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Abstract. All known constructions of information theoretic t-out-of-n 
secret sharing schemes require secure, private communication channels 
among the parties for the reconstruction of the secret. In this work we 
investigate the cost of performing the reconstruction over public commu- 
nication channels. A naive implementation of this task distributes U(n)  
one times pads to each party. This results in shares whose size is U ( n )  
times the secret size. We present three implementations of such schemes 
that are substantially more efficient: 
- A scheme enabling multiple reconstructions of the secret by different 

subsets of parties, with factor U(n/t) increase in the shares’ size. 
- A onetime scheme, enabling a single reconstruction of the secret, 

with U(log(n/t)) increase in the shares’ size. 
- A onetime scheme, enabling a single reconstruction by a set of size 

ezactly d ,  with factor U(1)  increase in the shares’ size. 
We prove that the first implementation is optimal (up to constant factors) 
by showing a tight Q(n/t) lower bound for the increase in the shares’ 
size. 

1 Introduction 

Secret sharing schemes were introduced by Blakley [7] and Shamir [19], and were 
the subject of a considerable amount of work, e.g. [18, 15, 16, 4, 201. In these 
schemes, a dealer holds a secret piece of information. Upon system initialization, 
the dealer gives one share of the secret to each of n parties. These shares are 
distributed privately, and are kept by each party in a secure way. Later on, any 
authorized subset (a subset containing at least t parties) of the parties collect 
their shares, and use them to reconstruct the secret. All known schemes that 
guarantee information theoretic secrecy require the use of secure, private com- 
munication channels between the parties that participate in the reconstruction. 

The question we raise in this work is whether reconstruction can be done 
without assuming that the channels are secure, while maintaining the security of 
the schemes. We consider the worst case scenario: The “bad” parties can overhear 
any communication, so from their point of view the channels are public. On the 
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other hand, “good” parties hear only messages sent to them. (In particular, 
from the point of view of the “good guys”, the channels do not carry any of the 
potential advantages of a broadcast channel.) 

The simplest way to implement such public reconstruction securely is to hand 
to each party upon system initialization, in addition to his original share, 2(n- 1) 
one time pads. These pads are used in order to simulate a private channel on 
a public one. In the private channel scenario, reconstruction is typically done 
by exchanging shares among parties. To enable such exchange with every other 
participant, each party will need two pads per participant: one for receiving a 
share, and one for sending the share. Thus the simple implementation results in 
O(n)  multiplicative factor increase in the size of each share. 

We design substantially more efficient schemes of three types. The first type 
is unrestricted schemes. In these schemes, any number of authorized sets (each 
containing at least t parties) may reconstruct the secret, after communicating 
on the public channel. Any disjoint coalition of at most t - 1 parties, does 
not gain any partial information on the secret, given the coalition’s shares and 
the the communication of the sets that reconstructed the secret. We describe 
unrestricted schemes in which the size of the shares in O(n/ t )  times the size of 
the original secret. We complement this result by proving a tight Q ( n / t )  lower 
bound on the increase in the shares’ size for any unrestricted scheme. 

In order to participate in more than one reconstruction, every party that 
has already reconstructed the secret must store the secret. This is problematic 
in applications where an adversary might break into the computer of the secret 
holder. (One of the advantages of traditional secret sharing is that breaking 
into the computer of a “share holder” does not compromize the secret.) The 
unrestricted non-reactive schemes of Section 5 solve this problem, but the share 
size there is n times the secret size. 

The second type is one tame schemes, in which only a single authorized set 
(containing at least t parties) will reconstruct the secret. It is not known during 
system initialization which set will reconstruct the secret, and the dealer has to 
accommodate any possible set. For example, these schemes can be used to enable 
one time activities like the firing of a ballistic missile or opening of a sealed safe. 
We describe onetime schemes in which the size of the shares in O(log(n/t)) 
times the original secret size. It is an open problem if this bound is tight for 
onetime schemes. Finally, we consider one time schemes where one authorized 
set of size exactly t will reconstruct the secret. Additional parties in supersets 
with more than t parties may not reconstruct the secret, because communicating 
it from members of the authorized set over the public channel is not possible in 
a secure way. This means that the authorized sets that can securely reconstruct 
the secret do not form a monotone access structure. We design such schemes 
with just O(1) multiplicative increase in the share size (for any threshold t ) .  

