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Secreted breast tumor interstitial fluid
microRNAs and their target genes are
associated with triple-negative breast
cancer, tumor grade, and immune
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Abstract

Background: Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication
and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells
may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs
externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint
which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis.

Methods: Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid
(IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to
obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently,
miRNA family enrichment analysis was performed to assess whether any families were over-represented in the
specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed
weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we
integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools
and cancer gene databases.
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Results: Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte
infiltration. All of the genes were involved in immune system processes, and many had previously been associated
with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary
lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within
this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory
responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-
expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid
metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with
tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454.

Conclusion: Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological
traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an
integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.

Keywords: Tumor interstitial fluid, Breast cancer, Co-expression analysis, Biomarker, Tumor-infiltrating lymphocytes,
Tumor grade, TNBC, miRNA families, Gene target, Interaction networks

Background
Two of the most predictive measures of breast cancer

(BC) patient mortality are tumor progression and immune

infiltration [1–3]. By decoding and recognizing the under-

lying molecular patterns of invasive breast tumors, clini-

cians may provide high-grade tumor patients with

appropriate prognosis and treatment, while monitoring

the potential progression of lower-grade cancers [4, 5].

Breast tumor invasiveness and patient prognosis are re-

lated to molecular subtypes, which are currently classified

through PAM50 mRNA expression or immunohisto-

chemistry staining of hormone receptors [6, 7]. BC pa-

tients with luminal tumors, defined by the expression of

the estrogen and/or progesterone receptor (ER+|−,

PgR+|−), are known to have the best overall outcome [8,

9]. Luminal A type tumors are associated with a slightly

better patient survival rate than luminal B tumors, which

have high expression levels of Ki-67 (> 14%), and in some

cases, human epidermal growth factor receptor 2 (HER2)

amplification [8, 9]. Patients with estrogen- and progester-

one receptor-negative (ER−, PgR−), Her2-amplified tu-

mors, have poorer outcomes than those with luminal

subtypes, even though this group of patients has been

shown to respond well to targeted therapy [10]. The basal-

like and triple-negative breast cancer (TNBC) subtypes,

which are largely overlapping and classified by the lack of

hormone receptor expression (ER−, PgR−, Her2−) [11],

have the poorest prognosis among the subtypes [8, 9].

A precise characterization of the degree of breast

tumor invasiveness, alongside the biological relevant

pathways and underlying molecular mechanisms, hinges

on the identification of a set of specific and sensitive

biomarkers.

Recent studies suggest that circulating microRNAs

may have great potentials as cancer progression markers

[12–14], partially due to their high stability in the

plasma/blood [15, 16]. Not only does the level of exter-

nalized miRNAs reflects the molecular events underlying

tumor progression but, importantly, some studies point

to a functional role of tumor-secreted circulating

miRNA in intracellular communication and tumor re-

programming [17–19]. Tumor cells may release micro-

vesicles into the extracellular space, which may then be

taken up by other cells (tumor, epithelial, or immune)

via endocytosis [20]. Some micro-vesicles have been

found to not only contain mature miRNAs, but pre-

miRNAs with accompanying RNA-induced silencing

complexes (RISCs) [21]. Uptake of the pre-miRNA exo-

somes by recipient cells resulted in an efficient silencing

of target mRNAs and reprogramming of the cellular

transcriptome [22]. In accordance, it has been reported

[23] that the release of miRNAs within exosomes was

not merely a reflection of the abundance of a given

miRNA species, but a selective process facilitated by the

tumor cells [23, 24]. For example, exosome-mediated

transport of miR-10b from BC cell lines has been shown

to promote tumor cell invasiveness in other BC cell

lines, which were otherwise not invasive [24].

Circulating miRNAs may also be found free of exo-

somes, either in complexes with argonaute proteins [25]

or bound by high-density lipoprotein (HDL) [26]. HDL-

bound circulating miRNAs are delivered to recipient

cells, via the scavenger receptor class B/type I-dependent

and uptake of these results in targeting of mRNA re-

porters [26]. MicroRNA silencing of gene targets is facil-

itated through the interaction of the mRNA 3′ UTR,

with the ~ 8 nucleotide seed sequence within the

miRNA [27]. Mature miRNAs, which have identical seed

sequences, are classified as belonging to the same

miRNA family [28]. Because seed sequences of family

members are complementary to the same binding mo-

tifs, these miRNAs are thought to regulate the same
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target genes [27, 28]. In a study from 2013, Hamilton

et al. [29] identified a pan-cancer oncogenic microRNA

family, which was responsible for the co-regulation of

central tumor suppressors and, in general, genes func-

tioning within the same pathways. As members of a

miRNA family can act as gene co-regulators, it is pos-

sible that these are also co-secreted by tumor cells.

Studying the relationship between tumor externalized

miRNAs should identify which biological processes and

pathways are specifically modulated within the tumor

cell itself and potentially targeted in recipient cells.

Indeed, one very interesting aspect of tumor-secreted

miRNA reprogramming is a possible connection to dis-

ease progression through the modification of both

neighboring and distal tissues. Le et al. [30] showed that

exosomes containing miR-200 from metastatic human

breast cancer cell lines were absorbed by non-metastatic

cells, resulting in the promotion of mesenchymal-to-

epithelial transition [30]. The study found that miR-200-

expressing tumors used extracellular vesicles to drive

metastasis of otherwise weakly metastatic cells at distant

sites, providing these cells with the ability to colonize

distant tissues in a miR-200-dependent manner [30].

Similarly, it has been reported that cancer cells can sup-

press glucose uptake by non-tumor cells in the pre-

metastatic niche, by secreting micro-vesicles containing

miR-122 [31]. Repression of miR-122 restored the glu-

cose uptake in distant organs, while decreasing the inci-

dence of metastasis and disease progression [31].

As such, identification of specifically secreted miRNAs

may not only help to improve patient diagnosis/prognosis

and disease monitoring, but could also relay information

about which target genes are central for particular tumor

properties, including invasiveness, and how these proper-

ties may be promoted by tumor cell communication.

Despite their potential usefulness, however, identifica-

tion of robust circulating miRNA biomarkers is no trivial

task, as a range of non-cancerous events may cause

changes in the levels of biomolecules [32]. Blood-based

biomarkers are especially dynamic and can be affected

by the time of sampling, patient diet, level of physical ac-

tivity, medication, and other biological variances, which

are extremely difficult to take into account [33]. Further-

more, the serum/plasma may be considered a difficult

starting material for marker discovery as cancer-related

macro-molecules will be highly diluted and buried in a

complex serum/plasma secretome [34, 35].

In recent years, the importance of the tumor micro-

environment has become a central area of cancer re-

search, as multiple studies have shown how cancer cells

modulate the mechanisms of the surrounding stromal

cells in ways that enable the tumor to induce angiogen-

esis, sustain proliferation, and evade immune destruction

[36]. Cross-talk within the tumor stroma is facilitated by

the tumor interstitial fluid (TIF), which forms the inter-

face between circulating body fluids [37]. In the local

tumor environment, stromal cells and tumor cells are

surrounded by TIF, allowing for the secretion and up-

take of ions, miRNAs, proteins, and other signaling mol-

ecules [38, 39]. As a result, TIF is thought to modulate

the epigenetic program of non-malignant cells by tumor

cells and vice versa, demonstrating the importance of

local tumor milieu for cancer progression [40, 41]. In

addition to molecules secreted from tumor and healthy

stromal and epithelial cells, TIF encompasses external-

ized biomolecules from immune cells in the tumor

microenvironment [42]. Tumor immune cell infiltration

has been shown to be central for the prediction of pa-

tient response to treatment and overall survival [2]. The

relationship between lymphocyte infiltration and tumor

progression is multifaceted [43]. A number of studies

have found that a higher degree of CD8+ T lymphocytes

is associated with a better outcome for patients with BC

[43], especially for the TNBC and Her2-enriched sub-

types [44].

In contrast, tumor-infiltrating CD4+ T lymphocytes

have been linked to a poorer overall survival. This may

be related to the expression of PD-L1 (programmed

death-ligand 1) by some populations of tumor-

infiltrating lymphocytes (TILs), as PD-L1 is a major

inhibitor of an anti-tumor immune response [45, 46]. In

accordance, the degree of immune infiltration by PD-

L1+ T lymphocytes was found to be correlated with

large tumors, high-grade tumors, and positive lymph

node status [45, 46]. It should be noted that the role of

PD-L1 in tumor immune escape is complex, with tumor

cells themselves as well as some populations of immune

cells displaying this protein, and contributes to anti-

immunity in a context-dependent manner [47]. Intersti-

tial fluids provide a snapshot of circulating tumor

molecules, as well as immune cell-secreted biomolecules

associated with tumor properties such as growth and re-

sponse to therapy [2, 48]. As the concentration of

cancer-specific biomolecules within the local tumor mi-

lieu is estimated to be 1000–1500 times that of blood,

TIF is a unique resource for BC biomarker identification

and a promising alternative to a highly diluted serum

secretome [37, 38].

In this study, we analyzed a set of secreted miRNAs

from tumor and normal interstitial fluids acquired from

60 women with breast cancer [49]. The availability of

clinicopathological information, including tumor grade,

receptor status, and BC subtypes classification as well as

the characterization of immune infiltration of every bi-

opsy, allowed us to investigate the relationship between

interstitial fluid miRNA levels and patient clinical fea-

tures. We subsequently identified the deregulated gene

targets of IF miRNAs in tumor tissues from the same
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cohort of patients [50]. Integration of miRNA and

mRNA expression data helps to pinpoint the perturbed

pathways responsible for breast cancer progression while

strengthening biomarker selection by utilizing the com-

binatorial power of a bi-molecular expression profile.

Materials and methods
Datasets for analyses

The miRNA and mRNA data analyzed in this study were

retrieved from previously published works. Briefly, inter-

stitial fluids had been extracted from surgically resected

pieces of breast tumor and normal tissue, collected after

mastectomy [49]. The interstitial fluid microRNA dataset

from interstitial fluids had been profiled using TaqMan

Arrays (TLDA, cat# 4444913; Applied Biosystems, Foster

City, CA, USA), as described in [49]. The transcriptome

profiles of corresponding breast tumor biopsies were

profiled using SurePrint G3 Human GE 8x60K one-

color microarrays from Agilent (Agilent Technologies,

Cat. No. G4851A); this dataset is published in [50]. The

total number of interstitial fluid samples was 60 from tu-

mors and 51 from paired normal fluids, while the tissue

mRNA dataset encompassed 96 tumor samples. The two

datasets were partially paired, i.e., they were from the

same cohort of women with breast cancer; however, not

all sample types were available for all patients. For spe-

cifics on sample collection, storage, preparation, array

types, and protocol, please refer to the primary publica-

tions [49, 50].

