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Abs t rac t .  We study the information rate of secret sharing schemes 
whose access structure is bipartite. In a bipartite access structure there 
are two classes of participants and all participants in the same class play 
an equivalent role in the structure. We characterize completely the bi- 
partite access structures that can be realized by an ideal secret sharing 
scheme. Both upper and lower bounds on the optimal information rate 
of bipartite access structures are given. 

1 I n t r o d u c t i o n  

A secret sharing scheme is a method to distribute a secret value k among a 
set of participants P in such a way that  only qualified subsets of P are able 
to reconstruct the value of k, while non-qualified subsets can not obtain any 
information about  the value of the secret. Secret sharing schemes were introduced 
by Blakley [2] and Shamir [12]. A comprehensive introduction to secret sharing 
schemes can be found in [14, 16, 13]. 

The family of qualified subsets F C 2 P is called the access structure. In 
general, access structures are considered to be monotone, that  is, any superset 
of a qualified subset must be qualified. 

In a secret sharing scheme Z for the access structure F,  given a secret value 
k E 35, a special participant D ~ P,  called the dealer, gives to every participant 
p c P a share sp E Sp in such a way that  only the participants tha t  form a 
subset i n / "  can reconstruct the value of k from their shares. Any other subset 
of participants can not obtain any information about  the value of k. 

Since the security of a system depends on the amount of information that  
must be kept secret, the size of the shares given to the participants is an impor- 
tant  point in the design of secret sharing schemes. Besides, if the shares are too 
large, the memory requirements for the participants will be too strong and the 
algorithms used to compute the shares will become inefficient. Therefore, one of 
the basic parameters in secret sharing is the information rate p (~ ,  I ~, 35) of the 
scheme, which is defined to be the ratio between the length (in bits) of the secret 
and the maximum length of the shares given to the participants. Tha t  is, 

log1351 
p( r ,  = 

maxp~p log] Sp I" 
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A secret sharing scheme is said to be ideal if its information rate is equal to 
one, which is the maximum possible value. We say that  an access structure F is 
ideal if there exists an ideal scheme for F.  The optimal information rate of an 
access structure F is 

p*(F) = sup(p(Z,  F,/C)), 

where the supremum is taken over all possible sets of secrets/C with I~  I -> 2 
and all secret sharing schemes Z with access structure F.  Of course, the optimal 
information rate of an ideal access structure is equal to one. 

This paper deals with two problems that  have received considerable atten- 
tion: to characterize ideal access structures and to find bounds on the optimal 
information rate. 

A necessary condition for an access structure to be ideal was given in [7] 
in terms of matroids. A sufficient condition is obtained from the vector space 
construction [6], which is a method to construct ideal secret sharing schemes. 
Several techniques have been introduced in [8, 5, 15] in order to construct secret 
sharing schemes for some families of access structures. These schemes provide 
lower bounds on the optimal information rate. Upper bounds have been found 
by using some tools from Information Theory [9, 4, 3]. A general method to 
find upper bounds on the optimal information rate is given in [3], while the 
techniques that  were used in previous works only were applicable to particular 
access structures. 

The above-mentioned problems have been widely studied for a special class 
of access structures, the structures defined by graphs [8, 5, 9]. Ideal access struc- 
tures in this class are completely characterized: a connected graph defines an 
ideal access structure if and only if it is a complete multiparti te graph [7]. Be- 
sides, the vector space construction can be applied on any ideal access structure 
defined by a graph. If a graph G is not a complete multiparti te graph, the opti- 
mal information rate of the structure defined by G is at most 2/3 [4]. A general 
lower bound on the optimal information rate of access structures defined by 
graphs was given in [15]. This lower bound is proved to be tight in [3]. 

