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Abstract—Secret key generation from reciprocal multi-
antenna channels is an interesting alternative to cryptographic
key management in wireless systems without infrastructure
access. In this work, we study the secret key rate for the
basic source model with a MIMO channel. First, we derive
an expression for the secret key rate under spatial correlation
modelled by the Kronecker model and with spatial precoding
at both communication nodes. Next, we analyze the result for
uncorrelated antennas to understand the optimal precoding for
this special case, which is equal power allocation. Then, the
impact of correlation is characterized using Majorization theory.
Surprisingly for small SNR, spatial correlation increases the
secret key rate. For high SNR, the maximum secret key rate
is achieved for uncorrelated antennas. The results indicate that
a solid system design for reciprocal MIMO key generation is
required to establish the secret key rate gains.

I. INTRODUCTION

Physical layer security recently gained increased attention
because it can provide different levels of security without the
need for complicated infrastructure or complex cryptographic
algorithms [1]. Physical layer security has its roots in in-
formation theory. The strongest security measure is perfect
information theoretic security already introduced in [2].

Information theoretic security against wire-tapping requires
an advantage of the legitimate communication nodes over the
eavesdropper. Such an advantage could be to have (or to
create) a better effective channel and to apply a wiretap code
to confuse the eavesdropper about the remaining information
leakage [3]. Recently, a number of results on the charac-
terization of achievable secrecy rates in multi-antenna and
multi-carrier scenarios with point-to-point communication as
well as achievable secrecy rate regions in multi-user scenarios
were derived [4]. Alternatively, this advantage could be that
the two legitimate communication nodes possess a source of
common randomness [5] that the eavesdropper has not or only
partially. The problem of secret key generation from correlated
information was first studied in [6] and [7].

Secret keys can be generated from a source of common
randomness between the two communication nodes (cf. Fig-
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ure 1). This could be either a natural source like the commu-
nication channel, i.e., its underlying random fading process,
or an artificial source like a random sequence transmitted.
Having collected the (usually noisy and different) realizations
of the common randomness, a public discussion channel is
used by the two legitimate nodes to decide on a common
secret key [8]. In [9], the case with limited public discussion
rates is investigated. Recently, multiple antenna links and the
corresponding secrecy and secret key rates are studied [10],
[11].

Figure 1. Secret key generation from a source of common randomness.

For the basic source model, where two single-antenna
nodes observe channel realizations independently from the
eavesdropper from a complex Gaussian distribution in addition
to independent white Gaussian noise, the secret key rate is
given in [12]. Based on this, practical implementations of
channel-based secret key generation schemes were reported,
e.g., in [13] for ultrawideband channels and in [14] for
MIMO fading channels. In [14], the key generation method is
called Reciprocal Channel Key Generation (RCKG) because it
relies on the reciprocity of the effective channel between the
transmitter and the receiver and vice versa. The advantages of
using RCKG are listed in [14].

We are interested in the source model with a MIMO
channel for secret key generation and the impact of spatial
correlation and precoding. For a practical implementation of
the RCKG, design guidelines are required, i.e., how to place
the antennas, how to precode the signals, and in general which
parameters of the propagation environment influence the secret
key generation.

The paper is organized as follows: First, we provide some
preliminary definitions and results on the secret key rate
for the source model. The system model and the channel



model based on the Kronecker correlation model are described.
Next, we derive an expression for the secret key rate with
precoding under spatial correlation and derive the special cases
without precoding and without correlation. Then, we make the
following key observations for the system design:

1) Without spatial correlation, the secret key rate is max-
imized by equal power allocation. Technically speaking
this means that the secret key rate is a Schur-concave
function of the power allocation vectors.

2) Without precoding, the impact of spatial correlation on
the secret key rate depends on the SNR operating point.
For small SNR, spatial correlation increases the secret key
rate. For high SNR, spatial correlation decreases the rate.
For intermediate SNR, the behaviour cannot be clearly
described.

II. SYSTEM MODEL AND PRELIMINARIES

A. Secret Key Rates for the Source Model

After the definition of an achievable secret key rate, we
review the result on the secret key capacity for the source
model from [6], [7]. The noisy versions of the common
randomness observed at node A and B are denoted by X
and Y , respectively. We use K and L to denote the random
key generated by node A and B, respectively. The messages
transmitted over the public channel from A to B are denoted
by Φ and from B to A by Ψ (see Figure 1).

