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Abstract. A secret-sharing scheme realizes a graph if every two vertices connected
by an edge can reconstruct the secret while every independent set in the graph does
not get any information on the secret. Similar to secret-sharing schemes for general
access structures, there are gaps between the known lower bounds and upper bounds on
the share size for graphs. Motivated by the question of what makes a graph “hard” for
secret-sharing schemes (that is, they require large shares), we study very dense graphs,
that is, graphs whose complement contains few edges. We show that if a graph with n
vertices contains

(n
2
)−n1+β edges for some constant 0 ≤ β < 1, then there is a scheme

realizing the graph with total share size of Õ(n5/4+3β/4). This should be compared to
O(n2/ log(n)), the best upper bound known for the total share size in general graphs.
Thus, if a graph is “hard,” then the graph and its complement should have many edges.
We generalize these results to nearly complete k-homogeneous access structures for a
constant k. To complement our results, we prove lower bounds on the total share size
for secret-sharing schemes realizing very dense graphs, e.g., for linear secret-sharing
schemes, we prove a lower bound of �(n1+β/2) for a graph with

(n
2
) − n1+β edges.
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1. Introduction

A secret-sharing scheme, introduced by [10,35,50], is a method by which a dealer,
which holds a secret string, can distribute strings, called shares, to a set of participants,
enabling only predefined subsets of participants to reconstruct the secret from their
shares. The collection of predefined subsets authorized to reconstruct the secret is called
the access structure. We consider perfect schemes, in which any unauthorized set of
participants should learn nothing about the secret from their combined shares (even if
they have unlimited power). Secret-sharing schemes are useful cryptographic building
blocks, used in many secure protocols, e.g., multiparty computation [8,19,21], threshold
cryptography [28], access control [46], attribute-based encryption [34,58], and oblivious
transfer [51,57].
For a scheme to be efficient and be useful for the above-mentioned applications, the

size of the shares should be small (i.e., polynomial in the number of participants). On
the one hand, there are access structures that have efficient schemes, e.g., the threshold
access structure, in which the authorized sets are all sets containing at least � participants
(for some threshold �) [10,50]. On the other hand, the best known schemes for general
access structures, e.g., [9,15,35,38,52], are highly inefficient, that is, for most access
structures, the size of shares is 2O(n), where n is the number of parties in the access
structure. The best lower bound known on the total share size for an explicit or implicit
access structure is�(n2/ log(n)) [23]. Thus, there exists a large gap between the known
upper and lower bounds. Bridging this gap is one of the most important questions in the
study of secret-sharing schemes. We lack sufficient methods for proving lower bounds
on the share size. Furthermore, we lack the sufficient understanding of which access
structures are “hard,” that is, which access structures require large shares (if any). In
contrast to general secret-sharing schemes, super-polynomial lower bounds are known
for linear secret-sharing schemes, that is, for schemes where the shares are generated
using a linear transformation—there exists an explicit access structure such that the
total share size of any linear secret-sharing scheme realizing it is n�(log(n)) [3,32,33].
Linear secret-sharing schemes are important as most known secret-sharing schemes are
linear, and many cryptographic applications require that the scheme is linear. For more
background on secret sharing, see [4].

In this paper, we consider a special family of access structures, in which all mini-
mal authorized sets are of size 2. These access structures can be described by a graph,
where each participant is represented by a vertex and each minimal authorized set is
represented by an edge. Graph access structures are useful and interesting and have been
studied in, e.g., [12,14,16,24,25,27,29,42,54,56]. Some of the results that were discov-
ered for graph access structures, using graph theory, were later extended to all access
structures.

Example 1.1. Blundo et al. [14] proved that the best share size of a scheme for a graph
access structures is either the size of the secret or at least 1.5 times larger than that size.
This was generalized later to many other families of access structures. Martí-Farré and
Padró [43] proved that the share size of every access structure that is not matroidal is at
least 1.5 times larger than the size of the secret.
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Other results on graph access structures have been extended to homogeneous access
structures [41,48,53], which are access structures whose minimal authorized subsets
are of the same size, and to other access structures described by simple hypergraphs [22,
55].
Every graph access structure can be realized by a secret-sharing scheme in which

the total share size is O(n2/ log(n)) [13,17,30]; this scheme is linear. The best lower
bound for the total share size required to realize a graph access structure by a general
secret-sharing scheme is �(n log(n)) [12,24,29]. The best lower bound for the total
share size required to realize a graph access structure by a linear secret-sharing scheme
is �(n3/2) [6]. Although the gap between the lower and upper bounds for these access
structures is smaller than that of general access structures, studying this gap might reveal
new insight that could be applied to the share size of general access structures.
There are threemain techniques for proving lower bounds on the size of shares in linear

secret-sharing schemes, namely the self-avoiding criterion [6], Gál’s criterion [32], and
Gál and Pudlák’s criterion [33].Mintz [44] studied the limitations of these techniques for
proving lower bounds for linear secret-sharing schemes realizing graphs. He proved that
the criteria of [6] and [33] cannot prove lower bounds better than �(n3/2), and Gál’s
criterion [32] cannot improve upon this lower bound under some restriction (namely
using rank 1 matrices). All applications of Gál’s criterion are under this restriction. The
conclusion from Mintz’s results is that proving a lower bound of ω(n3/2) on the size of
shares in linear schemes realizing graph access structures requires some new ideas.

1.1. Our Results

In this work, we study a natural family of graphs—the very dense graphs. These are
graphs that have

(n
2

) − � edges for � � n2 (where n is the number of vertices in the
graph). Themotivation for this work is trying to understandwhich graphs are “hard,” that
is, which graphs require total share size of �(n2/ polylog n) (if any). For example, if a
graph contains � edges, then it can be realized by a trivial secret-sharing scheme in which
the total share size is 2� times the size of the secret [35]. Thus, if there exists a “hard”
graph, then it has to have �(n2/ polylog n) edges. We are interested in the question if
these “hard” graphs can be very dense. Our results show that this is not possible.
Our main result is that if a graph has

(n
2

)−n1+β edges for some 0 ≤ β < 1, then it can
be realized by a secret-sharing scheme in which the total share size is Õ(n5/4+3β/4);1

this scheme is linear. In particular, if β is a constant smaller than 1, the total share size
is � n2, that is, these are not “hard” graphs as discussed above. Similarly, if β < 1/3,
then the total share size is o(n3/2); thus, these graphs are easier than the graphs for
which [6] proved their lower bounds for linear secret-sharing schemes. Our results can
be translated to upper bounds on the size of monotone formula realizing graphs (that is,
Boolean functions whose minterms have size 2): If a graph has

(n
2

) − n1+β edges for
some 0 ≤ β < 1, then it can be realized by a monotone formula of size Õ(n5/4+3β/4).
As a corollary of our main result, we prove that if a graph has

(n
2

) − � edges, where
� < n/2, then it can be realized by a scheme in which the total share size is n+ Õ(�5/4).

1 We use the Õ notation, which ignores polylogarithmic factors.
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Thus, if � � n4/5, then the total share size is n+o(n), which is optimal up to an additive
factor of o(n).
We extend the techniques used in these results to the study of two additional problems.

First, we consider the following scenario: We start with a graph and remove few edges
from it. The question is how much the share size of a secret-sharing scheme realizing
the graph can grow as a result of the removed edges. If we add edges, then trivially the
share size grows at most linearly in the number of added edges. We show that also when
removing edges, the share size does not increase too much. We study this problem also
for general access structures, considering the removal of minimal authorized subsets for
any access structure. We show that for certain access structures, the share size does not
increase too much either. Second, we study the removal of minimal authorized subsets
from k-out-of-n threshold access structures and present a construction in which the size
of each share is reasonably small for k � n.
To complement our results, we prove lower bounds on the total share size of secret-

sharing schemes realizing very dense graphs. For graph access structures, the known
lower bounds for general secret-sharing schemes [12,24,29] and linear secret-sharing
schemes [6] use sparse graphs with θ(n log(n)) edges and θ(n3/2) edges, respectively.
Using the above lower bounds, we prove lower bounds of �(βn log(n)) and �(n1+β/2)

for general and linear secret-sharing schemes, respectively, for some graphs with
(n
2

) −
n1+β edges. In addition, we prove lower bounds of n + � for graphs with

(n
2

) − �

edges, where � < n/2. Our lower bounds are not tight; however, they prove, as can be
expected, that for linear secret-sharing schemes the total share size grows as a function
of the number of excluded edges. The lower bounds for linear schemes are interesting
as most known secret-sharing schemes, including the schemes constructed in this paper,
are linear.

