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Secret Sharing Schemes Based on Room Squares

Ghulam Rasool Chaudhry and Jennifer Seberry

The Centre for Computer Security Rescarch
Department of Computer Science
University of Wollongong
Wollongong, NSW 2522, AUSTRALIA

Abstract. In this paper, we describe seeret sharing schemes. We dis-
cuss Room squares and their critical sets. We propose a model of secret
sharing based on critical sets of Room squares.

1 Introduction

In information based systems, the integrity of the information is commonly pro-
vided for by requiring that certain operation(s) can be carried out ouly by one or
more participants who have access rights. Access is gained by a key, password or
token, and governed by a secure key management scheme. If the key or password
is shared between several participants in such a way that it can be recoustructed
only by a responsible group acting in agreement, then a high degree of security
is attained. Shared security systems, of this sort, are also used in financial insti-
tutions, in communication networks, in computing systems serving educational
institutions and distribution environments. However, the best known examples
of shared security systems are in the military: for instance, in activating a nu-
clear weapon, several senior officers must concur before the necessary password
can be reconstructed.

We describe another situation which motivates the subject of secret sharing:

The head of an organization keeps wnportant documents in a safe of
which only he or she knows the combination. However, the heud is of-
ten absent for extended periods and occasionally information is needed
from documents in the safe in order to maintain the day-to-day running
of the organization. The head deems it undesirable for the combination
to be trusted to any one of the five executive board members. What is
regarded as acceptable, however, is a compromise situation whereby at
least two of the executive board members acting together can gain access
to the safe.

Can such a system be devised?

Figure 1 provides a system to solve the above problem. The lines and points
are chosen in projective space PG(2,q) where g > 5. It is publicly known that
the safe combination is a point on line [ but the actual point is kept secret.
Each of the five executives is privately given a point on line m and the safe
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Fig. 1. A projective space

combination is chosen to be point pg, the unique point of intersection of line m
and line . Any two executives can generate line m and hence evaluate po by
intersecting m and {. However, one exccutive acting alone knows ouly that the
safe combination must be one of the points on line I—the actual point remains
secret since for every point p on line [ there is a unique line passing through the
exccutive's point and p.

Secret sharing schemes are systems designed to solve problems of a similar
type to the one we have just discussed. In general, there is a group of potential
members of such a scheme and a collection of sets of these members which are
desired to have access to some protected information.

The information is protected by distributing to each member of the scheme
an amount of partial information which relates in some way to the protected
information. This partial information is known only to the individual member
to whorn it is distributed and it is held secret by them. When any group of mem-
bers of the scheme who are desired to have access to the protected information
choose to do so, they can reconstruct it by pooling their pieces of partial infor-
mation. Thus, in our opening problem, any two pieces of the partial information
distributed to the exccutives must be suflicient to enable the combination of the
safe to be determined.

Secret sharing schemes were first introduced by Blakley [2], Shamir [19] and
Chaum [4] in 1979, and subsequently have been studied by numerous other
authors. For a general discussion of shared secret schemes, sce Siimmons’ paper
[20]. A number of mathematical structures have been used to model shared
secret schemes. Some of these are polynomials, geometric configurations, block
designs, Reed-Solomon codes, vector spaces, matroids, near-right ficlds, complete
multipartite graphs, orthogonal arrays and Latin squares. In this paper, we will
model a new secret sharing scheme based on Room squares.

In most real-world applications there is also a need for a hierarchy to be built
into the shared security system. That is, the key and password is shared betwecn
s individuals of rank 1,...,7 so that if a person of rank 7 is incapacitated, then
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a person of rank 7 > ¢, or a set of individuals of rank { < 7, may replace the
lost data. Brickell [3], Sinumons [20] and Cooper, Donovan and Seberry [8] have
adapted the basic schemes and constructed multilevel schemes.

We shall now introduce a more formal terminology for secret sharing schemes.

2 Secret sharing schemes

A secret sharing scheme is a method of sharing a secret S among a finite set of
participants P in such a way that if the participants in 4 € P are qualified to
know the secret, then by pooling together their shares, they can reconstruct the
secret S; but any set B C P, which is not qualified to know S, cannot reconstruct
the secret. The key S is chosen by a special participant D called the dealer and
it is usually assumed that D ¢ P. The dealer gives partial information called a
share to each participant to share the secret S.

Secret sharing schemes are useful in any important action that requires the
concurrence of several designated people to be initiated as described in the ex-
amples in Section 1.