In this paper, we are concerned in another class of access structures: the 
bipartite access structures. In a bipartite access structure F,  there is a part i t ion 
of the sets of participants, P = X U Y, such that ,  if a is a permutat ion on P 
with a ( X )  = X and a ( Y )  = Y ,  then a(r) = r .  Tha t  is, in a biparti te s tructure 
there are two classes of participants and all participants in the same class play 
an equivalent role in the structure. It is not difficult to imagine some applica- 
tions of secret sharing in which such access structures appear. Some examples 
of these applications can be found among the so called multilevel and multipart 
schemes studied by Simmons in [13]. Weighted threshold access structures with 
two weights are other interesting examples of bipartite access structures. In a 
weighted threshold structure, each participant p E P has its own weight w(p) > 0 
and a subset A c P is qualified if and only if w(A) = ~peA co(p) ~_ t, where 
t >_ 0 is the threshold of the structure. A bipartite access structure is obtained 
if there are only two possible values a, b > 0 for the weights of the participants. 
Weighted structures were first considered by Shamir [12] in his introductory pa- 
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per about  secret sharing. Even though their interesting applications, weighted 
threshold access structures have not received the at tention they deserve. A par- 
ticular class of bipart i te  access structure was considered in [1]. 

We characterize the ideal bipart i te access structures and present methods  to 
find bo th  lower and upper  bounds on the opt imal  information rate  of bipart i te  
structures. The main definitions and the notat ion that  will be used in this paper  
are given in Section 2. We present also in this section a generalization of the 
method  to find upper  bounds for general access structures given in [3]. Ideal 
bipar t i te  access structures are completely characterized in Section 3. Besides, 
we prove tha t  there exists a vector space secret sharing scheme for any ideal 
bipar t i te  structure. We also prove tha t  the optimal information ra te  of a non- 
ideal bipar t i te  s t ructure is at most 2/3. Two techniques to find lower bounds on 
the optimal  information rate of any bipart i te  s tructure are presented in Section 4. 
We prove tha t  these bounds are tight in the sense tha t  we can find bipart i te  access 
structures whose optimal  information rate  is arbitrari ly close to its best lower 
bound. In order to do that ,  we compute upper  bounds using our generalization 
of the method given in [3]. 

2 P r e l i m i n a r i e s  

Let F be an access structure on a set of participants P tha t  is part i t ioned in 
two parts ,  P -- X U Y. We say that  F is a (X, Y)-bipartite access structure 
if a(F)  = F for any permutat ion a on P with ~r(X) = X and a(Y)  = Y.  
A (N1, N2)-bipartite access structure is a (X, Y)-bipart i te  access structure with 
I X I  = N 1  and IY]  = N 2 .  

Given a part i t ion P = X U Y of the set P ,  for any subset A C P ,  we 
consider the point 7r(A) = (x(A),  y(A)) E 7 / x  7/, where x(A)  = I A N X [ and 
y(A) = ]A N Y I. Given a (X, Y)-bipart i te  access structure F,  let us consider the 
region 

~-(F) = {~r(A) ]A e F} C 7] x 7/. 

I t  is easy to see tha t  A E F if and only if It(A) C 7r(F). Therefore, F is determined 
by the region ~r(F) C 7/x  7/. Moreover, if/10 is the family of the minimal qualified 
subsets of F,  we consider 

n 0 = Ir(./ 'O) = { ( X l , Y l )  , (x2,Y2),'*', (Xr,Yr)}. 

Of course, T' is determined by the points in / /0 ,  because A c F if and only if, for 
some i = 1 , . . .  ,r, x (A)  > xi and y(A) >_ yi. The elements o f / / 0  will be called 
the minimal points of F.  We can suppose tha t  0 _< xl  < x2 < .." < xr and, in 
this situation, it is not difficult to see that  Yl > Y2 > "'" > YT >__ 0. From now on, 
we are going to order the set of minimal points of any bipart i te  access s tructure 
in this way. 

The  vector space construction is a useful method to construct ideal schemes 
tha t  were introduced by Brickell [6]. Let P be a set of n participants.  Let F be 
an access s tructure on P and D ~ P the dealer. F is said to be a vector space 
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access structure if, for some vector space E = K r over a finite field K = GF(q),  
there exists a function 

! b : P U { D }  , E  

such tha t  A E F if and only if the vector r  can be expressed as a linear 
combination of the vectors in the set r  = {r tP E A}. If F is such a 
vector space access structure, we can construct an ideal secret sharing scheme 
for /~  with set of secrets ~ = K (see [6] or [14] for proofs). Given a secret value 
k E K ,  the dealer takes at random an element v E E,  such tha t  v �9 r  -- k. 
The  share of a part icipant  p E P is Sp = v �9 r  A scheme constructed in this 
way is called a vector space secret sharing scheme. The Shamir 's  scheme [12] can 
be seen as a vector space secret sharing scheme [14]. 