1.2. Techniques

Brickell and Davenport [16] proved that a connected graph has an ideal scheme (that
is, a scheme in which the total share size is n times the size of the secret) if and only
if the graph is a complete multipartite graph.2 To construct a scheme realizing a very
dense graph, we cover the graph by complete multipartite graphs (in particular, complete
bipartite graphs), that is, we construct a sequence of multipartite graphsG1,G2, . . . ,Gr

such that each graph Gi is a subgraph of G and each edge of G is an edge in at least
one graph Gi . We next, for every i , share the secret independently using an ideal secret-
sharing scheme realizing Gi . The total share size in the resulting scheme is the sum of
the number of vertices in the graphs G1,G2, . . . ,Gr . This idea of covering a graph was
used in previous schemes, e.g., [13,14]. The contribution of this paper is how to find a
“good” cover for every dense graph.
Our starting point is constructing a scheme for graphs inwhich every vertex is adjacent

to nearly all other vertices, that is, graphs where the degree of every vertex in the
complement graph is bounded by some d � n. We cover such graphs by complete

2 A graph is a complete multipartite if its vertices can be partitioned into disjoint sets, called parts, such
that there is an edge between two vertices iff they are from different parts. For additional graph terminology
used in the rest of this section, see Sect. 2.2.
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bipartite graphs. The size of the shares of the resulting scheme is O(d log(n)). We show
a similar result covering such graphs by equivalence graphs, that is, graphs which are
union of disjoint cliques. Alon [1] proved, using a probabilistic proof, that every such
graph can be covered by O(d2 log(n)) equivalence graphs. We improve on this result
and prove, using a different probabilistic proof, that every such graph can be covered by
O(d log(n)) equivalence graphs.
We use the above scheme to realize very dense graphs. We first cover all vertices

whose degree in the complement graph is “big.” There are not too many such vertices in
the complement graph, and the share size in realizing each star (namely a vertex and the
edges incident with it) is at most n. Once we removed all edges incident with vertices
whose degree is “big,” we use covers of bipartite graphs of [37] to cover the remaining
edges.
Our results can be translated to upper bounds on the size of monotone formula re-

alizing graphs (that is, Boolean functions whose minterms have size 2). In our con-
struction, we cover graphs by complete bipartite graphs and realize each graph by an
ideal secret-sharing scheme. Clearly, each complete bipartite graph can be realized by
a monotone formula whose size is the number of vertices in the graphs; this is the to-
tal share size of realizing the bipartite graph by a secret-sharing scheme. Therefore,
our results remain valid also for monotone formulas, that is, if a graph has

(n
2

) − n1+β

edges for some 0 ≤ β < 1, then it can be realized by a monotone formula of size
Õ(n5/4+3β/4).
Additional Related and FollowupWorks. Sun and Shieh [55] consider access struc-

tures that are defined by a forbidden graph, where each party is represented by a vertex,
and 2 parties are an unauthorized set iff their vertices are connected by an edge. They
give a construction with information ratio of n/2. In [55], every set of size 3 can recon-
struct the secret. Our problem is much harder as every independent set in the graph is
unauthorized. Recently, Beimel et al. [7] showed that forbidden graph access structures
(where every set of size 3 is in the access structure) can be realized by a secret-sharing
scheme in which the size of the share is Õ(n3/2).

In another recent work, Csirmaz et al. [26] studied covers of graphs and hypergraphs
by bipartite graphs. We mention two of their results that are most relevant to our paper.
They gave a new, constructive proof with a small explicit constant to the Erdös-Pyber
theorem [30], which says that the edges of a graph on n vertices can be partitioned
into complete bipartite subgraphs so that every vertex is covered at most O(n/ log(n))

times. This theorem is used to show that each graph access structure can be realized by
a secret-sharing scheme in which the size of the share of each party is O(n/ log(n)).
In the case that the degree of every vertex in the complement graph is at most d, they
proved the existence of a fractional covering of the edges by complete bipartite graphs
such that every vertex is covered at most O(d/ log(d)) times (using the terminology of
Definition 2.5 this is a λ-cover with r bipartite graphs such that λ/r = O(d/ log(d))).
Alas, in their construction, the size of the cover λ is exponential in n, which results in
a secret-sharing scheme with secrets of length exponential in n. Thus, the last result is
not applicable for reasonable usage of secret-sharing schemes.
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2. Preliminaries

In this section, we define secret-sharing schemes and provide some background material
used in this work.

Notation 2.1. We denote the logarithmic function with base 2 and base e by log and
ln, respectively.

2.1. Secret Sharing

We present a definition of secret sharing as given in [5,20].

Definition 2.2. Let P = {p1, . . . , pn} be a set of parties. A collection � ⊆ 2P is
monotone if B ∈ � and B ⊆ C imply that C ∈ �. An access structure is a monotone
collection � ⊆ 2P of non-empty subsets of P . Sets in � are called authorized, and sets
not in � are called unauthorized. The family of minimal authorized subsets is denoted
by min�.

A distribution scheme 	 = 〈
,μ〉 with domain of secrets K is a pair, where μ is a
probability distribution on some finite set R called the set of random strings and 
 is
a mapping from K × R to a set of n-tuples K1 × K2 × · · · × Kn , where K j is called
the domain of shares of p j . A dealer distributes a secret k ∈ K according to 	 by
first sampling a random string r ∈ R according to μ, computing a vector of shares

(k, r) = (s1, . . . , sn), and privately communicating each share s j to party p j . For a
set A ⊆ P , we denote 
A(s, r) as the restriction of 
(s, r) to its A-entries.
Given a distribution scheme, the size of the secret is log(|K |), the (normalized) size

of the share of the party p j is log(|K j |)/ log(|K |), and the (normalized) total share size
of the distribution scheme is

∑
1≤ j≤n log(|K j |)/ log(|K |).

Definition 2.3. (Secret Sharing) Let K be a finite set of secrets, where |K | ≥ 2.
A distribution scheme 〈
,μ〉 with domain of secrets K is a secret-sharing scheme
realizing an access structure � if the following two requirements hold:
Correctness. The secret k can be reconstructed by any authorized set of parties. That
is, for any set B = {pi1 , . . . , pi|B| } ∈ �, there exists a reconstruction function ReconB :
Ki1 × · · · × Ki|B| → K such that for every k ∈ K ,

Pr
[
ReconB

(

B(k, r)

)
= k

]
= 1. (1)

Privacy. Every unauthorized set cannot learn anything about the secret (in the informa-
tion theoretic sense) from their shares.
Formally, for any set T /∈ �, for every two secrets a, b ∈ K , and for every possible

vector of shares 〈s j 〉p j∈T ,

Pr[ 
T (a, r) = 〈s j 〉p j∈T ] = Pr[ 
T (b, r) = 〈s j 〉p j∈T ]. (2)

Remark 2.4. There is an alternative definition of secret-sharing schemes (e.g., [18,
39]) using the entropy function. For that definition, it is assumed that there is some



342 A. Beimel et al.

known probability distribution on the domain of secrets K , and the definition requires
that the secret and the shares of every unauthorized subset are independent random
variables (this can be formulated, e.g., using the entropy function). The two definitions
are equivalent [4].

In this work, we mainly consider graph access structures. Let G = (V, E) be an
undirected graph. We consider the graph access structure, where the parties are the
vertices of the graph and the minimal authorized sets are the edges. In other words, a set
of vertices can reconstruct the secret if it contains an edge, and a set is unauthorized if it
is an independent set in G. In the rest of the paper, we will not distinguish between the
graph and the access structure it describes, and we will not distinguish between vertices
and parties.

2.2. Graph Terminology

Wedefine the graph terminology that we use throughout this paper. The degree of a graph
is the maximum degree of vertices in a graph. A graph G ′ = (V ′, E ′) is a subgraph of a
graph G = (V, E) if V ′ ⊆ V and E ′ ⊆ E . We next define covers of graphs, which are
used in our construction of secret-sharing schemes.

Definition 2.5. Let G = (V, E) be a graph. We say that a collection of graphs G1 =
(V1, E1), . . . ,Gr = (Vr , Er ) is a λ-cover of G if each Gi is a subgraph of G, and each
edge in E is in at least λ graphs of the collection. A cover of a graph is a 1-cover of the
graph.

A k-partite graph G = (V1, . . . , Vk, E), where V1, . . . , Vk are disjoint, is a graph
whose vertices are V = ∪k

i=1Vk , such that if (u, v) ∈ E , then there are indices i = j
such that u ∈ Vi and v ∈ Vj (that is, there are edges only between vertices in different
parts). A k-partite graph is complete if it contains all edges between vertices in different
parts. A graph is amultipartite graph if it is k-partite for some k. For example, a clique is
a complete n-partite graph, where n is the number of vertices in the clique. A complete
bipartite graph in which |V1| = 1 is called a star; the vertex in V1 is the center and the
ones in V2 are the leaves.