An access structure I' is the family of all the subsets of participants that
are able to reconstruct the secret. An access structure is said to be monotone if
any set which contaius a subset, that can recover the secret, can itself recover
the secret, that is, if for any subsets B and C of P, where B C C and B € T,
then C € I'. The subsets of P belonging to the access structure I" are called
authorized sets and those not belonging to the access structure are termed as
unauthorized sets.

Ezample 1. In Figure 1, the secret sets are the points on line [ and the secret is
the point pg. The shares are the five points on line m that are distributed to five
participants. Finally, observing that P is the set of five participants, we have the
access structure:

r={ACP:|4]>2}

One property of a monotone access structure is that it has a unique collection
of authorized sets of minimal size. We define B € I to be a mintmal set of I' if
C e IC C B implies C = B. The collection of all minimal sets of I' is denoted
by I'~. )

A (k,n) threshold scheme allows a secret to be shared among n participants
in such a way that any & of them can recover the secret, but no group of £ — 1,
‘or fewer participants, can do so.

A monotone access structure I' defined on a participant set P such that
[Pl =nand I' = {X C P :|X| > k} is known as (k,n) threshold access
structure.

Ezample 2. A Latin square of order n is an n x n array of the integers 1, 2, ...,
n such that each integer occurs precisely once in each row and each column. In
this example, we take a Latin square L of order 3 as a (2,3) threshold scheme.
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Let S = {(2,1;2),(3,2;1),(1,3;3)}, a partial Latin square, be the union of
some critical sets of L, where (2,1;2) means that integer 2 is at position (2,1),
(3,2;1) means that integer 1 is at position (3,2) and (1,3;3) means that integer 3
is at position (1,3) in the Latin square L. We can construct a 2-out-of-3 secret
sharing scheme on this set. The Latin square L is kept secret but its order is
made public. When any two participants from S collaborate, they combine their
shares and reconstruct the unique Latin square containing their shares.

A secret sharing scheme is sald to be perfect provided the following two
properties are satisfied:

(i) If an authorized subset of participants A C P pool their shares, then they
can determine value of the secret S.

(ii) If an unauthorized subset of participants B C P pool their shares, then they
can determine nothing more than any outsider about the value of the secret

S.

The security of such a scheme is unconditional since we do not place any limit
on the amount of computation that can be performed by a subset of participants.

The size of each share is defined as the number of bits s of non-redundant
information in the share. The size of the secret ¢ is the number of bits of non-
redundant information in the secret. How to exactly determine s and ¢t is not yet
known.

In a maultilevel scheme, the participants are ranked and placed in levels
T1,...,Ty. We assume that there are I; participants in level r; for i = 1,...,w.
So 3°1; = I. A secret key S is chosen and ! pieces of related information dis-
tributed, one piece to each participant. This is done in such a way that the secret
can be recovered from the shares of ¢; participants of rank r;.

3 Room squares

A Room square R of order 7 is an r x r array cach of whose cells may either
be empty or contain an unordered pair of objects 0,1,2,...,7, subject to the
following conditions :

(i) each of the objects 0,1,2,...,r occurs precisely once in each row of R and
precisely once in each column of R, and

every possible unordered pair of objects occurs precisely once in the whole
array.

’-

Theorem 1. (Mullin and Wallis [18]) There ezists a Room square of every
odd integer order r greater than or equal to 7.
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We denote N, = 0,1,2,..r. A Room square of order r based on N, is stan-
dardized if the ith diagonal cell, cell(s, 1), contains {0,i} for 1 <i <.

A skew Room square R is a standardized Room square with the property
that when @ # j, either the (Z,7) or the (j,7) cell of R is occupied, but not both.

Two Room squares are said to be isomorphic if one can be obtained from
" the other by permuting the rows and columns and relabeling the elements. Two
Room squares R and S are equivalent if R is isomorphic to S or to the transpose
of S. All inequivalent Room squares of order 7 and 9 have been found by one-
factorizations of graph, see [1, 11, 22] for details. There are exactly 6 inequivalent
Room squares of order 7 and 257,630 inequivalent Room squares for order 9. No
exact values of inequivalent Room squares are still known for higher order Room
squares, although there are :

526,915,620 non-isomorphic one-factorizations of order 11,
9.876 x 10*® distinct one-factorizations of order 13,
1.148 x 10* distinct one-factorizations of order 15,
1.520 x 10%3 distinct one-factorizations of order 17,

and the number of all inequivalent Room squares for each of these orders are
even much larger, see [10] for details.

A partial Room square R of order r is an r x r array each of whose cells may
either be empty or contain an unordered pair of objects O, 2,...,r, subject to
the following conditions :

(i) each of the objects 0,1,2,...,r occurs at most once in each row of R and at
most once in each column of 12, and

(ii) every possible unordered pair of objects occurs at most once in the whole
array.