In light of our results, one may wonder if the initial distribution of shares can 
also be done over public channels. By the properties of “regular” schemes, each 
participant requires a share whose conditional mutual information with the secret 
(given t - 1 shares) is at least the entropy of the secrets [15]. This conditional 
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entropy cannot be increased by communicatingover public channels [17,1]. Thus 
in our model, it is necessary to have secure initial distribution of shares from the 
dealer to the participants. 

Some bibliographical remarks: A similar setting of public interaction was con- 
sidered for interactive key distribution schemes (e.g. [lo, 2]).0ur schemes employ 
key distribution schemes, though not interactive ones. Another solution to elim- 
inating the use of =cure private channels assumes that the parties have limited 
computing power. A common assumption is that the parties are probabilistic 
polynomial-time Turing machines, and the security of the channels is achieved 
by means of public key cryptography [12, 131. Public channels have been used 
in secret sharing (in addition to private channels) in dynamic sharing of secrets. 
These are schemes where the dealer enables parties to reconstruct different se- 
crets in different time instants (e.g. [20, 6, 91). A different scenario in which a 
public broadcast channel is used (in addition to private channels) is to protect 
against Byzantine parties [3]. Unlike our scenario, in that work the broadcast 
channel is heard by all parties. 

The rest of this paper is organized as follows: In Section 2 we define the of the 
model, secret sharing schemes, and key distribution schemes. Section 3 describes 
the unrestricted schemes, and Section 4 the one time schemes. In Section 5 we 
introduce non-reactive, unrestricted schemes. Finally, Section 6 provides lower 
bounds for unrestricted schemes. 

2 Definitions 

In this section we define our model, secret sharing schemes (traditional and 
public channels), and key distribution schemes. We consider a system with n 
parties denoted by {PI ,  P2,. . . , Pn}. In addition to the parties, there is a dealer 
in the system, who has a secret input s. A scheme is a probabilistic mapping, 
which the dealer applies to the input, and generates n pieces of information. 
These pieces of information are called shares, and the i-th pieces is called the 
share of Pi. For every i ,  the dealer gives the i-th share to Pi. The dealer is only 
active in this initial stage. After the initial stage, the parties can communicate, 
according to some pre-defined, possibly randomized, protocol. The parties are 
honest, that is, they follow their protocols. However, they are curious and after 
the protocol has ended some of them can collude and try to gain some partial 
information on the secret. 

Definitionl. Let B be a (bad) coalition (set of parties). The view of B, denoted 
by VIEWE, after an execution of a protocol is all the information it has, i.e. the 
shares of the parties in the coalition, and the messages exchanged by all parties 
over the communication channels. (Here the insecurity of the communication is 
manifested.) The coalition B has no information on a random variable X if for 
every two possible values tl , 2 2  of X: 
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where the probability is taken over the random inputs of the dealer, and the 
random inputs of the members outside the coalition. Notice that we do not 
make any assumptions on the distribution of X .  

We define both traditional secret sharing scheme, i.e with private channels, 
and secret sharing schemes with public reconstruction. 

Definition2. Let S be a finite set of secrets. A t -out-of-n secret sharing scheme 
is a scheme, in which the input is a secret taken from S, and which satisfies the 
following two conditions: 
Reconstructability: Any set of parties whose size is at least t can reconstruct 
the value of the secret after communicating among them self. Any party in the 
reconstructing set gets the value of the secret with certainty. 
Security: Every disjoint coalition B of size at most t - 1 has no information 
on the secret as defined in Definition 1. There are three variates we consider: 

1.  Traditional secret sharing schemes in which the reconstruction takes place 
via secure, private channels, In this case the view of a disjoint coalition is its 
shares. 

2 .  Unrestricted secret sharing scheme with public reconstruction in which a 
coalition B can hear all communications that took place. The security is 
guaranteed even if any collection of sets (maybe even all) will reconstruct 
the secret using the public channel. In this case the view of a disjoint coalition 
is its shares and all the communications that took place. 

