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Abstract. Assuming that Alice and Bob use a secret noisy channel 
(modelled by a binary symmetric channel) to send a key, reconciliation 
is the process of correcting errom between Alice’s and Bob’s version of 
the key. This is done by public discussion, which leaks some information 
about the secret key to an eavesdropper. We show how to construct prote 
cob that leak a minimum amount of information. However this construc- 
tion cannot be implemented efficiently. If Alice and Bob are willing to 
reveal an arbitrarily small amount of additional information (beyond the 
minimum) then they can implement polynomial-time protocols. We also 
present a more efficient protocol, which leaks an amount of information 
acceptably close to the minimum possible for sufficiently reliable secret 
channels (those with probability of any symbol being transmitted in- 
correctly as large bs 15%). This work improves on earlier reconciliation 
approaches [R, BBR, BBBSS]. 

1 Introduction 

Unlike public key cryptosystems, the security of quantum cryptography relies on 
the properties of the channel connecting Alice and Bob. Physical imperfections 
in a quantum channel introduce noise in to  the messages passing through it. The 
presence of an eavesdropper wiretapping the channel disrupts communication 
even more. Assuming that Alice and Bob are using a quantum channel or any 
noisy channel to send a secret key, they would need to reconcile their keys to  
make them identical. Reconciliation is the process of finding and correcting dis- 
crepancies between the secret key sent by Alice and the one received by Bob. 
This is done by public discussion. In this paper we focus on secret noisy channels 
modelled by binary symmetric channels. 

An eavesdropper can gain information about the secret key both by wire- 
tapping the quantum channel and by listening to  the public reconciliation. This 
information can be eliminated using a privacy amplification protocol [R, BBR] 
at the cost of reducing the secret key size proportionally to  the amount of infor- 
mation potentially known by an eavesdropper. Since using a quantum channel 
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is expensive, we would like to minimize the information that a reconciliation 
protocol divulges. 

A quantum public key distribution protocol is described in [BBBSS], which 
also discusses a way to  combine together reconciliation and privacy amplification. 
The problem of reconciliation has been previously studied in [R, BBR, BBBSS]. 
Key distribution using independent channels [MI also requires reconciliation. 

In section 3 we define the problem and introduce the notion of optimality; 
in section 4 we show how to construct optimal protocols. In section 5 we discuss 
efficiency; in sections 6 and 7 we present protocols that can be used in practice. 

2 Preliminaries 

Let { P ( X ) } ~ E X  be a probability distribution over a finite set X .  The entropy 
of X ,  denoted H ( X ) ,  is defined as 

(where all logarithms are to the base 2). In particular, H(X) is the expected 
value of the number of bits required to specify a particular event in X .  It is easy 
to observe that 

H(X) I l0gIXl 
with equality iff p ( z )  = l/lXl for each z E X. When X is a Bernoulli trial with 
parameter p ,  we denote H(X)  by h ( p ) .  

Given two sets X and Y and a joint probability distribution {p(z, Y ) } ~ E X , ~ E Y  , 
the conditional entropy H(XIY) is defined as 

A binary symmetric channel (BSC) permits transmission of a string of bits, 
each independently exposed to  noise with probability p. Let A be the string sent 
by Alice and let B be the one received by Bob. If each bit from string A is 
randomly and independently chosen, it is clear that 

H ( A )  = IAI. 

The conditional entropy of A given B is 

H ( A ) B )  = H ( A  @ B) = nh(p)  

where n = [A [  = lB[. Henceforth we will denote a binary symmetric channel 
with parameter p by SSC(p) .  

The quantum channel is an example of a secret binary symmetric channel 
even if an eavesdropper introduces noise in a non-symmetric way. Before Alice 
and Bob reconcile their strings, they perform a sample of the transmitted bits to 
estimate the error rate of the actual quantum communication. If the estimate is 
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acceptably close to the expected error rate of the channel then they publicly and 
randomly permute their respective string on which reconciliation is then applied. 
Bob's string can now be assumed to be the result of a transmission over a BSC.  
If the estimate is not sufficiently close to the expected error rate then they rule 
out the communication and retry later (consult [BBBSS] for more details). 

For 0 5 X 5 the tail inequality is 

For X a random variable with finite variance V ( X )  and expected value E(X) 
and for a > 0 the Chebyshev inequality is 

V a r ( X )  
a2 

prob(1X - E ( X ) I  2 a)  5 -. 

