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Abstract. Let .~, be a monotone, nontrivial family of sets over { 1, 2 . . . . .  n}. An 
.T, perfect secret-sharing scheme is a probabilistic mapping of a secret to n shares, 
such that: 

• The secret can be reconstructed from any set T of shares such that Te  ~,.  
• No subset T ~ ~ ,  of shares reveals any partial information about the secret. 

Various secret-sharing schemes have been proposed, and applications in diverse 
contexts were found. In all these cases the set of secrets and the set of shares are 
finite. 

In this paper we study the possibility of secret-sharing schemes over infinite 
domains. The major case of interest is when the secrets and the shares are taken 
from a countable set, for example all binary strings. We show that no ~ ,  secret- 
sharing scheme over any countable domain exists (for any n > 2). 

One consequence of this impossibility result is that no perfect private-key encryp- 
tion schemes, over the set of all strings, exist. Stated informally, this means that 
there is no way to encrypt all strings perfectly without revealing information about 
their length. These impossibility results are stated and proved not only for perfect 
secret-sharing and private-key encryption schemes, but also for wider classes-- 
weak secret-sharing and private-key encryption schemes. 

We constrast these results with the case where both the secrets and the shares 
are real numbers. Simple perfect secret-sharing schemes (and perfect private-key 
encryption schemes) are presented. Thus, infinity alone does not rule out the 
possibility of secret sharing. 
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1. Introduction 

The topic of this paper is the existence of secret-sharing schemes over infinite 
domains. A generalized secret-sharing scheme is a way of distributing a secret among 
n parties in a way that "legal" sets of parties will be able to reconstruct the secret, 
while "illegal" sets of parties will not get information about  the secrets. This is 
formalized by the following definitions: 

Definition 1. Let ~ ,  be a family of subsets of { 1, 2 . . . . .  n} (intuitively, ~ .  will be 
the family of all sets of parties which are allowed to reconstruct the secret). The 
family ~ ,  is called good if it satisfies the following properties: 

• Monotonicity: if T E ~ .  and T c T', then T' ~ ~ . .  (Intuitively, we want that 
if a set T is allowed to reconstruct the secret then any set T' that contains T is 
also allowed to reconstruct the secret.) 

• Nontriviality: there is a set T~  ~ .  which is not a singleton, and is minimal 
with respect to membership in F,. That  is, I TI > 2 and, for every proper  subset 
D of T, D ~ ~ . .  (Intuitively, if~-, does not have this property, then it is trivially 
determined by a set of singletons C c {1, 2 . . . . .  n}: if i ~ C, then the ith party 
gets the secret, while if i ¢ C, the ith party gets a useless share.) 

Definition 2. Let A be an arbitrary set of possible secrets, let ~ .  be a good family 
of sets, and let c~ >_ 1 be a constant. An (~, ,  c0 secret-sharing scheme over A is a 
probabilistic mapping H: A --* B1 x B 2 x ... x /3, from the set of secrets to a set of 
n-tuples (the shares) such that: 

1. The secret a can be reconstructed from any "legal" set of shares. That  is, for 
any subset T e ~-,, there exists a function hr: Xi  ~ r Bi --* A such that, for every 
possible set of shares (st . . . . .  s,) = II(a), the secret can be found by 
t , A { s ~ } ; ~ )  = a. 

2. No "illegal" set of shares reveals "too much" partial information about  the 
secret (in the information-theoretic sense). Formally, for any subset T ¢ ~ , ,  for 
every two secrets at, a2 e A and for every possible shares {s~}~r: 

1 
- -  Pr({s~}i~ rlaz) < Pr({s~}~ f la t )  < ~" Pr({s~},~ rla2). 
0t 

We remark here that in this definition no specific probability distribution is asso- 
ciated with the secrets. Each secret determines a probability measure over the space 
of secrets. Some special cases of the above definition are of particular interest: 

• For  ct = 1, a (~ , ,  c~) secret-sharing scheme is called perfect. In a perfect secret- 
sharing scheme, no illegal set of shares reveals any partial information about  
the secret. 