3 .  One- t ime  scheme in which the security is guaranteed only if one set will 
reconstruct the secret. In this case the view of a disjoint coalition is its 
shares and a communication of one reconstructing set. 

The security should hold for any coalition of at most t - 1 parties. As a special 
case ( B  = 0), a listener who heard all communications but has no shares should 
gain no partial information about the secret. 

Shamir [19] presented a traditional scheme in which the size of the shares 
is the same as the size of the secrets (for domains of secrets which contain at 
least n + 1 secrets). The domain of shares in Shamir’s scheme is the smallest 
possible, since the size of the share has to be at least its large as the size of 
the secrets [15]. In traditional secret sharing schemes, while one set reconstructs 
the secret, no information is leaked to disjoint coalitions (due to the security 
of the channels). Hence, these schemes are always unrestricted. Furthermore, in 
traditional schemes, if a set can reconstruct the secret, then every superset of 
the set can reconstruct the secret. However, secret sharing schemes with public 
reconstruction do not necessarily have this monotone property. We require that 
every party of the superset should know the reconstructed secret. However, it 
is not necessarily possible to “distribute” the secret to members of a superset 
without leaking information on it to other parties. 

We describe unrestricted, non-interactive key distribution schemes. (Formal 
definition can be found in [lo, 21.) These schemes are used in the constructions 
of the schemes with public reconstruction. 
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Let b be a positive integers such that b 5 n - 2, and K be a set of keys. A 
(2, b) key distribprtion scheme with n users and domain of keys K is a scheme 
in which a dealer (who has no input) generates n shares such that the following 
requirements hold: 
Every pair of parties has a key, which is uniformly distributed. Each member 
of the pair can deterministically reconstruct G’s key from his share. Any “bad” 
coalition “B” of cardinality at most b gets no information on the key of any 
disjoint pair. In this case their view is the collection of their pieces. 

Consider a (2,2t-3) key distribution scheme, a coalition B of t-1 parties, and 
a disjoint set G oft parties. It holds that from the point of view of the coalition, 
the (i) keys of pairs of parties in G are distributed uniformly and independently 
(for proof see [2]). Blom [8] constructed efficient (2, b)-key distribution schemes. 
For every prime-power q (where q 2 n )  he presented a scheme in which the keys 
are taken from GF(q) and the shares are taken from GF(#+l. 

3 Unrestricted Schemes 

In this section we construct unrestricted secret sharing schemes with public 
reconstruction in which the size of the share of every party is O(n/ t )  times the 
size of the secret. We first describe a simple scheme in which the size of the 
shares is O(n) times the size of the secret. In this scheme, the dealer shares the 
secret using Shamir’s secret sharing scheme [19]. The dealer also deals to every 
pair of parties two random strings whose size is the same as the size of the secret. 
These two random strings, which we call keys, are given to the two parties of the 
pair, and will be used as one-time pads. Overall, every party receives 2(n - 1) 
keys, each one with the same size as the secret. When the parties of a set of 
size at least t wish to reconstruct the secret, all the parties “send” their shares 
to the “leader” of the set, say the party with minimal index in the set. The 
leader gets at  least t shares, which enable him to reconstruct the secret. Then, 
the leader “sends” the secret to the other parties. The parties use their keys as 
one time pads to simulate the private channels. Specificly, let Pi, be the party 
with smallest identity in the set. Every party P,, holding the share si from 
Shamir’s scheme, adds sj and the first key of the pair (Pi,, Pi) and sends this 
sum on the public channel. The party Pio can reconstruct all the shares from 
these messages, and therefore reconstruct the secret. Now, Pi, sends messages, 
one message to every party in the reconstruction set. For every party Pi, he sums 
the secret and the second key of the pair (Pjo,Pj) and sends this sum on the 
public channel. Since the one-time pads are independent, coalitions of parties 
disjoint to the reconstructing set do not gain any information on the shares or 
the secret. Furthermore, even if many reconstructions took place, this will not 
leak any information to a disjoint set. 