The Hamming distance dist(A, B) between A and B is the number of places 
in which A and B differ. The weight w(A)  of A is its number of nonzero positions. 

3 The Problem 

Suppose there is a secret channel between Alice and Bob on which Alice transmits 
to Bob an n-bit string A such that H ( A )  = n. We model the secret channel with 
a BSC(p) for some p. Bob then receives an n-bit string B such that H(A1B) = 
nh(p). Using public discussion Alice and Bob want to share an n-bit secret string 
S obtained from A and B. This can be done assuming an unjammable public 
channel without making any other security assumptions. Our goal is to find 
protocols minimizing the information on S that an eavesdropper with unlimited 
computing power can get by listening on the public channel. 

A reconciliation protocol RP is defined by Alice's and Bob's algorithms. 
RP runs on strings A and B to produce string S by exchanging some infor- 
mation Q on the public channel. This will be denoted by RP = [S,Q] or by 
RP(A, B) = [S, Q] when a specific A and B are considered. If the protocol fails 
to produce S E (0 , l ) "  we will write S =1. The amount of leaked information 
ZE(S I Q) is the expected amount of Shannon information that an eavesdropper 
E can get on S given Q. 

Definitionl. A reconciliation protocol RP is  robust, 0 5 E 5 1,  if 

(3No(c))(Vn 2 NO(€)) prob(A = a,  B = P)prob(Rp(a ,P)  = [I, .I) I E .  

a , B E { O ,  1) 
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3.1 Optimality 

It is easy to define the optimality property of reconciliation protocols. Theorem 2 
is a direct consequence of an elementary result in information theory, namely 
the noiseless coding theorem. 

Theorem2. (Vp 5 $)(Vreconciliation protocoI RP) i f  there en'sts 0 5 E < 1 
such that RP = [S,Q] is ~-m,bust then 

where n i s  the length of the tmnsmitted string. 

A reconciliation protocol is optimal if the expression in theorem 2 is an 
equality. 

Definition3. A protocol RP is optimal if 

(VE > 0) [Rp = [S, Q] is E-robust] 

and 

where the public channel is a B S C ( p ) .  

The next section shows how to construct a family of optimal protocols. 

4 Optimal Protocols 

One way of constructing optimal protocols is to associate a random label of 
length approximately nh(p)  bits to each n-bit string. Alice tells Bob the label of 
her string A over the public channel. In order to decode string B, Bob computes 
a string B' of minimal Hamming distance from B, having the same label as A. 
Protocol 1 implements this process. 

Obviously such a protocol is useless in practice since it requires Alice and 
Bob to choose randomly among 2m2" functions. 

Protocol 1 

1. Alice and Bob choose a random function among all functions from (0,l)" -+ 
(0 ,  l}"', where m is a parameter to be determined. The description of this function 
is exchanged publicly. 

2. Alice sends f ( A )  to Bob on the public channel. 
3. Bob decodes his string resulting in string B' such that d i s t ( B ,  B') is minimal over 

all strings D such that f( D) = f( A ) .  

The proof of theorem 4 is  similar to earlier ones showing the Shannon noisy 
coding theorem for BSC (see [W]). 
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Theorem 4. Protocol 1 i s  optimal for an adequate choice of parameter m. 

Proof (sketch). Let p be the BSC parameter. Let p e  be the decoding error prob- 
ability. Let C = A @  B and E be the event associated with a decoding error. 
Clearly w ( C )  x B i n ( n , ~ ) ~ .  A simple counting argument shows that 

For correct decoding to occur it is sufficient that all the strings B’ such that 
dist(B’,  B) 5 d i s t (E ,  A) with B‘ # A be distributed among those 2m - 1 ele- 
ments of the image of f that are not equal to f (A).  

The decoding error probability is: 

pe = prob(w(C) <, r)prob(E 1 w ( C )  5 r )  

+ prob(w(C) > r)prob(E I w ( C )  > r )  

5 prob(E I w ( C )  5 r )  + prob(w(C) > r ) .  