2.3. Graphs and Secret Sharing

Brickell and Davenport [16] presented a construction of ideal secret-sharing schemes
for multipartite graphs. As we use this construction, we describe it below.

Theorem 2.6. [16] Let G = (V1, . . . , Vk, E) be a complete multipartite graph and
p > k be a prime. There is a linear secret-sharing scheme realizing G where the domain
of secrets and the domain of shares of each party are {0, . . . , p − 1}.

Proof. Let s ∈ {0, . . . , p − 1} be the secret. We first generate shares in Shamir’s 2-out-
of-k secret-sharing scheme [50] for the secret s. That is, we choose a ∈ {0, . . . , p − 1}
at random with uniform distribution, and we compute the share si = a · i + s mod p for
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1 ≤ i ≤ k. Next, we give si to all vertices in Vi . Two vertices from different parts, say
Vi and Vj , can reconstruct the secret as follows: s = ( j · si − i · s j )/( j − i) (where the
arithmetic is in Fp—the finite field with p elements).
On the other hand, if a set T is unauthorized, then it is contained in some Vi , and all the

vertices in T hold the same share in Shamir’s scheme and do not have any information
on the secret, that is, this share is uniformly distributed in {0, . . . , p − 1}. �

Remark 2.7. Complete bipartite graphs admit a secret-sharing scheme whose domains
of secrets and shares are {0, . . . , j − 1} for every j ≥ 2. Let s ∈ {0, . . . , j − 1} be
the secret. We choose a ∈ {0, . . . , j − 1} at random with uniform distribution, and we
compute the share s1 = a and s2 = (a + s) mod j .

Remark 2.8. Our main result, Theorem 4.4, uses the construction in the previous re-
mark, and so there are no restrictions on the size of the domain of secrets. However,
other results use the construction in Theorem 2.6 for k = n. The total share size of the
scheme in Theorem 2.6 is n, but it requires p > n, and so the secret size has to be at
least log(n). If the secret is shorter, then the share size and the total share size would
increase by a factor of log(n) (by [40], this factor is unavoidable when the secret is one
bit long). This work is focused on the study of the share size and the total share size of
the schemes, but we will mention additional restrictions on the secret size where they
are relevant.

In the rest of the paper, we will construct schemes, where we choose subgraphs of
G which are multipartite and share the secret s independently for each subgraph. The
following is a well-known lemma.

Lemma 2.9. Let G = (V, E) be a graph and G1 = (V1, E1), . . . ,Gr = (Vr , Er ) be
a cover of G such that each Gi is a complete multipartite graph. Then, there exists a
secret-sharing scheme realizing G with secret size O(log(r)) in which the total share
size is

∑r
i=1 |Vi | ≤ nr and the size of each share is at most maxi |{ j : vi ∈ Vj }| ≤ r . If

each Gi is bipartite, then the size of the secret is 1; otherwise, the size of the secret is
O(log(n)).

Proof. Let F be a finite field with |F| ≥ n (if every graph in the cover is bipartite, then
we can take F = F2). We share a secret s ∈ F independently for each Gi using the
multipartite scheme.
We claim that the resulting scheme realizes G. First, let (u, v) ∈ E be a minimal

authorized set. Then, there exists at least one i such that (u, v) ∈ Ei and u, v can
reconstruct the secret from the shares of the secret-sharing scheme realizing Gi . On the
other hand, let T be an unauthorized set in G, that is, T is an independent set in G.
Since Ei ⊆ E for every i , the parties in T get at most one different share in the scheme
realizing Gi . As in each scheme we share the secret s independently (i.e., choose a
independently), the unauthorized set T gets at most r random elements independent of
each other; thus, they have no information on the secret.
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For every i , in the scheme realizing Gi we give each party in Vi a share whose size
is the size of the secret; thus, the total share size to realize all the graphs in the cover is∑r

i=1 |Vi |. �

We next describe a special case of Stinson decomposition techniques [54], implying
that if we use a λ-cover by complete multipartite graphs, then we can save a factor of
1/λ in the share size compared with the secret-sharing scheme that uses a 1-cover of the
same size.

Lemma 2.10. Let G = (V, E) be a graph and G1 = (V1, E1), . . . ,Gr = (Vr , Er )

be a λ-cover of G such that each Gi is a complete multipartite graph. Then, there exists
a secret-sharing scheme realizing G with secret size O(λ log(max {r, n})) in which the
total share size is

∑r
i=1 |Vi |/λ ≤ nr/λ and the size of each share is at most maxi |{ j :

vi ∈ Vj }|/λ ≤ r/λ.

Proof. LetF be a finite fieldwith |F| ≥ max {r, n}. Now, we use Stinson decomposition
techniques [54] to construct a scheme for G over F. Let s = (s1, . . . , sλ) ∈ F

λ be the
secret. First, we use a (0, λ)-ramp secret-sharing scheme to generate r shares s1, . . . , sr ∈
F of the secret s [11].3

Then, for every graph Gi of the cover, we generate shares of si in the ideal scheme
realizing Gi and distribute the shares among the parties of Gi . Since every edge is in at
least λ graphs, every edge can obtain at least λ values si and so recover the secret. As
in each graph Gi each party in Vi gets one element from F, the size of each share of the
resulting scheme is at most maxi |{ j : vi ∈ Vj }|/λ ≤ r/λ and the total share size is at
most

∑r
i=1 |Vi |/λ ≤ nr/λ. �

2.4. Description of the Problem

In this work, we study the problem of realizing a graph access structure, where the
graph has few excluded edges. Specifically, let G = (V, E) be an undirected graph with
|V | = n and |E | = (n

2

) − � for some 0 < � <
(n
2

)
. We consider the complement graph

G = (V, E), where e ∈ E iff e /∈ E . We call G the excluded graph and call its edges
the excluded edges. In the rest of the paper, the excluded graph G is a sparse graph with
� (n

2

)
edges.

Example 2.11. Assume � = 1, that is, there is one excluded edge, say (vn−1, vn). In
this case, the graph can be realized by an ideal scheme as the graph is the complete
(n − 1)-partite graph, where vn−1, vn are in the same part.

Example 2.12. Assume � = 2, and there are two adjacent excluded edges, say
(vn−2, vn) and (vn−1, vn). In this case, the graph G is not a complete multipartite graph;
hence, it cannot be realized by an ideal scheme [16]. However, it can be realized by a

3 Let α1, . . . , αr be r distinct elements in F. Compute the polynomial Q(x) of degree λ − 1 such that
Q(αi ) = si for 1 ≤ i ≤ λ and the share of pi is si = Q(αi ).
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scheme in which each of the parties v1, . . . , vn−3, vn gets a share whose size is the size
of the secret and vn−2, vn−1 get a share whose size is twice the size of the secret. Thus,
the total share size is n + 2.

The scheme is as follows: Generate shares according to Shamir’s 2-out-of-(n − 2)
secret-sharing scheme, and give party vi the i th share in Shamir’s scheme for 1 ≤ i ≤
n− 2. In addition give to vn−1 and vn the (n− 2)th share in Shamir’s scheme. Using the
above shares, every pair of parties, except for pairs contained in {vn−2, vn−1, vn}, can
reconstruct the secret. As the only authorized pair in {vn−2, vn−1, vn} is (vn−2, vn−1), we
give them additional shares:We choose two random strings r1 and r2 whose exclusive-or
is the secret and give r1 to vn−2 and r2 to vn−1.
The above scheme is a special case of the complete multipartite cover scheme, where

we cover the graph G by two graphs: A graph G1 = (V1, E1) with V1 = {vn−2, vn−1}
and E1 = {(vn−2, vn−1)} (that is, G1 is the complete 2-partite graph on V1), and the
complete (n − 2)-partite graph where every vi , for 1 ≤ i ≤ n − 3, is a part, and
{vn−2, vn−1, vn} is a part.

By [13], the total share size of the schemes realizing the graph G restricted to
{vn−3, vn−2, vn−1, vn} is at least 5. Therefore, the total share size of secret-sharing
schemes realizing G is at least n + 1. That is, the above scheme is nearly optimal.

3. Constructions for Bounded Degree Excluded Graphs

In this work, we give an upper bound on the total share size for every graph with �

excluded edges, where the upper bound is a function of n and �. If the excluded graph
contains few edges, then the average degree of its vertices is small. We first construct a
scheme for graphs such that the degree of all vertices in its excluded graph is bounded
by some d. In Sect. 4, we show how we can use this construction for any graph with few
excluded edges.
The construction of a secret-sharing scheme for a graph G whose excluded graph

G has bounded degree uses a cover of G by complete bipartite graphs such that each
vertex is contained in a relatively small number of graphs. In Sect. 5, we also provide
an alternative construction that uses a cover by cliques.