A critical set Q = {Q;,Q2,Q3,...,Qc}, |@Q] = ¢, in a Room square R of order
r, is a set of quadruples Q, = (4,7;%,1) such that if any Q, is removed from
the set, it can no longer be uniquely completed. In Q,, (, j) shows the position
of the pair (k,l) in the square. That is, @ provides minimal informaticn from
which R can be reconstructed uniquely. In this paper, we consider that empty
positions with ‘-’ in the Room square are given.

Q* is a minimal critical set (min.cs) of a Room square R if [QF] = cis
minimum for all critical sets @ of a Room square of order r whereas Q* is a
mazimal critical set (maz.cs) of a Room square R if [Q*] = ¢ is the largest for
all critical sets @ of a Room square of order 7.

Ezample 3. Room square of order 7:

81— [4506,7]- -2,
57182 | - | - 11,314,6
~15,683/1.2| - 14,7] -
— 3,7 - 8426 - [1,5
3.6[1,4[2,7 - 85 - | -
241 - = [35(1,718,6] -
“T=116] - [342,58,7
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Critical set 1 of above square is:

B TLE[F* [ - [~ 2,3
FE R = 1= [1,34,6
~1**18,311,2| - 14,7] -
INEIIINELS 2.6 - 1,5

REER K] KK _ |
I EIE I I
(T3 FE | KE | F*

Critical set 2 of above square is:

*k EEIR S * %

EX3 8’2 *k k¥

I EE FYEY i) R
N N I T

K| KK | KX
- 185 -1~
X *F
- - 1,718,6) -
ET FF | KE [KF

”

where “*+” shows an unknown pair position and “~”" shows an empty position
in the square.

So the critical set 1 for the above Room square is: @ = {(1,3;4,5), (1,7;2,3),
(2,6;1,3), (2,7;4,6), (3,3;8,3), (3,4;1,2), (3,6;4,7), (4,5;2,6), (4,7;1,5)}. That is, Q
is the only Room square of order 7 with a pair 4,5 at position (1,3), pair 2,3 at
position (1,7), pair 1,3 at position (2,6), pair 4,6 at position (2,7), pair 8,3 at
position (3,3), pair 1,2 at position (3,4), pair 4,7 at position (3,6), pair 2,6 at
position (4,5) and pair 1,5 at position (4,7).

There is very little known about critical sets in Room squares. Chaudhry and
Seberry [5] studied critical sets in Room squares for orders 7, 9 and 11.

4 Proposed scheme

A secret sharing scheme can be constructed in which the secret key is a Room
square R of order r. This scheme exhibits the following characteristics: The
Room square is taken to be the secret key and therefore kept private."However,
the order of the Room square is made public. The shares in the secret are based
on a partial Room square S = {UA; | A; is a critical set in R }. The union
can be taken over all possible critical sets in R or over some subset of critical
sets. The number of critical sets used will be dependent on the size of the Roowmn
square and the number of participants in the secret sharing scheme. The access
structure will be theset I' = {B | B C S and B 2 A4 where A is some critical set
in R }. One can easily see that I" is monotone. The protocol for secret sharing
scheme, involving ! participants and based on a Room square is as follows.

~ A Room square R of order r is chosen. The number r is made public, but
the Room square R is kept secret to be the key.
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— A set S which is the union of a number of critical sets in R is defined.

— For each (¢,7;k,1) € S, the share (7,7;k,{) is distributed privately to a
participant.

— When a group of participants whose shares constitute a critical set come
together, they can reconstruct the Room square R and hence the secret key.

We demonstrate here how the scheme works on a small example and then
give a more general construction.

Take a Room square of order 7 given in example 3. Let S be the par-
tial Room square {(1,3;4,5), (1,7;2,3), (2,2;2,8), (2,6;1,3), (2,7;4,6), (3,3;8,3),
(3:4,1,2), (3,6:4,7), (4.2;3,7), (4,448), (5,55,8), (4,5:2,6), (4,7;1,5), (6,51,7),
(6,6;6,8) }. All the parties are told that the order of the Room square is 7.
Each participant is given a share (i, 7;k,1), for oue such element of S. In or-
der to recover the secret, an authorized group of participants must place their
shares in a partial Room square. They then reconstruct the unique Room square
containing these entries. These authorized groups are based on the critical sets
contained in S. Two of the critical sets contained in S are:

A1 =1{(1,3;4,5),(1,7;2,3),(2,6;1,3),(2,7;4,6), (3, 3;8,3),
(3,4;1,2),(3,6:4,7), (4,5;2,6), (4,7;1,5)}

Ay = {(212;2y8)7(31 3;8, 3)’(37 4 112)7(412; 3, 7)7
(4,4;4,8),(5,5;5,8),(6,5;1,7),(6,6;6,8)}

Note that |.4,] = 9 while J4,] = 8.