Blundo et al [3] presented a method to find upper  bounds on the opt imal  
information rate. We present here a slight generalization of this method tha t  
will be used later. 

Let F be an access structure on a set of part icipants P.  We say tha t  a 
sequence B1, B 2 , . . . ,  Bin, where 

O # B 1  c B 2  C . . .  c B m  c P ,  

is independent if 

1. B , ~ F .  
2. For all i -- 1, 2 , . . . ,  m, there exists a set Xi C P such tha t  Bi U Xi E F and 

B i - i  U Xi ~ F,  where B0 -- 0. 

We say tha t  a set A D 0 Xi makes the sequence B1, B 2 , . . . ,  Bm independent.  
i=1 

The proof of the following theorem is almost the same than  the proof of 
Theorem 3.8 in [3]. 

T h e o r e m  1. Let F be an access structure on a set of participants P.  Let 0 
B1 C B2 C . . .  C Bm C P be an independent sequence and A c P a set that 
makes this sequence independent. Then, 

- I J ' A e F ,  p * ( F ) <  IA-----L-I 
- r e + l "  

IAI 
- I f A C F ,  R*(F)<_ 

m 

3 Ideal Bipart i te  Access  Structures  

In this section, we characterize the bipart i te  access structures tha t  admi t  an 
ideal scheme. We prove tha t  a bipart i te  access structure is ideal if and only if 
it is a vector space access structure. Besides we prove tha t  p* (F) < 2/3 for any 
non-ideal bipart i te  access structure F. 

Let P = X U Y be a part i t ion of the set of part icipants  with ] X I = N1 and 
I Y] = N2. Let n, n l ,n2  be integers such that  0 _< n~ _~ N~ and ni < n < nl  +n2 ,  
where i = 1, 2. An access structure F on P is said to be a quasi-threshold (X,  Y ) -  
bipartite access structure if F -- Y2j(n, nl ,  n2) C 2 P for some j = 1, 2, 3, 4, where 
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- A C s n l , n 2 )  if and only if [A[ >_ n, or x ( A )  >_ n l ,  or y ( A )  > n2. 
- A E $22(n, n l , n 2 )  if and only if [A[ >_ n and y ( A )  > n - n l ,  or y ( A )  > n2. 
- A E $23(n, n l , n 2 )  if and only if [A[ > n and x ( A )  >_ n - n2, or x ( A )  > n l .  
- A E ~24(n, n1 ,n2)  if and only if ]A[ >__ n, and x ( A )  > n - n 2 ,  and y ( A )  >_ 

n -- n l .  

The  main goal of this section is to prove tha t  a bipart i te  access s t r uc tu r e / "  
is ideal if and only if it is a quasi-threshold bipart i te  access structure. 

We are going to prove first tha t  any quasi-threshold bipart i te  access structure 
is a vector space access structure. 

T h e o r e m  2. Let  P = X U Y be a bipartite set  o f  participants with I X I = N1 
and [ Y [  = N2. Let n, n l , n 2 , N 1 , N 2  be integers such that 0 <_ n~ <_ Ni  and 
ni <_ n < n l  + n 2 ,  where i = 1,2. Then, for  any j = 1 , . . . , 4 ,  there exists a 
positive integer M = M ( j , n ,  n l , n 2 , N 1 , N 2 )  such that, i f  q is a pr ime  power  
q > M and E is an n-d imens ional  vector space over the f ini te  field GF(q ) ,  there 
exists a mapping r : P U {D} --* E that defines in P the (X ,  Y)-b ipar t i te  access 
s tructure s n l ,  n2). 

