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Abstract
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A secret sharing scheme is a method for sharing a secret among a set P of n

participants. The secret is encoded into n pieces called shares each of which is

given to a distinct participant. Certain qualified subsets of participants can recover

the secret by pooling together their information, whereas forbidden subsets of

participants have no information on the secret. The specification of the qualified

sets and the forbidden sets is called access structure.

A special kind of secret sharing schemes are visual cryptography schemes

(VCSs), that is, schemes where the secret to share is an image and the shares

consist of xeroxed transparencies which are stacked to recover the shared image.

In this paper we analyze the relationship between secret sharing schemes and

VCSs, focusing our attention on the amount of randomness required to generate

the shares. We show how to transform a secret sharing scheme for a given access

structure into a VCS for the same access structure while preserving the random-

ness of the original scheme. An important consequence of this transformation

is that lower bounds on the randomness of visual cryptography schemes apply

to general secret sharing schemes. Our randomness preserving transformation

has also been applied to derive a new upper bound on the randomness of (k, n)-

threshold VCSs which dramatically improves on the previously known bounds.

All VCSs obtained by applying our randomness preserving transformation allow

a perfect reconstruction of black pixels.

Cryptography, Randomness, Secret Sharing, Visual Cryptography.

Introduction

A secret sharing scheme is a method for sharing a secret among a set P

of n participants. The secret is encoded into n pieces called shares each of
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which is given to a distinct participant. Certain qualified subsets of participants

can recover the secret by pooling together their information, whereas forbidden

subsets of participants have no information on the secret. The specification of all

qualified and forbidden subsets of participants constitutes an access structure.

Secret sharing schemes are especially useful in situations which require that

several people cooperate in order to start an important action such as opening

a bank vault or a safety deposit box, or launching a missile.

Shamir [14] and Blakley [5] have been the first to introduce secret sha-

ring schemes. In particular, they considered (k, n)-threshold schemes, that is

scheme where only subsets of P of size larger than or equal to a fixed integer k

can reconstruct the secret. Ito, Saito, and Nishizeki [11] showed how to realize

a secret sharing scheme for any access structure. Later, Benaloh and Leichter

[4] proposed a simpler and more efficient way to realize secret sharing schemes.

Other general techniques handling arbitrary access structures can be found in

[12, 17].

An important issue in the implementation of secret sharing schemes is the

amount of randomness required for generating the shares. Blundo et al. [7] have

been the first to analyze the randomness of secret sharing schemes. Random bits

are a natural computational resource which must be taken into account when

designing cryptographic algorithms. Considerable effort has been devoted to

reduce the number of bits used by probabilistic algorithms (see for example

[10]) and to analyze the amount of randomness required in order to achieve a

given performance. Motivated by the fact that “truly” random bits are hard to

generate, it has also been investigated the possibility of using imperfect source

of randomness in randomized algorithms [19]. In spite of the considerable effort

devoted to analyzing the incidence of randomness in several areas of computer

science, very few results have been obtained to quantify the amount of random

bits required to solve classes of problems.

A special kind of secret sharing schemes are visual cryptography schemes.

A visual cryptography scheme (VCS) is a method to secretly share an image

among a given group of participants. A VCS for a set P of n participants encodes

a secret image into n shadow images which constitute the shares given to the

n participants. The shares given to participants in X ⊆ P are xeroxed onto

transparencies. If X is qualified then the participants in X can visually recover

the secret image by stacking their transparencies without any cryptography

knowledge and without performing any cryptographic computation.

In this paper we analyze the relationship between secret sharing schemes

and visual cryptography schemes, with a special concern for the amount of

randomness required to generate the shares. In this paper we only consider

VCSs for black and white images. Visual cryptography schemes for black and

white images have been defined by Naor and Shamir in [13]. They analyzed

(k, n)-threshold visual cryptography schemes. Ateniese at al. [1,2] extended
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the model by Naor and Shamir to general access structures. Since in a VCS an

image is encoded pixel by pixel, then a VCS for black and white images is a

special case of secret sharing scheme for a set of secrets of size two. We refer

to such a secret sharing scheme with the term of Binary Secret Sharing Scheme

(BSS). It follows that lower bounds on the randomness of BSSs apply also to

VCSs. In this paper we prove that the converse implication holds as well, thus

shading a new light on the study of secret sharing schemes. In other words, we

prove that the number of random bits needed to secretly share a pixel is the same

as that needed to share any secret chosen in a set of size two. Indeed, given a

BSS Σ for an access structure Γ, we show how to construct a VCS for Γ with

the same randomness as Σ. Such construction technique will be also applied to

derive a new upper bound on the randomness of (k, n)-threshold VCSs. This

upper bound dramatically improves on all previously known upper bounds and

it is very close to the best known lower bound [9].