Now for a more general example. Let R be a Room square of order r and Q
be a critical set. Define Q = {Q’ | @’ is the isotopic image of Q}. Let §' = {Q' |
Q' € Q and Q' is a critical set in R}. We may use the protocol given above to
construct a secret sharing scheme where the shares are drawn from the set S’.

The following points should be made about the secret sharing scheme.

— Since the authorized groups are based on critical sets in Room squares, the
absence of one share implies that secret cannot be recovered uniquely.

—~ The scheme is obviously not perfect as an outsider can guess from the set
of all possible Room squares of order r, whereas an unauthorized group of
participants knows that the Room square must contain the partial Room
square defined by their shares.

~ The security of the scheme is based on the number of possible Room squares
containing the partial Room square defined by an unauthorized group of
participants.

— The number of inequivalent Room squares for higher order grows exponen-
tially as mentioned earlier. The number of inequivalent Room squares of
order greater than or equal to 11 are still unknown under the current com-
puting resources, although lower bounds on these numbers are known. So
the probability of guessing a secret key consisting of a Room square of order
greater than or equal to 11 is very very small, and the scheme is very secure
though not perfect.
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5 Key management scheme

In this section we consider the situations where there are a number of secret
sharing schemes all of which contain a common participant. This participant
may be required to remember a number of shares. For example, a medical ad-
ministrator (Registrar) may require access to several restricted files. These files
may contain, say, patient data, hospital resources and organ bank data. Access
to these files may be via a secret sharing scheme in which the registrar of the
hospital always has a critical role. The registrar always has to remember several
different shares. This obviously increases the complexity of the registrar’s role
and consequently reduces the security of the schemes.

. We wish to model a key management scheme in which a secret key is common
to a number of secret sharing schemes. The shares related to this key are such
that a primary share is held by one participant and this share is a necessary part
of the reconstruction process in each scheme. Each scheme will involve a number
of minor shares which when combined with the primary share can be used to
reconstruct the secret. It is also required that the secret can not be reconstructed
uniquely from the combined information held by the minor shares.

Inequivalent critical sets in a Room square can be used to model a key man-
agement scheme of this nature. We illustrate this with an example. Take the
Room square of order 7 given in example 3. Following are three distinct minimal
critical sets of this Room square which have the common pairs (3,3;8,3) and
(3,4;1,2).

Ar={(1,34,5),(1,7;2,3),(2,6; 1,3),(2,7:4,6),(3,3;8,3),
(3,4;1,2),(3,6:4,7),(4,52,6),(4,7;1,5)}

A2 = {(2,2,2,8),(3,3;8,3),(3,4;1,2), (4,23, 7),
(4,4;4,8),(5,5;5,8),(6,51,7),(6,6;6,8)}

Az ={(1,1;1,8),(1,3;4,5),(1,46,7),(2,1;5,7),(2,7;4,6),
(3,3;8,3),(3,4,1,2),(4,7;1,5),(1,5; 3,6), (6,6;6,8)}

Note that |A;] =9, |42| = 8 and |A;3] = 10.

Each department is assigned a different critical set A; with the same partic-
ipant receiving a share which is common to each A;. In this case the registrar
will be given the common share (3,3;8,3) or (3,4;1,2). All departments will re-
construct the same secret, but each has a different set of keys to this secret.
However if all participants in the minor (lower than registrar) level pool their
shares, the secret cannot be reconstructed uniquely.

Another key management scheme can be developed to allow each department
a different secret, but still have a common primary share using inequivalent
Room squares of same order with some common pairs and same positions.

Multileve] schemes, based on critical sets of Room squares, can also be devel-
oped in which some participants are more important than others. In multilevel
schemes, the share of a participant at level j can be replaced by two or more
participants at level ¢, where i < j. Consider the case of an electronic transfer
of funds between financial institutions. This transfer can only be initiated when



166 CHAUDHRY and SEBERRY

an clectronic signature is received. The signature will be reconstructed when the
shares of two senior tellers and one vice-president or two vice-presidents, are
entered. Critical sets for Room squares fulfilling these requirements are still not
known.

