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Secret Sharillg Schemes Based 011 Room Squares 

Ghnlalll Hasool Chaudhry awl ,knnif,'r Sel)(,lTY 

Tilt, C"Iltr" for COlllputer S"cllrity n"s"ard, 
DCl'artIlll'Ilt of COllll'llter ScicIlc" 

\;lliversity of \\'OllollgoIlg 
\\'OllOIlgOllg;, !'\SW 2522, ACSTHALI.-\ 

Abstract, In this pal'Pr, we d"scribe secret sharing schelll"s, \\'t' dis­
CUS" RoolU ''l"ares and their critical sets, \\ie propose a lllodel of ,('en't 
sharing; based on critical sets of RoolIl sqllares, 

1 Introduction 

In information based systems, the integrity of the informatiou is ('(JlulIlonly pro­
vided for by requiring that (('rtain operation(s) ClIl hc caITi(~cl out only hy OUt~ or 
more participants who havc access rights, Acccss is gaincd by a key, pass\\"Ord or 
token, and go\'crned by a sccure key mauagemcut scheme, If th,' key or password 
is shared betwecn se\'cral participants in such a way that it can bt' rt'(,(Hlstruct.t'tI 
only by a responsible group acting in agreement, theu a high degrce of security 
is attained, Sharcd sccurity systems, of this sort, are also used in fiu<lucial insti­
tutions, in communication networb, in computing systems sen'iug cducational 
institutions and distribution environments, Howc\'cr, thc b('st known exalIlples 
of sharcd sccurity systems are in the military: for instance, in <Icti\'atiug a nu­
clear wcapon, several scnior officers llIuSt concur before the [Jec(~ssary password 
can be reconstructed, 

\\'e describc another situation which llloti\'atl's the subject of sl'nd sh;lring: 

The hC(ld of (In oT'glmi::(ltiun kceps impurtlmt documcnts in a safc uJ 
which only he aI' she knows the cumbination, HuweveT', the hewl is of­
ten absent J01' extended pCT'iuds (lnd occasionally inJo1"lIwtill"Tl is ncedd 
J7'01II ducuments in till' ,mJI! in oHlel' to 7llaintain thc dlly-tu-dIlY 1"1I,nnin.'l 
uJ the uT'ganization, The head deems it undesimble JOT' the wmuinlltiun 
to be tmsted to anyone of the fivc executive bO(lnl mC1IIlie1"s, What is 
n!ganlcd IlS acap/able, /WU)(!lIC1', is a cU1ll.]J1"IJlltise ,~'itllali()n wh(Tcb" al 
least two of the e:reCldiue bOll1'd memue1'S acting togcthe1' can gain access 
to the safe, 

Can such a systelll be devised'? 
Figure 1 provides a system to soh'e the ab()\'e problelll, The lines awl points 

are chosen in projective space PG(2, q) where q 2: 5, It is publicly known that 
the safe cOlllbination is a point on line I but the actual point is kl'pt SCCrt!t. 
Each of the five executives is privately given a point on lilL(' 1H aud thl' safe 
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Fig. 1. A projccti"e space 
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combination is chosen to be point Po, the unique point of intersection of line 11! 

and line i. Any two executives can generate line TIl and hence evaluate Po by 
intersecting Tn and 1. Howevcr, one executive acting alone knows only that tlw 
safe combination must be onc of the points on linc i-the actual point remains 
sccret since for every point p on line i there is a unique line passing through the 
executive's point and p. 

SeC7·et sharing schemes are systems designed to solve problems of a similar 
type to the one we have just discussed. In general, there is a group of potential 
members of such a scheme and a collection of sets of these members which are 
desired to have access to some protected information. 

Thc information is protected by distributing to each member of the scheme 
an amount of partial information which relates in some way to the protected 
information. This partial information is known only to the individual member 
to whom it is distributed and it is held secret by them. \Vhen any group of mem­
bers of the scheme who are desired to have access to the protected information 
choose to do so, they can reconstruct it by pooling their pieces of partial infor­
mation. Thus, in our opening problem, any two pieces of the partial information 
distributed to the executives must be sufficient to (mablc the combination of til(' 
safe to be determined. 