Let rr= Lnp + nEnl and E~ = 1/ log n. The Chebyshev inequality gives 

prob(w(C) > r )  = prob(w(C) > [np + n&,j) 
5 prob(l w ( C )  - np I ?  nEn) 

- (log n)*P( l  - P )  - 
n 

If w ( C )  5 r ,  the decoding probability error is bounded by: 

prob(E 1 w ( C )  5 r )  5 1 - prob(-.E I w(C)  5 r) 

Form= rlogd,+nh(p+c,) l  a n d & =  [lognl weobtain: 

prob( E 1 w ( C )  < - -  r) < 1 - ( f )”-  X ~ = O  
By the tail inequality the decoding probability error is bounded by: 

When n -+ co we have p e  = 0, and protocol 1 is €-robust for all E > 0. It is 
easy to see that the resulting amount m of leaked information is asymptotically 
equal to nh(p) .  0 

TO solve the problem that choosing a random function from a huge set is 
unreasonable, we choose it from a universal2 class of hash functions [CW]. 

Bin(n, p) is the binomial probability distribution. 
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Definition5 ([CW]). Let H be a class of functions from F to G. We say that 
H is universal2 if for all z, y E F such that z # y, the number of functions f in 
H such that f(z) = f(y) is less or equal than #H/#C.  

Wegman and Carter [CW, WC] also describe classes for which choosing and 
evaluating functions can be achieved efficiently. The following theorem shows 
that choosing f among a universal2 class ensures the protocol's optimality. 

Theorem6. Protocol 1 is optimal for an adequate choice of pammeter m if  
Alice and Bob choose f among an universal2 class of functions. 

Proof. In order to bound the decoding error probability we must bound the 
probability that: 

f(C) # f(z1) A f(C) # f (z2)  A . . ' /I f(C) # f ( z r )  

for C 
and 2 1  E F the following is true: 

F ,  2; E F where z, # C for each i. From definition 5, for any C E F 

Therefore, the number of functions where f ( C )  # f(z1) is greater than 
# H ( l -  l/#G). Among the # H  - #H/#G remaining functions, there are at 
most #H/#G functions such that f(C) = f(z2). Applying this argument over 
the 1 points in the domain off gives #{f E H 1 f ( C )  # f(zi)  pour 1 5 i 5 I }  2 
#H(1 - I/#G). Let X ( r )  = {z E {0,1}" I w ( z )  5 r et z # C} be the set of 
strings of weight r or less. Similar to the proof of theorem 4 we have: 

prob(E I w ( C )  5 r )  = 1 - prob(1E I w ( C )  5 r )  

The proof follows by setting F = (0, l}", G = (0, l}m for r,  E,.,, a,, and m set 
0 

Thus we have a way to automatically generate optimal reconciliation proto- 
cols by specifying a universal2 class in a short and efficient way. The problem 
with this approach is that there are no known efficient algorithms for Bob to 
compute the decoded string B'. 

as in theorem 4 (since # X ( r )  5 2 " h ( p + c * )  1. 

5 Efficiency 

Finding a class of functions for which protocol 1 is optimal and such that Alice 
and Bob can reconcile efficiently is comparable to finding efficient decodable 
error correcting codes. This is due to  similarities between these two problems 
when a non-interactive protocol such as protocol 1 is being considered. The non- 
interactive scheme is relevant, for some applications such as quantum oblivious 
transfer [BBCS]. We will see that using H3 (defined below, for more details 
consult [CW]) yields a decoding time complexity equivalent to that of solving 
the general problem of decoding linear codes. 
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Definition 7 .  An RP reconciliation protocol is: 

1. eficient if there is a polynomial t(n) such that p p ( n )  5 t(n) for n suffi- 
ciently large, where n is the length of the strings transmitted over the secret 
channel; 

2. ideal if it is both optimal and efficient. 
- 

where f l p ( n )  represent the expected running time of RP given an n-bit long 
input string. 

Theorem 8 gives an (unlikely) hypothesis that is necessary and sufficient for 
protocol 1 to be ideal when used along with class H3. Recall that  H3 is the 
set of functions f : (0 , l ) "  -+ (0,l)" whose ith bit fi(z) of f(z) is such that 
ti(.) = @;=, X i j Z j  for X i , j  E ( 0 , l ) .  When rn and n are fixed, choosing f 
consists of choosing X,,j ER ( 0 , l )  for all i E [l..m] and j E [l..n]. 

Theorem& Protocol 1 used with the universal:, class of functions H3 i s  ideal 
i f  and only if NP C_ BPP. 