3.1. Complete Bipartite Covers

Definition 3.1. (Complete bipartite cover and bipartite complement) LetG be a graph.
A complete bipartite cover of G is a cover H1 = (U1, V1, E1), . . . , Hr = (Ur , Vr , Er )

of H such that each Hi is a complete bipartite graph.
The bipartite complement of a bipartite graph H = (U, V, E) is the bipartite graph

H = (U, V, E), where every u ∈ U and v ∈ V satisfy (u, v) ∈ E iff (u, v) /∈ E .

Note that the bipartite complement of a bipartite graph is a bipartite graph and it differs
from the complement of the bipartite graph.We next show the existence of small bipartite
ln(n)-covers for bipartite graphs whose bipartite complement graph has bounded degree.
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We use techniques developed by Jukna [37, Theorem 1] to proof the existence of small
bipartite ln(n)-covers.4

Lemma 3.2. Let H = (U, V, E) be a bipartite graph such that |U | ≤ |V | = n and
the degree of every vertex in V in the bipartite complement graph H is at most d. Then,
there exists a ln(n)-cover of H with O(d ln(n)) complete bipartite graphs.

Proof. The existence of the equivalence ln(n)-cover of G is proved by using the prob-
abilistic method (see, e.g., [2]). That is, to prove the existence of the desired cover, use
a randomized process to choose the graphs and prove that with positive probability they
are a cover.
Let p = 1/d and r = 8 ln(|E |)/(p(1− p)d) = O(d ln(n)). We choose the complete

bipartite graphs H1, . . . , Hr as follows. Choose a setUi ⊆ U such that for every u ∈ U
add u to Ui with probability p independently of all other choices. Construct Vi as the
set of all vertices in V that are adjacent to every u ∈ Ui (that is, v ∈ Vi iff (u, v) ∈ E
for every u ∈ Ui ).
For an edge (u, v) ∈ E , define a Boolean random variable Xi , where Xi = 1 if (u, v)

is in Hi , and Xi = 0 otherwise. Let X = ∑r
i=1 Xi . Notice that Xi = 1 if u ∈ Ui and

each of the neighbors of v in H is not inUi (there are at most d such neighbors). Thus,

E(X) ≥ rp(1 − p)d = 8 ln(|E |) > 8 ln(n).

By a Chernoff bound [45, Theorem 4.5],

Pr[X ≤ ln(n)] ≤ Pr[X ≤ E(X)/8] ≤ e−E(X)(1−1/8)2/2 < e−3 ln(n) = 1/n3.

By the union bound, the probability that there is an edge covered by less than ln(n)

graphs of the complete bipartite cover is less than 1/(2n). In particular, there exists a
cover as promised in the lemma. �

Remark 3.3. Note that in the above process, the construction of the bipartite graphs is
efficient, that is, it can be computed in probabilistic polynomial time as we next explain.
First, we choose a collection of graphs as described in Lemma 3.2. Next, we check
whether the collection of bipartite graphs cover H , that is, we check that for every edge
(u, v) ∈ E , there is at least one graph in the collection that covers (u, v). If this is not
the case, we repeat the process of choosing r random graphs until we find a cover. As
the probability of not choosing a cover is 1/n, the expected number of times that we
need to repeat this process is less than 2.

Lemma 3.4. Let G = (V, E) be a graph such that the degree of every vertex in its
excluded graph G is at most d. Then, there exists a complete bipartite ln(n)-cover of G
with O(d ln(n)) complete bipartite graphs.

4 Jukna proved this result for 1-covers, and we use a similar proof to prove the result for ln(n)-covers
(with a bigger constant in the size of the cover).
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Proof. Let V = U1 = {1, . . . , n} and U2 = {n + 1, . . . , 2n}. Let H = (U1,U2, F) be
the bipartite graph with F = {(i, j + n) : (i, j) ∈ E}. For every i ∈ V , the degree of i
in G is the same as the degree of i and i + n in H . Hence, the bipartite complement of
H has degree at most d.
By Lemma 3.2, there exists a complete bipartite ln(n)-cover (U1,1,U1,2, F1), . . . ,

(Ur,1,Ur,2, Fr ) of H with r = O(d ln(n)). For i = 1, . . . , r , define Vi,1 = Ui,1 and
Vi,2 = { j − n : j ∈ Ui,2). Observe that Vi,1 ∩ Vi,2 = ∅, and so each bipartite graph
Hi = (Vi,1, Vi,2, Ei ) with Ei = {(i, j − n) : (i, j) ∈ Fi } is complete and is a subgraph
of G. Therefore, H1, . . . , Hr is a complete bipartite ln(n)-cover of G. �

3.2. Construction of Secret-Sharing Schemes for Graphs with Bounded Degree

In this section, as a step in constructing a secret-sharing scheme realizing graphs with
few excluded edges, we showhow to use complete bipartite covers to realize two families
of graphs: (1) graphs such that the degree of every vertex is big and (2) bipartite graphs
such that one of their parts is small and the degree of each vertex in the other part is big.

Lemma 3.5. Let G = (V, E) be a graph such that the maximum vertex degree in
G = (V, E) is less or equal to d. Then, G can be realized by a secret-sharing scheme
with secret size O(ln2(n)) in which the size of each share is O(d) and the total share size
is O(dn). Furthermore, G can be realized by a secret-sharing scheme with secret size 1
in which the size of each share is O(d ln(n)) and the total share size is O(dn log(n)) =
Õ(dn).

Proof. By Lemma 3.4, there exists a complete bipartite ln(n)-cover of G with r =
O(d ln(n)) graphs. Thus, by Lemma 2.10, there exists a secret-sharing scheme realizing
G in which the secret size is O(ln2(n)), the size of each share is O(d), and the total
share size is O(dn).

As every ln(n)-cover of G is a cover, by Lemma 2.9, there exists a secret-sharing
scheme realizing G in which the secret size is 1, the size of each share is O(d ln(n)),
and the total share size is O(dn ln(n)). �

Lemma 3.6. Let d < n and H = (U, V, E) be a bipartite graph such that |U | =
k ≤ n, |V | ≤ n, and the degree of every vertex in U in H is at most d. Then, H can
be realized by a secret-sharing scheme in which the total share size is Õ(n + k3/2d). If
k = (n/d)2/3, the total share size is Õ(n).

Proof. Let D = {
v ∈ V : There exists u ∈ U such that (u, v) ∈ E

}
. As the degree of

every vertex inU in H is at most d, the size of D is at most dk. Furthermore, the complete
bipartite graph H1 = (U, V \ D,U × (V \ D)) is a subgraph of H . We realize H1 by
an ideal scheme in which the total share size is at most |U | + |V | = O(n).

Now, define D2 =
{
v ∈ D : The degree of v in H is at least

√
k
}
. As H contains at

most dk edges, |D2| ≤ d
√
k. Let H2 = (U, D2, E ∩ (U × D2)). The number of edges

in H2 is less than |U ||D2| ≤ k3/2d; thus, we can realize H2 by a secret-sharing scheme
in which the total share size is O(k3/2d).
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Finally, let V3 = D \ D2 and H3 = (U, V3, E ∩ (U ×V3)). The degree of each vertex
in V3 in the graph H3 is at most

√
k; thus, by Lemma 3.5, we can realize H3 by a secret-

sharing scheme in which the total share size is O(
√
k(|U | + |V3|) ln(|U | + |V3|)) =

O(k3/2d ln(n)).
As H1, H2, and H3 cover H , we constructed a scheme realizing H in which the total

share size is Õ(n + k3/2d). Taking k = (n/d)2/3, the total share size is Õ(n). �

4. Constructions for Excluded Graph with Few Edges

We next show how to use the schemes of Lemmas 3.5 and 3.6 to realize excluded graphs
with � = n1+β edges, where 0 ≤ β < 1. We will start with a simple approach and then
use more complicated constructions to achieve better upper bounds. We construct our
scheme in steps, where in each step: (1) We choose a set of vertices V ′ ⊆ V . (2) We give
shares to the parties in V ′ and the rest of the parties, such that each edge incident with
a party in V ′ can reconstruct the secret, and all other pairs of parties (i.e., unauthorized
pairs containing parties in V ′ and all pairs disjoint with V ′) get no information on the
secret. (3) We remove the vertices in V ′ and all their incident edges from the graph.
We repeat the following step until all vertices in G have small degree and then use the
complete bipartite cover scheme of Sect. 3 to realize the remaining graph. In this process,
we will ensure that the total share size remains relatively small. In the following, n will
always refer to the number of vertices in the original graph.
Our first step is removing all vertices whose degree in G is “high.”