Secrct sharing schemes were first introduccd by D1aklcy [2], Shamir [HI] and 
Chaulll [4] in 1979, and slibsequently have been studied by IlIlmcrons other 
authors. For a gcneral discussion of shared sccret schemes, see Simlllons' paper 
[20]. A number of mathematical structures have been used to mudel shared 
secret schemes. Somc of thcse are polynomials, geometric configurations, block 
dcsigns, Recd-Solumon codcs, vcct.or spaccs, mat.roids, near-right fields, cumplct.e 
multipartitc graphs, orthogonal arrays and Latin squares. In this paper, we will 
model a new secrct sharing scheme based on Room squares, 

In most real-world applications there is also a need for a hierarchy to be built 
into thc shared security systcm. That is, the key and password is sharcd betwecn 
s individuals of rank 1, ... , r so that if a person of rank i is incapacitated, thcn 
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a person of rank j > i, or a set of individuals of rank I < i, lIlay replace the 
lost data. Brickell [3], SimIllons [20) and Cooper, DOnO\'iln amI SejwlTY [8) have 
adapted the basic schemes and const.ructed llIultiJ('vd schemes. 

\Ve shall now introduce a more formal terminology for secret sharing schemes. 

2 Secret sharing schemes 

A secr'et sharing scheme is a method of sharing a secret 5 alllollg a Hili te set of 
participants P in such a way that if the participants in A ~ P are qualified to 
know the secret, then by pooling together their shares, they can reconstruct the 
secret 5; but any set B C P, which is not qualified to know 5, cannot reconstruct 
the secret. The key 5 is chosen by a special participant D called the dealer and 
it is usually assumed that D f; P. The dealer gives partial information called a 
share to each participant to share the secret S. 

Secret sharing schemes arc useful in any important action that requires the 
concurrence of several designated people to be initiated as described in the ex­
amples in Section 1. 

An access structure r is the family of all the subsets of participants that 
are able to reconstruct the secret. An access structure is said to be monotone if 
any set which contains a subset, that can recover the secret, can itself recover 
the secret, that is, if for any subsets B alld C of P, where B ~ C and B E r, 
then C E r. The subsets of P belonging to the access structure r are called 
authorized sets and those not belonging to the access structure are termed as 
unauthorized sets. 

Example 1. In Figure 1, the secret sets are the points on line I and the secret is 
the point Po. The shares are the five points on line 11t that are distributed to five 
participants. Finally, observing that P is the set of five participants, we have the 
access structure: 

r = {A ~ P: IAI ~ 2} 

One property of a monotone access structure is that it has a unique collection 
of authorized sets of minimal size. \Ve defiue n E r to be a minimal set of r if 
C E r, C ~ B implies C = B. The collection of all minimal sets of r is denoted 
by r-. 

A (k,7I) thr'eshold scheme allows a secret to be shared among'T! participants 
in such a way that any k of them call recover the secret, but no group of k - 1, 
or fewer participants, can do so. 

A monotone access structure r defined on a participant set P such that 
IPI = nand r = {X ~ P : IXI ~ k} is known as (k, TIl threshold access 
structure. 

Example 2. A Latin square of order 11 is an TI x TI array of the integers 1, 2, ... , 
n such that each integer occurs precisely once in each row and each column. In 
this example, we take a Latin square L of order 3 as a (2,3) threshold scheme. 
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L = 231 
3 1 2 

Let S = {(2,1;2),(3,2;1),(1,3;3)}, a partial Latin square, be the union of 
some critical sets of L, where (2,1 ;2) means that integer 2 is at position (2,1), 
(3,2;1) means that integer 1 is at position (3,2) and (1,3;3) means that integer 3 
is at position (1,3) in the Latin square L. We can construct a 2-out-of-3 secret 
sharing scheme on this set. The Latin square L is kept secret but its order is 
made public. When any two participants from S collaborate, they combine their 
shares and reconstruct the unique Latin square containing their shares. 

A secret sharing scheme is said to be perfect provided the following two 
properties are satisfied: 

(i) If an authorized subset of participants A ~ P pool their shares, then they 
can determine value of the secret S. 

(ii) If an unauthorized subset of participants B c P pool their shares, then they 
call determine nothing more than any outsider about the value of the secret 
S. 

The security of such a scheme is unconditional since we do not place allY limit 
on the amount of cOlllputatioll that can be performed by a subset of participants. 