1. THE MODEL

Let P = {1, . . . , n } be a set of elements called participants, and let 2P

denote the set of all subsets of P. Let Γ Qual ⊆ 2 P and ΓForb  ⊆ 2 , where

Γ Qual ∩ Γ Forb  = ∅ . We refer to members ΓQ u al as qualified sets and we call

members of ΓForb  forbidden sets. The pair Γ = ( ΓQual , ΓForb) is called the

access structure of the scheme.

Let Γ0  consist of all the minimal qualified sets:

A participant p ∈ P is an essential participant if there exists a set X ⊆ P
such that X ∪ {p} ∈ ΓQ u a l but X ∉ ΓQual . A non-essential participant does
not need to participate “actively” in the reconstruction of the secret, since the

information she has is not needed by any set in P in order to recover the shared

image. In any secret sharing scheme having non-essential participants, these

participants do not require any information in their shares.

In the case where ΓQual  is monotone increasing, Γ Forb is monotone decreas-
ing, and ΓQual  ∪ Γ

Forb  = 2
P

, the access structure is said to be strong, and Γ0 is

termed a basis. In a strong access structure,

and we say  that ΓQ u al is the closure of Γ0 .

In the following we formally define secret sharing schemes for a strong

access structure (ΓQual , ΓForb ). Indeed, in traditional secret sharing schemes

the access structures are always assumed to be strong.

A secret sharing scheme Σ for a set of secrets S = {s 0 , . . . , sh – 1} on a set

P of participants for the strong access structure (ΓQual , ΓForb ) is a method to

P
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secretly share a secret chosen in S among the members of P in such a way

that only subsets of participants which are in  ΓQ u a l can recover the secret.

The secret sharing scheme Σ consists of h collections of distribution functions

C
0

, . . . , Ch– 1 . A distribution function ƒ ∈ Ci , i = 0,…, h – 1, is a function

which associates to each participant p ∈ P a share. When the secret to share is

s , i = 0, . . . , h – 1, the dealer randomly chooses a distribution function ƒ ∈ C
i

and assigns to each p ∈ P the share ƒ(p).

Definition 1 Let (Γ , Γ ) be a strong access structure on a set P of par-Qua l For b

ticipants. The collections of distribution functions C0 , . . . , C h –1 realize a secret

sharing scheme for a set of secrets of size h if the following conditions hold:

1. Any subset X ⊆ P of participants qualified to recover the secret can

compute the secret.

Formally, if   X  ∈  ΓQual
, then it is {(p, ƒ (p))}p ∈X ≠{( p, g(p ))} , for

all ƒ ∈ C C with i,  j ∈ 0, . . ., – 1 } and i ≠    j.i and g ∈ j  { h

2. Any subset X ⊆ P of participants non-qualified to recover the secret has

no information on the secret value.

Formally, if X = {p , . . . ,p } ∈ Γ , then for any possible choicev1 va Fo r b

sh v1  . . . , sh of the shares given to participants p , . . . , pv , it resultsva v1 a

f o r  a n y  i, j ∈ {0, . . . , h – 1} .

The first property is related to the reconstruction of the secret. It states that

the for any pair of distinct secrets s and s , the group of shares assigned to ai j

qualified group of participants when the encoded secret is si is different from

that assigned to the same group of participants when the encoded secret is s .
j

The second property is called security, since it implies that, even by inspect-

ing all their shares, a forbidden set of participants cannot gain any information

on the shared secret.

Notice that in the previous definition C , i = 0 ,…, h – 1, is a multiset ofi

distribution functions, therefore we allow a function to appear more than once

in Ci, i = 0, . . . ,h – 1. Moreover, the sizes of the collections C0 , . . . , Ch –1 do

not need to be the same.