Lemma 4.1. Let G be a graph such that its excluded graph G contains at most n1+β

edges, where 0 ≤ β < 1. Then, for every d < n, we can give shares of size O(n1+β/d)

to each vertex and remove a set of vertices from G and all the incident edges and obtain
an induced subgraph G ′ of G such that G ′ contains at most n1+β edges and the degree
of G ′ is at most d.

Proof. We choose a vertex v whose degree in G is greater than d and consider the star
whose center is v, and its leaves are all neighbors of v in G. We realize this star using
an ideal scheme and remove v and its incident edges from G.
We choose another vertex whose degree in G is greater than d and do the same until

no vertices with degree greater than d exist in G. As in the beginning, there are n1+β

edges in G, and in each step, we remove at least d edges from G, the number of steps
is at most n1+β/d. Thus, the size of each share of the resulting scheme for the removed
vertices is O(n1+β/d). �

Using Lemmas 4.1 and 3.5, we can get a non-trivial scheme realizing dense graphs.

Theorem 4.2. Let G = (V, E) be a graph with |V | = n and |E | = (n
2

) − n1+β for
some 0 ≤ β < 1. There exists a secret-sharing scheme realizing G in which the size of
each share is Õ(n1/2+β/2) and the total share size is Õ(n3/2+β/2).
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Proof. Letd = √
n1+β .Wefirst applyLemma4.1 and remove all verticeswhose degree

inG is greater than n1/2+β/2; the size of the share of each vertex is O(n1+β/d). After this
step,we obtain a graphG ′ such that the degree ofG ′ is atmost d. Then,we useLemma3.5
to realize the remaining graphG ′; the size of the share of each vertex is O(d ln(n)). Thus,
the size of each share in the resulting schemeG is O(n1+β/d+d ln(n)) = Õ(n1/2+β/2),
and the total share size is Õ(n3/2+β/2). �

We use further intermediate steps to improve the total share size compared to the
above construction.

Lemma 4.3. Let α′ < α ≤ 1 such that α ≥ 0.25 and G = (V, E) be a graph such
that the degree of G is at most nα and G contains � edges. Then, we can remove a set
of vertices and all incident edges from the graph and obtain a graph G ′ such that the
degree of G ′ is at most nα′

, the graph G ′contains �− �′ excluded edges for some �′ > 0,
and the total share size for the removed edges is Õ(�′n1/3+2α/3−α′

).

Proof. Our task is to remove from G all vertices whose degree in G is greater than nα′
.

We remove the vertices of degree larger than nα′
in steps, where in each step we choose

a set F of vertices and remove F and all edges incident to F . There are two types of
such edges, edges with two endpoints in F and edges with one endpoint in F and one
endpoint in V \ F . On the one hand, we would like to minimize the number of steps,
thus, choose large sets F . On the other hand, we would like to minimize the number of
edges in G incident only to vertices in F , thus, choose small sets F . To optimize the
share size, we take sets F of size (n/d)2/3.

Formally, let d = nα and d ′ = nα′
. We remove the vertices of degree larger than

d ′ in steps. In each step, we choose an arbitrary set F of k = (n/d)2/3 vertices of
degree at least d ′ in G (if the number of vertices of degree d ′ is smaller than k, then we
take the remaining vertices of degree d ′ and put them in F). First, consider all edges
whose two edges are in F , there are less than k2 = n4/3/d4/3 ≤ n such edges (since
d ≥ n1/4). We can realize the graph (F, E ∩ (F × F)) with a scheme in which the
total share size is 2|E ∩ (F × F)| ≤ 2k2 = O(n). Next, consider the bipartite graph
H = (F, V \ F, E ∩ (F × (V \ F))). By Lemma 3.6, we can realize H with a scheme in
which the total share size is Õ(n). Thus, we can remove the vertices in F and all edges
incident with them, and the total share size of the scheme for every step is Õ(n).

To give an upper bound on the total share size for the removed edges, we need to
give an upper bound on the number of steps. Let �′ be the total number of edges we
removed from G in these steps until the degree of G is at most d ′. As each vertex we
remove has degree at least d ′ in G, the number of vertices we remove is at most �′/d ′.
In each step, except for the last, we remove a set F with (n/d)2/3 vertices; thus, the
number of sets we remove is at most 1 + �′/(d ′(n/d)2/3) = O(�′d2/3/(d ′n2/3)). As in
each step the share size is Õ(n), the total share size for the edges we removed from G
is Õ

(
�′n1/3d2/3/d ′) = Õ(�′n1/3+2α/3−α′

). �

We next show how to construct secret-sharing schemes for graphs with few excluded
edges using the three building blocks presented so far: (1) initial degree reductions using
stars, (2) O(log log(n)) steps of degree reduction using complete bipartite graphs and
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stars, and (3) using the complete bipartite cover construction on the graph with reduced
degree. The total share size of the resulting scheme is lower than the total share size of
the scheme constructed in Theorem 4.2 (however, the size of each share can be bigger).

Theorem 4.4. Let G = (V, E) be a graph with |V | = n and |E | = (n
2

) − n1+β for
some 0 ≤ β < 1. There exists a secret-sharing scheme realizing G with secret size 1
and total share size Õ(n5/4+3β/4).

Proof. Let α0 be a constant to be determined later. We first apply Lemma 4.1 with
d = nα0 and obtain a graph G such that the degree of G is at most d. The total share
size in this step is

O(n2+β/d) = O(n2+β−α0). (3)

Next define αi = (3 − 2(2/3)i )α0 − 2 + 2(2/3)i for 1 ≤ i ≤ log log(n). We choose
these constants such that2αi/3 − αi+1 = 2/3 − α0.

We next repeatedly apply the degree reduction in Lemma 4.3; we apply it log log(n)

times. In the i th invocation of the lemma, where 0 ≤ i < log log(n), we take α = αi

and α′ = αi+1. The cost of each invocation is

Õ
(
�i n

1
3+ 2αi

3 −αi+1
)

= Õ(�i n
1−α0),

where �i is the number of edges removed from G in the i th invocation. As the number
of edges removed in all invocations is at most n1+β , the total share size in all these
invocations is

Õ(n1+βn1−α0) = Õ(n2+β−α0). (4)

After the log log(n) invocations of Lemma 4.3, the degree of each vertex in G is at most
nαlog log(n) = O(n3α0−2). In the final stage, we use Lemma 3.5 and realize the graph with
total share size

Õ(nn3α0−2) = Õ(n3α0−1). (5)

The total share of realizing G (by (3), (4), and (5)) is O(n2+β−α0) + Õ(n2+β−α0) +
Õ(n3α0−1). To minimize this expression, we require that 2 + β − α0 = 3α0 − 1; thus,
α0 = 3/4 + β/4 and the total share size in the scheme is Õ(n5/4+3β/4). �

Remark 4.5. It can be checked that the construction of the cover of G by bipartite
graphs, as done inTheorem4.2 andTheorem4.4, can be done by a probabilistic algorithm
in expected polynomial time. Thus, the computation of the dealer and the parties in our
scheme is efficient.

Remark 4.6. We can also prove that there exists a secret-sharing scheme realizing
G with secret size O(ln2(n)) in which the size of each share is O(n1/2+β/2) and the
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total share size is O(n3/2+β/2) (that is, we get rid of logarithmic factors). The proof is
analogous, but using the ln(n)-cover in Lemma 3.5 instead of the 1-cover. Similarly,
there exists a secret-sharing scheme realizing G with secret size O(ln2(n)) in which the
total share size is O(n5/4+3β/4).

In Theorem 4.4, we showed how to realize a graph where the number of excluded edges
is small; however, it is at least n. We next show how to realize graphs where the number
of excluded edges is less than n.

Corollary 4.7. Let G = (V, E) be a graph with |V | = n and |E | = (n
2

) − � for
some 0 < � < n/2. There exists a secret-sharing scheme realizing G with secret size
O(ln(n)) in which the size of each share is Õ(�1/2) and with total share size n+ Õ(�3/2).
Furthermore, there exists a secret-sharing scheme realizing G with secret size O(ln(n))

and total share size n + Õ(�5/4).

Proof. Let V ′ ⊆ V be the set of vertices incident with the excluded edges. As there
are � excluded edges, the size of V ′ is at most 2�. Without loss of generality, let V =
{v1, . . . , vn} and V ′ = {vt , . . . , vn} for some t > n − 2�. We first execute Shamir’s
2-out-of-t secret-sharing scheme and give the share si to party vi for 1 ≤ i < t and give
the share st to vi for t ≤ i ≤ n.
Let V ′′ be such that V ′ ⊆ V ′′ and |V ′′| = 2�. Furthermore, let G ′ = (V ′′, E ′) be the

subgraph of G induced by V ′′. The graph G ′ has n′ = 2� vertices and � ≤ n′ excluded
edges; thus, by Theorem 4.2, it can be realized by a scheme in which the size of each
share is Õ(�1/2) and total share size Õ(�3/2). As every vertex in V \ V ′′ gets a share in
Shamir’s scheme, the total share size in the scheme realizing G is n + Õ(�3/2).