6 Conclusion

In this paper, we have proposed a secret sharing scheme based on critical sets
of Room squares. Since there is very little known about critical sets of Room
squares, the implementation of this scheme is limited at the moment. However,
the directions for future research are:

— Construct families of critical sets for Room squares.

— Construct families of smallest and largest critical scts for Room squares
without a priori constraints on the Room square.

— Quantify the security of the scheme more effectively, that is, decide which
critical sets are more secure than others.

— Find a general process that will start with an access structure and result in
a Room square.

— Investigate the structure of critical sets from Room squares to see if possible
to construct perfect secret sharing schemes.

— Devise multilevel schemes based on critical sets of Room squares.

References

1. D. S. Archdeacon, J. H. Dinitz and W. D. Wallis. Sets of pairwise orthogonal one-
factorizations of R1o. Congr. Numer. 43 (1984), pp. 45-79.

2. G. R. Blakley. Safequarding cryptographic keys. Proc. AFIPS 1979 Natl. Computer
Conference, New York, 48, June (1979), pp. 313-317.

3. E.F. Brickel. Some ideal secret sharing schemes. J. Comb. Math. and Comb. Comn-
puting, 9, (1989), pp. 105-113.

4. D. Chaum. Computer Systems established, maintained and trusted by mutually
suspicious groups, Memorandum No. UCB/ERL M179/10, University of California
Berkley CA, 1979.

5. G. R. Chaudhry and J. Seberry. Minimnal and mazimal critical sets in Room
squares. 7th Australasian Workshop on Combinatorial Algorithms (AWOCA’96),
Magnetic Island, Australia, July 15-19 (1996), Technical Report 508, July 1996,
Dept. of Computer Science, University of Sydncey, Australia pp 75-86.

6. D. Chen and D.R. Stinson, Recent results on combinatorial constructions for thresh-
old schemes. Aust. J. of Combin., 1 {1990), pp. 29-48.

7. J. Cooper, D. Donovan and J. Seberry. Latin squares and critical sets of minimal
size. Aust. J. Combinatorics 4 (1991), pp. 113-120.

8. J. Cooper, D. Donovan and J. Seberry. Secret sharing schemes arising from Latin
squares. Bull. of the Inst. of Combinatorics and its Applications, September (1994)
pp. 33-43.

9. D. Curran and G.H.J. Van Rees. Critical sets in Latin squares. in Proc. Eighth
Manitoba Conference on Numer. Math. and Computing, (1978), pp. 165-168.



Seceret sharing schemes based on Room squares 167

10.
11.
12.
13.

14.

16.

17.
18.

19.
20.
21.

22.

-

J. H. Dinitz, D. K. Garnick and B. D. Mackay. Non-isomorphic one-factorizations
of Ky2. J. Comb. Design, Vol. 2, No. 4 (1994), pp. 273-285.

J. H. Dinitz and D. R. Stinson. Room squares, Contemporary Design Theory: a
Collection of Surveys. John Wiley & Sons, Inc. (1992), pp. 137-204.

J. H. Dinitz and W. D. Wallis. Four orthogonal one-factorizations on 10 points.
Ann. Disc. Math. 26 (1985), pp. 143-150.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.
K. B. Gross. Equivalence of Room designs I. J. Comb. Theory A 16 (1974), pp.
264-265.

. K. B. Gross. Equivalence of Room designs II. J. Comb. Theory A 17 (1974), pp.

299-316.

K. M. Martin, Discrete Structures in the Theory of Secret Sharing. PhD thesis,
Royal Holloway and Bedford New College, University of London, 1991.

K. M. Martin, New secret sharing schemes from old. JCCMCC 14 (1993), pp. 65-77.
R. C. Mullin and W. D. Wallis. The ezistence of Roomn squares. Aequa. Math. 13
(1975), pp. 1-7.

A. Shamir How to share a secret. Comm. ACM, 22, No. 11, Nov. 1979, pp. 612-613.
G. J. Simmons. An introduction to shared secret and/or shared control schemes
and their applications. in Contemporary Cryptology, the Science of Information
Integrity, IEEE Press, Piscataway, 1991 , pp. 441-497.

D.R. Stinson, An ezplication of secret sharing schemes. Design, Codes and Cryp-
tography, 2 (1992), pp. 357-390.

W.D. Wallis, A. P. Street and J. S. Wallis. Combinatorics: Room Squares, Sum-free
Sets, Hadamard Matrices. Lect. Notes Math. 293, Springer-Verlag Berlin (1972).



	Secret Sharing schemes based on Room squares
	Recommended Citation

	Secret Sharing schemes based on Room squares
	Abstract
	Disciplines
	Publication Details

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