Sketch  of  the proof.  Let us consider two subspaces El ,  E2 C E with di re(El)  = 
n l ,  dim(E2) = n2 and E1 + E2 = E.  If q is large enough, it is possible to 
define the access structure Y24(n, n l , n 2 )  by a mapping r : P U {D} --* E with 
r  C El ,  r  C E2 and r  C E - (El t2 E2). In order to do tha t  we 
have to find N1 vectors in EI  and N2 vectors in E2 in "general position". Tha t  
is, in such a way tha t  any set of n of those vectors with at  least n - n2 vectors 
in E1 and n - nl  vectors in E2 is a basis of E.  Besides, the vector r  must  
not appear  in any subspace generated by n - 1 of those vectors. The  access 
structures s nx, n2) for j = 1, 2, 3 can be defined by a similar mapping.  The  
only difference is the position of the vector r  

- if j = 1, then r  C E1 AE2, 
- if j = 2, then r  E E2 - El ,  
- if j = 3, then r  E E1 - E2, 

The  complete proof can be found in the Appendix. [] 

The  following lemma, which is not difficult to check, is used to prove the 
reciprocal of Theorem 2. 

L e m m a  3. Let  F be a bipartite access structure with set  o f  min imal  points  

Then, i f  F is not  a quasi-threshold bipartite access structure,  one of  the following 
s i tuat ions occurs: 

1. x l = O and y2 r y l  - l , O. 
2. Yr = 0  and x r_  l r xr - l , O. 
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3. For some i = 1, 2 , . . . ,  r -  1, xi # O, Yi+I # 0 and (xi+l, Yi+l) # (xi + 1, Yi - 
1). 

T h e o r e m  4. Let F be a bipartite access structure that is not a quasi-threshold 
bipartite access structure. Then, p*(F) < 2/3. 

Proof. From Lemma 3, we can distinguish three cases. 
C a s e  1: xl  = 0 and Y2 ~ Yl - 1,0. If (x2,Y2) = (1,1), consider B1,B2 C P 
such that  B1 C B2, 7r(B1) = (0,1) and 7r(B2) = (0,yl - 1). Let us consider 
p e X and q c Y such that  q r B2. Then, if we take X1 = {p} and X2 = 
{q}, the sequence B~ C B2 is independent. Since A = {p, q} E F,  we have 
that  p*(F) < I A [ / ( m  + 1) = 2/3. If (x2,y2) r (1, 1), we consider a sequence 
B1 C B2 C B3 such that  r (B1)  = (x2 - 1, Y2 - 1), r (B2)  = (x2 - 1, Y2) and 
iv(B3) = (x2 - 1,yl  - 1). Let us consider p �9 X and q �9 Y such that  p,q ~ B3 
and the subsets X1 = {p, q}, X2 = {p} and X3 = {q}. Then, the sequence 
B1 C B2 C B3 is independent. Therefore, since A = {p, q} ~ F,  we obtain 
p*(F) <_ [ A ] / m  = 2/3. 
Cas e  2: Yr = 0, Xr-1 r xr - 1, 0. This case is symmetric to Case 1. 
Cas e  3: for some i = 1 , 2 , . . . , r  - 1, xi r 0, Y~+I r 0 and (x~+l,y~+l) r 
(x~+l,  y i - 1 ) .  If yi+l r y l - 1 ,  let us a sequence B1 c B2 C B3 such that  r (B1)  = 
(x~+l - 1, Yi+l - 1), 7r(B2) -- (Xi+l - 1, Yi+l) and 7r(B3) = (X~+l - 1, y~ - 1). Let 
us take X1 = {p, q}, X2 = {p}, X3 : {q}, where p E X,  q �9 Y and p, q r B3. 
Then, the sequence B1 c B2 C B3 is made independent by A = {p, q} ~t F.  
Therefore p*(F) < I A I /m = 2/3. If X~+l r x~ + 1, we can find analogously an 
independent sequence that  proves that  p*(F) <_ 2/3. [] 

The following theorem summarizes the results of this section. 

T h e o r e m  5. Let F be a bipartite access structure. Then, the following state- 
ments are equivalent: 

1. F is a quasi-threshold bipartite access structure. 
2. F is a vector space access structure. 
3. F is an ideal access structure. 
4. P*(F) > 2/3. 

Observe that  there does not exist any bipartite access structure whose opti- 
mal information rate is in the interval (2/3, 1). We present in Section 4 a biparti te 
access structure with p*(F) = 2/3. 