The randomness of a secret sharing scheme represents the number of random

bits used by the dealer to share a secret among the participants. Let Σ be a secret

sharing scheme for a set of h secrets s0 , . . . , sh – 1 realized by the collections

C ,..., C , For i = 0,. . . , h – 1, let p i denote the probability that the shared– 1

secret is s
0 h

i . The randomness of Σ has been defined by Blundo et al. [7] as

i

p ∈X



Secret Sharing and Visual Cryptography Schemes 127

where p = (p0 , ...,  p h –1 ). Let Γ = (ΓQual , ΓForb ) be a given access structure.

In accordance with [7], the dealer’s randomness for the access structure Γ is
defined as

where A denotes the set of all h-tuple of collections C0 , . . . , C h – 1 realizing a

secret sharing scheme for Γ for the set of secrets {s0, . . . , sh – 1}, and I is the set

of all probability vectors of length h with non-zero entries. Indeed, we assume

that the secret have non-zero probability of being any of s0 , . . . , s h – 1. In [7]

the above definition has been proved to be equivalent to the following

The above definition implies that, given h function collections C0  , . . . , Ch – 1

realizing a secret sharing scheme for a set of h secrets for the access structure Γ,

we are mainly concerned with the quantity log(min{|C0 |, . . . , |Ch –  1 |}). Hence,

we define the randomness R (C0 , ... , Ch –  1 ) of a secret sharing scheme for a set

of h secrets realized by C0 ,. . . , Ch –  1 as

(1)

1.1. VISUAL CRYPTOGRAPHY SCHEMES

We assume that the image to be encoded consists of a collection of black

and white pixels. The image is encoded pixel by pixel. A pixel is encoded

into n pixels which constitute the shares for the n participants associated with

that pixel. For each participant the shares associated with the pixels of the

whole secret image are xeroxed onto a transparency which constitutes the share

assigned to that participant. The participants of a qualified set can visually

recover the secret image by stacking their transparencies.

As an example, consider the image representing the acronym “SEC2001”.

SEC2001
The two shares generated by a (2, 2)-threshold VCS are given below.
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Share of participant 2

The following is the image obtained by stacking the shares of both participants

Each of the n shares associated with a single pixel is a collection of m

black and white subpixels. The resulting structure can be described by an

n × m boolean matrix S = [s i j] where s i j = 1 iff the j-th subpixel in the i-th

transparency is black. Therefore the grey level of the combined shares, obtained

by stacking the transparencies i1 , . . . , i s is proportional to the Hamming weight

w(V ) of the m -entry vector V = O R(Ri1 , . . . , Ri s), where R i 1 , . . . , R i s are

the rows of S associated with the transparencies we stack. This grey level is

interpreted by the visual system of the users as black or as white according with

some rule of contrast.

Definition 2 Let (Γ Qual , ΓForb) be an access structure on a set of n participants.

Two collections (multisets) of n × m boolean matrices and constitute a

visual cryptography scheme (ΓQual , Γ Forb)-VCS if there exist a value α(m) and

a collection satisfying:

1 Any (qualified) set X = {i1 , i2 , . . . , i p} ∈ ΓQual can recover the shared

image by stacking their transparencies.

Formally, for any M ∈ , the “or” V of rows i1, i 2, . . . , i p satisfies

w (V) ≤ t X – α (m) · m; whereas, for any M ∈ it results that

w (V ) ≥ t X .

2 Any (forbidden) set X = {i 1 , i 2 , . . . , ip} ∈ Γ Forb has no information on

the shared image.

Formally, the two collections of p × m matrices obtained by restricting the

n ×  m matrices of and to rows i1 , i2 , . . . , i p are indistinguishable, in

the sense that they contain the same matrices with the same frequencies.
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Each pixel of the original image will be encoded into n pixels, each of which

consists of m subpixels. To share a white (black, resp.) pixel, the dealer

randomly chooses one of the matrices in 0 ( 1 resp.) and distributes row i to

participant i.

The first property of Definition 2 is related to the contrast of the image.

It states that when a qualified set of users stack their transparencies they can

correctly recover the shared image. Observe that this property implies Property

1. of Definition 1. The value α(m) is called relative difference, the number

α(m) · m is referred to as the contrast of the image, the set is

called the set of thresholds, and tX is the threshold associated to X ∈ ΓQual. We

want the contrast to be as large as possible and at least one, that is, α(m) ≥ 1 /

m. The second property, as well as Property 2. of Defination 1, is related to the

security of the scheme.