Moreover, by Theorem 4.4 (with β = 0), G ′ can also be realized by a scheme in
which the total share size is Õ(�5/4). The total share size in realizing G is, therefore,
n + Õ(�5/4). �

5. Constructions for Homogeneous Access Structures

In this section, we extend the techniques used in the construction of graph secret-sharing
schemes to the construction of schemes for homogeneous access structures, which are
access structures whose minimal authorized subsets are of the same size. Every k-
homogeneous access structure has a monotone formula of size O(nk/ log(n)) (see [59,
Theorem 7.3]); thus, by [9], it can be realized by a secret-sharing scheme with to-
tal share size O(nk/ log(n)). Other upper bounds for homogeneous access structures
are presented in [41,48,53]; however, they are useful for sparse access structures. We
present constructions for dense k-homogeneous access structures for a constant k. We
will describe these access structures by hypergraphs.
A hypergraph is a pair H = (V, E) where V is a set of vertices and E ⊆ 2V \ {∅} is

the set of hyperedges. In this work, we only consider hypergraphs in which no hyperedge
properly contains any other hyperedge. A hypergraph is k-uniform if |e| = k for every
e ∈ E . A k-uniform hypergraph is complete if E = (V

k

) = {e ⊆ V : |e| = k}.
For any k-uniform hypergraph, we define the complement hypergraph H = (V, E),



352 A. Beimel et al.

with E = (V
k

) \ E . Observe that there is a one-to-one correspondence between uniform
hypergraphs and homogeneous access structures and that complete uniform hypergraphs
correspond to threshold access structures.
First, we present a combinatorial technique for obtaining clique covers of a graph

G whose excluded graph G has bounded degree. This technique uses a clique cover
of G that is obtained using colorings of the excluded graph G. Then, we extend this
technique to hypergraphs, and we present a technique to cover k-uniform hypergraphs
with complete k-uniform hypergraphs. Finally, we construct secret-sharing schemes for
homogeneous access structures using these techniques.

5.1. Equivalence Covers

Definition 5.1. An equivalence graph is a vertex-disjoint union of cliques. An equiv-
alence cover of G = (V, E) is a cover G1 = (V, E1), . . . ,Gr = (V, Er ) of G such
that each Gi is an equivalence graph.
A coloring of a graph G = (V, E) with c colors is a mapping μ : V → {1, . . . , c}

such that μ(u) = μ(v) for every (u, v) ∈ E .

Lemma 5.2. Let G = (V, E) be a graph such that the degree of every vertex in its
excluded graph G is at most d. Then, there exists an equivalence ln(n)-cover of G with
O(d ln(n)) equivalence graphs.

Proof. An equivalence cover of G can be described by a coloring of G and vice versa:
given a coloring μ of G, we construct an equivalence graph G ′ = (V, E ′), which is a
subgraph of G, where two vertices in G ′ are connected if they are colored by the same
color, that is, E ′ = {(u, v) : μ(u) = μ(v)}. For every color, the set of vertices colored
by such color is an independent set in G, hence a clique in G.
As in the proof of Lemma 3.2, the existence of the equivalence ln(n)-cover of G is

proved by using the probabilistic method. We choose r = 64d ln(n) random colorings
μ1, . . . , μr of G with 4d colors. That is, each coloring is chosen independently with
uniform distribution among all colorings of G with 4d colors. For every coloring μi ,
we consider the equivalence graph Gi as described above. We next prove that with
probability at least half G1, . . . ,Gr is an equivalence cover of G.

Let (u, v) ∈ E . We first fix i and compute the probability that u and v have the same
color in the random coloringμi . Fix an arbitrary coloring of all vertices except for u and
v. We prove that conditioned on this coloring, the probability that u and v are colored in
the same color is at least 1/(8d): On the one hand, the number of colorings for u and v

completing the partial coloring is at most 16d2. On the other hand, the number of colors
not used by the neighbors of u and v is at least 2d; thus, there are at least 2d colorings
for u and v completing the partial coloring in which u and v are colored by the same
color. That is, with probability at least 1/(8d), the edge (u, v) is covered by the graph
Gi .
For every edge (u, v) ∈ E , define a Boolean random variable Xi , where Xi = 1

iff in the i th coloring u and v are colored in the same color, and Xi = 0 otherwise.
Let X = ∑64d ln(n)

i=1 Xi . Notice that E(X) ≥ 64d ln(n)/8d = 8 ln(n). By a Chernoff
bound [45, Theorem 4.5],
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Pr[X ≤ ln(n)] ≤ Pr[X ≤ E(X)/8] ≤ e−E(X)(1−1/8)2/2 < e−2 ln(n) = 1/n2.

Thus, by the union bound, the probability that there exists an edge (u, v) ∈ E that in less
than ln(n) colorings u and v are colored in the same color is less than

(n
2

)
/n2 < 1/2. In

particular, such a cover with r equivalence graphs exists. �

Remark 5.3. The existence of the equivalence cover in Lemma 5.2 is not constructive
as we need to choose a random coloring of a graph of bounded degree. Such coloring
can be chosen with nearly uniform distribution in polynomial time using a Markov
process [36,49]. Given a collection of equivalence graphs, it is easy to check that for
every edge (u, v) ∈ E there is at least one graph in the collection that covers (u, v).
If this is not the case, we repeat the process of choosing r random colorings until we
find a good collection. The expected number of collections of colorings that have to be
chosen before finding a good one is O(1). Thus, we get a probabilistic polynomial-time
algorithm to construct the equivalence cover.

Alon [1] observed that the size of the smallest equivalence cover of a graph G is
smaller than the smallest clique cover of G. He further proved that if the degree of every
vertex in G is at most d, then G can be covered by O(d2 ln(n)) cliques. We directly
analyze the size of the smallest equivalence cover and get an equivalence cover of size
O(d ln(n)). To the best of our knowledge, such bound was not known prior to our work.
By analogy to graphs, we define an equivalence k-hypergraph as a vertex-disjoint

union of complete k-uniform hypergraphs, and the equivalence cover of a k-uniform hy-
pergraph H = (V, E) as a collection of equivalence k-hypergraphs H1 = (V, E1), . . . ,

Hr = (V, Er ) with Ei ⊆ E for i = 1, . . . , r and ∪1≤i≤r Ei = E . A weak coloring with
c colors of a hypergraph H = (V, E) is a mapping μ : V → {1, . . . , c} such that for
every e ∈ E there exist u, v ∈ e with μ(u) = μ(v).

Lemma 5.4. Let H = (V, E) be a k-uniform hypergraph such that the degree of every
vertex in its excluded hypergraph is at most d. Then, there exists an equivalence cover
of H with r = 2kkkdk−1 ln(n) equivalence hypergraphs.

Proof. The proof of this lemma is similar to the one of Lemma 5.2 and is also based
on the probabilistic method. Given a coloring μ of H , we construct an equivalence k-
hypergraph H ′ = (V, E ′), which is the sub-hypergraph of H , where {v1, . . . , vk} ⊂ V
is in E ′ if and only if μ(vi ) = μ(v j ) for 1 ≤ i < j ≤ k. For every color, the set of
vertices colored by such a color is a complete k-uniform sub-hypergraph of H .

Wechoose r randomcoloringsμ1, . . . , μr of H with 2kd colors, and for each coloring,
we consider the equivalence hypergraph as described above. With probability at least
1 − 1/(k!), the collection H1, . . . , Hr is an equivalence cover of H :
Let e = (v1, . . . , vk) ∈ E . Following arguments analogous to the ones in Lemma 5.2,

we obtain that for each μi the hyperedge e is monochromatic with probability at least
1

2(2kd)k−1 . By the same Chernoff bound, the probability that an edge e ∈ E is not covered

by the r random equivalence k-hypergraphs H1, . . . , Hr is at most 1/nk . Thus, by the
union bound, the probability that there exists an edge in E not covered by the r random
equivalence k-hypergraphs is less than

(n
k

)
/nk < 1/(k!). �
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5.2. Secret-Sharing for Uniform Hypergraphs with Few Excluded Sets

We first present an alternative proof of Lemma 3.5, which states that if the excluded
graph has degree at most d, then it can be realized with total share size Õ(dn). The
alternative proof uses cliques instead of bipartite graphs. The secret size of the following
construction, as well as the ones in Lemma 5.5, Theorem 5.7, and Corollary 5.8, is
O(ln(n)). In Lemma 3.5, the secret size is 1 in the relevant scheme.