Normalization and filtering of tumor interstitial fluid

microRNAs

Data were normalized per sample using global

normalization, and the abundance of each microRNA

was mean-centered. Before analysis, the three samples

with technical replicates were averaged. Next, filtering

was performed to remove samples with tumor percent-

ages ≤ 40%. In addition, samples with low tumor per-

centages and one apocrine tumor were excluded.

Filtering resulted in the removal of 8 samples (IDs 74,

78, 79, 102, 104, 200, 237, 279). After filtering, the data-

set consisted of 51 normal interstitial fluid samples and

52 tumor interstitial fluid samples stratifying into 23 lu-

minal A types, 10 luminal B, 11 Her2-enriched, and 8

triple-negative breast cancer (TNBC) based at the St.

Gallen criteria [51].

miRNAs presented in only a small subset of fluids

(normal and tumor) were removed. A minimum of 8

TIF samples had to contain a given miRNA, at a level

above zero, in order for the miRNA to be retained. The

reasoning behind this filtering approach is that some

miRNAs may be subtype-specific. Often, a threshold is

set so that the minimum of samples containing a given

feature corresponds to the size of the smallest group

used for comparison (TNBC subtype). Filtering reduced

the number of miRNAs from 754 to 561. After filtering

miRNA, missing values were substituted with the lowest

value observed for a given miRNA over all samples.

Abundance values were log2 transformed to deal with

extreme values. Log2 transformation resulted in the ma-

jority of miRNAs approaching a normal distribution of

abundance values. After log2 transformation, the data

were corrected for batch effects using the ComBat func-

tion from the sva R package [52]. The batch-corrected

data were used only for plotting purposes.

Normalization and filtering solid breast tumor mRNAs

Before analysis, the two samples with technical replicates

were averaged. Next, filtering was performed to remove

samples with tumor percentages ≤ 40%. Filtering resulted

in the removal of 16 samples. After filtering, the dataset

consisted of 80 breast tumor samples stratifying into 35

luminal A types, 11 luminal B, 12 luminal B - Her2-

enriched, 9 Her2, 9 TNBC, and 4 unknown/ambiguous

subtypes.

Data were normalized and filtered in accordance with

the limma guidelines for Single-Channel Agilent Inten-

sity Data (Limma user guide, 15 April 2018, page 112)

[53]. Background correction was performed using the

“normexp” transformation method [53], followed by

between-array normalization of intensities. Only tran-

scripts where nine samples (number of samples in the

Her2 group) expressed values above the background

level (gIsWellAboveBG) were retained. Filtering reduced

the dataset from 62,976 transcripts to a total of 32,767

genes.

Multidimensional scaling

Classical multidimensional scaling (MDS) (R version

3.3.1) was used for dimensionality reduction of the two

datasets: (I) miRNA from interstitial fluids and (II)

mRNAs from tumor tissue. MDS was performed with

the function cmdscale, using Euclidean distance as the

distance metric. The plotting was done with R-package

ggplot2 2.2.1 [54]. As the mRNA samples displayed

strong array-related batch effects, these data were cor-

rected with Combat [52] before clustering.

K-means and hierarchical clustering

Prior to clustering, the R package Clusgap [55] was used

to estimate the optimal number of clusters (k) for k-

means. Clusgap implements the gap statistic, which is a

measure of the intra-cluster sum of squares (log (Wk)),

or “compactness” of a given clustering [56]. By compar-

ing the pooled within-cluster sum of squares to a null

reference distribution, with no obvious clustering, Clus-

gap predicts an optimal k—the value for which log (Wk)

is minimized compared to the reference distribution.
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Reference datasets are generated through bootstrapping

by sampling randomly with replacement from the ori-

ginal dataset. For the present analysis, a default of 500

bootstraps was used for sampling [55, 56].

Agglomerative hierarchical clustering was performed

using the squared Ward distance metric [57].

Differential abundance analysis of interstitial fluid

microRNAs and tumor transcriptome

Differential expression analysis (DEA) was performed

using the statistical software limma (linear models for

microarray data) [53] implemented in R. limma has few

underlying statistical assumptions and is known to be

powerful for small sample sizes as a result of shrinkage

of feature-specific variances [53]. An interstitial fluid

miRNA or solid tissue mRNA was considered differen-

tially expressed if the log2 fold change (LogFC) ≥ 1 or ≤

− 1 and the corrected p value (FDR) ≤ 0.05.

Differential expression was carried out using the fol-

lowing group comparisons for both datasets: (I) all pair-

wise subtype combinations, (II) hormone receptor status

(ER, PgR, Her2), (III) high TIL status (+ 2|+ 3) vs low

TIL status (0|+ 1) and (IV) high-grade tumors (gr 3) vs

low/medium-grade tumors (gr 1/2), and (V) K-means

clusters.

Additionally, a contrast of (VI) tumor interstitial fluids

vs normal interstitial fluids was performed for the

miRNA set—this was not possible for the solid tissue

mRNA, as no normal tissue counterparts had been pro-

filed for mRNA.

As clustering analysis had revealed confounding of

tumor immune infiltration scores, tumor grades, and

hormone receptor statuses, we tried de-convoluting dif-

ferentially expressed miRNAs/mRNAs from each con-

trast by including the other covariates in the design

matrix.

In the comparison of TIF vs NIF miRNAs abundance,

we added information on sample ID to account for pa-

tient tumor heterogeneity. For tumor tissue mRNA con-

trasts, information on sample array was incorporated

into the design matrix to account for this technical vari-

ance (batch effect).

MicroRNA families

Information on miRNA families were obtained from

TargetScan v7.2 (http://www.targetscan.org/cgi-bin/tar-

getscan/data_download.vert72.cgi) [58]. miRNA sets

from differential abundance analysis (DAA) were inte-

grated with this information in order to identify overrep-

resented miRNA families in each set. As very few

miRNAs belonged to each miRNA family, regardless of

set, we had very low power. As a result of this, we did

not perform an enrichment test; instead, the number of

miRNAs from each set belonging to a specific family

were scaled according to the set size and visualized in a

tile plot for visual inspection.

Weighted gene co-expression network analysis (WGCNA)

The WGCNA package in R was used to define co-

expression modules [59], consisting of genes, or miR-

NAs, with similar expression patterns. The input of this

analysis was the normalized mRNA expression matrix.

In the first step, correlations were calculated using the

biweight midcorrelation, and a signed weighted correl-

ation network was used to identify co-expression mod-

ules with high topological overlap (TO). Modules were

defined as branches of a hierarchical cluster tree using

the top-down dynamic tree cut method [59]. The ex-

pression patterns of each module were summarized by

the module eigengene (ME), defined as the first principal

component of a given module. Pairs of modules with

high module eigengene correlations (r > 0.9) were

merged. A weighted signed network was computed

based on a fit to the scale-free topology. A thresholding

power of 9 was chosen (the lowest threshold resulting in

a scale-free R2 fit of 0.85), and the pairwise TO between

genes was calculated, which converted pairwise correl-

ation values [− 1,1] to TO co-expression values [0,1]

where values close to 1 represented highly shared co-

expression neighborhoods. The TO dendrogram was

used to define modules using the dynamic tree cut

method function in WGCNA [59] with a minimum

module size set to 40 genes, deepSplit parameter set to 2

and cutHeight set to 0.99. We used the intramodular-

Connectivity function from WGCNA to identify module

hub genes of interest. This function takes as input the

adjacency matrix and the module assignment (i.e., color

assignment), giving as the output a measure of intra-

modular degree. The intramodularConnectivity function

computes the whole network connectivity kTotal, the

within-module connectivity kWithin, kOut = kTotal-

kWithin, and kDiff = kWithin-kOut.

Paired differentially expressed miRNA and mRNA gene

target networks

miRNA target prediction was performed with TargetScan

v7.2 [58], using the predicted (conserved) targets of miRNA

families (http://www.targetscan.org/vert_72/docs/help.html).

Differentially expressed miRNA-mRNA interaction pairs,

with opposite expression directionality, were extracted for

network construction. In addition to miRNA-mRNA pairs,

known direct protein-protein interactions were included

from the InBio Map database (https://www.intomics.com/

inbio/map.html#downloads) [60], we included mRNA-

mRNA (protein-protein) interaction pairs if both mRNAs

were differentially expressed in the same comparison.
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Comparison with cancer miRNA databases

Three databases of cancer-related miRNAs were down-

loaded and curated for comparison in spring 2019: (I)

CMEP (Circulating MicroRNA Expression Profiling),

http://syslab5.nchu.edu.tw/CMEP/ [61], (II) dbDEMC

database of Differentially Expressed miRNAs in human

Cancers, http://www.picb.ac.cn/dbDEMC/ [62]; and (III)

miRCancer (microRNA Cancer Association Database),

http://mircancer.ecu.edu/download.jsp [63]. Information

obtained from each of these databases was as follows:

(I). CMEP: the database contains expression levels of

miRNAs identified in either blood, serum, or

plasma. At the time of download, this database

contained 66 cancer studies on circulating miRNAs.

(II).dbDEMC: the database contains miRNAs known to

be associated with cancer, based on high-

throughput analysis of 209 datasets, from 36 differ-

ent cancer types and 73 subtypes. miRNAs from

this database were quantified from solid tissues,

blood, plasma, and serum. At the time of download,

2224 differentially expressed miRNAs were anno-

tated in dbDEMC.

(III).miRCancer: the database contains intracellular

miRNA expression profiles from various types of

cancers based on PubMed text mining (5700

published studies). At the time of download,

miRCancer encompassed 57,984 miRNAs from 196

cancer types, out of which 7325 were identified as

differentially expressed.