P m f .  If C is a class of decision problems, let C' denote the class of problems 
that are polynomially equivalent to some problem in C. Let X be the problem 
of executing step 3 of protocol 1 and let XH3 be the same problem when H3 is 
used. [BMT] shows that determining least-weight solution in a system of linear 
equations in GF(2) is NP-hard. This problem is equivalent to X H s  . Moreover 
we can easily show that X E (C;)'. We want to show that X H 3  E BPP' @ 
NP E BPP. The left to right direction of this statement is obviously true since 
XHa is NP-hard. To prove the other direction we use a result of [Z] showing 
that NP 0 BPP # PH E BPP combined with the fact that X E (c',).. 
6 Almost-Ideal Protocols 

To be useful in practice a reconciliation protocol need not be optimal. Before 
execution of the protocol, Alice and Bob can agree on an arbitrarily small amount 
of additional information relative to the theoretical bound, which they are willing 
to reveal during execution. If the restilting protocol is also efficient then we have 
a protocol that might be useful in practice. For example, if the bits exchanged 
over the secret channel are costly, then it might be better to spend more time 
computing during reconciliation, thus saving some more of these costly bits. 

We will formalize the latter property, and construct in section 6.2 a family 
of protocols that satisfy it. 

6.1 Definit ion 

An almost-ideal protocol has an error probability approaching 0 as the length 
of the strings increases, but its amount of leaked information is allowed to be 
slightly greater than the theoretical bound. Alice and Bob indicate it by choosing 
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a parameter C. They must be able to set C such that the corresponding amount 
of leaked information is as close to the theoretical bound as they wish. Once 
the parameter f, is set, the expected running time ?: of protocol R: must be 
bounded by a polynomial. 

Definitiong. A reconciliation protocol R: is almost-ideal if for all C > 0 we 
have 

1. (Ve > 0) [R: = [S, Q] is E-robust] 

for n the length of the strings transmitted over the BSC(p). 

6.2 Protocol Shell 
Protocol Shell uses interaction on the public channel to correct efficiently the 
secret strings by dividing them into blocks of fixed length. If the blocks have been 
corrected using a subprotocol with a decoding error probability 6 k  (for blocks of 
length k), then Shell will correct them by producing an additional amount of 
leaked information proportional to 6 k  and i .  

Shell is constructed from a few simple interactive primitives described in the 
following sections. 

BINARY. When strings A and B have an odd number of errors, then Alice and 
Bob can perform an interactive binary search to find an error by exchanging 
fewer than [ log nl bits over the public channel in the following manner: 

1. Alice sends Bob the parity of the first half of the string. 
2. Bob determines whether an odd number of errors occurred in the first half 

or in the second by testing the parity of the first half and comparing it to 
the parity sent by Alice. 

3. This process is repeatedly applied to the half determined in step 2. An error 
will be found eventually. 

The reconciliation protocol described in [BBBSS] uses BINARY as the main prim- 
itive. 

CONFIRM. If the strings of Alice and Bob are different, CONFIRM tells them with 
probability 3; if they are identical, CONFIRM says so with probability 1. 

1. Alice and Bob choose a random subset of corresponding bits from their 

2. Alice tells Bob the parity of her subset. 
3. Bob checks that his subset has the same parity. 

They can apply this process k times to convince themselves that their strings 
are identical. This test will fail with probability 2 - k .  

strings. 
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BICONF’. Combining BINARY and CONFIRM gives us another primitive that can 
correct several errors. BICONF” runs CONFIRM s times. Each time CONFIRM shows a 
subset for which Alice’s and Bob’s string have different parities they run BINARY 
on this subset and thus correct an error. Let A ” ( I ) e )  be the probability that 
BICONF’ corrects 1 errors if there are e errors. We have: 

Shell. Protocol Shell runs a basic protocol Rta, on blocks of size k. First Alice 
and Bob divide their strings into k-bit long “primary” blocks. In pass 1 they 
apply R;,, followed by BICONF’ on each of these blocks. If BICONF’ detects an 
error, all bits from Bob’s corresponding block are set to equal Alice’s bits. In 
pass s (s > 1)’ Alice and Bob join pairs of adjacent blocks from the preceding 
pass to form the blocks for the current pass. On each of these new blocks they 
execute BICONF’ s times. When an error is found, the primary block containing 
the erroneous bit is replaced by Alice’s corresponding primary block. The process 
is repeated until there is only one block at the current pass (at pass s = [log f l ) .  