Finally, observe that  Theorem 5 is also true for the class of access structures 
defined by graphs if we put  "multipartite complete graph" instead of "quasi- 
threshold biparti te access structure". 

4 B o u n d s  o n  t h e  O p t i m a l  I n f o r m a t i o n  R a t e  

We present in this section two techniques to find secret sharing schemes for 
biparti te access structures. Lower bounds on the optimal information rate of 
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such access structures are obtained from these constructions. We prove that  
these bounds are tight in the sense that  we can find bipartite access structures 
whose optimal information rate is arbitrarily close to the lower bound. In order 
to do that ,  we use upper bounds calculated from Theorem 1. 

The first technique is a covering technique: we look for some ideal bipar- 
t i te access structures such that  can be combined in order to obtain the given 
structure. For example, let us consider the weighted threshold access s t ruc ture /"  
defined by a threshold t -- 40 and a weight function w : P --* ]R + such that ,  for 
any p E P, w(p) = 4 or w(p) = 5. Then, P = X U Y, where X = w-1(4) 
and Y = w-1(5) and F is the (X,Y)-bipar t i te  access structure defined by 
~(/~) -- {(x,y)  E 7] x 7]]4x + 5y > 40}. The set of minimal points of F is 
H0(F)  = {(0, 8), (2, 7), (3, 6), (4, 5), (5, 4), (7, 3), (8, 2), (9, 1), (10, 0)}. We observe 
tha t  F = F1 U/"2, where/ '1  is the bipartite access structure with set of minimal 
points H0(F1) = {(0, 8), (2, 7), (3, 6), (4, 5), (5, 4)} and/"2 is the (t, Y)-threshold 
structure with t = 10. Since both /'1 and /'2 are ideal access structures, we 
can find a secret sharing scheme realizing F with information rate equal to 1/2. 
Therefore, p*(F) >_ 1/2. 

In general, since any bipartite access structure with only one minimal point 
can be realized by an ideal scheme, a bipartite access structure F with r minimal 
points has optimal information rate p*(F) >_ 1/r, because it is the union of r 
ideal access structures. 

The second technique that  we are going to use to find lower bounds on the 
optimal information rate is based on the next proposition. 

P r o p o s i t i o n 6 .  Let a, b be positive integers and let F' be an ideal (aN1, bN2)- 
bipartite access structure. Let 1" be a ( N1, N2)-bipartite access structure such that 
(z,y) E r(F)  if and only if (ax, by) e r(F').  Then, p*(F) > ra in{l /a ,  1/b}. 

Proof. Let P '  = X '  U Y' and P = X U Y be, respectively, the sets of participants 
of the access structures F '  and F.  In order to define a secret sharing scheme Z on 
F,  we identify each participant Pi E X,  where 1 _< i < N1, with a subset Si C X '  
with cardinality a in such a way that  X '  N1 = U~=IS~. Equally, each participant 
qj E Y, where 1 < j < N2, is identified with a subset Tj C Y'  with cardinality b 
and, as before, Y'  = uN_21T 3. Let ~ '  be an ideal scheme with access structure F '  
and set of secrets ]C. The scheme Z is defined as follows: given a secret k E E, 
the share of a participant pi c X is formed by the a shares that  correspond to 
the participants in the set S~ c X '  by the ideal scheme Z '  and the share of a 
participant qj C Y consists in the b shares of the participants in T j c  Y'. It is 
not  difficult to see that  Z is a secret sharing scheme on F with information rate 
p(Z,  F, ]C) = ra in{l /a ,  1/b}. [] 

This proposition can be used, for instance, to find lower bounds for the opti- 
mal information rate of weighted threshold access structures with two weights. 
These are bipartite access structures such that  (x, y) C ~(F)  if and only if 
ax + by >_ t, where a, b, t are positive integers. We can suppose that  a < b. 
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In this case, we can apply Proposition 6 being F '  the (t, aN1 + bN2)-threshold 
structure. Then, p*(F) > 1/b. 

In order to prove that  the lower bounds obtained by these two techniques 
are in some cases tight, we consider, for any positive integers r, b, the weighted 
access structure Fr,b defined by the equation x + by > rb. 