All miRNAs associated with breast cancer were ex-

tracted from the three databases, along with the informa-

tion on the study design, tissue type, and directionality in

sample group comparison. MicroRNAs from databases

were overlapped with the consensus sets from the TIF

miRNA comparisons listed in the “Materials and

methods” section. Only miRNAs which were denoted as

having the same directionality in a study design compar-

able to that of the contrast performed our study were kept

in the final table. As no miRNAs from the databases were

assigned to cancer immune profile, we performed a litera-

ture search to obtain a set of comprehensive reviews on

immune-related miRNAs, subsequently concatenating

these into a list for comparison [64–66].

Support for miRNA-mRNA pairs

MiRTarBase [67] was used to support TargetScan-

predicted miRNA-mRNA pairs. MiRTarBase release 7.0

was downloaded from http://mirtarbase.mbc.nctu.edu.tw/

php/download.php. In addition, we supported pairs using

a consensus approach, in which we overlapped TargetScan

predictions with those from other tools, including

DIANA-microT (thermodynamics) [68], miRBridge

(complementary, conservation, thermodynamics) [69],

PicTar (thermodynamics) [70], PITA (conservation, ther-

modynamics) [71], rna22 (complementary, conservation)

[72], and mirDB (support vector machine) [73]. At least

three tools in addition to TargetScan had to return a

miRNA-mRNA pair in order for this interaction to be

considered “supported.” Methods were implemented

though the meta-tool miRsystem [74], except for the re-

sults from mirDB, which were added subsequently.

COSMIC and CancerMine—oncogenes, tumor

suppressors, mutational burden, and copy number

variations

We employed the COSMIC database [75] and the text

mining tool CancerMine [76] to obtain information

about differentially co-expressed genes from networks

(downloaded: 05-01-2019). Information from COSMIC

included (i) single nucleotide polymorphisms (SNPs)

within the coding region of genes, annotated as patho-

genic by fathmm (Functional Analysis through Hidden

Markov Models, v2.3) [77]; (ii) the COSMIC set of quan-

tified copy number variations encompassing whole genes

(loss or gain) in breast cancer; and (iii) the COSMIC

census set of oncogenes, tumor suppressors genes

(TSGs), and dual role genes (DRGs). Additionally, we

downloaded genes annotated as oncogenes, TSGs, or

driver genes from CancerMine (text mining), both those

related to BC, as well as other types of cancer. For the

CancerMine dataset, we imposed a cutoff of minimum

five citations for any given BC-related gene (75% quan-

tile), while we required at least 12 citations for a non-

BC-associated gene to remain in the dataset (90% quan-

tile). Genes from networks were ranked number of copy

number variations (loss, gain, and total CNVs were

ranked separately) and on mutational burden, here de-

noted as the number of predicted pathogenic SNPs

within the coding region of a gene. All ranks were com-

bined into one final rank for each gene.

To assess a potential enrichment of oncogenes, TSGs,

etc. within gene co-expression modules, we performed

module-wise Fisher’s exact tests (R-base), with correc-

tion for multiple testing using the Benjamini-Hochberg

method.

PubMed search

General terms; [breast cancer], [miRNA/microRNA],

[circulating/blood/serum/plasma].

(V1) terms; [aggressive, aggressiveness, metastasis,

metastatic, prognosis, prognostic, invasive, invasiveness,

survival].

(V2) terms; [subtype, subtypes, luminal, Her2, normal-

like, ER, PgR, estrogen, progesterone, pam50,

immunohistochemistry].
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Results
K-means clustering and dimensionality reduction

captured a TNBC profile, tumor grade, and immune

infiltration

To investigate whether miRNA abundance patterns

could partition NIF and TIF samples, as well as TIF

samples from BC patients with different clinical and

histological traits, we performed clustering analysis and

dimensionality reduction for visualization purposes.

Table 1 shows a summary of the sample metadata.

Multidimensional scaling of tumor and normal inter-

stitial miRNA abundance revealed a distinct clustering

of the 51 NIF and 52 TIF samples. The first component

(M1) highlighted the difference between normal and

tumor, while the second component (M2) captured two

clusters containing a mix of TIF and NIF samples, Add-

itional file 1: Fig. S1A.

A look into sample IDs revealed that the clustering

was most likely driven by patient heterogeneity, a result

of a large fraction of samples being paired. As a control

for this, we treated “patient” as a covariate and removed

this effect, see Additional file 1: Fig. S1B. This correction

unified the NIF samples; however, the tumor samples

continuously formed two clusters, indicating that TIF

sample sub-grouping was driven by similarities between

these patients and not merely by overall patient

heterogeneity.

As seen in Fig. 1a, miRNA profiles of TIF samples be-

longing to cluster 1 were predominantly from patients

with high-grade (grade 3), high-TIL (tumor-infiltrating

lymphocytes, + 2|+ 3) tumors, the majority of which

were estrogen- and/or progesterone-receptor negative.

In quantitative terms, 75% of samples in cluster 1 were

annotated as high grade/TILs. In comparison, TIF clus-

ter 2 was mainly populated by hormone receptor-

positive samples with lower grade (grade 1|2) and low

TIL scores (TILs 0|+ 1), even though this pattern was

less clear than that observed for cluster 1 (62% of sam-

ples were low grade/TILs). The correlation of tumor

grade and TIL score, albeit not perfect, indicated that

tumor interstitial miRNA profiles might be associated

with breast cancer progression.

Subsequently, we examined whether mRNA expres-

sion patterns from paired tumor tissues yielded a similar

clustering and partitioning of samples, as the one ob-

served for interstitial fluid miRNAs. K-means (k = 2)

clustering of tumor mRNA data revealed a pattern com-

parable to that of the interstitial fluid miRNAs. Tumor

mRNA cluster 1 encompassed high-tumor grade, high-

TIL samples (89% of high TILs samples and 79% of

high-grade samples), while cluster 2 contained samples

with lower tumor grade and low-TIL statuses (81% of

low TILs samples and 64% of low-grade samples), Fig. 1b.

We observed a significantly better partitioning of

samples into assigned BC subtype at the mRNA level, as

compared to that of TIF miRNA. This was somewhat

expected as subtyping is based on the intracellular level

of specific mRNA transcripts and/or hormone receptors,

Additional file 1: Fig. S1C and S1D. Additional file 2:

Table S1 contains information on which samples were

assigned to which cluster based on TIF miRNA abun-

dances or intra-tumor mRNA expression levels.

Expression profiles associated with estrogen receptor

status, TNBC subtype, and K-means clusters were clear

across TIF miRNA and tissue mRNA datasets

We performed differential abundance|expression ana-

lysis to identify interstitial fluid miRNAs and solid tissue

mRNAs, which were dysregulated in BC samples vs nor-

mal samples, and between different BC subgroups. Based

on the clustering analysis (Fig. 1a, b), we focused on the

following comparisons: (I) TIF vs NIF, (II) BC subtypes,

(III) cluster 1 vs cluster 2, (IV) high TILs vs low TILs,

(V) ER+ vs ER−, (VI) PgR+ vs PgR−, and (VII) high grade

vs low/medium grade. Figure 1c and d depict the results

of differential expression analysis (DEA) for both inter-

stitial fluid miRNAs (Fig. 1c) and solid tissue mRNAs

(Fig. 1d).

miRNAs

Approximately 1/3 of miRNAs from the TIF vs NIF set

were unique to this comparison, i.e., these interstitial

fluid miRNAs may have potentials as BC biomarkers.

Another ~ 2/3 of miRNAs differentially abundant be-

tween TIF and NIF overlapped both with miRNAs from

the TIF cluster 1 vs cluster 2 contrast and the BC sub-

type contrasts. It should be noted all of the miRNAs

from the subtype contrasts were identified between

TNBC and the other three subtypes (luminal A, luminal

B, and Her2-enriched). The 181 miRNAs identified in

the TIF vs NIF comparison, in the subtype comparison

and in the cluster 1 vs cluster 2 comparison, likely re-

flect both a general tumor-specific miRNA pattern, but

also the aggressiveness of particular breast cancer sub-

types. This observation came from the fact that samples

in cluster 1 originated from more advanced tumors

(high-grade, high immune score, hormone receptor-

negative).

Though there was a large overlap between the afore-

mentioned sets, 41 miRNAs were specific to miRNA

cluster 1 vs cluster 2 contrast. There was a large redun-

dancy of miRNAs identified in the contrasts: high TILs

vs low TILs, high grade vs lower grade, ER+ vs ER−, and

PgR+ vs PgR−. MiRNAs, identified as differentially abun-

dant in our analysis, were compared to those obtained in

the study by Halvorsen et al. [49] in Additional file 3:

Fig. S2 A-C.
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Table 1 Sample summary table

Levels Number Percent Sum %

miRNA No 37 26.4 26.4

Yes 103 73.6 100.0

mRNA No 64 45.7 45.7

Yes 76 54.3 100.0

Tumor percentage 40 2 1.4 1.4

60 29 20.7 22.1

80 58 41.4 63.6

N 51 36.4 100.0

Grade 1 5 3.6 3.6

2 46 33.3 36.9

3 36 26.1 63.0

N 51 37.0 100.0

Her2 0 23 16.4 16.4

1+ 18 12.9 29.3

2+ 28 20.0 49.3

3+ 20 14.3 63.6

N 51 36.4 100.0

ER ER− 20 14.3 14.3

ER+ 69 49.3 63.6

N 51 36.4 100.0

PgR PgR− 40 28.6 65.0

PgR+ 49 35.0 36.4

N 51 36.4 100.0

AR AR− 28 20.0 20.0

AR+ 57 40.7 60.7

N 51 39.3 100.0

Sample type Normal 51 36.4 36.4

Tumor 89 63.6 100.0

Subtype Her2-enriched (Her2) 11 7.9 7.9

Luminal A (LumA) 42 30.0 37.9

Luminal B (LumB) 13 9.3 47.1

Luminal B Her2-enriched (LumB-Her2) 13 9.3 56.4

Triple-negative breast cancer (TNBC) 10 7.1 92.9

Normal 51 36.4 100.0

TIL score 0 17 12.1 12.1

1+ 25 17.9 30.0

2+ 30 21.4 51.4

3+ 17 12.1 63.6

N 51 36.4 100.0

Metastasis 0 71 50.7 50.7

1 18 12.9 63.6

N 51 36.4 100.0

All 140 100.0 100.0

The letter N denotes normal samples. miRNA = TIF miRNA data (yes, no); mRNA = tumor tissue mRNA expression data (yes, no); Tumor percentage
= percentage of tumor tissue in sample, tumor grade (1, 2, or 3); Her2 = Her2 receptor status (0, 1, 2, or 3); ER = estrogen receptor status (+, −); PgR =
progesterone receptor status (+, −); AR = androgen receptor status (+, −). Sample type (tumor, normal); subtype –luminal A, luminal B, luminal B, Her2-
enriched, triple-negative breast cancer, or normal. TIL score = tumor-infiltrating lymphocyte score (0, 1, 2, or 3); metastasis—0 is no metastasis and 1 is
metastasis; outcome—patient outcome, where 0 is alive and 1 is deceased. The biological characteristics of all samples used were retrieved from [49, 50]
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mRNAs