6.3 An Almost Ideal Protocol 

Suppose that Ria’ has an error probability 6 k  5 1/2 and leaked an amount 
I&, of information such that f i  = r. Executing BICONF’ s times in pass s 
(i.e. on blocks of size 2’-’k ) is equivalent to the execution of BICONF’ with 
respect to the distribution of the number of erroneous primary blocks that will 
be corrected. Therefore, if there are e erroneous primary blocks in a current 
block during pass 6, the probability of correcting 1 of these is A’(l1e) as defined 
by equation 1. Let p : ( e )  be the probability of having e erroneous primary blocks 
in a current block after completion of pass s, and let p s  ( e )  be the same probability 
before execution of pass s. It follows that 

I* 

e+r 

d(e) = C P . ( ~ ) A ~ ( ~  - e I i) 
j = e  

with 
e 

Moreover 

p i ( 0 )  = 1 - y ’ p ; ( l )  dk = 2’ 6 k  

We can prove the following theorem by induction on s and e (see [Sa] for the 
proof) : 
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The failure probability is less than 5 and tends to 0 as n increases. Hence the 
condition 1 from the definition of an almost ideal protocol is met. A bound on the 
amount of information Is(n) leaked by Shell can be obtained using theorem 10: 

4n( log k] + 2) 
k Is(n) 5 n h ( p ) r + & n +  

and we have that 

If protocol 1 is used as a basic protocol then there is a k for which & + 
-1 5 E for any E > 0. In addition the amount I;,,, of leaked information 

can be chosen such that 5 T for all T > 1. It is clear that Shell works in 
polynomial time for any fixed k .  

Corollary 11. If we use protocol 1 as a lasic protocol then Shell i s  almost-ideal. 

The size of the blocks grows too fast as the amount of leaked information a p  
proaches the theoretical bound for Shell to be used together with protocol 1 in 
an efficient implementation. However it is possible to use Shell with other types 
of basic protocol, such as a systematic error-correcting code. For example, Alice 
and Bob can agree on a systematic (N, k')-code of distance d .  Afterwards they 
can compute the bound on the amount of leaked information produced by Shell 
on the primary blocks of size k = t k t ( t  > 0 ) ,  with 7 = and cb = 1 - (1 --E)~, 
where E is the probability that a k'-bit-long block holds more than [tj errors. 
However Shell is no longer almost-ideal with this type of basic protocol. 

I' 

N k' 

7 A Practical Protocol 

In section 7.1 we present protocol Cascade, which can easily be implemented. 
Cascade leaks an amount of information close to the theoretical bound on a 
BSC(p) when p is as big as 15%. In section 7.2 a rough analysis shows how to 
choose protocol parameters for which the error probability decreases exponen- 
tially fast as a function of the number of passes. We also give a table comparing 
the amount of information leaked empirically by Cascade (given these param- 
eters) to the theoretical bound. 

7.1 Cascade Description 

Cascade proceeds in several passes. The number of passes is determined by 
Alice and Bob before execution. This choice is related to parameter p. Let A = 
A I , .  . . , A ,  and B = B1,. . . , B, (with Bi,Ai  E (0'1)) be Alice's and Bob's 
strings respectively. 

' An (N,k')-code has N-bit codewords to encode 2k' messages. 
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In pass 1, Alice and Bob choose kl and divide their string into blocks of 
kl bits. The bits whose position is in K,’ = {I I ( u  - 1)kl  < 1 5 v k i }  form 
block v in pass 1. Alice sends the parities of all her blocks to Bob. Using BINARY 
Bob corrects an error in each block whose parity differs from that of Alice’s 
corresponding block. At this point all of Bob’s blocks have an even number of 
errors (possibly zero). This part of the protocol is taken from [BBBSS]. However, 
in that paper the leaked information about the secret string is eliminated during 
execution by removing one bit of each subset for which the parity is known. 
In our protocol all the bits are kept. Saving this information from pass to pass 
allows us to correct more errors, 

At each pass i > 1, Alice and Bob choose ki and a random function 
fi : [l..n] + [1..[?1]. The bits whose position is in Kj = {I I f i ( I )  = j }  form 
block j in pass i .  Alice sends Bob 

a, = @ A1 

for each 1 5 j 5 [pl. Bob computes his 6,’s in the same way and compares 
them with the 0,’s: For each 6, # a, Alice and Bob execute BINARY on the 
block defined by K;.  Bob will find 1 E Kj such that Bl # A1 and correct it. All 
the blocks K: for 1 5 u < i such that 1 E Kt will then have an odd number 
of errors. Let K be the set of these blocks. Alice and Bob can now choose the 
smallest blocks in Ec and use BINARY to find another error. Let 1’ be the position 
of this error in strings A and B. After correcting Bp , Bob can determine set B 
formed by the blocks containing B ~ P  from each pass from 1 to pass i .  He can also 
determine the set K’ of blocks with an odd number of errors by computing 

K’ = BVK.6 

If K’ # 0 then Bob finds another pair of errors in the same way. This process is 
repeated until there are no more blocks with an odd number of errors, at which 
point pass i ends, and each block in passes 1 through i has an even number of 
errors (perhaps zero). 