Suppose Pi, is the leader in a set of size at least t .  In the previous scheme, 
during the reconstruction for this set, only the keys that were given to Pi, were 
used. To improve the space efficiency we will use all the keys of the parties in 
the reconstructing set. Following [2], we partition the secret into t sub-secrets, 
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and share each sub-secret using Shamir’s scheme. Now we choose t parties of the 
reconstructing set, and each one will be responsible for reconstructing one sub- 
secret. Each party will act as the leader in the previous scheme. That is, every 
leader receives shares only from the other t - 1 leaders (this is enough!), but sends 
his sub-secret (after reconstruction) to every member of the reconstructing set. 
This way we can handle t sub-secrets ((at the price of one”. The domain of the 
secrets in the scheme is GF(~J)~ ,  where q is a prime-power such that 4 > n. In 
the scheme we view the secret as t secrets from GF(q). 

Unrestricted Secret Sharing Scheme 

Distribution st age: 
Input: t secrets s1, SZ, . . . , st E GF(q) 
Shares: 
Share each s, using Shamir’s scheme for every i, where 1 5 i 5 t. 
Denote the n shares of secret sj by S ~ J ,  ~ j , 2 , .  . . , si,,,. 
For every pair of parties generate 4 independent keys from GF(q). 
Denote the keys of (Pi, Pj)  by k / , j ,  k:,j, k ; j ,  k : j .  
The share of Pi is sl , i l . ,  . st,i and k:,j,  k f , j ,  a t j l  kf,j for 1 5 i 5 n. 

Reconstruction stage: 
A set G = {Pi, , . . . , Pi,} that wants to reconstruct the secret (1 2 t ) .  
Every Pi, E G announces if he has previously reconstructed the secret. 
Let Pi, for 1 5 j 5 t be the leaders of G. 
Each leader Pi, (1 5 j 5 t )  sends (at most) t - 1 messages to other 
leaders that have not previously reconstructed the secret: 

sij,jj + k!. i . ,  to Pi,, for 1 5 j’ < j 
sij, j l  + k i .  i ,, to Pi,, for j < j ’  5 t 

2” 3 

J ’  I 
Each leader Pi, (1 5 j 5 t) computes sj from sj,i, , . . . , S j , j t .  

Each leader Pi, sends a message to every Pi,, E G that has not 
previously reconstructed the secret: 

sj + k?,,i,, to I+,, for 1 5 j ’  < j 
sj + kf,,i,, to Pi,, for j < j‘ 5 1 

Each party concatenates the sub-secrets s1,. . . , st to obtain the secret. 

Figure 1: Unrestricted scheme. 

As described, the scheme has two technical points we should elaborate. The 
first is the fact that in one reconstruction two parties Pi and Pj might need to 
exchange 4 different messages. This is the reason for giving them 4 common keys. 
The second difficulty is that in different reconstructions the same party can be 
responsible for different sub-secrets. This means that P, will have to send to Pj 
two different messages, using the same key as a one time pad. This might leak 
information to disjoint coalitions. Therefore, every party that participated in one 
reconstruction will remember the secret, and in latter reconstructions will inform 
other parties (in the clear) that he need not receive new messages. It does not 
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prevent a leader from sending all messages that he has to send according to the 
scheme, since these message either depend on his share, or on the secret. (The 
party need only remember the secret, and not the messages that he heard.) Thus, 
every key is used as a onetime pad at most once (in the first reconstruction that 
the pair participates together). Therefore, the scheme satisfies the unrestricted 
security requirement. A detailed code of the scheme appears in Figure 1. 

Let us calculate the size of the share of every party in the unrestricted scheme. 
Each party is given t shares generated by Shamir’s scheme for secrets taken from 
GF(q). The dealer also distributes to each party 4(n - 1) keys taken from GF(q). 
Hence, each share contains (4n + t - 4) elements from GF(q), compared to t 
elements from GF(q) for the secret. We summarize these results in the the next 
theorem. 

TheopemS. Let q be a prime-power such that q > 91. The above mentioned 
scheme i s  an unrestricted t-out-of-n secret sharing scheme with public recon- 
struction for  secrets taken from GF(q)t .  The share of each party is  an element 
of GF(q)4n+’-4. So the size of each share is 1 +4(n - l ) / t  t imes the size of the 
secrets. 

