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ABSTRACT. A critical set in a latin square is a partial,..latin 
square which has a unique completion. In this paper we demon
strate how critical sets can be used in the design of secret shar
ing schemes. 

1. Introduction 

In information based systems, the integrity of the information is com
monly provided for by requiring that certain operation(s) can be carried 
out only by one or more participants who have access rights. Access is 
gained through a key, password or token, and governed by a secure key 
management scheme. If the key or password is shared between several par
ticipants in such a way that it can be reconstructed only by a sufficiently 
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large and responsible group acting in agreement, then a high degree of se
curity is attained. Shared security systems, of this sort, are also used in 
financial institutions, in communication networks, in computing systems 
serving educational institutions and distribution environments. However 
the best known examples of applications of shared security systems are in 
the military: For instance, in activating a nuclear weapon, several senior 
officers must concur before the necessary password can be reconstructed. 
Shared secret schemes were first introduced by Blakley [2], Shamir [14], and 
Chaum [4], in 1979, and subsequently have been studied by numerous other 
authors. For a general discussion of shared secret schemes see Simmons [16]. 
A number of mathematical structures have been used to model shared secret 
schemes. Some of these are polynomials, geometric configurations, block 
designs, Reed-Solomon codes, vector spaces, matroids, near-right fields, 
complete multipartite graphs and orthogonal arrays. 

In most real-world applications there is also a need for a hierarchy to 
be built into the shared security system. That is, the key and password 
is shared between s individuals of rank 1, ... , r so that if a person of rank 
i is incapacitated, then a person of rank j ~ i, or a set of individuals of 
rank l < i, may replace the lost data. Brickell [3]' Simmons [15] and [16], 
and Beutelspacher [1], have adapted the basic schemes and constructed 
multilevel systems. In this paper, we will show how general shared secret 
schemes can be modeled on latin squares and demonstrate how these can 
be adapted to realize multilevel schemes. 

A secret sharing scheme is a method whereby n pieces of information 
called shares or shadows are assigned to a secret key K. The shares have the 
property that certain authorized groups of shares can be used to reconstruct 
the secret key. The secret cannot be reconstructed from an unauthorized 
group of shares. The recipients of the shares are called the participants in 
the scheme. The set of participants is denoted by P. We let l den~e the 
number of participants in the scheme; that is, IPI = l. The access structure 
or concurrence scheme, r, of a secret sharing scheme is a subset of the power 
set of P. The elements of the access structure are the authorized groupings 
of participants whose shares can be used to reconstruct the secret. An 
access structure is said to be monotone if for any subsets Band C of P, 
where B ~ C and B E r, then C E r. If, in a secret sharing scheme, the 
access structure is the set r = {A ~ Pit ~ IAI}, then the secret sharing 
scheme is said to be a t-out-of-l secret sharing scheme. A t-out-of-l secret 
sharing scheme is a method where by l pieces of information called shares 
or shadows in a secret key K are distributed in such a way that 

• the secret can be reconstructed from knowledge of any t or more 
shares, and 

• it cannot be reconstructed from knowledge of fewer than t shares. 
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Such secret sharing schemes are said to be simple and referred to as t
out-oJ-I threshold schemes (or (t, l)-threshold schemes) with threshold t. A 
secret sharing scheme is said to be perfect if a participant, or an unautho
rized group of participants, has no advantage in guessing the secret over an 
outsider. Therefore a t-out-of-l secret sharing scheme is perJect if 

• knowledge of fewer than t shares provides no information about K. 

There is a definite need, particularly in the commercial arena, to develop 
multilevel schemes in which the participants have differing capabilities when 
reconstructing the secret. In an intrinsic scheme the capabilities of the par
ticipants when reconstructing the secret are a function of the information 
content of the shares. In such schemes, two or more shares may be assigned 
to one participant. However, this increases the complexity of the shares and 
so decreases the ability of a participant to handle the shares securely. In an 
extrinsic scheme the participants' differing capabilities when reconstruct
ing the secret are a function of the relationship between the shares and 
not a function of the information content of the shares. We deal only with 
extrinsic schemes and give the following formal definition of a multilevel 
scheme. In a multilevel or hierarchical scheme the participants are ranked 
and placed in levels rl, ... ,rw . We assume that there are li participants in 
level ri, for i = 1, ... ,w. So Li li = l. A secret key K is chosen and l pieces 
of related information distributed, one piece to each participant. This is 
done in such a way that the secret can be recovered from the shares of ti 
participants of rank rio However, an incapacitated participant of rank ri 
can be replaced by a participant of rank rj 2 ri, or at least two participants 
of rank less than rio 

2. Latin squares 

Our model for a secret sharing scheme is based on the following combina
torial structure. 