The comparison of intra-tumor mRNA expression pat-

terns from BC subtypes yielded ~ 450 differentially

expressed (DE) genes, out of which 3/4 were unique to

the contrast. This was expected, as subtype classification

was based on the staining of hormone receptor expression

at protein level (immunohistochemistry). The mRNAs not

unique to the subtypes contrast nicely overlapped with

those identified as DE in the comparisons of estrogen and

Her2 receptor amplification (+|−) statuses. No mRNAs

were identified as DE between PgR+ and PgR−, perhaps

due to an unbalanced number of samples in each group,

in combination with the correction for multiple covariates

(i.e., loss of power). A total of 297 mRNAs were identified

as differentially expressed between tumor cluster 1 vs

cluster 2. Out of these, about half were unique to the clus-

ter comparison, while the other half overlapped with DE

mRNAs from the high TILs vs low TILs comparison, indi-

cating that these mRNAs may drive the immune-related

profile observed in Fig. 1b. Surprisingly, the set of mRNAs

which were DE between high- and medium/lower-grade

tumors did not overlap the tumor cluster set, and TILs set

but appeared to be unique to this contrast.

Collectively, the analysis resulted in sets of differen-

tially abundant TIF miRNA, and comparison matched

mRNA sets for (I) high TILs vs low TILs, (II) high grade

vs medium/low grade, (III) cluster 1 vs cluster 2, (IV)

ER+ vs ER−, and (V) luminal A|B and Her2 vs TNBC.

Expression sets from clusters (tumor grade, immune

infiltration) were enriched for microRNA families: miR-15,

miR-17, and miR-130

miRNAs with identical seed regions could potentially

bind and silence the same gene targets [29, 78]. Also,

Fig. 1 Sample clustering and results of differential abundance/expression analysis. a, b K-means clustering of tumor interstitial fluid miRNAs (a)

and tissue mRNAs (b). Both sets display two clusters: cluster 1—hormone receptor-negative samples (ER− and PgR−), high grade (grade 3), and
high TILs (T2, T3); cluster 2—hormone receptor-positive samples (ER+, PgR+), lower grade (grades 1 and 2), and low TILs (T0, T1). c, d Differentially
abundant miRNA from normal and tumor interstitial fluids (c) and mRNA from tumor biopsies (d). Upset plots show the set size for each

comparison and redundancy of these miRNAs: up, FDR < 0.05 and logFC > 1; down, FDR < 0.05 and logFC < − 1. Sets: (1) TIF vs NIF, (2) subtypes
(luminal A vs TNBC, luminal B vs TNBC, and Her2 vs TNBC), (3) estrogen positive vs negative tumors, (4) progesterone positive vs negative tumors,
(5) tumor grade 3 vs tumor grade 1/2, and (6) K-means cluster 1 vs cluster 2
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genes with shared functions may have the same miRNA

binding sites, so these can be conjointly regulated by

specific mRNA families [79]. As such, the identification

of miRNA families enriched or depleted in tumor sam-

ples may increase our understanding of which gene

functions and pathways are dysregulated in cancer.

We mapped miRNAs from each DA set to their re-

spective families, highlighting any potential differential

abundance of related miRNAs, see Fig. 2.

Common to the TIF-NIF, subtype, and cluster sets

were miRNAs belonging to the let-7/miR-98 microRNA

family, known to be aberrantly expressed in a range of

cancer types [80] including breast cancer [81, 82]. While

a few miRNA families were generally abundant in all

sets, some were more set-specific. For TIF cluster 1 vs

cluster 2, miRNA members from the miR-15 family

(miR-15, miR-16, miR-195, miR-424, miR-497), miR-17

family (miR-17, miR-20, miR-93, miR-106, miR-519),

and miR-130 family (miR-130, miR-301, miR-454) were

predominant. Collectively, the enrichment of the miRNA

families supports the partitioning of TIF samples into

two clusters, representing differential tumor progression.

While families miR-15, miR-17, and miR-130 were

most prevalent in TIF cluster sets, miR-30 and miR-

200bc were shared between this set and the TIF vs NIF

set. More specific to the TIF vs NIF comparison were

two miR families: miR-25/miR-92 and miR-548ay/559.

The miR-25/miR-92 family members are situated in the

mir106a-363 and mir106b-25 clusters (Chr X and Chr 7,

respectively), paralogs to the polycistronic miRNA clus-

ter mir-17-92, also designated oncomir-1 [83]. miR-25

and miR-92a have been proposed to be negative regula-

tors of tumor cell apoptosis by directly targeting Bim

(Bcl-2-interacting mediator of cell death) [84].

Dataset integration revealed BC-related miRNA-mRNA

interaction pairs related to clinicopathological

information

To further explore the interplay between circulating

miRNAs and their potential intracellular gene targets,

we constructed custom networks from the differential

abundance|expression sets (see the “Materials and

methods” section). Table 2 shows the total number of

identified DA TIF miRNAs and DE intracellular mRNAs

before and after “pairing” into the interaction networks

(direct miRNA target genes + gene partners).

For the genes included in each interaction network, we

extracted information about the frequency of mutation

(SNPs predicted to be pathogenic) and copy number

variations (CNVs) from the COSMIC database [75], as

well as information about the gene role in cancer from

COSMIC (census set) and CancerMine [76]. Genes were

subsequently ranked on these parameters, allowing us to

evaluate the potential known (well-supported) role, or

novelty, of a gene candidate within a (breast) cancer set-

ting—see Additional file 4: Table S2 for all gene-wise

information.

Tumor immune infiltration

Figure 3 shows the interaction network generated from

miRNAs and gene targets differentially expressed in the

comparison of high TILs vs low TILs—network plots for

all other comparisons may be seen in Additional file 5:

Fig. S3. Figure 3 shows that the differentially expressed

mRNAs from high TIL vs low TIL samples were mainly

chemokines, immunoglobulins, and T cell differentiation

antigens, along with other genes related to immune pro-

cesses (BTLA, ITK, ZAP70, SLAMF6/7) [85]. This obser-

vation was confirmed by pathway enrichment analysis,

which returned as top pathways: cytokine-cytokine recep-

tor interaction, chemokine signaling pathway, and NF-

kappa B signaling pathway, both with and without genes

which were DE in cluster 1 vs cluster 2 (e.g., redundancy

removed). The most interconnected gene was LCK,

which is a well-known oncogene in T cell acute lympho-

blastic leukemia supported by COSMIC and Cancer-

Mine, Additional file 4: Table S2. The interconnectivity

of this gene underlined that this miRNA-mRNA network

was associated with tumor immune cell infiltration and

gene expression. While LCK had the highest number of

interactions, the gene with the most miRNA partners

was NEDD4L, which was downregulated in the high TIL

vs low TIL comparison. Interestingly, the NEDD4L gene

had a high rank (nr. 3) based on mutational burden and

CNVs, and this gene has been proposed to be a TSG in

studies on breast and liver cancer [86, 87]. miR-301-3p

was the miRNA from this network with most gene tar-

gets, including NEDD4L, MYT1 (ranked nr. 2 based on

CNVs and SNPs), and ITGA11.

K-means clusters

There was a significant overlap of DE miRNA-mRNA

pairs retained in the high TILs vs low TILs and the cluster

1 vs cluster 2 comparisons. This was not unexpected as

cluster 1 contained high TILs tumors/TIFs, while cluster 2

contained low TILs tumors/TIFs. In accordance with this,

the overlap mainly encompassed immune-related genes,

including chemokines, immunoglobulins, and lymphocyte

antigens [88–90], 45 in total. Additionally, 15 miRNAs

were shared by these two contrasts, here among miR-

301—see Additional file 6: Table S3.

Despite the overlap, some miRNAs and mRNAs were

specific to each comparison, especially for the cluster

set, which was large with many pairs. For the TILs set,

only miR-543 was unique. miR-543 interacts with

LAMP5 (lysosome-associated membrane protein), very

recently shown to be an autophagy suppressor that pro-

tects leukemia fusion oncoproteins, helping these to
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Fig. 2 MicroRNA family enrichment. Sets of differentially abundant miRNA assigned to miRNA families. x-axis = sets of DA interstitial fluid miRNAs. y-axis =
miRNA family. Color = number of miRNAs belonging to a given family in set. Darker color =more miRNAs belonging to this family. Arrows =miRNAs

of interest
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evade degradation [91]. A total of 51 mRNAs and 65 genes

were unique to the cluster 1 vs cluster 2 comparison—Add-

itional file 6: Table S3. Just as for the analysis with TIL

scores, pathway enrichment analysis with miRNA-mRNA

gene pairs DE from the contrast with clusters were

enriched within the cytokine-cytokine receptor interaction

pathway, chemokine signaling pathway, and NF-kappa B

signaling pathway. In addition to this, however, the genes

from the cluster 1 vs cluster 2 comparison were also

enriched within pathways in cancer, indicating that cluster

comparison captured more than the tumor immune signa-

ture. The most interconnected gene in the cluster compari-

son was PARD6B, which had a high ranking based on the

number of copy number gains; however, this gene was not

annotated as an oncogene or TSG, neither the COSMIC

census nor from text mining—Additional file 5: Fig. S3 and

Additional file 4: Table S2. PARD6B was downregulated in

higher-grade, high-TIL, hormone receptor-negative BC

samples. The miRNAs with most gene targets were miR-

494-3p and miR-103a-3p both of which were downregu-

lated in the higher-grade, high-TIL, hormone receptor-

negative samples. miR-494-3p was mainly paired with im-

mune genes (CD3G, CXCL13, CXCR5, KLRC4), some of

which had been annotated as oncogenes in leukemia in-

cluding IGF1 (DRG; pan-cancer), IKZF3 (driver; leukemia),

NABP1 (oncogene; leukemia), and PDGFRA (oncogene;

pan-cancer). miR-103a-3p interacted with genes SEL1L3,

BTLA, LDLRAD2, PDE3B, and PKIA. The network is in

Additional file 5: Fig. S3 A.