The size of each share is defined as the number of bits s of nOll-redundant 
information ill the share. The size of the secret t is the number of bits of non­
redulldant information in the secret. How to exactly determine s alld t is not yet 
known. 

III a multilevel scheme, the participants are ranked and placed in levels 
rj, ... ,rw. \Ve assulIle that there are Ii participants in level ri for i = 1, ... ,w. 
So l: Ii = l. A secret key S is chosen and I pieces of related information dis­
tributed, one piece to each participant. This is done in such a way that the secret 
can be recovered from the shares of ti participants of rank ri. 

3 Room squares 

A Room squU1·e R of order l' is an 1" x 1" array each of whose cells Illay either 
be cmpty or contain all unordcred pair of objects 0,1,2, ... , 1·, subject to the 
following conditions: 

(i) each of the objects 0,1,2, ... , r occurs precisely once in each row of Rand 
precisely once in each colulIln of R, and 
every possible unordered pair of objects occurs precisely once in the whole 
array. 

Theorem 1. (Mullin and Wallis [18]) There exists a Room squure 0/ every 
odd integer order l' greater than or equal to 7. 
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\Ve denote N r == 0,1,2, ... r. A Room square of order r based on N r is .stan­
dar·dized if the ith diagonal cell, cell(i,i), contains {O, i} for 1 s:; i s:; T. 

A skew Room square R is a standardized Room square with the property 
that when i I- j, either the (i,j) or the (j, i) cell of R is occupied, but not both. 

Two Room squares are said to be isomorphic if one can be obtained from 
the other by permuting the rows and columns and relabeling the elements. Two 
Room squares Rand S are equivalent if R is isomorphic to S or to the transpose 
of S. All inequivalent Room squares of order 7 and 9 have been found by one­
factorizations of graph, see [1,11,22] for details. There are exactly 6 inequivalent 
Room squares of order 7 and 257,630 inequivalent Room squares for order 9. No 
exact values of inequivalent Room squares are still known for higher order Room 
squares, although there are: 

526,915,620 non-isomorphic one-factorizations of order 11, 
9.876 x 1028 distinct one-factorizations of order 13, 
1.148 x 1044 distinct one-factorizations of order 15, 
1.520 x 1063 distinct one-factorizations of order 17, 

and the number of all inequivalent Room squares for each of these orders are 
even much larger, see [10] for details. 

A partial Room square R of order r is an r x r array each of whose cells may 
either be empty or contain an unordered pair of objects 0,1,2, ... , r, subject to 
the following conditions: 

(i) each of the objects 0, 1,2, ... , r occurs at most once in each row of R and at 
most once in each colullln of R, and 

(ii) eyery possible unordered pair of objects occurs at most Ollce in the whole 
array. 

A critical set Q == {Q!, Q2, Q3, ... , Qc}, IQI == c, in a Room square R of order 
T, is a set of quadruples Qa == (i,j;k,l) such that if any Qa is removed from 
the set, it can no longer be uniquely completed. In Qa, (i,j) shows the position 
of the pair (k,l) in the square. That is, Q provides minimal informaticn from 
which R can be reconstructed uniquely. In this paper, we consider that empty 
positions with '-' in the Room square are given. 

Q' is a minimal critical set (min.cs) of a Room square R if IQ'I == cis 
minimum for all critical sets Q of a Room square of order r whereas Q' is a 
maximal critical set (max.cs) of a Room square R if IQ'I == c is the largest for 
all critical sets Q of a Room square of order r. 

Example 3. Room square of order 7: 

8,1 - 4,5 6,7 - - 2,3 
5,7 8,2 - - - 1,3 4,6 
- 5,6 8,3 1,2 - 4,7 -

- 3,7 - 8,4 2,6 - 1,5 
3,6 1,4 2,7 - 8,5 - -

2,4 - - 3,5 1,7 8,6 -
- - 1,6 - 3,4 2,5 8,7 
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Critical set 1 of above square is: 

** - 4,5 ** - - 2,3 
** ** - - - 1,3 4,6 
- ** 8,3 1,2 - 4,7 -
- ** - ** 2,6 - 1,5 
** ** ** - ** - -
** - - ** ** ** -

- - ** - ** ** ** 

Critical set 2 of above square is: 