From Proposition 6, p*(Fr,b) _> 1/b. On the other hand, the set of minimal 
points of Fr,b is IIo(Fr,b) = {(kb, r - k) C 7 / x  7/I 0 <_ k < r}. Let F0 be the 
bipartite access structure whose set of minimal points is {(0, r), (rb, 0)}. For any 
k = 1 , . . . ,  r - 1, we consider Fk such that  (kb, r - k) is its only minimal point. 
Observe that,  for any k = 0, 1 , . . . ,  r - 1, Fk is and ideal access structure and, 
besides, Fr,b = L-jr-11~ Therefore, p*(Fr,b) > 1/r. k=O k .  

* T  In order to find an upper bound on p (r ,b) ,  let us consider the sequence 
B1 c B2 C -..  C B~b-1, where ~(Bi) = (j, 0). Let us take X1 such that  
X 1 A B l = 0 a n d ~ ( X 1 ) = ( b - l , r - 1 ) a n d X k b + s C X l ,  w h e r e 0 < k < r - 1  
and 0 < s < b - l ,  such that  XkbTs[" lBkb+s  = 0 and 7r(Xkb+s ) = ( b - s , r - k - 1 ) .  
Then A -- X1 r F makes independent the sequence B1 c B2 C . . .  C Brb-1. 
Therefore, 

m a x { l ' b } r  _< P*(F~,b) <_ b+r-2rb_l 

This lower bound is tight because for any positive integer r and for any e > 0, 
there exists a positive integer b such that  

1 1 
- < < - + 

r r 

On the other hand, if we fix b, for any e > 0 we can find a value of r such that  

1 1 

Finally, we present a bipartite access structure F such that  p*(F) = 2/3. 
Let F be a (N1, N2)-bipartite access structure with set of minimal points H0 = 
{(0, 3), (1, 1)}. Let us consider the ideal (2N1, N2)-bipartite access structure F '  = 
~4(3, 2, 3) with set of minimal points H~ = {(0, 3), (1, 2), (2, 1)}. It is clear that  
(x, y) C ~(F) if and only if (2x, y) E r (F ' ) .  Let Z '  be an ideal scheme with 
access structure F '  and set of secrets ~.  Let ZI  be the secret sharing scheme 
with access structure F and set of secrets )~ contructed from E '  by using the idea 
in the proof of Proposition 6. Then, in the scheme El ,  each participant p E X 
receives as its share two elements in )U, that  are the shares corresponding to two 
participants in the scheme Z ' ,  and the shares for the participants in Y are taken 
from E. On the other hand, F = F1 U F2, where the only minimal point of F1 
is (0,3) and the only minimal point of/"2 is (1, 1). We consider the scheme E2 
for F with set of secrets t :  defined from ideal schemes for F1 and F2. Since the 
participants in X do not appear in F1, their shares are taken from K:. The share 
of a participant in Y is taken from t~ 2. Finally, let us consider the scheme Z 
for F defined as follows: given a secret (kl, k2) E t~ 2, the dealer distributes kl 
using ~'1 and k2 using Z2. Every participant receives a share in 1C 3. Therefore, 
p*(F) >_ 2/3. From Theorem 4, p*(F) <_ 2/3. Then, p*(F) = 2/3. 
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Appendix 

We present in this Appendix the complete proof of Theorem 2. In order to do 
that  we have to introduce some notation and to prove some technical lemmas. 

Given a finite field GF(q), a positive integer n and a C GF(q), we notate 
Vn(a) = (1, a,  a 2 , . . .  , a  n - l )  E GF(q) n. It is well known that,  if a l , . . .  , an  are 
n distinct elements of GF(q), then {Vn(c~l),..., Vn(an)} is a basis of GF(q) n. 

Let n, n l ,n2  be integers with 0 ~ n l ,n2  ~ n < nl + n2. Let E be an n- 
dimensional vector space over a finite field GF(q) and let El ,  E2 C E be two 
subspaces with dim(Ex) = nl ,  dim(E2) = n2 and E1 + E2 = E. Observe that  
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r = dire(El  N E2) = nl  + n2 - n. Let us consider r different elements h i , . . . ,  )~r 
in GF(q)  and two isomorphisms, r : G F ( q )  n" ~ Ei,  where i = 1,2, such tha t  
r  = q~2(Vn2()~3)) for any j = 1 , . . .  , r .  Therefore, {r  
is a basis of E1 n E2. Let us consider the mappings v : G F ( q )  ~ E1 and 
w :  G F ( q )  ----* E2 defined by v ( a )  = r (0~)) and w ( a )  = r (Vn2 (a)).  Observe 
tha t  v ( )u)  = w(Aj) E E1 NE2 for any j = 1 , . . .  , r .  We notate  A = { ) h , . . .  ,A,}. 