Definition 1 (Definition 1 in [8]). A secret key rate RS is
achievable if for every ǫ > 0 and sufficiently large nb, there
exists a public communication strategy such that1

Pr{K 6= L} < ǫ (1)
1
nb
I(Φ,Ψ;K) < ǫ (2)

1
nb
H(K) > RS − ǫ (3)

1
nb

log |K| < 1
nb
H(K) + ǫ. (4)

The secret key capacity is then defined as the supremum
over all achievable secret key rates.

Theorem 2. The secret key capacity with unlimited public
discussion is

CS = I(X;Y ). (5)

Note that in the source model it is assumed that the eaves-
dropper does not have access to the (correlated) realization of
the common random process.

Figure 2 shows a basic source model where two single-
antenna nodes observe channel realizations independently from
the eavesdropper in addition to independent white Gaussian
noise. Assuming a circularly symmetric complex Gaussian
distribution with expectation zero and variance P for the chan-
nel realizations and circularly symmetric complex Gaussian
distributions with expectation zero and variances NA and NB

for the noise at node A and B, respectively, the secret key rate
is given by this simple expression [12, Equation (2)]:

I(YA;YB) = log

(

1 +
P

NA +NB + NANB

P

)

. (6)

1All logarithms log are with respect to base two.
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Figure 2. Basic source model with two single-antenna nodes observing
channel realizations independently from the eavesdropper.

B. System and Channel Model

We consider the flat-fading MIMO channel model illus-
trated in Figure 3. Both nodes access the MIMO channel in a
time division fashion to probe and estimate its channel state
matrix H . The random channel matrix2 is modelled according
to the Kronecker model [15], [16], i.e.,

H = R
1/2
B WR

1/2
A ,

where RB � 0 is the spatial correlation matrix at node B,
RA � 0 is the spatial correlation matrix at node A, and W
is the random multi-path channel matrix with independent and
identically circularly symmetric complex Gaussian distributed
entries with expectation zero and and variance one. We allow

both nodes to apply linear precoding with Q
1/2
A at node A and

Q
1/2
B at node B.
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Figure 3. Reciprocal channel key generation in spatially correlated MIMO
channels interpreted by the Kronecker model.

The estimated channel matrices at nodes A and B are
modelled by

YB = HQ
1/2
A +ZB (7)

YA = Q
1/2
B H +ZA (8)

with the i.i.d. circularly symmetric complex Gaussian noise
ZA and ZB with expectation zero and variance σ2. Node B

directly estimates YB , whereas node A observes HTQ
1/2
B +

ZA and computes the transpose to obtain (8).

2For simplicity we assume that the number of transmit and receive antennas
is equal to n. The generalization to different numbers is possible.



III. SECRET KEY RATE RESULTS

First, we derive a general expression for the secret key
rate for the system model described in Section II-B. Then, we
analyze the scenarios without spatial correlation and without
precoding.

A. Secret Key Rate Expression

Theorem 3. The secret key rate for the source model with
observations (7) and (8) is given by

CS = log det (M)− log det
(

M − F N−1 F
)

with

M =
(

σ2I +Q
1/2
B RBQ

1/2
B

⊗ RA

)

,

N =
(

σ2I +RB ⊗ Q
1/2
A RAQ

1/2
A

)

,

F =
(

RBQ
1/2
B

⊗ Q
1/2
A RA

)

.

(9)

Proof: First, vectorize the received matrices YA and YB:

x = vec (YA) , y = vec (YB) . (10)

Note the following second order moments for x and y,
respectively:

Kx = E
[

xxH
]

=
(

Q
1/2
A RAQ

1/2
A

⊗ RB

)

+ σ2I (11)

Ky = E
[

yyH
]

=
(

RA ⊗ Q
1/2
B RBQ

1/2
B

)

+ σ2I. (12)

Also important are the cross-covariance between x and y given
by

Kxy = E
[

xyH
]

=
(

Q
1/2
A RA ⊗ RBQ

1/2
B

)

(13)

and the cross-covariance Kyx, which can be calculated analo-
gously. Next, we evaluate the mutual information from (5) as
follows:

I(x;y) = h(x)− h(x|y).
The first entropy can be easily evaluated. In order to eval-
uate the second conditional entropy, we apply the following
Lemma.

Lemma 4 (see Lemma 1 in [17]). Let U and V be two
circularly symmetric Gaussian jointly distributed complex ran-
dom vectors of dimension n. Let KU , KV , and KUV be the
covariance of U , covariance of V , and cross-covariance of
U and V , respectively. If KV is invertible then

h(U |V ) = log det
(

KU −KUV K
−1
V KV U

)

+ n log(πe). (14)

We identify U with x and V with y and insert the
covariance matrices and the cross-covariance from (11), (12),
and (13) into (14) to obtain (9).