A latin square L, of order n, is an n x n array with entries chosen from 
a set, N, of size n such that each entry occurs precisely once in each row 
and column. For convenience, we sometimes talk of the latin square L as a 
set of ordered triples (i,j; k) and take this to mean that element k occurs 
in position (i, j) of the latin square L. If we index the rows and columns of 
an array by the set N = {O, 1, ... , n - I}, with n > 1, then the array with 
integer i + j(mod n) in position (i,j) is said to be a back circulant latin 
square. Table 1 shows a back circulant latin square of order 6. 
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0 1 2 3 4 5 
1 2 3 4 5 0 
2 3 4 5 0 1 
3 4 5 0 1 2 
4 5 0 1 2 3 
5 0 1 2 3 4 

Table 1. 

A partial latin square, of order n, is an n x n array with entries chosen from 
a set of size n in such a way that each entry occurs at most once in each 
row and at most once in each column. The partial latin square may contain 
a number of empty cells. We are interested in partial latin squares which 
satisfy the following properties. A critical set in a latin square L, of order 
n, is a set A = {(i,j;k) I i,j,k E {I, ... ,n}} such that 

1. L is the only latin square, of order n, which has element k in position 
(i,j) for each (i,j; k) E A, and 

2. no proper subset of A satisfies 1. 

A minimal critical set in a latin square L is a critical set of minimum 
cardinality. For example, the latin square representing the abelian 2-
group, of order 22 , is given in Table 2, on the left. A minimal critical 
set {(I, 1; 1), (1,2; 2), (2,4; 3), (3, 2; 4), (4, 3; 2)} for this latin square is given 
on the right. 

1 2 3 4 1 2 * * 
2 1 4 3 * * * 3 
3 4 1 2 * 4 * * 
4 3 2 1 * * 2 * 

Table 2. 

We also require the definition of an isotopic latin square and the corre
sponding definitions for critical sets. Two latin squares Land M are said 
to be isotopic or equivalent if there exists an ordered triple (a, (3, ,), of 
permutations, such that a, (3, , map the rows, columns, and elements, 
respectively, of L onto those of M. That is, two latin squares are isotopic, 
if one can be transformed onto the other by rearranging rows, rearranging 
columns or renaming elements. (For more details see [9]' pages 23 and 124.) 
Two critical sets A and B are said to be isotopic if there exists an ordered 
triple of permutations (a, (3, ,) which maps the entries of A onto B such 
that, for all (x, y; z) E A, (xa, y(3; z,) E B. 
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There is not a lot known about critical sets for latin squares in general. 
Results on critical sets for latin squares have appeared in papers by Cooper, 
Donovan and Seberry [5], Donovan, Cooper, Nott and Seberry [6], NeIder 
[11] and [12], Colbourn, Colbourn and Stinson [7], Curran and van Rees 
[8], Smetaniuk [171, Stinson and van Rees [18] and Street [20]. However, 
a class of critical sets is known for back circulant latin squares. For back 
circulant latin squares of even order Curran and van Rees [8] showed that 
the following set is a minimal critical set . 

• Let n = 2m, for some positive integer m, and 

C = {(i,j;i+j) I i=0, ... ,n/2-1 
and j = 0, ... , n/2 - 1 - i} U 

{(i,j;i+j) I i=n/2+1, ... ,n-1 
and j = n/2 - i, ... , n -I}, 

where addition of the last component is taken modulo n. Then C is 
a minimal critical set in a back circulant latin square of order n. The 
cardinality of this set is n 2 / 4. 

They also obtained the following result for back circulant latin squares of 
odd order . 

• A back circulant latin square, of odd order n = 2m + 1, is the only 
latin square which contains the set 

C {(i,j;i+j) I i=0, ... ,(n-3)/2 
andj=0, ... ,(n-3)/2-i} U 

{(i,j;i+j) I i=(n+1)/2+1, ... ,n-1 
and j = (n - 1)/2 - i, ... ,n -I}. 

The cardinality of this set is (n2 - 1)/4. 

Cooper, Donovan and Seberry [5] subsequently showed that this set is a 
critical set. Donovan, Cooper, Nott and Seberry [6] have also shown that 
given a latin square L and a critical set A in L, then a class of critical sets 
in L may be obtained by taking certain isotopic images of A. Similarly a 
class of critical sets in L may be obtained by taking certain conjugates of 
A. 

3. Proposed scheme 

A secret sharing scheme can be constructed in which the secret key is a latin 
square L, of order n. This scheme exhibits the following characteristics. 
The latin square is taken to be the secret key and therefore kept private. 
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However, the order of the latin square is made public knowledge. The 
shares in the secret are based on a partial latin square S = {UAi I Ai 
is a critical set in L}. The union can be taken over all possible critical 
sets in L or over some subset of critical sets. The number of critical sets 
used will be dependent on the size of the latin square and the number of 
participants in the secret sharing scheme. The access structure will be the 
set r = {B I B ~ Sand B :2 A where A is some critical set in L}. One can 
easily see that r is monotone. The protocol for a secret sharing scheme, 
involving 1 participants and based on a latin square is as follows. 