The model of visual cryptography we consider is the same as that described

in [1,2]. This model is a generalization of the one proposed in [13], since with

each set X ∈ ΓQual we associate a (possibly) different threshold t X . Further,

the access structure is not required to be strong in our model.

Notice that if a set of participants X is a superset of a qualified set X', then

they can recover the shared image by considering only the shares of the set X'.

This does not in itself rule out the possibility that stacking all the transparencies

of the participants in X does not reveal any information about the shared image.

In accordance with definition (1), the randomness R( ) of a visual

cryptography scheme realized by and is given by

The randomness of a VCS represents the number of random bits per pixel

required by the VCS to share a secret image.

2. A RANDOMNESS PRESERVING
TRANSFORMATION FROM BSSs
TO VCSs

In this section we will show how to transform a BSS for a strong access

structure Γ into a VCS for Γ with the same randomness as the original BSS.

Let and be two function collections

realizing a BSS for an access structure on the set of participants P = { 1, . . . , n) .

Two tables, T0 and T 1, will be used to represent the shares assigned to each

participant by the distribution functions of C0 and C1 . For any b ∈ { 0, 1}, i =

1, . . . , n and j = 1,... , c b , it is . A share will be symbolically

represented by a literal indexed with the associated participant. For a given

participant i ∈ (1, . . . , n}, distinct literals indexed with i denote distinct shares.

Notice that Property 1. of Definition 1 implies that if we restrict T0 and T1 t o
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the rows corresponding to a set X ∈ ΓQual, we  obtain two  tables having  no

common column. Moreover, Property 2. of Definition 1 implies that if we

restrict T 0and T1 to the rows corresponding to a set X ∈ ΓForb , we obtain two

tables whose multisets of columns are indistinguishable, in the sense that they

contain the same columns with the same frequencies.

The following example illustrates the randomness preserving transformation.

For any n -row matrix M and any set X ⊆ {1, . . . , n}, we will denote with

M [X] the matrix obtained by restricting M to the rows with indices in X. The

rows appear in M [X ] in the same order they appear in M.

The initial BSS

Let us consider the strong access structure Γ on the set of participants {1, 2, 3, 4}
with basis Γ0 = {{1, 3, 4}, {1, 2}, {2, 3}, {2, 4}}. Let us assume that C0  =

and be two collections af distribution

functions realizing a BSS for Γ and that the shares assigned to each participant

by the distribution functions of C0  and C1 be given by the following two tables

Construction of the Matrix collections  0 and 1

We associate to each function ƒb , j = 1, 2, 3, 4 and b ∈
j

{0, 1}, a 4 × 4 matrix

M b
j . For j = 1, 2, 3, 4, and b = 0, 1, we construct the matrix M b

j  as follows.

For any i = 1, 2, 3, 4 and l = 1, 2, 3, 4, we set the i-th entry of the l-th column

of M b
j equal to

The matrices resulting from the above construction for our running example

are:

The reader can quickly verify by a simple inspection of the collections

and that the above construction yields

a VCS for the access structure (ΓQual , ΓForb) .
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In the following we describe an algorithm which transforms an arbitrary

BSS for a given access structure into a VCS for the same access structure. Let

C0  = {ƒ
c

functions realizing a BSS for a given strong access structure
1
0 , . . . ,  ƒ 0

c0
} and C1 = {ƒ1

1 , . . . ,  ƒ 1
1
} be two collections of distribution

Γ  . The input of the

algorithm consists of the two tables T0  and T1 representing the shares assigned
to each participant by the distribution functions  of C  and C0 1 .

Generate-VCS(T0, T1)

n ← number of rows of T 0

c  ← number of columns of T0 0

c1 ← number of columns of T1

for b ← 0 to 1

for j ← 1 to c b

for i ← 1 to n

for l ← 1 to c0

if ƒb 0
j
(i) = ƒl (i )

then Mb
j

[i, l] ← 0

else M b
j [i, l] ← 1

output

Figure 1 A randomness  preserving transformation from a BSS to a VCS

The proof of the following theorem, which has been omitted due to space

constraints, can be found in the journal version of the present paper.

Theorem 3 Let C0  = {ƒ1, . . . , ƒc0
} and C1 = {ƒ1 , . . . ‚ ƒc1

} realize a BSS for

a sting access structure Γ on the set of n participants P = {1, . . . , n}. The

algorithm described in Figure 1 generates a VCS on P for Γ with pixel expansion

equal to |C0 | = c 0, contrast equal to one, and having the same randomness as

the original BSS.