1EK; 

7.2 Using Cascade 

In this section a simple analysis using only one of Cascade’s properties shows 
its usefulness in praetice. This analysis yields a particular choice of block size 
such that the probability that a block K: has one or more errors decreases 
exponentially with respect to the number of passes. 

The property we use is that in the passes following pass 1, correcting an error 
in K,’ implies that a second one from the same block K,’ will be corrected. 

For parameters kl, . . . k, chosen in a manner that depends on p ,  we will try 
to determine &ti), the probability that after the pass i 2 1, 2j errors remain in 
X,’. 61 (j) is easily determined for X x Bin(k1, p ) :  

& ( j )  = pro6(X = 2j) + prob(X = 2 j  + 1) 
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Let E; be the expected number of errors in K,’ after completion of pass i .  
For pass 1 we have: 

19J (1 - (1 - 2 p ) k l )  

2 
El = 2 c j S , ( j )  = k1p - 

j = 1  

If the functions f; with i > 1 are randomly chosen from {f I f : [ l ,  . . . , n] -+ 
[l, . . . , $1 then for n + 00, we can determine a bound on the probability y, of 
correcting at least 2 errors at pass a > 1 in a block K,’ still containing errors 
after completion of pass i - 1. Since errors are corrected two by two in passe 
i > 1, we have 

) 2  

y, 2 1 -  ( l - ( l - p -  “Et-1 

We can bound & ( j )  using y, for i > 1 

Suppose that k l  is chosen such that 

I = j + l  

and let k; = 2ki-1 for i > 1. W e  have 

If in addition the choice of kl is such that 

In 4 
El 5 -- 

2 (3) 

it follows that 
y; 2 1 - (1 - e - 2 E l ) 2  2 g. 

When ki = 2ki-1, i > 1 and kl satisfies 2 and 3, we have d,( j )  5 9 5 3 
since ~i 5 y .  

We can bound the amount of information I ( w )  per block of length k l  (per 
block Z{:) leaked after w passes, with parameters ki set as above (w must not 
depend on n for the argument to apply), as follows: 
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To completely eliminate the errors, we choose w large enough that we can 
use Shell on blocks formed by concatenating a large number of blocks K,’ . Thus 
by corollary 11 the total amount of leaked information will approach that of 
Cascade. 

Table 1 gives the values of kl(the largest one satisfying 2 and 3) for 
p E {0.15,0.10,0.05,0.01} and the values of 1(4) are computed. In addition 
the average amount of leaked information 7(4) for 10 empirical tests (with 
n = 10,000) under the same conditions is reported. For each of these tests 
all errors were corrected after pass 4. 

Table 1. Cascade benchmark 

0.01 73 6.47 5.89 6.81 
0.05 14 4.60 4.01 4.64 
0.10 7 3.81 3.28 3.99 
0.15 5 3.80 3.05 4.12 

8 Conclusions 

The reconciliation problem is a variant of the noisy coding problem. The exten- 
sion of the noisy coding theorem [Sh] due to Elias [El shows that there exist 
optimal linear codes. Thus, it is not surprising that there exist optimal reconcili- 
ation protocols. One must use the systematic version of an optimal linear code to 
obtain an optimal reconciliation protocol. While these results from information 
theory are non-constructive, all our results are constructive. 

Theorem 8 gives an (unlikely) hypothesis for which non-interactive ideal rec- 
onciliation schemes exist. If we consider other classes of hash functions, it is pos- 
sible to obtain ideal protocols based on weaker hypotheses. High performance 
non-interactive reconciliation protocols would be useful for efficient implemen- 
tation of quantum oblivious transfer [BBCS]. 

From a practical point of view, Cascade is an efficient protocol that leaks less 
information than the best error-correcting-codes-based reconciliation protocols. 
It is an improvement on the protoocol used in [BBBSS] in a true quantum setting. 
It would be of interest to have a detailed analysis of Cascade’s performance that 
would tell how to choose the parameters so as to minimize the amount of leaked 
information while maintaining a low failure probability. 
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