4 One-Time Schemes 

In the unrestricted scheme, we need totally independent keys in order to guar- 
antee the security of the scheme during repeated reconstructions. In this section 
we deal with the scenario where the secret is going to be reconstructed only 
once. For example, to enable the firing of a ballistic missile or opening of a 
sealed safe. In this case, total independence among the keys is not needed, and 
weaker independence requirements suffice. Shares can therefore be taken from a 
smaller sample space, which translates into smaller size shares. Specifically, we 
use Blom’s key distribution scheme [S] for this purpose. 

The first scheme we present enables one-time reconstruction of the secret by 
sets of size exactly t .  The size of the shares is a constant (less than 10) times 
the size of the secret, namely only O(1) increase in shares’ size, We employ this 
“exactly t” scheme as a building block for “at least t” schemes. We use log(n/t) 
independent instances of “exact schemes” for thresholds t ,  2 t ,  4 t , .  . . up to n, and 
an additional instance of size t .  Now, given any set G with 1 parties (1 2 t ) ,  
we represent it as a union of subsets (not necessary disjoint) with cardinalities 
t ,  2 t ,  4t,.  . , - at most two sets subsets of cardinality t and at most one subset 
of cardinality 2’t for each 0’ 2 1. The secret is now separately reconstructed by 
each subset. Any member of G takes part in at least one of these reconstructions, 
and thus learns the secret. On the other hand, any disjoint coalition containing 
at most t - 1 parties gets no partial information on the secret from any single 
instance. Due to the independence of the instances, this remain valid with respect 
to the joint reconstructions. We get a one-time scheme for set of size at least t ,  
with just O(log(n/t)) increase in share size. We now describe in detail the “exact 
t” scheme. The distribution phase is depicted in Fig. 2.  
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Distribution in Exactly t-out-af-n one-time scheme 

Input: secret s E GF(q)t. 

Consider the secret as t secrets s1, . . . , st E GF(q). 
Share each secret si  using Shamir’s t-out-of-n secret sharing scheme. 
Let b = min(2t - 3, n - 2). 
Generate shares using (2, b)-key distribution scheme with key domain 
G F ( Q ) ~  (which we consider as 4 keys from GF(q)). 

Share of P,: the j-th share of each s,, 
and the share of the key distribution scheme. 

Figure 2: Exactly t-out-of-n one-time scheme. 

The reconstruction is done exactly as in the unrestricted scheme. The security 
of one reconstruction of a set of exactly t parties follows from the property of 
(2,2t - 3) key distribution schemes discussed in Section 2: Given the shares of 
any disjoint coalition of at most t - 1 parties, the keys held by any set of size t are 
distributed uniformly and independently. Thus, when used as one-time pads, the 
reconstruction is secure (using the same arguments as in the unrestricted case). 
This scheme uses t shares of Shamir’s t-out-of-n secret sharing scheme with 
secrets taken from GF(q). In addition, each party gets a share of a (2,2t - 3) 
key distribution scheme with keys taken from G F ( Q ) ~  and with shares taken 
from GF(q)4(2t-2). Overall, each share contains (9t - 8) elements from GF(q) 
(if 2t > n + 1, then the shares are even shorter). Recall that the secret is taken 
from GF(q)t, and therefore the size of the share is less than 9 times the size of 
the secrets. 

In this previous scheme the domain of secrets has to be GF(q)t (for some 
prime-power q) .  Restricting the domain of the secret to such cardinality can 
cause problems when we employ simultaneously many schemes with the same 
secret but with different thresholds. To overcome this, given any domain of 
secrets we consider a slightly bigger domain whose size (which can depend on 
the threshold) is of the desired form. That is, given a secret of size m which 
is at least t log n, we choose a prime power q such that m 5 t log q,  and use 
the previous scheme with secrets of size rn‘ = tlogq. Choosing the smallest 
prime-power satisfying these conditions, we have m’ 5 m + t 5 2m. Thus, 

Theorem4. Let rn be a natural number such that m > 9tlogn. There exists 
a one-time sharing scheme with public reconstmction for exactly t-out-of-n, in 
which the size of the secret equals m, and the size of the share of each party as 
less than 10 times the size of the secrets. 