B. Special Case: Uncorrelated Channels

We assume that the channel is spatially uncorrelated,
i.e., RA = RB = I . From the system model in subsection
II-B, we observe that the eigenvectors of QA and QB do not
matter since H = W is isotropically distributed. Therefore,
we assume QA = ΛA = diag(α1, α2, ..., αn) and QB =
ΛB = diag(β1, β2, ..., βn). We write these eigenvalues as

vectors α = [α1, α2, ..., αn] and β = [β1, β2, ..., βn]. W.l.o.g.3

we set σ2 = 1.

Corollary 5. For spatially uncorrelated channels, the secret key
rate is given by

CS(α,β) =
n
∑

k=1

n
∑

l=1

log

(

1 +
αkβl

1 + αk + βl

)

. (15)

Proof: We evaluate (9) with RA = RB = I and obtain

CS = log det
(

M̃
)

− log det
(

M̃ − F̃ Ñ−1 F̃
)

with

M̃ = (I +QB ⊗ I) ,

Ñ = (I + I ⊗ QA) ,

F̃ =
(

Q
1/2
A

⊗ Q
1/2
B

)

,

which can be transformed into

CS(QA,QB) = log det (I +QB ⊗ I)

− log det
(

I +QB ⊗ (I − [I +Q−1
A ]−1)

)

.

Then we insert the diagonal QA = ΛA and QB = ΛB

and observe that the eigenvalues of the Kronecker product
ΛA ⊗ ΛB are α1β1, ..., α1βn, α2β1, ..., α2βn, ...αnβn [18,
Theorem 13.12]. We obtain

CS(α,β) =
n
∑

k=1

n
∑

l=1

log





1 + βk

1 + βk − βk

1+ 1

αl





=
n
∑

k=1

n
∑

l=1

log

(

1 +
αkβl

1 + αk + βl

)

.

The function CS(α,β) can be further analyzed using
Majorization theory [16]. We need the following definition to
proceed.

Definition 6 (Definition 2.1 in [16]). For two vectors x,y ∈
R

n with descending ordered components x1 ≥ x2 ≥ ... ≥
xn ≥ 0 and y1 ≥ y2 ≥ ... ≥ yn ≥ 0, one says that the vector
x majorizes the vector y and writes

x � y if

m
∑

k=1

xk ≥
m
∑

k=1

yk, m = 1, ..., n− 1

and

n
∑

k=1

xk =
n
∑

k=1

yk.

(16)

An order preserving function on the majorization order is
called Schur-convex or Schur-concave function.

Definition 7 (Definition 2.6 in [16]). A real-valued function
φ defined on R

n is said to be Schur-convex if for all

x � y ⇒ φ(x) ≥ φ(y). (17)

Similarly, φ is called Schur-concave if −φ is Schur-convex.

Corollary 8. For spatially uncorrelated fading, the secret key
rate CS as a function of the linear precoding coefficients α and

3The noise variance σ2 can be transformed in the linear precoding matrices

Q
1/2
A and Q

1/2
B .



β is Schur-concave. The maximum secret key rate is achieved
for equal power allocation at both nodes A and B.

Proof: The proof relies on a basic result on Schur-convex
functions:

Lemma 9 (3.C.1 in [19]). If g : R → R is convex and twice
differentiable, then

φ(x) =
n
∑

k=1

g(xk)

is Schur-convex.

The statement in Corollary 8 follows then by the second
derivative of CS(α,β) with respect to αk or βl.

Remark. For the practical system design, this implies that
equal power allocation QA = P

n I = QB maximizes the secret
key rate for a spatially uncorrelated Rayleigh fading MIMO
channel.

Compared to the secret key rate in (6), the advantages of
the multiple antennas are illustrated in the following: Using
equal power allocation, the secret key rate is4

CS(n) = n2 log

(

1 +
P 2/n

n+ 2P

)

. (18)

If the number of antennas grows, the secret key rate approaches
the following limit

lim
n→∞

CS(n) =
P 2

ln(2)
. (19)

This scaling behaviour is illustrated in Figure 4.
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Figure 4. Secret key rate scaling with number of antennas.

C. Special Case: Without Precoding

Here, we consider the special case in which QA = QB =
P
n I . We define the overall correlation matrix K = RB ⊗ RA

and the inverse SNR ρ = σ2n
P .