L a m i n a  7. Let  Jr, B be two subsets of  G F ( q )  - A such that ] ,4 ] = n l  and ] B I = 
n - n l ,  or I A]  = n - n2 and 113] = n2. Then, v(A)  U w(B) is a basis o f  E .  

Proof. Let us suppose tha t  ] A [ = nl  and ] B ] = n - n l ,  being the other case 
proved analogously. Observe tha t  w(A), w(A)Uw(B)  and v(J t )  are, respectively, 
basis of E1 n E2, E2 and El .  [] 

L e m m a 8 .  Let A ,  B be two subsets of  G F ( q )  - A such that ] A]  = k - 1 and 
[B[ = n - k, where n - n2 + 1 < k < n l ,  and the subspace F C E generated by 
v(,4) U w(B) has dimension n - 1. Then, d im(F  n (El  n E2)) = r - 1. 

Proof. Observe tha t  k - 1 > n - n2 and n - k > n - n l .  We take ,4' C .A and 
B' C B such tha t  1.4'1 = n - n 2  and ]B']  = n - n 1 .  Then, v(A) U v ( A ' )  is a basis 
of E1 and v ( A ) U w ( B ' )  is a basis of E2. Therefore, v ( A ) U v ( A ' ) t 2 w ( B ' )  is a basis 
of E.  Then,  from Steinitz' Exchange Theorem, there is a vector v ( )u )  e v(A) 
such tha t  {v()~j)} U v (A)  U w(B) is a basis of E.  Since d im(F)  = n - 1 and 
(El  N E2) + F = E,  we have tha t  d im(F  n (El n E2)) = r - 1. [] 

L e m m a 9 .  For any pair of  integers N1 ,N2  with N1 >_ n - n2 and N2 >_ n2, 
there exists a positive integer L = L(n ,  n l ,  n2, Ni,  N2) such that, f o r  any pr ime  
power  q > L,  there exist two subsets X ,  Y C G F ( q )  - A, with ] X I = N1 and 
l Y]  = N2, such that for  any k = n - n 2 , . . . ,  min{N1, nl}  and for  any .A C X 
and B C Y with 1.41 = k and I B t = n - k, the set v(A)  U w(B) is a basis of  E .  

Proof. Using induction on N1, we are going to prove that ,  if q is large enough, for 
any y C G F ( q )  - A with l Y] = N2 there exists X c G F ( q )  - A with ] X' ] = N1 
verifying the required condition. 

If N1 = n - n2, we can take any subset X C G F ( q )  - A with I X  I = N1, 
because, from Lemma 7, for any B C Y with ]B] = n2, the set v ( X )  U w(B) 
is a basis of E.  In this case, q must  be greater than L(n ,  n l , n 2 , n -  n2,N2) = 
max{n  - n2, N2}. 

If N1 >__ n - n2 + 1, by induction hypothesis, there exists an integer L1 = 
L(n ,  n], n2, N1 - 1, N2) such that ,  if q > L1, there exists X '  C G F ( q )  - A with 
IX"] = N1 - 1 such tha t  for any k = n - n 2 , . . .  ,min{N] - l , n ] }  and for any 
A c X '  and B C Y with I A I -- k and I BI = n - k, the set v (A)  U w(B) is 
a basis of E.  From Lemma 8, for any k = n - n2 + 1 , . . .  , m i n { N l , n l }  and for 
a n y A c X ' a n d B c y w i t h l A ] = k - 1  a n d l B l = n - k ,  i f F A , ~ c E i s t h e  
subspace generated by v(A)  U w(B),  then, dim(FA,B n E])  = nl  - 1. Therefore, 
there exist at  most  n l  - k different elements a c G F ( q )  - (A U X ~) such tha t  
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v ( a )  �9 F.~,B n El .  Then, if 