We next describe the one time scheme in which every set of at least t parties 
can securely reconstruct the secret. 
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One-time Secret Sharing Scheme 

Distribution st age: 
Input: secret s of size m 
Share the secret s using two independent copies of a 
one time exactly t-out-of-n secret sharing schemes. 

For every i, 15 i < log(n/t): 
Share s with an exactly 2't-out-of-n one time secret sharing scheme. 

Reconstruct ion stage: 
A set G = {Pi,, . . . , Pi,} that wants to reconstruct the secret ( L  3 t ) .  
Cover the set G by (possibly intersecting) sets of size 2't 

Each set of size 2't independently reconstructs the secret using 
(at most one set for every i > 1,  and at most 2 sets of size t ) .  

the shares of the exactly 2it-out-of-n secret sharing scheme. 

Figure 3: t-out-of-n one-time scheme for every set. 

Theorem5. The scheme of Figure 9 is a one-time t-out-of-n secret sharing 
scheme with public reconstruction an which every set of parties of size at least 
t can securely reconstruct the secret. If the size of the secrets rn is larger than 
9n log n, then the size of the shares of ewery party i s  less than lO(log(n/t) + 1) 
t imes  the size of the secrets. 

Remark If we require that the size of the secret m is greater than n2 logn, then 
we can construct a scheme in which the size of the shares is only 2log(n/t)+O(l) 
times the size of the secret, i.e a smaller leading constant. 

5 Unrestricted Non-Reactive Schemes 

A secret sharing scheme with public reconstruction is called non-reactive if the 
messages sent by each party depend only on his share (and not on messages 
received during the reconstruction). Non-reactive schemes are simpler to imple- 
ment, as they require less synchronization. Therefore, they are desirable from 
practical point of view. In this section we present non-reactive, unrestricted t- 
out-of-n schemes. The size of the shares in these schemes is n times the size of the 
secret. This represents a slight improvements (by a factor of 2) over the reactive 
scheme of Section 3 for  t = 2 ,  but is strictly less efficient (in terms of share size) 
for t 2 5. We extend these schemes to general access structures. The size of the 
share in our public reconstruction schemes is n times the size of the share in the 
original scheme. This is typically not a significant increase, as the best schemes 
for most access structures to date require shares whose size is exponential in n. 

We first present a simple, non-reactive, 2-out-of-n secret sharing scheme. 
Let s E 2, be the secret which the dealer wants to share. The dealer chooses 
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n independent random elements from 2,, denoted r1, . . . , r,,. The share of Pi 
is P I , .  . . , ri-1, ri + s, ~ i + l , .  . . , r,,. Each share is uniformly distributed in 2:, 
regardless of the secret. Hence, prior to any reconstruction every party has no 
information on the secret (a defined in Definition 1). To reconstruct the secret, 
Pi sends the message rj, and Pj sends the message ri. Now, Pi, who holds ri +s, 
hears the message p i ,  so he can reconstruct the secret. Every third party hears 
messages that he already knows, and gains no information on the secret. That 
is, the reconstruction is secure. The size of the shares in this scheme is n times 
the size of the secret. During the reconstruction in this scheme every party is 
deterministic and sends only one message that depends only on its share. 

In general secret sharing schemes scenario, first suggested by [14], we are 
given a collection A of sets of parties called an access structure. We require that 
every set in A can reconstruct the secret, while every set not in A does not know 
anything about the secret. It follows that secret sharing schemes can exist only 
for monotone collections. Indeed, it is known that for every monotone collection 
there exists a traditional secret-sharing scheme [14, 5, 211). However, the size of 
the shares in these schemes is typically exponential in the number of parties (i.e., 
of size m2*(") where n is the number of parties in the system and rn is the size 
of the secret). Let A be any monotone access structures. The unrestricted, non- 
reactive, 2-out-of-n scheme can be generalized to a unrestricted, non-reactive 
scheme realizing the access structure A , with the following properties: 

Theorem 6.  Assume there exists a (traditional) secret sharing scheme realiz- 
ing A with domain of secrets S and domain of shares U. Then there exists a 
unrestricted, non-reactive secret sharing scheme realiztng A with public recon- 
struction for  secrets taken from S. The share of each party is an element of 
S x U"-l. So the size of each share i s  at most n tames the size of the shares in 
the original scheme. 