• The case where ~ .  contains all the subsets of size at least k. These schemes are 
usually called (k, n, or) threshold schemes. 

Perfect threshold schemes were first introduced by Blakley 1-7] and Shamir 1-14]. 
Since then, other constructions were given (see [12]), properties of these schemes 
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were studied [4], [16], and various applications were found (e.g., [13], [10], and 
[3]). Generalized (perfect) schemes were introduced and constructed in [11] and [5]. 

In all the above-mentioned works, the set of secrets and the set of shares are finite. 
In this paper we investigate the possibility of secret sharing over infinite domains. 
The main motivation for studying the question comes from infinite countable 
domains where each member has a finite description (over a finite alphabet). Typical 
examples are the set of all integers and the set of all binary strings. Can we share 
any secret string using only strings as shares? More generally, can we share a secret 
from any infinite set, using only elements of this set as shares? It turns out that the 
possibility (or impossibility) of secret-sharing schemes is not based on infinity alone. 
The cardinality of the domain has to be examined. In particular we show: 

1. If the sets of secrets and shares are countable (that is, of the same cardinality 
as the integers), then no (~,,  ct) secret-sharing schemes exist for any n > 2, a 
good family ~ , ,  and c~ _ 1. 

2. If the sets of secrets and shares have cardinality N (the cardinality of the reals), 
then o~, perfect secret-sharing schemes exist for any good family o~,. 

As we deal with infinite domains, we require that the probability measure defined 
over these spaces satisfies a-additivity [6, p. 19]. That is, if A l, A 2 . . . .  is a sequence 
of disjoint measurable sets, then Pr(UF= x Ai )=  }-'~'=t Pr(Ai). In particular, if 
Pr(Ai) = 0 for all i, then the probability of their union is also 0. 

A perfect private-key encrption scheme [15] is an encryption scheme where an 
eavesdropper gets no partial information about the plaintext by examining the 
ciphertext. Again, the notions used are not complexity-based but rather information 
theoretic. The classical example of a perfect private-key encryption scheme is the 
Vernam "one-time pad." This scheme is perfect provided all messages are of equal 
length. Otherwise ciphertexts encrypting different length plaintexts could be distin- 
guished merely by observing the length of the ciphertext. A simple counting argu- 
ment would show that it is not possible to have a perfect private-key encryption 
scheme over all strings and still bound the length of all possible ciphertexts of any 
individual string. Here, we show that even if no such bound is assumed, perfect 
private-key encryption over a countable domain is not possible. This holds even for 
schemes where a key is used just once, to encrypt a single plaintext. Interestingly, 
the proof is by a reduction to the problem of secret sharing and is thus valid for an 
appropriately defined notion of a weak private-key encryption scheme. Again, we 
complement this result by giving a perfect private-key encryption scheme over the 
reals. 

The remainder of this paper is organized as follows: in Section 2 we discuss 
secret-sharing schemes over countable domains. Section 3 deals with private-key 
encryption schemes over countable domains. Finally, in Section 4 we treat the case 
of real domain. 

Chronological Remark. Results which are closely related to ours have appeared 
in two papers by Blakley and Swanson [8], [9]. Our results are more general, as 
they apply to weak, 9eneralized secret-sharing and weak encryption schemes, while 
those of [8] only apply to perfect, threshold schemes and perfect encryption schemes. 
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Our proofs are entirely different and substantially simpler than those in [8] and 
[9]. In addition, the statement of the main impossibility result (our Theorem 1) 
seems to require fewer conditions than the statement appearing in Theorem 5.1 of 
I-8]. 

2. Secret Sharing over Countable Sets 

In this section we deal with secret-sharing schemes in which both the secrets and 
the shares are taken from countable sets. We prove that such schemes do not exist. 