Protocol: 
• A latin square L of order n is chosen. The number n is made public, 

but the latin square L is kept secret and taken to be the key. I 

• A set S which is the union of a number of critical sets in L is defined. 

• For each (i,j; k) E S, the share (i,j; k) is distributed privately to a 
participant. 

• When a group of participants whose shares constitute a critical set 
come together, they can reconstruct the latin square L and hence the 
secret key. 

We will demonstrate how the scheme works on a few small examples and 
then give a more general construction. 

Take the latin square of order 3 given in Table 3. 

1 2 3 
2 3 1 
312 

Table 3. 

Let S= {(2, 1; 2), (3,2; 1), (1,3; 3)}. We can construct a 2-out-of-3 secret 
sharing scheme on this set. The secret is taken to be the latin square given 
above. When any two participants come together they combine their shares 
and reconstruct the unique latin square containing their shares. 

For a slightly larger example, take the latin square given in Table 2. 
Let S be the partial latin square {(I, 1; 1), (1,2; 2), (2,4; 3), (3,2; 4), (4,3; 2), 
(1,3; 3), (1, 4; 4), (2,2; 1), (3,4; 2), (4, 1; 4)}. All parties are told that the or
der of the latin square is 4. Each participant is given a share (i,j;k), for 
one such element of S. In order to recover the secret an authorized group 
of participant must place their shares in a partial latin square. They then 
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reconstruct the unique latin square containing these elements. These au
thorized groups are based on the critical sets contained in S. Some of the 
critical sets contained in S are 

Al = {(I, 1; 1), (1, 2; 2), (2,4; 3), (3,2; 4), (4,3; 2)}, 

A2 = {(I, 1; 1), (1, 3; 3), (2,4; 3), (3,2; 4), (4,3; 2)}, 

A3 = {(I, 1; 1), (1,4; 4), (2,4; 3), (3, 2; 4), (4,3; 2)}, 

A4 = {(I, 1; 1), (2, 2; 1), (2,4; 3), (3, 2; 4), (4,3; 2)}, 

A5 = {(I, 1; 1), (3,4; 2), (2,4; 3), (3,2; 4), (4,3; 2)}, 

A6 = {(I, 1; 1), (4, 1; 4), (2,4; 3), (3,2; 4), (4,3; 2)}, 

A7 = {(I, 3; 3), (1,4; 4), (2,2; 1), (3,4; 2), (4, 1; 4)}, 

As = {(I, 3; 3), (1,1; 1), (2,2; 1), (3,4; 2), (4, 1; 4)}. 

Now for a more general example. Let L be a latin square isotopic to" 
a back circulant latin square of order nand C an appropriate critical set 
isotopic to the set given by Curran and van Rees. Define C = {CJ I CJ is 
the conjugate or isotopic image of C}. Let SJ = {CJ I CJ E C and CJ is a 
critical set in L}. We may now use the protocol given above to construct a 
secret sharing scheme where the shares are drawn from the set SJ. 

The following points should be made about the secret sharing scheme. 

• Since the authorized groups are based on critical sets in latin squares, 
the absence of one share implies that the secret cannot be recovered 
uniquely. 

• The scheme is obviously not perfect as an outsider must guess from the 
set of all possible latin squares of order n, whereas an unauthorized 
group of participants knows that the latin square must contain the 
partial latin square defined by their shares. 

• The security of the scheme is based on the number of possible latin 
squares containing the partial latin square defined by an unauthorized 
group of participants. Rezny [13] has estimated this for a number of 
back circulant latin squares of small order. He took the critical set 

C = {(i,j;i+j) I i=O, ... ,(n-3)/2 
andj=O, ... ,(n-3)/2-i} U 

{(i,j;i+j) I i=(n+l)/2+1, ... ,n-l 
and j = (n -1)/2 - i, ... ,n -I}. 

and for n = 3, 5, 7, 9 and 11 he systematcially removed an element 
from C and used a computer to obtain the number of latin squares 
which contain C \ {(i,j; k)}, for some element (i,j; k) of C. Rezny's 
results are summarized in Table 4. 
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n Number oflatin squares containing the set C \ {(i, j; k)} 
3 4 
5 32 
7 ~ 880 
9 

11 

4. Multilevel scheme 

> 75232 
~ 19000000 

Table 4. 