Corollary 10. Without precoding, the secret key rate is given
by

CS(λ) =
n2

∑

k=1

log

(

1 +
λ2
k

ρ(ρ+ 2λk)

)

, (20)

4Compared to the representation in (6), (18) can be transformed into

CS(n) = n2 log

(

1 +
P/n

NANB
P/n

+NA+NB

)

.

where λ = [λ1, ..., λn2 ] is the vector that contains the
eigenvalues of the large correlation matrix K, i.e., λ =
[α1β1, α1β2, ..., α1βn, α2β1, ..., αnβn].

Proof: We insert the large correlation matrix and equal
power allocation into the secret key rate in (9)

CS(K) = log det (ρ I +K)

− log det
(

ρ I +K −K[ρ I +K]−1K
) (21)

=
n2

∑

k=1

(

log(ρ+ λk)− log

(

(ρ+ λk)
2 − λ2

k

ρ+ λk

))

=
n2

∑

k=1

log

(

1 +
λ2
k

ρ (ρ+ 2λk)

)

.

Interestingly, there is not a clear behaviour of the secret
key rate in (21) with respect to the vector λ. However, for
small SNR, the secret key rate becomes Schur-convex as the
following result shows.

Corollary 11. For all SNR = P
σ2n ≤

√

1/2 ≈ 1.5 dB, the
function CS(λ) is Schur-convex and the maximum secret key
rate is achieved for λ = [1, 0, ...., 0].

Proof: For all ρ ≥
√
2, the second derivative of the term

log(1 + x
ρ(ρ+2x) ) is non-negative. Therefore, the function in

the sum is convex and Lemma 9 can be applied.

Remark. Note that the impact of the correlation matrices
RA and RB is different than the impact of the precoding
matrices QA and QB for secret key rate. This is in contrast to
the transmission rates for MIMO systems where the transmit
correlation matrix RA has the same impact as the transmit
precoding matrix QA.

Remark. The important practical design guideline in Corollary
11 is that for small SNR, a completely correlated channel
gives higher secret key rates than an uncorrelated channel. This
behaviour is different to the rate of a MIMO system without
precoding: The average rate is a Schur-concave function for
all SNR and spatial correlation always decreases rate [16].

In Figure 5, the case with n = 2 transmit and receive
antennas is studied. Denote the two eigenvalues of RA by
(1− ξ) and ξ and the two eigenvalues of RB by (1− ζ) and
ζ. Then K has the eigenvalues

λ = [(1− ξ)(1− ζ), (1− ξ)ζ, ξ(1− ζ), ξζ].

The function in Figure 5 is plotted over these ξ and ζ from the
intervals [0, 1], i.e., the function CS(ξ, ζ). The cases ξ = 1 and
ξ = 0 correspond to completely correlated transmit antennas
at node A and the case ξ = 1/2 corresponds to completely
uncorrelated transmit antennas at node A. The same holds
analogously for node B.

In Figure 5, the changing behaviour of the secret key rate as
a function of spatial correlation can be observed. As predicted
by Corollary 11 for low SNR (below 1.5 dB) the function is
Schur-convex and the maximum secret key rate is achieved
for completely correlated channels (e.g., ξ = 1, ζ = 1), the
minimum secret key rate is achieved for uncorrelated channels,
i.e., ξ = 1/2, ζ = 1/2. This is illustrated in Figure 5(a). In
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Figure 5. Impact of spatial correlation on the secret key rate for n = 2
antennas and low, medium, and high SNR.

Figure 5(b), the intermediate SNR scenario is shown. Here,
no clear behaviour in terms of Schur-convexity and Schur-
concavity can be observed. For higher SNR, Figure 5(c) sug-
gests that the function becomes Schur-concave. However, this
is not true in general because for very small correlation values
(the points close to the axes) the function is not monotonic.
If one is just interested in the maximum secret key rate, the
conclusion for high SNR is that it is achieved for uncorrelated
antennas at both nodes A and B.

IV. CONCLUSION

Secret key generation from reciprocal MIMO channels
is a promising technique to establish information theoretic
confidential data transmission without key management in-
frastructure support. We show that the fading statistic of the
MIMO channel has an important impact on the secret key rate
for a simple source model with a MIMO channel. A careful
positioning and precoding of the antenna systems at both nodes
is required to obtain high secret key generation rates.

For future work, the non-trivial extension to the scenario in
which the eavesdropper obtains a correlated observation of the
MIMO channel is studied. The results from the current paper
will serve as an upper bound to the achievable secret key rates
for the MIMO channel model.
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