Alternative proof of Lemma 3.5. Consider an equivalence 1-cover of G with
r = O(d ln(n)) equivalence graphs (as guaranteed by Lemma 5.2). We realize the
access structure of each equivalence graph Gi in the collection by an ideal scheme: For
every clique C in Gi , generate shares in Shamir’s 2-out-of-|C | secret-sharing scheme
and distribute the shares among the parties of C .
For every excluded edge (u, v) /∈ E , the vertices u and v are in different cliques in

each Gi (as Gi is a subgraph of G). Thus, in the above scheme, u and v do not get any
information. On the other hand, every edge (u, v) ∈ E is covered by at least one graph
Gi , that is, u and v are in the clique in Gi ; thus, u and v can reconstruct the secret. As in
each graph Gi each party gets one share, the size of each share of the resulting scheme
is r = O(d ln(n)) and the total share size is O(dn ln(n)) = Õ(dn).

To get a scheme with total share size O(dn) (rather than Õ(dn)), we consider an
equivalence ln(n)-cover of G with O(d ln(n)) equivalence graphs (as guaranteed by
Lemma 5.2). Then, apply Lemma 2.10. The secret size in this case is O(ln2 n). �

Lemma 5.5. Let H = (V, E)be a k-uniformhypergraph such that themaximumvertex
degree of H = (V, E) is at most d. There exists a secret-sharing scheme realizing
H in which the size of each share is O(2kkkdk−1 ln(n)) and the total share size is
Õ(2kkkdk−1n).

Proof. Take the equivalence cover of H of size r = 2kkkdk−1 ln(n) guaranteed by
Lemma 5.4. Now, we realize each equivalence k-hypergraph Hi in the collection by
an ideal scheme: For every complete hypergraph C in Hi , generate shares in Shamir’s
k-out-of-|C | secret-sharing scheme. Using arguments similar to the ones used in the
alternative proof of Lemma 3.5, we obtain that this scheme realizes H , and the size of
each share of the resulting scheme is r , and the total share size is rn = Õ(2kkkdk−1n).

�

In Theorem 5.7 below, we construct a secret-sharing scheme for every excluded hy-
pergraph with few edges. For this purpose, we use a recursive argument based on the
construction illustrated in the following example.

Example 5.6. Let H = (V, E) be a hypergraph and let v ∈ V be a vertex satisfying that
v ∈ e for every e ∈ E . Consider the hypergraph H ′ = (V ′, E ′) with V ′ = V \ {v} and
E ′ = {e \ {v} : e ∈ E}. Given a secret-sharing scheme realizing H ′, we can construct
a scheme for H as follows. In order to share a secret s, the dealer chooses at random s1
and s2 satisfying s = s1 + s2, sends s1 to v, and shares s2 among V ′ using the scheme
realizing H ′. Observe that the size of the shares of v′ ∈ V ′ is the same in both schemes,
and the size of the share of v is 1.
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Theorem 5.7. Let H = (V, E) be a k-hypergraph with |V | = n and |E | = (n
k

)−n1+β

for some 0 ≤ β < k − 1. There exists a secret-sharing scheme realizing H in which the
size of each share is Õ(2kkkn1+β) and the total share size is Õ(2kkkn2+β).

Proof. By induction on k, we prove that for every H = (V, E) satisfying the hypothesis
there exists a secret-sharing scheme in which the size of each share is Õ(2kkk�1−εk ),
where � = n1+β and εk is defined by the equation εi+1 = εi

i+εi
and ε1 = 1. By

Theorem 4.2, this property is satisfied for k = 2. Let H = (V, E) be a k-hypergraph

with k > 2. Define d = �
1

k−1+εk−1 .
We choose a vertex v incident with �1 > d excluded hyperedges. By the hypoth-

esis, there is a secret-sharing scheme in which the size of each share is Õ(2k−1(k −
1)k−1�

1−εk−1
i ) for the (k − 1)-hypergraph H ′ = (V ′, E ′), with V ′ = V \ {v} and

E ′ = {e ∈ ( V ′
k−1

) : e ∪ {v} ∈ E}. Following Example 5.6, we construct a scheme for
the sub-hypergraph determined by all hyperedges incident with v. Then, we remove v

and its incident hyperedges from H . We choose another vertex v′ incident with �2 > d
excluded hyperedges and do the same until no vertices with degree greater than d in H
exist.
In the beginning, there are � excluded hyperedges, and in each step we remove �i > d

hyperedges, so the number of steps is at most �/d. Thus, the size of each share in the
resulting scheme is

Õ
(
2k−1(k − 1)k−1 ∑�/d

i=1 �
1−εk−1
i

)
.

As
∑�/d

i=1 �i ≤ �, the above expression is maximized when �1 = · · · = ��/d = d, so the
size of each share is Õ(2k−1(k − 1)k−1�/dεk−1).
Finally, since the degree of H is at most d, we use Lemma 5.4 to construct a secret-

sharing scheme realizing H in which the size of each share is Õ(2kkkdk−1). �

Corollary 5.8. Let H = (V, E) be a k-uniform hypergraph with |V | = n and |E | =(n
k

) − � for some 0 < � < n/k. There exists a secret-sharing scheme realizing H in

which the size of each share is Õ(2kkk+1�) and the total share size is n+ Õ(2kkk+2�2).

Proof. DefineW ⊆ V as the set of vertices of degree zero in H . Since �k < n, |W | > 0.
Consider the k-hypergraph H ′ = (V, E ′) with E ′ = {e ∈ (V

k

) : |e ∩ W | ≥ 1}. Observe
that H ′ ⊆ H . By [47], there exists an ideal secret-sharing scheme realizing H ′. Now,
it remains to find a secret-sharing scheme for H \ H ′, a hypergraph defined on V \ W
whose complement has at most �k vertices and � hyperedges. The proof is completed
by using Theorem 5.7. �

Remark 5.9. By [31], the scheme used in the first step of the proof of Corollary 5.8 can
be constructed over any finite field F with |F| >

(n+1
k

)
.
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6. Removing Few Authorized Sets from Access Structures

Ourmain result (Theorem 4.4) shows that if we start with the complete graph and remove
“few” edges, then the share size required to realize the newgraph is not “too big.”We then
generalize these results to complete uniform hypergraphs. In this section, we address the
effect of removing few authorized sets from other access structures. We first consider
arbitrary graph access structures and then consider access structures where the minimal
authorized sets are small and, for each party, we remove few sets containing the party
(this generalizes the case where the complement graph has constant degree). We remark
that the size of the secret in the secret-sharing schemes presented in this section can be
large, because we use secret-sharing schemes realizing various access structures.

6.1. Removing Few Edges from an Arbitrary Graph

We show that if we start with any graph and remove “few” edges, then the total share
size required to realize the new graph is not much larger than the total share size required
to realize the original graph.

Theorem 6.1. Let G = (V, E) and G ′ = (V, E ′) be two graphs with E ′ ⊂ E,
|E \ E ′| = �, and |V | = n. Assume G can be realized by a scheme in which the total
share size is m (clearly, m ≤ (n

2

)
). If � > m/n, then G ′ can be realized by a secret-

sharing scheme in which the total share size is Õ(
√

�mn). If � ≤ m/n, then G ′ can be
realized by a scheme in which the total share size is m + 2�n ≤ 3m.

Proof. Let 	 be a secret-sharing scheme realizing G with total share size m. Suppose
that � > m/n. Define d = √

�n/m. Let G ′′ = (V, E ′′) be the graph satisfying that
e ∈ E ′′ if and only if e ∈ E \ E ′ (that is, G ′′ is the graph of the excluded edges, and G ′′
is its complement).
First, we construct a scheme similar to the one described in the proof of Lemma 4.1.

For every party v incident with at least d excluded edges, we consider the star whose
center is v and its leaves are all neighbors in G ′. We realize this star using an ideal
scheme, and we remove v and its incident edges from G ′ and from G ′′. The total share
size in this step is at most n. We do the same process until all vertices have less than d
excluded vertices. The total share size of the resulting scheme is O(n�/d) = O(

√
�mn).

Now, the degree of every vertex in G ′′ is at most d. By Lemma 5.2, there exists an
equivalence 1-cover of G ′′ with O(d ln(n)) equivalence graphs. For every equivalence
graph, and for every clique C in it, we independently share the secret s among the
parties in C using 	, that is, we generate shares of s using 	 and give the shares
only to the participants of C . In this way, an edge contained in C is authorized if and
only if it is contained in E . Since E ′′ ∩ E = E ′, the resulting scheme realizes G ′.
The total share size of realizing each equivalence graph is m (since each participant
is in a single clique); thus, the total share size of realizing all graphs in the cover is
O(md ln(n)) = Õ(md) = Õ(

√
�mn).