Tumor grade

The network of IF miRNAs and mRNAs from the high-

grade (grade 3) vs the lower-grade (grade 1|2) biopsies

was small with only five genes and six miRNAs. Two

Table 2 Summary Table showing number of DE tumor
interstitial fluid miRNAs and mRNAs, before and after pairing

HER2
vs
TNBC

LumA
vs
TNBC

LumB
vs
TNBC

Cluster
1 vs
Cluster
2

ER+
vs
ER-

High
TILs vs
Low
TILs

High Grade
vs Low/
Medium
Grade

DE
miRNAs

90 90 90 245 16 53 17

DE
mRNAs

174 139 184 343 135 257 30

Retained
DE
miRNAs

31 29 31 89 4 17 7

Retained
DE
mRNAs

27 23 34 113 19 65 5

Pairs 88 74 96 412 19 156 9

Fig. 3 miRNA-mRNA interaction plot. Interaction network for DE miRNA-mRNA targets from the comparison of high TILs vs low TILs. The size of a
dot denotes the absolute log2 fold change. Colors refer to the expression directionality, red = upregulated and black = downregulated. Networks

for all comparison may be found in Additional file: Fig. S3
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Table 3 Best supported circulating differentially expressed miRNAs based on overlap with databases (CMEP, dbDEMC and
miRCancer) and miRNA-mRNA interactions networks

miRNA BC vs
Normal

Luminal/
HER2 vs
TNBC

ER+
vs ER-

PgR+ vs
PgR-

High TILs vs
Low TILs

High TILs vs Low TILs & High
Gr vs Low/Medium Gr

High Gr vs Low/
Medium Gr

Metastasis Poor
Outcome

hsa-let-7a-
5p

Up Down . . . . . . .

hsa-let-7f-
5p

Up Down . . . . . . .

hsa-let-7g-
5p

Up Down . . . . . . .

hsa-miR-
103a-3p

Down . . . . Down . . .

hsa-miR-
106a-5p

Up . . . . Up . Up .

hsa-miR-
106b-3p

Up . . . . Up . Up .

hsa-miR-
106b-5p

Up . . . . Up . Up .

hsa-miR-
107

Up Down . . Up Up Up Up .

hsa-miR-
1260a

Up . . . Up Up . Up .

hsa-miR-
127-3p

Up . . . . . . . .

hsa-miR-
136-5p

Down . . . . Down . Down .

hsa-miR-
138-5p

Up . . . Up Up . . .

hsa-miR-
141-3p

Up Down . . Up Up . Up .

hsa-miR-
146a-5p

Up . . . . Down . . .

hsa-miR-
151a-5p

Up . . . . . . . .

hsa-miR-
15b-5p

Up Down . . Up Up . Up .

hsa-miR-
17-5p

Up Down . . Up Up . Up .

hsa-miR-
186-5p

Up . . . Up Up . Up .

hsa-miR-
18a-5p

Up . . . . Up Up . .

hsa-miR-
190b

Up . Up . . Up . . .

hsa-miR-
19b-3p

Up . . . . Up . . .

hsa-miR-
222-3p

Up . . . . Up . . .

hsa-miR-
23a-3p

Up . . . Up Up . . .

hsa-miR-
299-5p

Down . . . Down Down . Down .

hsa-miR-
29b-3p

Up Down . . . . . . .

hsa-miR- Up Down . . Up Up Up Up Up
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Table 3 Best supported circulating differentially expressed miRNAs based on overlap with databases (CMEP, dbDEMC and
miRCancer) and miRNA-mRNA interactions networks (Continued)

miRNA BC vs
Normal

Luminal/
HER2 vs
TNBC

ER+
vs ER-

PgR+ vs
PgR-

High TILs vs
Low TILs

High TILs vs Low TILs & High
Gr vs Low/Medium Gr

High Gr vs Low/
Medium Gr

Metastasis Poor
Outcome

301a-3p

hsa-miR-
30d-5p

Up Down . . . Up . Up .

hsa-miR-
342-3p

Up . Up . . . . . .

hsa-miR-
342-5p

Up . Up . . . . . .

hsa-miR-
34c-5p

Up . . . . . . . .

hsa-miR-
374a-5p

Up . . Down . . . . .

hsa-miR-
376a-3p

Up . . . . Down . . .

hsa-miR-
423-5p

Up . . . . . . . .

hsa-miR-
424-5p

Up . . . . Up . . .

hsa-miR-
454-3p

Up . . . . Up Up Up .

hsa-miR-
494-3p

Down Up . . . Down . Down .

hsa-miR-
518e-3p

Up . Up Down . . . . .

hsa-miR-
520d-3p

Up . . . . . . . .

hsa-miR-
589-5p

Up . . . . . . . .

hsa-miR-
590-3p

Up Down . Down . . . . .

hsa-miR-
638

Up . . Up . . . . .

hsa-miR-
744-3p

Up Down . . . . . . .

hsa-miR-9-
3p

Up Down . . Up . . . .

hsa-miR-
92a-3p

Up . . . . . . . .

hsa-miR-
941

Up . . . . Up Up Up Up

hsa-miR-
10b-5p

. Down . . Up Up . . .

hsa-miR-
140-3p

. Down . Down . . . . .

hsa-miR-
148a-3p

. Down . . Up Up . . Up

hsa-miR-
222-5p

. Down . Down . . . . .

hsa-miR-
452-5p

. Down Down . . . . . .

hsa-miR-
29b-2-5p

. . Up . . . . . .
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Table 3 Best supported circulating differentially expressed miRNAs based on overlap with databases (CMEP, dbDEMC and
miRCancer) and miRNA-mRNA interactions networks (Continued)

miRNA BC vs
Normal

Luminal/
HER2 vs
TNBC

ER+
vs ER-

PgR+ vs
PgR-

High TILs vs
Low TILs

High TILs vs Low TILs & High
Gr vs Low/Medium Gr

High Gr vs Low/
Medium Gr

Metastasis Poor
Outcome

hsa-miR-
32-5p

. . Up . . Up . Up Up

hsa-miR-
922

. . Up Down . . . . .

hsa-miR-
126-3p

. . . Down . . . . .

hsa-miR-
29c-3p

. . . Down . . . . .

hsa-miR-
432-3p

. . . Down . . . . .

hsa-miR-
450b-5p

. . . Down . . . . .

hsa-miR-
629-5p

. . . Down . . . . .

hsa-miR-
10a-5p

. . . . Up Up Up . .

hsa-miR-
129-5p

. . . . Up . . . .

hsa-miR-
149-3p

. . . . Up . . . .

hsa-miR-
182-3p

. . . . Up . . . .

hsa-miR-
19a-3p

. . . . Up Up . . .

hsa-miR-
432-5p

. . . . Up Up . . .

hsa-miR-
720

. . . . Up . . . .

hsa-miR-
130b-3p

. . . . . Up . Up Up

hsa-miR-
130b-5p

. . . . . Up . Up .

hsa-miR-
135a-5p

. . . . . Up . . .

hsa-miR-
16-5p

. . . . . Up . Up .

hsa-miR-
20a-5p

. . . . . Up . . .

hsa-miR-
20b-5p

. . . . . Up . . .

hsa-miR-
301b-3p

. . . . . Up Up Up .

hsa-miR-
30b-5p

. . . . . Up . . .

hsa-miR-
369-3p

. . . . . Down . Down .

hsa-miR-
874

. . . . . Down . . .
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genes BTRC and CHST1 were downregulated in high-

grade tumors and interacted with miRNAs miR-10(a/b)-

3p, miR-107, and miR-301(a/b)-3p, miR-454-3p, respect-

ively. miR-18a-5p was paired with genes: AMIGO1,

KCND3, and SIK3 and was upregulated in grade 3 vs

grade 1|2 tumors. The network is in Additional file 5:

Fig. S3 c.

BC subtypes and estrogen receptor

Networks of differentially abundant IF miRNAs and

mRNAs from the contrasts with Her2-enriched vs

TNBC, luminal A vs TNBC, and luminal B vs TNBC

shared eight gene transcripts. These were: AR (oncogene;

prostate cancer), CERS6, FOXA1 (oncogene; breast and

prostate cancer), GPR160, KIAA1244, KLK5, SPDEF

(DRG; breast, prostate, lung, and colon cancer), and

XBP1 (oncogene; blood, esophageal, and brain cancer),

all of which have been shown to be BC-related and dif-

ferentially expressed between subtypes [92–96]. A total

of 27 miRNAs were shared between the three networks,

not surprising as the set of DE TIF miRNAs identified in

each comparison was almost completely redundant. The

most interconnected miRNAs of these were miR-9-5p,

miR-15b-5p, miR-17-5p, miR-19a-3p, and miR-30d-5p,

downregulated in all three subtypes compared to TNBC.

While some miRNAs and mRNAs were shared by all

three DE networks, some were specific, or partially so, to

each comparison. As expected, the most interconnected

gene in both luminal types compared to TNBC was ESR1

[97] (DRG; breast, liver, nasopharynx, kidney, lung, bone,

endometrial, and prostate cancer), and in addition, genes

KIF3B, KRT4, and NFIB (DRG; breast, lung, glandular,

Fig. 4 Heatmaps of DA miRNA levels in TIF. Heatmaps showing the separation of TIF samples based on the best DE miRNA candidates from
comparison with databases. a TIF vs NIF. b Luminal (a, b), Her2-enriched vs TNBC. c TIL scores. d Tumor grade. Color scale denotes the expression

levels, purple = high expression and yellow = low expression
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Fig. 5 (See legend on next page.)
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leukemia, bone, skin, brain cancer) were shared between

these two networks. KIF3B was upregulated in the luminal

types, while KRT4 and NFIB (gene ranked nr. 1, based on

mutations and CNVs) were downregulated. Specific to the

luminal A comparison was the gene CCND1 (oncogene;

breast and pan-cancer), the second most interconnected

after ESR1 (oncogene; breast and pan-cancer), while

ELOVL6 (oncogene; liver cancer) was the most intercon-

nected unique gene within the luminal B vs TNBC net-

work. Networks are in Additional file 5: Fig. S3 E,F.