** - ** ** - - ** 
** 8,2 - - - ** ** 
- ** 8,3 1,2 - ** -

- 3,7 - 8,4 ** - ** 
** ** ** - 8,5 - -
** - - ** 1,7 8,6 -

- - ** - ** ** ** 

where "**" shows an unknown pair position and "-" shows an empty position 
in the square, 

So the critical set 1 for the above Room square is: Q == {(1,3;4,5), (1,7;2,3), 
(2,6;1,3), (2,7;4,6), (3,3;8,3), (3,4;1,2), (3,6;4,7), (4,5;2,6), (4,7;1,5)}. That is, Q 
is the only Room square of order 7 with a pair 4,5 at position (1,3), pair 2,3 at 
position (1,7), pair 1,3 at position (2,6), pair 4,6 at position (2,7), pair 8,3 at 
Jlosition (3,3), pair 1,2 at position (3,4), pair 4,7 at position (3,6), pair 2,6 at 
position (4,5) and pair 1,5 at position (4,7). 

There is very little known about critical sets ill Room squares. Chaudhry and 
Seberry [5] studied critical sets in Room squares for orders 7, 9 and 1 L 

4 Proposed scheme 

A secret sharing scheme can be constructed in which the secret key is a Room 
square R of order r. This scheme exhibits the following characteristics: The 
Room square is taken to be the secret key and therefore kept private. 'However, 
the order of the Room square is made public. The shares in the secret are based 
on a partial Room square S == {UAi I Ai is a critical set in R }. The union 
can be taken over al! possible critical sets in R or over some subset of critical 
sets. The number of critical sets used will be dependent on the size of the Room 
square and the number of participants in the secret sharing scheme, The access 
structure will be the set r = {B I B ~ Sand B ;2 A where A is some critical set 
in R }. One can easily see that r is monotone. The protocol for secret sharing 
scheme, involving 1 participants and based on a Room square is as follows. 

A Room square R of order r is chosen. The number T is made public, but 
the Room square R is kept secret to be the key. 
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A set 5 which is the union of a number of critical sets in R is defined. 
For each (i,j;k,l) E 5, the share (i,j;k,l) is distributed privately to a 
participant. 

- When a group of participants whose shares constitute a critical set come 
together, they can reconstruct the Room square R and hence the secret key. 

\Ve demonstrate here how the scheme works on a small example and then 
give a more general construction. 

Take a Room square of order 7 given in example 3. Let 5 be the par­
tial Room square {(1,3;4,5), (1,7;2,3), (2,2;2,8), (2,6;1,3), (2,7;4,6), (3,3;8,3), 
(3,4;1,2), (3,6;4,7), (4,2;3,7), (4,4;4,8), (5,5;5,8), (4,5;2,6), (4,7;1,5), (6,5;1,7), 
(6,6;6,8) }. All the parties are told that the order of the Room square is 7. 
Each participant is given a share (i,j; k,l), for one such element of 5. In or­
der to recover the secret, an authorized group of participants must place their 
shares in a partial Room square. They then reconstruct the unique Room square 
containing these entries. These authorized groups are based on the critical sets 
contained in 5. Two of the critical sets contained in 5 are: 

Al = {(I,3;4,5), (1, 7;2,3)' (2,6; 1,3), (2, 7;4,6), (3,3;8,3), 
(3,4;1,2),(3,6;4,7),(4,5;2,6),(4,7;1,5)} 

.4. 2 ::: {(2, 2; 2, 8), (3, 3; 8, 3), (3, 4; 1,2), (4,2; 3, 7), 
(4,4;4,8),(5,5;5,8),(6,5; 1,7),(6,6;6,8)} 

Note that lAd = 9 while IA21 ::: 8. 
Now for a more general example. Let R be a Room square of order rand Q 

be a critical set. Define Q::: {Q' I Q' is the isotopic image of Q}. Let 5' ::: {Q' I 
Q' E Q and Q' is a critical set in R}. We may use the protocol given above to 
construct a secret sharing scheme where the shares are drawn from the set 5'. 

The following points should be made about the secret sharing scheme. 

- Since the authorized groups are based on critical sets in Room squares, the 
absence of one share implies that secret cannot be recovered uniquely. 

- The scheme is obviously not perfect as an outsider can guess from the set 
of all possible Room squares of order T, whereas an unauthorized group of 
parti(:ipants knows that the Room square must contain the partial Room 
square defined by their shares. 

- The security of the scheme is based on the number of possible Room squares 
containing the partial Room square defined by an unauthorized group of 
participants. 