Clearly, if the set of secrets is infinite, then the set of shares must be infinite too. 
Otherwise, if there are only m possible shares, they can encode at most m" secrets. 
Therefore if we are interested in countable sets of secrets (such as the set of all 
integers or the set of all strings), then the set of shares must be at least countable 
too. It is also easy to see that no secret-sharing scheme can map every n bit long 
secret s into shares of length less than or equal to f(n) for any function f(n). (This 
observation is used, in a different context, in Theorem 4.2 of [I].) However, in this 
section we show that a countable set of shares is not enough even if there is no 
bound on the length of possible shares. 

The first lemma claims that if there exists a (~,,  ~) secret-sharing scheme over a 
set A, then there also exists a (2, 2, ~) secret-sharing scheme (that is, a 2 out of 2 
threshold scheme) over the set A. This can be considered as a complementary result 
to a result of Benaloh and Leichter [5] which shows how to use a (2, 2) perfect 
threshold scheme in order to construct ~-n perfect secret-sharing schemes for any 
good d7 n. 

Lemma 1. Let A be a set of secrets. Let n >_ 2 and ot >_ 1. Let ~ ,  be a good family. 
I f  there exists a (~n, ct) secret-sharing scheme over the set A, then there exists a 
(2, 2, ~) threshold scheme over the set A. 

Proof. By the assumption that o~, is good there exists a set T e  o~, such that 
[T[ >_ 2 and such that every D ~ T satisfy D ~ o~,. Let ~Z~ ~ O1 ~ T, and let 0 2 -= 

T \ D  l . Clearly, D 1 , D 2 ~ ,-~n, and D 2 ~ ~ .  
The (2, 2, e) threshold scheme will work by generating the n shares s I . . . . .  sn as 

in the (o~,, ct) secret-sharing scheme. The first share in the new scheme will be all the 
shares corresponding to parties in D 1 in the original scheme (i.e., {si}i~,) .  The 
second share in the new scheme will be all the shares corresponding to parties in 
D 2 in the original scheme (i.e., {Si}i~D2). The two new shares determine what the 
secret is. This is because these shares carry the same information that the shares of 
D 1 w D 2 = T have in the original ( ~ ,  ct) scheme, and T is a "legal" set (that is, 
T e o~). On the other hand, for every secret a • A and for every possible shares 
{si}i~D, the probability Pr({si}i~olla) in the new scheme is exactly the same as in 
the original scheme, and therefore the condition 

1 
~" Pr({s,},~o. la2) < Pr({s,},~D. lal) < c¢. Pr({s,},~o~ la2) 
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still holds for every two secrets al ,  a2 e A. This implies that the first share of the 
new scheme does not reveal "too much" information about the secret, since it carries 
the same amount  of information as the shares of D~ have in the original scheme. A 
similar argument holds for the second share (consists of the shares of D 2 in the 
original scheme). Therefore the new scheme is a (2, 2, ct) threshold scheme. [] 

It is also important to note that if the set of shares in the original scheme is infinite, 
then the set of shares in the new (2, 2) threshold scheme has the same cardinality. 

Theorem 1. Let A be a countable set. Let n >_ 2, ct _> 1, and ~ ,  be a good family of 
sets. Then there is no (J~, ~) secret-sharing scheme distributing secrets taken from A 
using shares taken from a countable set. 

Proof. Assume, toward a contradiction, that for some n, ct, and og, as above there 
exists a ( ~ ,  ~) secret-sharing scheme. By Lemma 1, this implies the existence of a 
(2, 2, ~) threshold scheme. Denote by h the function which reconstructs the secret 
from the two shares (h: B1 x B2 ~ A). Recall that a (2, 2, ct) threshold scheme on the 
set A is a probability distribution H which defines, for every secret a and every pair 
of "shares" (s~, s2), the probability Pr((sx, s2)[a ) in a way that: 

(1) If h(sl, s2) ~ a, then Pr((sl, s2)la) = 0. 
(2) Any two secrets a~ and a2, and any share s2 e B2, satisfy 