In many situations we require a secret sharing scheme in which some shares 
are more equal than others. That is, we require a multilevel scheme. As 
stated earlier, these schemes incorporate levels each of which has a nurilber 
of authorized groups who can reconstruct the secret. However, for the sys
tem to be truly functional we also require that the share of a participant at 
level i can be replaced by two or more participants at a lower level. Consider 
the case of an electronic transfer of funds between financial institutions. 
This transfer can only be initiated when a electronic signature is received. 
The signature will be reconstructed when the shares of two senior tellers 
and one vice president, or two vice presidents, are entered. We can use the 
latin square given in Table 3 to construct a secret sharing scheme which 
satisfies these requirements. Let S= {(2, 1; 2), (3,2; 1), (1, 1; 1), (1,2; 2)}. 
The access structure for this scheme will be based on the critical sets 

Al = {(I, 1; 1), (1, 2; 2), (2,1; 2)} 
A2 = {(l, 1; 1), (1, 2; 2), (3, 2; I)} 
A3 = {(3, 2; 1), (2, 1; 2)}. 

The latin square can be reconstructed from the shares (2,1; 2) and (3,2; 1). 
However either of these two shares can be replaced by the two shares (1, 1; 1) 
and (1,2; 2). To satisfy the requirements of the model we could distribute 
the shares as follows: 

1. The senior tellers each receive a share corresponding to one of the 
triples (1,1; 1) and (1,2; 2), respectively, and 

2. the vice presidents each receive a share corresponding to one of the 
triples (2,1; 2) and (3,2; 1), respectively, 

thus satisfying the requirement. 

5. A further application 

Consider the situation where there are a number of secret sharing schemes 
all of which contain a common participant. This participant may be re-

40 



quired to remember a number of shares. For example, a medical adminis
trator may require access to several restricted files. These files may con
tain, say, patient data, hospital resources and organ bank data. Access 
to these files may be via a secret sharing scheme in which the registrar of 
the hospital always has a critical share. The registrar may be required to 
remember several different shares. This obviously increases the complexity 
of the registrar's role and consequently reduces the security of the schemes. 
Therefore we wish to develop a key management scheme in which a secret 
key is common to a number of secret sharing schemes. The shares related, 
to this key are such that a primary share is held by one participant and 
this share is a necessary part of the reconstruction process in each scheme. 
Each scheme will involve a number of minor shares which when combined 
with the primary share can be used to reconstruct the secret. In addition it 
is required that the secret cannot be recovered uniquely from the combined 
information held by the minor shares. 

Inequivalent critical sets in a latin square can be used to model a key 
management scheme of this nature. We illustrate this with an example. 
Take the latin square of order 5 given in Table 5. 

1 2 3 4 5 
2 1 4 5 3 
3 5 1 2 4 
4 3 5 1 2 
5 4 2 3 1 

Table 5. 

Using results obtained by Cooper, Donovan and Seberry in [5] and the 
computer program nauty [10] it can be shown that there are 41 distinct 
minimal critical sets of order 7, three of these are listed below. 

Al = ({I, 1; 1), (2, 5; 3), (3, 5; 4), (4, 2; 3), (4, 3; 5), (5, 1; 5), (5,3; 2)} 

A2 = ({I, 1; 1), (1,5; 5), (3, 2; 5), (3, 5; 4), (4, 2; 3), (5,3; 2), (5,4; 3)} 

A3 = ({I, 1; 1), (1, 5; 5), (3,4; 2), (4, 2; 3), (4, 5; 2), (5,2; 4), (5,4; 3)} 

Each department is assigned a different critical set Ai with the common 
participant receiving a share common to each Ai. In this case the registrar 
will be given the share (1,1; 1). All departments will reconstruct the same 
secret, but each has a different sets of keys to this secret. However if all 
participants in the minor levels pool their information the secret cannot 
be reconstructed uniquely. To see this consider the partial latin square 
containing all the minor shares. 
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* 
* 
* 
* 
5 

* 
* 
5 
3 
4 

* 
* 
* 
5 
2 

* 
* 
2 

* 
3 

5 
3 
4 
2 

* 

It is not a critical set as it has four completions. 

This key management system can be adapted to allow each department 
a different secret, but still have a common primary share. This idea can be 
extended further to each department's having a latin square of a different 
order. 

6. Concluding comments 

In this paper we have proposed a viable secret sharing scheme based on 
latin squares. Unfortunately, not a great deal is known about critical sets 
for latin squares and so the implementation of this scheme is limited at the 
present time. One obvious direction for future research is the construction 
of general families of critical sets for latin squares. Another is to investigate 
the structure of these critical sets to see if it is possible to construct general 
t-out-of-l perfect threshold schemes from latin squares. Stinson [19]' and 
others have been studying the information rates of secret sharing schemes. 
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