For the contrast of Her2-enriched vs TNBC subtypes,

the gene with the most interactions was CPD, closely

followed by genes ERBB2 (oncogene, breast, and pan-

cancer), GRB7 (oncogene; breast cancer), and LASP1

(DRG; liver, esophageal, leukemia, brain, thyroid gland,

lung, and stomach cancer), all of which belong to the

Her2 amplicon (chromosome region 17q-12-21) [98].

These DE genes were ranked highest based on the num-

ber of predicted pathogenic SNPs and CNVs from COS-

MIC datasets. The ER+ vs ER− network had miRNA-

mRNA pairs that overlapped with those from the lu-

minal vs TNBC networks. The most interconnected

genes were ESR1, GATA3 (DRG; breast, stomach, pros-

tate, colorectal, lung cancer), and GREB1, all upregulated

in ER+ samples, while ERBB2 which was downregulated.

Unique to this comparison was miR-32-5p, which was

over-expressed in ER+ vs ER− tumors and the most in-

terconnected miRNA in the network.

Networks may be seen in Additional file 5: Fig. S3 D,

G. Lists of DE mRNAs and interstitial fluid miRNAs

from pairs may be found in Additional file 6: Table S3.2

(common across sets) and Additional file 6: Table S3.1

(unique to sets).

Network analysis resulted in multiple miRNA-mRNA

pairs, where both TIF miRNA and intracellular mRNA

profiles displayed meaningful directionality in accord-

ance with previously published studies and in the con-

text of a given comparison.

Cancer miRNA databases—support for TIF miRNAs as

potential BC biomarkers

Three databases of cancer-related miRNAs were down-

loaded and curated in order to compare and support the

results obtained from the analysis of interstitial fluid

miRNAs. These databases included (I) CMEP [61] (Cir-

culating MicroRNA Expression Profiling), (II) dbDEMC

database of (Differentially Expressed miRNAs in human

Cancers) [62], and (III) miRCancer (microRNA Cancer

Association Database) [63]. Briefly, the CMEP database

contains circulating miRNA from the blood, plasma, and

serum, while the dbDEMC database and miRCancer

contain both circulating and intracellular miRNAs. MiR-

Cancer is based on PubMed text mining (e.g., miRNAs

only have assigned directionality), while CMEP contains

raw data and dbDEMC contains log fold changes of DE

miRNAs. As none of the miRNAs from databases was

assigned to cancer immune profile, we performed a lit-

erature search to obtain a set of comprehensive reviews

on immune-related miRNAs, subsequently concatenat-

ing these into a list for comparison [64–66].

Table 3 shows the best supported differentially abun-

dant interstitial fluid miRNAs from the different com-

parisons. Each miRNA was included in at least one of

the three databases, with a consensus of expression dir-

ectionality, and were among the most interconnected

miRNAs from the custom miRNA-mRNA networks. As

no networks could be constructed for the TIF vs NIF

and PgR+ vs PgR− contrast (see the section above), miR-

NAs from these sets were only supported by overlap

with databases. Figure 4a–d shows the partitioning of

samples based on the top best-supported miRNAs from

comparisons: TIF vs NIF, luminal/Her2-enriched vs

TNBC, high TILs vs low TILs, and high-grade vs low/

medium grade. miRNA candidates from the ER+ vs ER−

comparison were encompassed by the luminal/Her2-

enriched vs TNBC. As seen from the heatmaps in Fig. 4,

there was a good concordance between the expression of

IF miRNAs in the TIF vs NIF, TILs ,and grade compari-

sons (Fig. 4a, c, d). For the luminal/Her2-enriched vs

TNBC, this pattern was poorer with come separation of

luminal from TNBC and Her2-enriched samples, but

not between these two subtypes.

Collectively, the best supported interstitial fluid miR-

NAs, from differential expression analysis, miRNA-

mRNA interaction networks, and miRNA databases (cir-

culating and solid tissue), could partition normal fluids

and tumor fluids from BC patients with different TIL

scores and tumor grade.

(See figure on previous page.)
Fig. 5 Co-abundant miRNA-mRNA pairs. Dot plots showing the differentially co-expressed genes and their predicted co-abundant miRNA regulators, for the

green, yellow, and red modules. Colors: light orange= TIF miRNA upregulated in given comparison, dark blue = TIF miRNA downregulated in given
comparison; N. B genes have the inverse direction of expression as miRNAs. Bar plots relay information about genes extracted from the COSMIC database [75].

Height/shade of the bar indicates gene rank, based on the mutational burden (SNPs classified as pathogenic) and copy number variations (CNVs, grain + loss)
of a gene from breast tumors. Colors of the bars denote if the gene was classified as a BC oncogene, a BC driver gene, a BC tumor suppressor gene, or a BC
dual role gene within the set of COSMIC gene census set [75] and/or from CancerMine [76]. A star means that a gene was annotated in COSMIC or

CancerMine for another cancer than BC, and the color indicates the gene role. Smaller dots adjacent to miRNA name denote miRNA co-abundance modules
(modules 1–3). Shades: black =module 1, green=module 2, and gray =module 3
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Gene co-expression analysis—highly interconnected

genes from modules were lncRNAs

We applied WGCNA to our set of mRNA in order to

uncover genes with similar expression patterns. Sets of

co-expressed genes could have similar functions and

may belong to the same pathways and cascades involved

in the development of breast cancer.

WGCNA analysis of mRNA expression data revealed

31 modules encompassing a different number of genes.

We explored the higher-level organization and the

relationship between these modules by applying hier-

archical clustering, using the correlation of the module

eigengenes as input (distance metric). The resulting

group of modules is sets of positively correlated eigen-

genes, which may serve as the input for future explora-

tory analyses, generating new interesting hypotheses

(Additional file 7: Fig. S4).

Additionally, we performed intramodular connectivity

analysis for each module, which measures how con-

nected, or co-expressed, a given gene is with respect to

Fig. 6 Enrichment of oncogenes, TSGs, and DRGs in modules and PAM50 gene cardinality. a Barplot showing the fraction (pink color) of oncogenes,
tumor suppressor genes, or dual role genes encompassed by co-expression modules. Modules without any annotated cancer genes are not included,

neither is the gray module of genes (genes not found to be co-expressed). Plus signs indicate that a module was significantly enriched for oncogenes,
TSGs, or DRGs, while minus signs indicate that the module was significantly depleted of these. b Tile plot showing the expression cardinality of PAM50

genes from the analysis compared with the literature. Orange (up) and green (down) colors denote the directionality of genes from the literature for
each subtype. Colors dark gray, light gray, and white indicate if a gene was found to be differentially expressed in the current analysis. Light blue and
white show the consensus of expression cardinality for a given PAM50 gene between the literature and current analysis. Dots below the tiles highlight

which of the PAM50 genes are annotated in the COSMIC Cancer Gene Census set and in the CancerMine database (filtered, see the “Materials and
methods” section)
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the other genes within a particular module (Add-

itional file 8: Table S4). Briefly, this analysis showed that

the turquoise and brown modules encompassed genes

with the highest kWithin, which was partially a conse-

quence of the high density of these two networks. Inter-

estingly, several of these genes belonged to a class of

long non-coding RNAs (lncRNAs) with unknown func-

tions. LncRNAs could be important hubs within these

networks, regulating crucial mechanisms (e.g., interac-

tions with proteins or miRNAs), and may be involved in

the pathogenesis of breast cancer. To date, the inference

of the biological roles of lncRNAs in cancer develop-

ment remains a challenge, but increasing attention has

been given to these molecules considered as potential

key players in [99]. Novel computational approaches and

resources are now available to help researchers in the in-

terpretation of the functions of lncRNAs [100–102].

However, many lncRNAs in our results are still poorly

annotated. Future developments in this field will allow

us to understand the pathogenesis of breast cancer in-

volving complex regulatory networks consisting of

lncRNAs, mRNAs, miRNAs, and proteins. In this

context, the knock-down of the lncRNA hubs could po-

tentially have significant effects on the stability of the

modules, resulting in the partial or complete rewiring of

the networks.

Co-expression modules were correlated with subtype,

immune infiltration, and grade

Modules were correlated with clinical features including

hormone receptor status (ER and PgR), BC subtype, im-

mune infiltration scores, tumor grade, and metastasis in-

formation, connecting co-expressed genes with the

clinical metadata, see Additional file 9: Fig. S5.

Out of the 31 modules identified, six were correlated

with the clinical variables. The green and red modules

showed a positive correlation with estrogen receptor sta-

tus/luminal subtypes and a negative correlation with TIF

clusters, respectively, characterized by tumor grades and

TIL scores. Inversely, the yellow, green, and grey60 mod-

ules were positively correlated with TIF clusters, TIL sta-

tus, and tumor grade, respectively, and negatively

correlated with estrogen receptor status/luminal sub-

types. The blue module was positively correlated with

Fig. 7 Oncogenes and tumor suppressors in co-expression modules. Tile plots depicting how many genes within five selected modules had

been annotated as either an oncogene (orange), a tumor suppressor (green), a dual role/mixed role (purple), or a driver/fusion gene (yellow). The
plots contain all genes from modules which were annotated in COSMIC [75] or which met the cutoff for a CancerMine hit [76], as well as all
differentially expressed genes and all genes from miRNA-mRNA interaction networks. a Green module. b Yellow module. c Red module. d Light

cyan module. e Sky blue module. f Blue module. The large number of dual role genes from CancerMine observed in the plots, arise from the fact
that these genes are not curated, and as such have a variety of roles annotated within and between cancers. Additional file 14, Table S6 contains

the number of cancer-related genes within each of the 28 modules (3 modules had no genes with annotation)
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Table 4 Best miRNA and mRNA target candidates. Differentially co-expressed tumor mRNAs from modules and differentially
abundant interstitial fluid miRNAs predicted to interact by at least four of the following tools/databases: TargetScan [58], DIANA-
microT [68], miRBridge [69], PicTar [70], PITA [71], rna22 [72], and mirDB [73]. miRNAs and mRNAs in this table are shown to interact
in Fig. 7

miRNA name Direction miRNA Gene symbol Direction gene

Luminal vs TNBC let-7a-5p
let-7f-5p
let-7 g-5p
miR-9-5p
miR-15b-5p
miR-17-5p
miR-18a-5p
miR-19a-3p
miR-30d-5p
miR-23a-3p
miR-34c-5p
miR-98-5p
miR-107
miR-129-5p
miR-141-3p
miR-148a-3p
miR-221-3p
miR-222-3p
miR-301a-3p
miR-454-3p