min{Nl,nl} 

k :n -n2+l  

there exists OLN1 �9 GF(q) - (A U Pd') such tha t  V(O/N1 ) r F.A,B for any A C k "  
and i f f  C 32 with [A[ = k - 1  and [B[ = n - k ,  where n - n 2 + l  < k < 
m i n { N  - 1 ,nl}.  Therefore, if q > L(n, n l ,n2,N1,N2)  = max{L1,L2} there 
exists X = X '  U {aN, } C GF(q) - A, with I X I = N1, such tha t  for any k = 
n - n 2 , . . . , m i n { N l , n l }  and for any .4 C A' and B C 3) with 1.41 = k and 
[B I = n - k, the set v(.4) U w(B) is a basis of E.  [] 

Proof of Theorem 2. Let us take a prime power q > L = L(n, nl,n2, N1,N2) 
and consider the subsets X , Y  C GF(q) - A, with I XI  = N1 and I~Yl = N2, 
whose existence is given by Lemma 9. Let us consider two one-to-one mappings 
C x  : X ~ v ( X )  and Cy : Y --* w(3;). 

Let us take an isomorphism r : GF(q) r ~ E1 N E2 and the mapping  u : 
GF(q) ~ E1 A 17,2 defined by u(A) = r From Lemma 8, for any k = 
n - n2 W 1 , . . . , h i  and for any A c X and B C 3; with [A[ = k - 1 and 
I BI = n - k, if FA,s C E is the subspace generated by v(A)  U w(B),  then 
dim(FA,B A (El n E2)) = r - 1. Then, there are at most  r - 1 different elements 
A �9 GF(q) such tha t  u(A) �9 FA,~. Therefore, if 

q > M 1  = 
k=n-n2+I 

there exists )~o �9 GF(q) such tha t  for any k = n - n 2  + 1 , . . . ,  nl and for any ,4 C 
A' and B C Y with I AI  = k - 1  and I BI = n - k ,  the subspace F•,B do not contain 
the vector u()~o). Therefore, for any q > M(1, n, n l ,  n2, N1, N2) = max{L,  M1 }, 
the access s tructure 121(n, n l ,  n2) is the vector space access structure given by 
the mapping  r : P U { D }  --* E tha t  is defined by r = Cx(P) �9 E1 i f p  �9 X,  
r -- CY(q) �9 E2 i fq  �9 Y and r  = u(%0) e E1 h E 2 .  

Analogously, we can see tha t  if 

q > M 4 =  ~ k 1 n k ( n - l )  
k~n--n2 

there exists a vector uo E E such tha t  for any k = n - n2 . . . .  , nl  + 1 and for 
any A c X and B c Y with I AI  = k - 1 and I BI = n - k, the subspace 
FA,B C E generated by v(`4) U w(B) do not contain Uo. Therefore, for any 
q > M(4,  n, n l ,  n2, N1, N2) = max{L,  M4}, the access structure f24(n, n l ,  n2) is 
the vector space access structure given by the mapping r : P U {D} ~ E tha t  
is defined by ~b4(p) = ~bx(p) e E1 if p �9 X,  ~b4(q) = ~by(q) �9 E2 if q �9 Y and 
r  = uo �9 E - (El  U E2). 

Given a pr ime power q > L(n, nl, n2, N1, N2 + 1), let us consider the subsets 
X, y C GF(q) - A, with I A' I = N1 and I Y I = N2 + 1, whose existence is given 
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by Lemma 9. Let us consider the mapping r : P U {D} --* E defined from 
two one-to-one mappings Cx : X -~ v(A') and Cy : Y U {D} -~ w ( y ) .  It is 
not difficult to see that  r defines the access structure ~22(n, ni ,  n2). Therefore, 
M(2,n ,  n l ,n2,N1,N2)  = L(n, nl,n2, Ni ,N2 + 1). 

Symmetrically, if q > M(3, n, nl ,  n2, Ni,  N2) = L(n, nl ,  n2, Ni + 1, N2), we 
can find a mapping r : P U {D} ~ E that  determines the access structure 
~3(n, n l ,  n2). [] 