Notice that by replacing each matrix M in the VCS of Theorem 3 with the matrix

obtained by concatenating h copies of M, we obtain a VCS with contrast h and

pixel expansion h · |C0 | .

2.1. LOWER BOUNDS ON THE RANDOMNESS OF
SECRET SHARING SCHEMES

Since visual cryptography schemes are a particular kind of binary secret

sharing schemes, then any lower bound on the randomness of BSSs for a given

access structure Γ is a lower bound on the randomness of any VCS for the
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same access structure. Theorem 3 shows that the reverse implication holds

as well, that is, any lower bound on the randomness of VCSs for the strong

access structure Γ is also a lower bound on the randomness of any BSS for Γ.
It follows that the techniques introduced in [8, 9] to derive lower bounds on

the randomness of VCSs apply also to BSSs and consequently to secret sharing

schemes for any set of secrets. In particular, the following lower bound [9] on

the randomness of (k , n )-threshold VCS extends to any (k, n)-threshold secret

sharing scheme:

(k – 1) log(n – k + 2). (2)

In [7] it has been proved that a (k, n)-threshold secret sharing scheme for a set

of s secrets has randomness at least (k – 1) log s . For set of secrets of size

s > n, Shamir [14] has provided a scheme which achieves this bound. Then,

one has that the following theorem holds.

Theorem 4 For n ≥ k ≥ 2, the randomness of any ( k ,n)-threshold secret

sharing scheme for a set of s secrets is at least (k–1) max{log s, log(n–k+2)}.

2 . 2 . VCSs WITH PERFECT RECONSTRUCTION OF
BLACK PIXELS

An important property of the VCSs obtained by applying the transformation

of Figure 1 is that for any X = {i
1

,i
2

, … ,ip } ∈ Γ
Qual

and any M ∈
the “or” V of rows i1, i2 , … , ip consists of an all-one vector. VCSs with this

property generate high quality images since they allow a perfect reconstruction

of black pixels (see [6] for bounds on the pixel expansion of such VCSs). Given

any VCS for the strong access structure Γ, we can construct a VCS with perfect

reconstruction of black pixels for the same access structure as follows. We

construct the distribution function collections C
0

 and C
1

corresponding to the

given VCS. Then, we apply the transformation of Figure 1 to obtain a VCS

for Γ with perfect reconstruction of black pixels. By replacing each matrix

M ∈  with the matrix obtained by concatenating h copies of M, we

obtain two matrix collections realizing a VCS with contrast h and with perfect

reconstruction of black pixels. Hence, one has that the following theorem holds.

Theorem 5 Let and be two matrix collections realizing a VCS for the

strong access structure Γ. Then, for any arbitrary h ≥ 1, there exists a VCS

for Γ with perfect reconstruction of black pixels, having pixel expansion equal

to h · |  |, contrast equal to h, and the same randomness as the original VCS.

The following example illustrates the above theorem.

Example 6 Let us consider the strong access structure Γ on the set of partic-

ipants {1,2,3,4} with basis Γ0  = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {3, 4}}. The

following matrix collections realize a VCS for Γ.
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The distribution function collections associated with this VCS are represented

by the following two tables. For i = 1,2,3,4, the shares for participant i are

denoted by a literal indexed with i. For a fixed index i, distinct literals indicates

distinct  shares.

133

Now we apply the randomness preserving transformation of Figure 1 to obtain

a VCS for Γ with perfect reconstruction of the black pixels.

By concatenating h copies of each matrix in the above collections and

we obtain a VCS with contrast h. ∆

3. A NEW UPPER BOUND ON THE RANDOMNESS
OF (k , n)-THRESHOLD VCSs

In this section we provide a construction for (k, n)-threshold VCSs which

improves on the randomness of all previously known VCSs and is very close to

lower bound (2). The idea of the construction consists of applying Theorem 3 to

Shamir’s (k, n)-threshold secret sharing scheme [14]. Shamir’s scheme shares

a secret s, uniformly chosen in GF(2
r
 ), among a set of n < 2

r
 participants. To

share a secret s, the dealer uniformly and independently chooses k – 1 elements

in GF(2 r) and then constructs the polynomial p(x) = s +

easy to see that if at least k participants join together then they can interpolate