Pr(s21al) = ~ Pr((sl, s2)Jal) < ~ ct'Pr((sl, s2)laz) = ct'Pr(s2la2). 
sI E B1 sl e B 1 

(3) Any two secrets al and a2, and any share s~ ~ B1, satisfy 

P r ( s l l a l ) =  ~ Pr((sl, s2)lal) < ~ ~'Pr((sx,s2)la2)= ~'Pr(slla2). 
$2 e B 2 $2 ~--R2 

Let ao E A be an arbitrary secret. Since BI and B 2 a r e  countable (and so is Bx x B2) 

there must be a pair of shares (s~, s~) such that Pr((s'l, s~)la0) > 0 (otherwise as 
B x x B 2 is countable then by a-additivity the secret a o could not be shared). Let e 
denote Pr(s'llao) > 0. From (3), for every a e A we have Pr(s'lla) > e/~. Given any 
secret a e A, we define 

n~ = {s2lh(s~, s2) = a}. 
Then 

2 
s2e/3~ 

That is, 

Pr(s2la)= Z ~ Pr((sl,s2)la) 
s 2 e a ~  s~ eB~ 

>__ ~' Pr((s~, s2)la ) 
s2 e B~ 

= Pr(s'l ]a) (by the B~ definition) 

~ - - .  
t~ 

Pr(s2la) ~ - .  
s2eB~ OC 

(,) 



92 B. C h o r  a n d  E. K u s h i l e v i t z  

Also note that by the B~ definition the sets B~' and B22 are disjoint for any two secrets 
al :~ a2, and furthermore 

Thus 

(_) B~ = B2. (**) 
a~A 

1 =  y '  Pr(s21ao) 
s2 6 B2 

= ~ }-" Pr(s2lao) 
aEA s2eB~ 

> Z Z -l 'pr(szla) 
a~ A  szEB~ O~ 

1 
= ~A ~" 2Z., Pr(szla) 

(by (**) and a-additivity) 

(by (2)) 

> ~ ~ (by (,)) 
aEA 

= ~ (since A is infinite). 

Contradiction. [] 

The intuition behind the proof is that over the Cartesian product of two countable 
domains, it is not possible to assign any probability distribution where a countable 
number of points get nonzero mass and the projection on any single coordinate is 
"almost" uniform. 

3. Perfect Encryption over Countable Sets 

In this section we deal with perfect and "almost-perfect" private-key encryption 
schemes. We show that there is no such scheme which encrypts an arbitrary string 
using a string. We start with the formal definitions: 

A private-key encryption scheme consists of three parts: 

(1) A way of choosing keys from a set K. This way is expressed by a probability 
distribution rI over the set K. 

(2) A private-key encryption function E that takes a plaintext p and a key k and 
produces a ciphertext c (that is, E(p, k) = c). 

(3) A decryption function D that takes a ciphertext c and a key k and produces 
the original plaintext p (that is, D(E(p, k), k) = p). 

Let c~ > 1. An encryption scheme is called c~-weak if it also satisfies: 

(4) For every two possible plaintexts Pl and P2 and every ciphertext c, an eaves- 
dropper does not learn from the ciphertext "too much" information about 
which of the two is the plaintext that was sent. Formally: 

1 
- '  Pr(clP2) < Pr(clpl) < ct. Pr(clP2). 
Ct 
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For ~ = 1 an or-weak encryption scheme is called perfect. Intuitively, in such a 
case an eavesdropper does not learn from the ciphertext any information about 
which is the plaintext that was sent. 

We stress again that this definition is valid even if no probability distrubition on 
plaintexts is assumed. In case such a probability distribution exists, then (4) with 
c~ = 1 is equivalent to Shannon's definition [15] stating that every plaintext p and 
every ciphertext c satisfies Pr (p lc)=  Pr(p). That is, the a priori probability of 
the plaintext equals the a posteriori probability of the plaintext after seeing the 
ciphertext. 

