
Third, we expose the problem of a predictable channel
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attack. Last, we further increase the secret bit rate by
extracting multiple bits from each RSS measurement.

Bloch et al. [8] and Ye et al. [29] present an alternative
multiple bit extraction scheme that is strongly tied to
their use of low-density parity-check (LDPC) based error
correction mechanism, which allows them to exploit the
correlation between the bits of each sample for error cor-
rection. Our work differs from Bloch et al. [8] and Ye et
al. [29] in the following ways. First, Bloch et al. conclude
that the memory requirements and the complexity of
such LDPC based schemes may be too high, especially
for low-cost systems, while the cascade [9] based infor-
mation reconciliation mechanism in our ASBG scheme
has very low memory requirements and is much less
complex than the LDPC based schemes. Second, these
LDPC based schemes rely on redundant/over-quantized
bits for error correction; they extract M bits from each
sample, where M is at least log

2
K, and K denotes the

number of unique, discrete-valued measurements; in our
multiple bit quantization, on the other hand, we extract
at most ⌊log

2
K⌋ bits from each sample. Hence, in our

scheme, we do not extract more bits per sample than
what is indicated by the upper bound on the actual infor-
mation content / entropy present in the measurements,
which equals log

2
K. Third, it is possible to calculate the

fraction of information that is leaked with cascade for a
given bit mismatch rate; and our privacy amplification
stage appropriately reduces the output secret key size
depending on this fraction of information leakage.

11 CONCLUSIONS

We evaluated the effectiveness of secret key extraction
from the received signal strength (RSS) variations in
wireless channels using extensive real world measure-
ments in a variety of environments and settings. Our
experimental results showed that bits extracted in static
environments are unsuitable for generating a secret key.
We also found that an adversary can cause predictable
key generation in static environments. However, bits ex-
tracted in dynamic environments showed a much higher
secret bit rate. We developed an environment adaptive
secret key generation scheme and our measurements
showed that our scheme performed the best in terms
of generating high entropy bits at a high bit rate in
comparison to the existing ones that we evaluated. The
secret key bit streams generated by our scheme also
passed the randomness tests of the NIST test suite that
we conducted. We were able to further enhance the
rate of secret bit generation of our scheme by extract-
ing multiple bits from each RSS measurement. We also
evaluated secret key extraction in a MIMO-like sensor
network testbed and showed that secret key generation
rate can be improved by involving multiple sensors in
the key extraction process. The conclusions drawn in
this paper, specifically the predictable channel attack, are
primarily for key extraction using RSS measurements,
and these may not directly apply to key extraction using

channel impulse response measurements. We would like
to explore this in our future work.
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