Down CCND1
CERS6
ESR1
KIF3B
THSD4

Up

Luminal B vs TNBC miR-10b-5p
miR-19a-3p
miR-23a-3p
miR-30d-5p
miR-31-5p
miR-135a-5p
miR-135b-5p
miR-301a-3p
miR-454-3p

Down CDKN2AIPNL
ELOVL6
EPB41L5
FLOT1
SERINC3

Up

High-grade tumors miR-10a-5p
miR-10b-5p
miR-107
miR-301a-3p
miR-301b-3p
miR-454-3p

Up BTRC
CHST1*

Down

High levels of TILs miR-103a-3p
miR-136-5p
miR-206
miR-146a-5p
miR-299-5p
miR-494-3p

Down BTLA
BCL11B
CD3G
LTB
LAMP3
KLRC4

Up

TNBC and high-grade and high levels of TILs let-7a-5p
let-7c-5p
let-7d-5p
let-7e-5p
let-7f-5p
let-7 g-5p
miR-9-5p
miR-10a-5p
miR-10b-5p
miR-17-5p
miR-18a-5p
miR-19a-3p
miR-19b-3p
miR-20a-5p
miR-20b-5p
miR-23a-3p
miR-23b-3p
miR-27b-3p
miR-29a-3p
miR-29b-3p
miR-30a-5p

Up CGN
DOC2A
FAM134B
GATA3
NKAIN1
NPNT
PARD6B
RERG
RGS22
SLC39A6
SYT9
TPRG1

Down
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tumor grade (and metastasis) only. Based on these

observations, we intersected differentially expressed

mRNAs from each comparison with the respective mod-

ules of interest to see which of these, and how many,

were retained in each module. Additional file 10: Fig. S6

shows the Venn diagrams of each set overlap. We ex-

tracted DE co-expressed genes from the six modules of

interest and visualized these in heatmaps with the rele-

vant clinical information—Additional file 11: Fig. S7. As

seen from the heatmaps in Fig. S7, co-expressed genes

from modules, which were also differentially expressed,

yielded adequate segregation of BC subtypes, estrogen

receptor status, degree of TILs, and, to a lesser extent,

tumor grade.

As we were specifically interested in TIF miRNAs,

which could potentially regulate the expression of

cancer-related genes through intracellular cross-talk, we

extracted the DE miRNA-gene target interactions of

those genes, both DE and co-expressed in the modules

of interest. These miRNA-gene pairs were filtered to

only retain pairs where the miRNA was supported by

one or more databases (see the section above). Overall,

this data “curation” resulted in a small handful of genes

interacting with multiple miRNAs, many of which were

redundant between comparisons. The comparisons with

miRNA-gene pairs from K-means clusters and subtypes

retained most pairs. Genes in these pairs belonged either

to the green module, red module, or yellow module—see

Fig. 5.

Yellow module

The analysis revealed that the yellow module (Fig. 5d)

consisted of a cluster of co-expressed immune system

genes [85, 88–90], regulated by a small set of miRNAs.

Gene targets were upregulated, while all miRNAs were

downregulated in high TILs vs low TILs. Gene tran-

scripts included, ASB2, BCL11B, BTLA, CD3D, CD3G,

CXCL13, CXCR5, FAM65B, IKZF3, IL7R, KCNA3,

KLRC4, LAMP3, and LTB, mainly interacting with miR-

146a-5p and miR-494-3p. We observed miR-146a and

miR-494 to be downregulated in TIFs from high-grade

tumors with high TIL scores. All miRNAs from the

module, except miR-346, were annotated in the CMEP

database as differentially expressed in the blood from BC

patients. miR-103a, miR-494, and miR-369 were down-

regulated in TNBC compared to other subtypes, while

miR-206, miR-299, and miR-874 were downregulated in

relapse, metastasis, and stage 3 vs stage 2 cancers,

Table 4 Best miRNA and mRNA target candidates. Differentially co-expressed tumor mRNAs from modules and differentially
abundant interstitial fluid miRNAs predicted to interact by at least four of the following tools/databases: TargetScan [58], DIANA-
microT [68], miRBridge [69], PicTar [70], PITA [71], rna22 [72], and mirDB [73]. miRNAs and mRNAs in this table are shown to interact
in Fig. 7 (Continued)

miRNA name Direction miRNA Gene symbol Direction gene

miR-30b-5p
miR-30c-5p
miR-30d-5p
miR-31-5p
miR-32-5p
miR-33b-5p
miR-34c-5p
miR-98-5p
miR-125a-5p
miR-106a-5p
miR-106b-5p
miR-130a-3p
miR-130b-3p
miR-135a-5p
miR-138-5p
miR-141-3p
miR-182-5p
miR-186-5p
miR-192-5p
miR-196b-5p
miR-200a-3p
miR-223-3p
miR-301a-3p
miR-301b-3p
miR-330-3p
miR-340-5p
miR-374a-5p
miR-454-3p

Summary table showing the most interesting miRNAs and gene targets for BC classification, based on all analysis. All miRNAs and genes in this table are

differentially abudant and co-abundant in sets, and their interactions are predicted by at least four different tools for miRNA—gene target predictions tools and/

or experimental validation. A single gene, CHST1, denoted by an asterisk was not co-expressed but still included due to interest from the literature search
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respectively. As no serum set from CMEP was specific-

ally related to immune status, we could not perform this

check; however, the directionality of these miRNAs was

somewhat consistent with our results, as high immune

score tumors were mainly high-grade TNBC. A search

through the STRING database [103] with the set of up-

regulated genes, revealed these to form a network, which

was enriched in immune processes and pathways. Out of

the genes within this network, only BCL11B was anno-

tated in the COSMIC census set of genes with known

roles in BC. However, some of the other genes in the

network had been denoted as oncogenes/driver genes in

relation to different blood cancers (leukemia, lymphoma,

or myeloma). This is in line with the fact that these

genes were differentially co-expressed between breast tu-

mors with different levels of immune infiltration.

Red module

The red module (Fig. 5c) contained co-expressed genes

CCNI, CDKN2AIPNL, ELOVL6, EPB41L5, FLOT1, NEU1,

PPM1H, and SERINC3, with miRNA partners almost

equally distributed across these. miR-23a had the highest

number of assigned gene partners, four in total:

CDKN2AIPNL, ELOVL6, NEU1, and SERINC3. A look

into these genes reveals that with the exception of CCNI,

these genes were upregulated in luminal B vs TNBC com-

parison exclusively. Cross-reference of miR-23a with the

CMEP database of circulating miRNAs showed this

miRNA to be differentially expressed in the blood from

patients with Her2-enriched cancers compared to TNBC.

STRING enrichment analysis of the red co-expression

module revealed genes ELOVL6, NEU1, and SERINC3 to

belong to the sphingolipid metabolic process.

The genes in this network were not well-annotated in

terms of their role in breast cancer. However, EPB41L5

and SERINC3 had a high rank based on mutational bur-

den and CNVs, ELOVL6 was annotated as an oncogene

in prostate cancer, and PPM1H has been proposed to be

an oncogene, due to its relation to PPM1D (a well-

studied oncogene in breast, ovarian, and brain cancers).

Green module

Co-expressed genes from this module and the miRNAs

that regulate them were confounded, on the one hand

originating from the high-grade vs high-TIL set and

from the comparison of TNBC vs other subtypes. This is

supported by Fig. 5, as many miRNAs that were upregu-

lated in the comparison of high TILs|grade vs low TILs|-

grade (Fig. 5a) were, inversely, downregulated in the

luminal/Her2 vs TNBC comparison (Fig. 5b). Co-

expressed gene transcripts in this module, associated

with the luminal vs TNBC set, were C6orf211, CCND1,

CERS6, ESR1, and THSD4. Enrichment and pathway

analysis of the full set of genes related to BC subtypes

revealed that four of these CERS6, ELOVL6, NEU1, and

SERINC3 were involved in sphingolipid metabolism,

whereas C6orf211 (ARMT1), CCND1, and ESR1 were an-

notated in the breast cancer KEGG pathway.

Co-expressed DE gene transcripts from the green

module associated with TIF miRNAs from the TILs/

tumor-grade comparison were BTRC CGN, DOC2A,

ESR1, FAM134B, GATA3, KCNE4, NEDD4L, NKAIN1,

NPNT, PARD6B, RERG, RGS22, SIAH2, SLC39A6, SYT9,

and TPRG1. This set of co-expressed genes were regu-

lated by a range of TIF miRNAs, most of which paired

with between 2 and 3 genes each, with miR-340-5p as

the only miRNA interacting with four transcripts:

NKAIN1, NPNT, RERG, and SIAH2. Other miRNAs of

interest included members of the miR-30 family, regulat-

ing thee mRNAs: DOC2A, SIAH2, and TPRG1. Enrich-

ment analysis and literature search using the STRING

database [103] highlighted the fact that this set of genes

captured both differences between luminal subtypes and

TNBC as well as between high and low tumor grade and

tumor invasiveness. Genes C6orf211, ESR1, GATA3,

NPNT, RERG, SLC39A6, and TPRG1 have all been

linked with estrogen-positive breast cancers and have

been proposed to be part of a prognostic luminal signa-

ture [104]. Some genes in this module were connected

by processes proposed to be involved in tumor progres-

sion, such as DOC2A, CGN (Cingulin), PARD6B,

NEDD4L, and SYT9 which belonged to the KEGG path-

way, tight junction (TJ) (hsa04530), and GEO term, cell

junctions (GO:0030054). These genes were downregu-

lated in high TILs|grade tumors (cluster 1). Another

gene of interest was BTRC, encoding β-transducin

repeat-containing E3 ubiquitin protein ligase (β-TrCP).

Noteworthy was that a handful of genes from this net-

work had been annotated as TSGs either specifically in

relation to breast cancer (GATA3, RERG, and SIAH2)

or in other types of cancer (DOC2A and RGS22). In ac-

cordance, genes from this network were all downregu-

lated in high-grade, high-TIL, TNBC samples.