The most famous perfect private-key encryption scheme is the "one-time pad" 
system which enables a user A to send any plaintext (of the same length as the key) 
to a user B in a way that an eavesdropper cannot get any information about the 
plaintext. The claim of our theorem is that there is no perfect private-key encryption 
scheme for encrypting arbitrary strings. We emphasize that this is true even though 
ciphertexts corresponding to a single plaintext can have unbounded length. 

Theorem 2. Let c~ >_ 1 and let K, P, and C be countable sets of possible keys, 
plaintexts, and ciphertexts (respectively). Then there is no a-weak private-key en- 
cryption scheme encryptin9 plaintext taken from P usin9 keys from K and ciphertext 
from C. 

Proof. The idea is to show that if an or-weak encryption scheme exists, then a 
(2, 2, ct) secret-sharing over countable sets of secrets and shares exists. This is done 
by observing that an or-weak private-key encryption scheme is a special case of a 
(2, 2, ct) secret-sharing scheme, in which one of the shares (the key) is chosen before 
the secret is known. 

We assume the existence of an a-weak encryption scheme and we construct the 
following (2, 2, ct) secret-sharing scheme for distributing a secret p taken from the 
countable set P: the share of the first participant, /1, will be a k E K chosen 
according to the probability distribution rI, and the share of the second participant, 
P2, will be c = E(p, k). Clearly, P1 and P2 together can reconstruct p, since D(c, k) = 
p. The participant P, does not learn anything about p since k is chosen independently 
from p. That is, Pr(klpl ) = Pr(klP2). In addition, P2 does not learn "too much" about 
p since according to condition (4) of or-weak encryption schemes 1/~. Pr(clp2) < 
Pr(clp,) < ~" Pr(clP2). [] 

4. Secret Sharing over the Reals 

In this section we deal with secret-sharing schemes over the real numbers. Although 
it has no practical implications, it is interesting to ask the question whether secret- 
sharing schemes do not exist over every infinite set, or mdybe some properties of 
countable sets are the cause of the results of Section 2. 

We introduce a simple secret-sharing scheme using real numbers. Since there is 
a 1-1 and onto transformation from the real numbers to the unit interval [0, 1), it 
is more convenient to use this interval as the set of secrets. We use the same interval 
as the set of shares, as it allows us to use the uniform probability distribution. 
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We first have to define what we mean by a secret-sharing scheme over the reals. 
More specifically, we have to define what we mean by saying that no "illegal" set 
(i.e., T ¢ o~) of shares reveals any information about  the secret. All the schemes we 
present in this section are perfect (c~ = 1), and therefore c~ is omitted from the 
notations. The following natural definition is used: 

For  every two secrets al ,  a2 E A, for any set of indices T ¢ o~,, and for any I Tl-tuple 
of measurable sets {Ci}~ r __c_ [0, I) the following holds: 

Pr(¥i ~ T: s i ~ Cilal) = Pr(Vi E T: si ~ Cila2). 

We can now present a secret-sharing scheme for every good family of sets o~, (n > 2), 
using ideas that were used in the finite case [41, [5]. We first introduce a (k, k) 
secret-sharing scheme which distributions a secret a taken from the interval [0, 1). 
We use the Legesgue measure on [0, l). 

1. Choose independently, with a uniform distribution, k -  1 real numbers, 
sl . . . . .  sk-1, in the interval [0, 1). 

2. Choose Sk E [0, 1) which satisfies sl + "'" + Sk-~ + Sk = a (mod 1). 

The proof  that this is indeed a secret-sharing scheme is similar to the proof of its 
analogue in the finite case. 

For  introducing an Y, secret-sharing scheme for every good family of sets ~ , ,  we 
observe that the same technique described in [5] works here as well. 

Corollary 3. Let  ~ ,  be a good family  o f  sets (n > 2). There is an o~ (perfect) 
secret-sharing scheme for  distributing secrets taken f rom a countable set using shares 
which are real numbers. 