Corollary7. Let q be a prime-power such that q > n.  There exists an unre- 
stricted, non-reactive t-out-of-n secret sharing scheme with public reconstruction 
for  secrets taken f rom GF(q). The share of each party is an element of GF(q)". 
So the size of each share i s  n t imes the 'size of the secret. 

For most known schemes [5, 211, it is possible to design unrestricted reactive 
schemes with just an additive factor of n times the secret size (in these schemes 
it suffices for a party to send a message of the size of the secret, instead of his 
entire share). This is typically much better, as the shares tend to be much larger 
than the secret for general access structures. Additional details will be given in 
the final version. 

6 Lower Bounds for Unrestricted Schemes 

In this section we prove a G?(n/t) lower bound on the increase in the shares' 
size for unrestricted t-out-of-n schemes. For t = 2 this lower bound is tight by 
the non-reactive scheme of Section 5. For t > 2 this lower bound is tight up to 
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a constant factor (by the reactive scheme of Section 3). We first prove a n(n) 
lower bound on increase in size of shares for 2-out-of-n schemes. Then, we show 
that this lower bounds translates into O ( n / t )  increase for t-out-of-n schemes. 

We start with the lower bound for t = 2. The proof uses entropy and mutual 
information. For definitions of these information theoretic terms, the reader can 
refer to [ll]. We assume an arbitrary probability distribution on the secret. The 
intuition behind the proof is that Pi has to expose H ( S )  extra bits of his share in 
each reconstruction. Finally, after all reconstructions, the uncertainty of S1 has to 
remain at least H(S) ,  as an outsider who listened to all reconstructions still has 
H ( S )  uncertainty on the secret. Since, Pl participates in n - 1 reconstructions, 
the original entropy of the share has to be at least n . H(S).  

Without loss of generality, we prove the claim for PI.  To prove the lower 
on PI’S share, we only use the requirement that PI can reconstruct the secret 
together with every other P, (we do not care if other pairs can or cannot recon- 
struct the secret). We start with some notation. Denote by Sj the share given to 
Pi in the initial distribution phase, and by Ci,, the messages exchanged between 
Pi and Pj (all these are random variables). We denote C = C ~ J .  . . Cl,,,, the con- 
catenation of all messages exchanged between PI and Pa, . .  . , Pn. Recall that the 
communication C1,2, together with Pz’s share S2, enable P2 to reconstruct the 
secret S. On the other hand, the communication C and Sz give no information 
(to Pz) about the secret. These facts will imply the next claim. 

Claim 8.  H ( C I , Z ~ S ~ C )  2 H(S)  . 

Proof. Since Pa can reconstruct the secret S, given his share S2 and the messages 
C1,2 exchanged between PI and P2, the conditional entropy H(SJC1,2S2) equals 
0. On the other hand, P2 gets no information about the secret S from his own 
share Sz and all messages C exchanged between PI and the other n - 2 parties. 
Therefore the conditional entropy H(SlSzC) equals H(S) .  Now, consider the 
conditional mutual information I(C1,z; SlSzC) of the message C1,2 and the secret 
S, given the share Sz and C. We have 

H(Cl,zls2c) - H(C1,21SS2C) = I(C1,2; SlSZC) 
= H(SlS2C) - H(SICl,2S2C) = H ( S )  

which implies H(Cl,2lS2C) 2 H ( S ) .  0 

The next claim is the heart of the proof of the lower bound. It states that the 
mutual information between S1 and Cl,2 given the “other” communication C is 
at least H(S).  Intuitively, since PZ does not know the secret prior to the recon- 
struction, and knows it after the reconstruction, Pa has to receive H ( S )  bits of 
information which could only originate in S1 and passed through the communi- 
cation C1,z. Hence, (21.2 must contain H ( S )  bits of information originating from 
the share S1. Claim 9 is stated for deterministic parties - the outgoing messages 
are determined by the given share and previous incoming messages. An analo- 
gous statement, for randomized protocols, will be included in the final version of 
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this paper. In randomized, outgoing messages can also depend on random local 
inputs. 