The share assigned to participant i is p( i). It is

the polynomial p(x) and calculate the secret s = f(0), whereas any set of

less than k participants has no information on the secret. The dealer uses
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(k – 1)r random bits to choose the coefficients a1 , a2 , … , a k–1. The collection

of distribution functions associated to a secret s ∈ GF(2r ) is C s =  {p(x) =

Given a Shamir’s secret sharing scheme to share a secret s ∈ GF( 2
r
) among

a set of n participants, with n < 2r , we can obtain a (k,n)-threshold BSS ∑
as follows. Below, we will assume w.l.o.g. that the binary secret be chosen in

{ 0, 1}. We assume that all secrets in GF(2r ) \ { 0, 1} be chosen with probability

0 and that the secrets 0 and 1 occur with probability each. To share a secret

s ∈  {0, 1}, the dealer uniformly chooses a polynomial p(x) in Cs  = {p(x) =

and

for i = 1,. . . , n, distributes to participant i the share p( i). By applying the

randomness preserving transformation of Figure 1 to ∑ we obtain a VCS with

randomness (k – 1)r. We can increase the contrast of the resulting VCS by

replacing each matrix with h concatenated copies of that matrix. Since it must

be 2r > n, then r can be as small as ⎡log (n + 1)⎤. Hence, the following theorem

holds.

Theorem 7 For any n ≥ k ≥ 2 and h ≥ 1, there exists a ( k,n)-threshold

VCS with pixel expansion h · 2 , contrast h, and randomness

Table 1 summarizes some known upper bounds on the randomness of (k, n )-

threshold VCSs. Notice that the bound of Theorem 7 greatly improves on

all other bounds. Indeed, all other bounds, except that of Corollary 2 of [9]

which holds only for constant values of the threshold k, are exponential in k.

Moreover, the upper bound of Theorem 7 is very close to lower bound (2).

Table 1 Upper bounds on the randomness of (k, n)-threshold VCSs.
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3.1. MINIMUM RANDOMNESS (k, k)-THRESHOLD
VCSs

In this section we show how to obtain a minimum randomness (k, k)-threshold

VCS using the following well known construction for minimum randomness

(k, k)-threshold BSSs (see for example [16]). To share a secret s ∈ {0, 1}

the dealer randomly chooses k – 1 random bits b1 , . . . , b k –1 and computes

bk
= s ⊕ b

1
⊕ . . . ⊕ b

k – 1
, where “⊕” denotes the “xor” operator. For

i = 1, . . . , k, the share for participant i is b
i

. It is easy to see that if k par-

ticipants join together then they can recover the secret s by calculating the

“xor” of their shares, whereas less than k participants have no information on

s. The randomness of this BSS is k – 1. Hence, by applying the randomness

preserving construction we obtain a VCS with pixel expansion 2k – 1 , contrast 1

and randomness k – 1. By concatenating h copies of each matrix in the result-

ing VCS we obtain a minimum  randomness  (k, k)-threshold VCS with pixel

expansion h · 2
k –1

and contrast h.

The following example shows a (3,3)-threshold VCS obtained by applying

the above construction.

Example 8 A minimum randomness (3,3)-threshold VCS with contrast h = 1.

It is interesting to notice that the minimum randomness (k, k)-threshold

VCS obtained in this section is also obtainable by using the construction for

minimum randomness (k, k)-threshold VCSs provided in [9]. We recall that in

[9] it has been shown that any (k, k)-threshold VCS with contrast h has pixel

expansion larger than or equal to h. 2k – 1  and that, for any value of the contrast

h, our construction is the only one providing a (k, k)-threshold VCS with both

minimum randomness and pixel expansion h · 2k –1 .

4 . CONCLUSIONS

In this paper we have provided a technique to transform a BSS into a VCS

having the same randomness, thus proving that BSSs and VCSs are equivalent

with respect to the randomness. Another consequence of our result is that any

lower bound on the randomness of VCSs applies also to secret sharing schemes
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for any set of secrets. A nice property of the VCSs obtained by applying our

randomness preserving transformation is that they allow a perfect reconstruction

of black pixels.

Our randomness preserving transformation has also been used to obtain

a construction for (k, n)-threshold VCSs whose randomness is significantly

smaller than the randomness of all previously known (k, n)-threshold VCSs

and is very close to the known lower bound. An interesting open problem

would be to further reduce the gap between the lower bound and the upper

bound on the randomness of these VCSs.
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