We can arbitrarily embed the countable set of secrets in the interval [0, 1), and 
distribute the result according to the above scheme. It is easy to see that the result 
is a secret-sharing scheme. (Note that the shares in this scheme are real numbers, 
thus this does not contradict the results of Section 2.) Similarly, it is possible to 
construct perfect private-key encryption schemes with keys uniformly distributed 
in [0, 1). 

The difference between the case of countable sets and the case of the real numbers 
stems from different properties of the cardinalities No and N. Our  results were 
generalized to other infinite cardinalities by Ben-David [2]. 

Acknowledgments 

We would like to thank Shai Ben-David, Oded Goldreich, and Hugo Krawczyk for 
helpful discussions on the topics of this paper. We would also like to thank Bob 
Btakley for acquainting us with his work [83, [93. 

References 

[1] Abadi, M., J. Feigenbaum, and J. Kilian, On Hiding Information from an Oracle, J. Comput. System 
Sci., Vol. 39, No. 1, pp. 21-50, 1989. 

[2] Ben-David, S., Private communication. 



Secret Sharing Over Infinite Domains 95 

[3] Ben-or, M., S. Goldwasser, and A. Wigderson, Completeness Theorems for Non-Cryptographic 
Fault-Tolerant Distributed Computation, Proc. 20th Syrup. on Theory of Computing, pp. 1-10, 
1988. 

[4] Benaloh (Cohen), J. D., Secret Sharing Homomorphisms: Keeping Shares of a Secret Secret, 
Advances in Cryptography--Crypto 86 (Proceedings), A. M. Odlyzko (ed.), pp. 251-260, Lecture 
Notes in Computer Science, Vol. 263, Springer-Verlag, Berlin, 1987. 

[5] Benaloh, J., and J. Leichter, Generalized Secret Sharing and Monotone Functions, Advances in 
Cryptography--Crypto 86 (Proceedings), A. M. Odlyzko (ed.), pp. 213-222, Lecture Notes in 
Computer Science, Vol. 263, Springer-Verlag, Berlin, 1987. 

[6] P. Billingsley, Probability and Measure, Wiley, New York, 1979. 
[7] Blakley, G. R., Safeguarding Cryptographic Keys, Proc. NCC AFIPS 1979, pp. 313-317, 1979. 
[8] Blakley, G. R., and L. Swanson, Security Proofs for Information Protection Systems, Proc. IEEE 

Symp. on Security and Privacy, 1981, pp. 75-88. 
[9] Blakley, G. R., and L. Swanson, Infinite Structures in Information Theory, Proc. Crypto 82, 

pp. 39-50. 
[10] Goldreich, O., S. Micali, and A. Wigderson, How To Play Any Mental Game, Proc 19th Syrup. on 

Theory of Computing, pp. 218-229, 1987. 
[11] Ito, M., A. Saito, and T. Nishizeki. Secret Sharing Schemes Realizing General Access Structure, 

Proc. IEEE Global Telecommunication Conf., Globecom 87, pp. 99-102, 1987. 
[12] Kothari, S. C., Generalized Linear Threshold Scheme, Advances in Cryptography--Crypto 84 

(Proceedings), G. R. Blakey and D. Chaum (ed.), pp. 231-241, Lecture Notes in Computer Science, 
Vol. 196, Springer-Verlag, Berlin, 1985. 

[13] Rabin, M. O., Randomized Byzantine Generals, Proc. 24th Syrup. on Foundations of Computer 
Science, pp. 403-409, 1983. 

[14] Shamir, A., How To Share a Secret, Comm. ACM, Vol. 22, 1979, pp. 612-613. 
[15] Shannon, C. E., Communication Theory of Secrecy Systems, Bell System Tech. J., Vol. 28, 1949, 

pp. 657-715. 
[16] Stinson, D. R., and S. A. Vanstone, A Combinatorial Approach to Threshold Schemes, SIAM J. 

Discrete Math., Vot. 1, 1988, pp. 230-236. 