Claim 9. For deterministac reconstruction protocols we have 

I(C1,2;S1IC) = H(S1lC) - H(SlIC1,2C) 1 H ( S )  * 

Proof. Since PI and P2 are deterministic) and their domain of shares is finite, 
there is a bound k on the maximum number of communication rounds which 
take place during the reconstruction of the secret. Denote by Ai the i-th message 
sent by PI to P2, and similarly, let Bi be.the i-th message sent by P 2  to Pi. Then, 
without loss of generality, C1,2 = AlBl . . .AkBk. The message Ai is determined 
by the share 5’1 and previous messages) that is, H(Ai(SlA1BI. . .Ai-lBi-i) = 0. 
The following inequality holds for any deterministic communication protocol: 

H (  C1,2 !Sic) = H(AiB1 . . .AkBk(SiC) 
k 

= C(H(AilS1CA1B1.. .Ai-lBi-i) + H(BilSiCA1BI.. .Ai-iBi-iAi)) 
i=l 
k 

= CH(Bi(SiCA1B1.. .Ai-iBj-iAi) 
i= 1 

k 

5 CH(BjICAlB1 + .  .Ai-lBi-lAi) - 
i=l 

Similarly, H(Cl,2lS2C) 5 xi”=, H(AjlCAlB1.. .Aj-lBi-l) . Combing the two 
inequalities 

k 

H(C1,21SlC) + H ( C ~ , ~ ~ S Z C )  I C H(BilCAlB1. . .Ai-lBi-lAi) 
i = l  

k 
+ CH(AiICAlB1.. .Ai-lBi-l) 

i=1 

= H(AiB1.. .AkBkIC) = H(C1,zIC) . 

This inequality, together with Claim 8, implies 

I(C1,2; SllC) = H(C1,2lC) - H(C1,2ISlC) 2 H(C1,ZlSZC) 2 H ( S )  0 

Claim 10.  In any unrestricted 2-out-of-n secret sharing scheme with public re- 
construction, the share of each participant, Si, satisfies H(Si) 2 n * H ( S )  . 

Proof. We first note that by Definition 2 a listener, who overhears all communi- 
cation involving PI, gets no information on the secret. Therefore, 
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On the other hand, given PI’S share, this communication determines the secret, 
so H(SIS1C1,2C1,3.. . C I , ~ )  = 0 . Therefore, 

and in particular H(S1 lCl,2Cl,3. . . C,,,) 2 H ( S )  . Claim 9 (or analog claim for 
the case of randomized protocols, which will appear in the final version) states 
that 

H(S1IC1,3.. aC1,n) - H ( S I ~ C I , ~ C I , ~ .  . .Cl,n) 2 H ( S )  * 

Similarly it holds that 

Summing these n inequalities, we conclude that H(S1)  2 n . H ( S )  . 0 

We next show that this lower bounds on increase in size of shares for 2-out- 
of-n schemes translates into Q ( n / t )  increase for t-out-of-n schemes. 

TheoTern 1 1 .  In every unrestricted t-out-of-n secret sharing scheme with public 
reconstruction the size ofthe shares of every party is at least 11 + ( n  - l ) / ( t  - 1 ) j  
times the size of the secrets. 

Proof. Consider any t-out-of-n scheme. Denote the party whose share is shortest 
by PI.  We construct an unrestricted 2-out-of-( 11 + ( n  - l ) / ( t  - l ) J )  scheme in 
which the entropy of S1 - the share of PI - is the same. Hence, by Claim 10 
its entropy is at least (11 + (n - l ) / ( t  - I ) J ) H ( S ) .  Since the scheme is secure 
whatever the distribution on the secrets is, we can assume uniform distribution 
on the secrets. In this case H ( S )  = log 15’1, which is the size of the secret. Since 
H(S1)  5 log IS11, the size of the share of PI is at least L1+ ( n  - l ) / ( t  - l ) ]  
times the size of the secrets. 

The construction is simple: the dealer gives PI the share of PI in the original 
scheme, and every other party gets shares o f t  - 1 disjoint parties. Since every 
party has at most t - 1 shares, he does not gain any information on the secret 
even after hearing communications. On the other hand, every 2 parties have at 
least t shares, therefore they can communicate on a public channel, and securely 
reconstruct the secret. 0 
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