- The number of inequivalent Room squares for higher order grows exponeu­
tially as mentioned earlier. The number of inequivalent Room squares of 
order greater than or equal to 11 are still unknown under the current com­
puting resources, although lower bounds on these numbers are known. So 
the probability of guessing a secret key consisting of a Room square of order 
greater than or equal to 11 is very very small, and the scheme is very secure 
though not perfect. 
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5 Key management scheme 

In this section we consider the situations where there are a number of secret 
sharing schemes all of which contain a common participant. This participant 
may be required to remember a number of shares. For example, a medical ad­
ministrator (Registrar) may require access to several restricted files. These files 
may contain, say, patient data, hospital resources and organ bank data. Access 
to these files may be via a secret sharing scheme in which the registrar of the 
hospital always has a critical role. The registrar always has to remember several 
different shares. This obviously increases the complexity of the registrar's role 
and consequently reduces the security of the schemes. 

We wish to model a key management scheme in which a secret key is common 
to a number of secret sharing schemes. The shares related to this key are such 
that a primary share is held by one participant and this share is a necessary part 
of the reconstruction process in each scheme. Each scheme will involve a number 
of minor shares which when combined with the primary share can be used to 
reconstruct the secret. It is also required that the secret can not be reconstructed 
uniquely from the combined information held by the minor shares. 

Inequivalent critical sets in a Room square can be used to model a key man­
agement scheme of this nature. We illustrate this with an example. Take the 
Room square of order 7 given in example 3. Following are three distinct minimal 
critical sets of this Room square which have the common pairs (3,3;8,3) and 
(3,4;1,2). 

Al == {(I, 3; 4, 5), (1, 7; 2, 3), (2, G; 1,3), (2, 7; 4, G), (3, 3; 8, 3), 
(3,4;1,2),(3,6;4,7),(4,5;2,G),(4,7;1,5)} 

A2 == {(2,2; 2,8), (3,3; 8, 3), (3,4; 1,2), (4,2; 3, 7), 
(4,4;4,8),(5,5;5,8),(6,5;1,7),(6,6;6,8)} 

A3 == {(I, 1; 1,8), (1,3; 4, 5), (1,4; 6, 7), (2, 1; 5, 7), (2, 7; 4, 6), 
(3,3;8,3),(3,4;1,2),{4,7;1,5),(1,5;3,G),(6,6;6,8)} 

Note that lAd == 9, IA21 =: 8 and IA31 =: 10. 
Each department is assigned a different critical set Ai with the same partic­

ipant receiving a share which is common to each Ai. In this case the registrar 
will be given the common share (3,3;8,3) or (3,4;1,2). All departments will re­
construct the same secret, but each has a different set of keys to this secret. 
However if all participants in the minor (lower than registrar) level pool their 
shares, the secret cannot be reconstructed uniquely. 

Another key management scheme can be developed to allow each department 
a different secret, but still have a common primary share using inequivalent 
Room squares of same order with some common pairs and same positions. 

Multilevel schemes, based on critical sets of Room squares, can also be devel­
oped in which some participants are more important than others. In multilevel 
schemes, the share of a participant at level j can be replaced by two or more 
participants at level i, where i < j. Consider the case of an electronic transfer 
of funds between financial institutions. This transfer can only be initiated when 
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an electronic signat.ure is recciwd. The signat.ure will he n'cOllst.ructed whcn the 
shares of two senior tellers ami one vic(~-pn~sident or two vi("!~-Jlrcsi(knts, are 
entered. Critical sets for Room squares fulfilling these requirements are still not 
known. 

6 Conclusion 

In this paper, we have proposed a secret sharing scheme based on crit.ical sets 
of Room squares. Since there is very little known about critical sets of Room 
squares, the implementation of this scheme is limited at the moment. However, 
the directions for future research are: 

Construct families of critical sets for Room squares. 
Construct families of smallest and largest critical sets for Room squares 
without a priori constraints on the Room square. 
Quantify the security .of the scheme more effectively, that is, decide which 
critical sets are more secure than others. 
Find a general process that will start with an access structure and result in 
a Room square. 
Investigate the structure of critical sets from Room squares to see if possible 
to construct perfect secret sharing schemes. 
Devise multilevel schemes based on critical sets of Room squares. 
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