If � < m/n, we first execute 	 and give shares to parties not incident with excluded
edges. The total share size in this step is less than m. For every party v incident to at
least one excluded edge, we construct a secret-sharing scheme realizing the star whose
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center is v and the leaves are those u ∈ V with (u, v) ∈ E ′. As there are at most 2� such
vertices, the total share size in realizing the stars is less than 2�n. The total share size in
both steps is m + 2�n ≤ 3m. �

In the interesting case inTheorem6.1when � > m/n, the total share size is Õ(
√

�mn).
This is better than the trivial scheme giving shares of total size O(n2/ log n) only when
� is not too large, namely � � n3/m. Using the same techniques, we also obtain an
upper bound on the size of each share.

Corollary 6.2. Let G = (V, E) and G ′ = (V, E ′) be two graphs with E ′ ⊂ E,
|E \ E ′| = �, and |V | = n. Assume G can be realized by a scheme in which the size of
each share is at most q. If � > q, then G ′ can be realized by a scheme in which the size
of each share is O(

√
�q ln(n)) and the total share size is O(

√
�q n ln(n)).

Proof. The scheme for G ′ can be constructed by following the steps of the proof of
Theorem 6.1, taking d = √

�/q . In the first step, we remove vertices of degree greater
than d. Thus, there are at most �/d = √

�q removed vertices. For each removed vertex,
each vertex in the graph gets at most one element. All together, the size of each share is
O(�/d) + O(qd ln(n)) = O(

√
�q ln(n)). �

6.2. Construction for General Access Structures

In the previous sections, we studied access structures in which theminimal subsets are of
the same size. In this section, we use some of these techniques to study a more general
scenario: We start with an access structure, and we delete some minimal authorized
subsets of it. The question is how much the share size of the schemes realizing the
access structure grows as a result of the removed subsets.

Example 6.3. Let � be an access structure on P , and let A ∈ min� with |A| = k.
Let �′ be the access structure on P with min�′ = min� \ {A}. Given a secret-sharing
scheme 	 realizing � with total share size m, we can construct a secret-sharing scheme
for �′ with total share size km.
For every p ∈ A, we generate the shares of the secret according to 	, and each

participant in P \ {p} receives his share. Observe that a subset can recover the secret
if it contains a subset B ∈ min� with p /∈ B. Therefore, the authorized subsets of the
resulting scheme are those containing a subset in min� \ {A}.

We next consider removing authorized sets from general homogenous access struc-
tures. We say that access structure � is of degree d if for every p ∈ P there are at most
d subsets in min� containing p. We will remove authorized sets described by an access
structure with a small degree.

Theorem 6.4. Let �1 and �2 be two access structures on P with min�2 ⊂ min�1
satisfying that |A| ≤ k for every A ∈ min�1. Suppose that there exists a scheme realizing
�1 in which the size of each share is at most q and the total share size is m. If �2 is of
degree d, then the access structure determined by min�1 \min�2 can be realized by a
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secret-sharing scheme in which the size of each share is O(λq ln(n)) and the total share
size is Õ(λm), where λ = 2kkkdk−1.

Proof. Let H = (P, E) and H ′ = (P, E ′) be the hypergraphs defined by min�1
and min�2, respectively. By the hypothesis, the hyperedges of H are of size smaller or
equal than k, and H ′ is a sub-hypergraph of H of degree less or equal to d. Let 	 be
the scheme realizing H , and let H ′′ = (P, E ′′) be the hypergraph with E ′′ = E \ E ′,
which is the hypergraph associated with min�1 \min�2. We construct a secret-sharing
scheme realizing H ′′.
Define r = λ ln(n). Following the arguments in the proof of Lemma 5.4, it is clear that

there exists a family of r weak coloringsμ1, . . . , μr of H ′ with 2kd colors satisfying the
following property: For every e ∈ E ′′, there exists i ∈ {1, . . . , r} with μi (u) = μi (v)

for every u, v ∈ e.
At this point, we can describe H ′′ as follows: A set e ⊆ V is in E ′′ if and only if e ∈ E ,

and there exists a coloring μi for which e is monochromatic. Hence, we can construct a
secret-sharing scheme for H ′′ by sharing the secret independently, for every coloring μi

and for every color j ∈ {1, . . . , 2kd}, with 	 restricted to Vi, j = {u ∈ P : μi (u) = j}.
Then, the size of each share is at most rq and the total share size is rm = Õ(λm). �

Observe that if k � n, the removal of minimal authorized subsets from an access
structure does not increase somuch the share size. Therefore, for k � n, access structures
close to an access structure realized by an efficient scheme are not “hard.” In particular,
if �1 admits a linear secret-sharing scheme with m = nO(ln(n)), k = O(ln(n)), and
d = O(ln(n)), then min�1 \ min�2 can be realized by a secret-sharing scheme in
which the total share size is nO(ln(n)).

7. Lower Bounds for Very Dense Graphs

In this section, we show lower bounds on the total share size for realizing very dense
graphs. Recall that the best lower bound on the total share size for realizing a graph is
�(n log(n)) [12,24,29] and the best lower bound on the total share size for realizing a
graph by a linear scheme is�(n3/2) [6]. However, these lower bounds use sparse graphs
with (n log(n)) and �(n3/2) edges, respectively. In this section, we will show how to
use these sparse graphs to prove lower bounds for very dense graphs. In particular, we
show that there exists a graph with n1+β excluded edges such that in every linear secret-
sharing scheme realizing it, the total share size is �(n1+β/2) (for every 0 ≤ β < 1).
This lower bound shows that the total share size grows as a function of β. However,
there is still a gap between our upper and lower bounds.
We start with a lower bound for graphs with less than n excluded edges.

Theorem 7.1. For every n and every 2 < � < n/2, there exists a graph with n vertices
and � excluded edges such that the total share size of every secret-sharing scheme
realizing it is at least n + �.
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Proof. We construct a graph G = (V, E) with n ≥ 2� + 1 vertices. We denote the
vertices of the graph by V = {a, b0, . . . , b�−1, c0, . . . , c�−1, v2�+2, . . . , vn}. The graph
G has all edges except for the following � excluded edges: E = {(a, ci ) : 0 ≤ i ≤ � − 1}.
For every 0 ≤ i ≤ � − 1, consider the graph G restricted to the vertices

a, bi , ci , c(i+1)mod�. This graph has two excluded edges (a, ci ) and (a, c(i+1)mod�).
Blundo et al. [13] proved that in any secret-sharing scheme realizing this graph, the
sum of the sizes of the shares of bi and ci is at least 3 times the size of the secret. Thus,
in any secret-sharing scheme realizing G, the sum of the sizes of the shares of bi and
ci is at least 3 times the size of the secret. By [39], the size of the share of each party
in any secret-sharing realizing any graph with no isolated vertices is at least the size of
the secret. Thus, the total share size in any secret-sharing scheme realizing G is at least
n + �. �

Theorem 7.2. For every β, where 0 ≤ β < 1, there exists a graph with n vertices and
less than n1+β excluded edges, such that the total share size in any linear secret-sharing
scheme realizing it is �(n1+β/2).

Proof. By [6], for every n there exists a graph with n vertices such that the total share
size in any linear secret-sharing scheme realizing it is �(n3/2). We use this graph to
construct a dense graph G = (V, E) with n vertices. We partition the vertices of G into
n1−β disjoint sets of vertices V1, . . . , Vn1−β , where |Vi | = nβ for 1 ≤ i ≤ n1−β . We
construct the edges as follows: First, for every 2 vertices u and v such that u ∈ Vi and
v ∈ Vj for i = j , we add the edge (u, v) to E , i.e., there is an edge connecting every 2
vertices from different parts. Second, for every i (where 1 ≤ i ≤ n1−β ), we construct
a copy of the graph from [6] with nβ vertices among the vertices of Vi . We denote this
graph by Gi .
Since all excluded edges in the above construction are between vertices in the same

part, the number of excluded edges is at most
(nβ

2

)
n1−β < n1+β . The total share size

of any linear secret-sharing scheme realizing Gi (for 1 ≤ i ≤ n1−β) is �((nβ)3/2) =
�(n3β/2). Thus, the total share size of any linear secret-sharing scheme realizing G is
at least �(n1−βn3β/2) = �(n1+β/2). �

Theorem 7.3. For every β, where 0 < β < 1, there exists a graph with n vertices
and less than n1+β excluded edges such that the share size of any secret-sharing scheme
realizing it is �(βn log(n)).

Proof. We use the construction from the proof of Theorem 7.2, where for every
1 ≤ i ≤ n1−β we set Gi to be a log(nβ)-dimensional cube. By [24], any secret-
sharing scheme realizing Gi has a total share size of �(βnβ log(n)). Thus, any secret-
sharing scheme realizing G must have a total share size of �((n1−β) · βnβ log(n))) =
�(βn log(n)). �
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