To identify the best differentially co-abundant

miRNA-mRNA pairs, we also applied weighted co-

expression network analysis to the TIF miRNA dataset.

The analysis returned three co-expression modules

(blue, turquoise, and red), each encompassing around 1/

3 of the miRNAs—Additional file 12: Fig. S8.

The blue and red modules contained miRNAs upregu-

lated in TIFs from high-grade, high-TIL, TNBC tumors

(e.g., up in cluster 1 vs cluster 2). In accordance with

this, miRNAs predicted to be downregulated in fluids

from PgR+ vs PgR− tumor were almost exclusively found

within this module. The main difference between these

two modules was that the red module seemed to capture

the miRNAs, which were only found to be DA in K-

means clusters, not in direct comparisons of TIL status
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or tumor grade. The slightly smaller turquoise module

contained miRNAs downregulated in high-grade, high-

immune score tumors—Additional file 12: Fig. S8. miR-

NAs, which were co-abundant and found to interact

with co-expressed genes, may be seen in Fig. 5.

DA miRNAs with predicted mRNA targets from inter-

action networks and WCGNA, supported by cancer

miRNA databases, may be found in Additional file 13:

Table S5. WGCNA resulted in subsets of co-expressed

genes with accompanying miRNA regulators.

Known tumor suppressors and oncogenes were

predominant within modules correlated with

clinicopathological information

As only a few genes from the best miRNA-mRNA inter-

action pairs were annotated as oncogenes or TSGs, we

explored which known (breast) cancer-related genes

were co-expressed alongside these within modules. The

intersection of co-expression modules with COSMIC

census genes and CancerMine genes (with lower cutoff,

see the “Materials and methods” section) revealed that

while oncogenes and TSGs were equally prevalent within

models, e.g., modules were not enriched in one vs an-

other type of gene, there was a difference in the distribu-

tion of these genes across modules.

We performed enrichment analysis to examine the de-

pletion or enrichment of annotated genes for all mod-

ules. The analysis revealed that seven modules (black,

blue, dark turquoise, sky blue, light cyan, white, and yel-

low) were enriched for genes annotated as oncogenes,

TSGs, or DRGs, while two modules (turquoise and

brown) were depleted of these types of genes, Fig. 6a.

Interestingly, the turquoise and brown modules were

also not correlated with any clinicopathological informa-

tion (Additional file 9: Fig. S5), and in fact, the intra-

modular connectivity analysis had revealed that these

two modules were enriched in highly interconnected

LncRNAs (Section 3.6). The blue module, which was

highly correlated with breast cancer grade and metasta-

sis (Additional file 9: Fig. S5), encompassed most key

breast cancer oncogenes and TSGs, including APO-

BEC3B, BARD1, BRCA1, BRCA2, BRIP1, CHEK2,

DNMT1, EZH2, MAP 3 K13, NF2, POLQ, PPM1D, and

TRIM24. The yellow and light cyan modules also con-

tained some well-annotated BC-related genes, such as

CASP8, FBLN2, FOXO1, PPARG, and SOCS1. We inter-

sected lists of cancer-related genes from modules with

information about whether genes were found to be dif-

ferentially expressed in any comparison and whether

they were included in a miRNA-mRNA network. As was

already known from the analysis performed in the “Co-

expression modules were correlated with subtype, im-

mune infiltration, and grade” section, mainly the yellow

module, out of those enriched for oncogenes and TSGs,

encompassed DE genes. The green, red, and grey60

modules, which were correlated with patient information

and contained DE genes, were also enriched in cancer-

related genes, although this enrichment was not signifi-

cant after correction for multiple testing (odds ratios,

1.41, 1.22, and 1.91). Among highly annotated BC onco-

genes and TSGs in these modules were CCND1, ESR1,

GATA3, SLC9A3R1, SMAD4, STAT3, and KLF5.

Interestingly, some genes known to be key players in

cancer, here among MAP 3K1|MAP 2K4, NOTCH1|-

NOTCH3, PIK3CA, SYK, FOXP1, and TP53, were not

retained in any co-expression module, e.g., they were

encompassed by the gray portion in Additional file 9:

Fig. S5. Additional file 8: Table S4 contains for each

module information about which genes have been anno-

tated as oncogenes, TSGs, DRGs, or driver/fusion genes

in (breast) cancer, and whether the gene was differen-

tially expressed and included in a miRNA-mRNA net-

work. Figure 7 shows which oncogenes and tumor

suppressors were co-expressed in the green, yellow, red,

light cyan, sky blue, and blue modules.

Next, we looked at which genes from each module

were most interconnected, and whether these had been

annotated as oncogenes or TSGs (Additional file 8:

Table S4 and Fig. 7). Only two modules, the light cyan

and sky blue, had an annotated gene, as the topmost in-

terconnected (CAV1 and PDGFRA, respectively), both

of which were differentially expressed. Some modules

did have (breast) cancer oncogenes and TSGs which

were among the top 1% most interconnected, including

the blue module (POLQ, rank nr. 3, not DE), green

module (ESR1, rank nr. 4), and yellow module (PTPRC,

rank nr. 2). Collectively, combining information from

COSMIC and CancerMine, with results of DE analysis,

network analysis, and WGCNA, confirmed that genes

from the green module were specifically related to breast

cancer subtype (ER, PGR, and Her2 status), which genes

in the yellow module represented tumor immune infil-

tration (hub gene PTPRC is a tumor suppressor in T cell

acute lymphoblastic leukemia), while genes in the blue

module were related to progression and metastasis.

Due to the lack of gene expression data from paired

normal samples, we were unable to directly compare the

expression directionality of known oncogenes and TSGs

with expression profiles observed in our analysis. In-

stead, we looked at the cardinality of the PAM50 genes

(some annotated as oncogenes, TSGs, or DRGs), be-

tween subtypes in our analysis, with their known cardin-

ality from literature. Only eight PAM50 genes were

significantly DE between subtypes in our analysis. How-

ever, if we performed DEA without correction for covar-

iates, such as the level of immune infiltration, this

number rose to 33 PAM50 genes, indicating that the

lack of PAM50 genes in the corrected DE sets, was
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mainly a result of low power, perhaps in combination

with differences between the TNBC subtypes and basal-

like cancers. Figure 6b shows that the expression direc-

tionality of PAM50 genes was in consensus with that of

the literature and their potential role in (breast) cancer

[105–107]. Eleven PAM50 genes had been annotated in

the COSMIC cancer gene census, out of which seven

(BCL2, CCNE1, EGFR, ERBB2, ESR1, FOXA1, and

FOXC1) were found to be DE in our analysis, all with a

consensus of cardinality between subtypes—Fig. 6b.

Computational support for miRNA-gene pairs

Finally, we looked into whether miRNA-gene pairs were

supported, either by miRNA gene target prediction tools

and databases, other than TargetScan [58], or by experi-

mental data. We only considered interactions included

in Fig. 5, e.g., the best pairs from combined analyses. Ex-

perimentally, validated pairs were obtained from the

miRTarBase [67]; however, unfortunately, the miRTar-

Base database only supported interactions of very well-

studied genes and miRNAs such as members of the

OncomiR-1 cluster, miR-let-7 family, and genes CCND1,

ESR1, and PARD6B. We, therefore, used alternative

databases and prediction tools to support TargetScan in-

teractions, requiring that at least three additional

methods agreed on a miRNA-mRNA pair. Prediction

tools included DIANA-microT (Thermodynamics) [68],

miRBridge (complementary, conservation, thermody-

namics) [69], PicTar (thermodynamics) [70], PITA (ther-

modynamics, conservation) [71], rna22 (complementary,

conservation) [72], and mirDB (support vector machine)

[73]. Results may be found in Table 4.

Discussion
In this study, we integrated interstitial fluid miRNA

abundances with expression levels of mRNA from paired

tumor tissues. Our analysis allowed us to explore

whether miRNAs secreted into the interstitium could be

associated with differentially expressed gene targets and

whether these targets were co-expressed and/or co-

regulated. We partitioned the data based on sample mo-

lecular and clinical information to obtain sets of differ-

entially expressed IF miRNA and their intracellular gene

targets, hereby elucidating potential pathways and mech-

anisms underlying breast cancer.

As expected, we observed a good separation of BC

subtypes based on intracellular mRNA expression; how-

ever, this was not the case for the interstitial fluid miR-

NAs. Although we did see some clustering of TIF from

TNBC samples, this could just as well be related to the

common higher immune status and higher tumor grades

of these samples [50]. Other studies on circulating

miRNA expression in BC patients have found similar

trends, with a poor distinction of different subtypes,

except for TNBC (or basal-like) tumors [108–110]. The

majority of differentially abundant interstitial fluid miR-

NAs identified in our study were DE in the contrast of

normal vs cancer or associated with immune infiltration

and tumor grade. These results are in accordance with

previously published literature on circulating miRNA BC

from the serum/plasma, as these most often highlight

miRNA profiles related to cancer progression, invasive-

ness, metastasis, and relapse [111–114]. In more quanti-

tative measures, this is supported by a PubMed search

on titles and abstracts (the “Materials and methods” sec-

tion). A search on terms related to circulating miRNAs

+ cancer progression yielded 757 results (18 titles),

whereas the search with terms circulating miRNAs +

subtype only returned 106 results (four titles). A further

look into the four articles with subtype terms in the title

revealed none of them to find differences between

PAM50 or immunohistochemistry subtypes.

When comparing the results of our miRNA analysis to

those obtained in the original study by Halvorsen et al.

[49], results were highly variable. We hypothesize that

discrepancies mainly arise from the following:

� Choice of statistical framework. limma [53], which

was employed in our analysis, is likely to return a

larger number of significant DA miRNAs, compared

to the Kruskal-Wallis test used in the original ana-

lysis [49]. This is due to limma’s underlying Bayesian

properties, which help overcome issues relating to

small sample sizes and miRNA-specific variances.

� Correction for batch effects and confounders.

Clustering of datasets revealed significant

confounding of covariates; as such, we incorporated

information on confounders into the design matrix

for generalized linear modeling with limma.

� Integrative analysis. As we performed an integrated

analysis, including co-abundance analysis and col-

lective analysis of both TIF miRNA data and paired

intra-tumor mRNA data, we naturally curated our

results based on miRNA abundances, as well as the

relationship between miRNAs and predicted differ-

entially expressed mRNA targets. As such, we ob-

tained a very different set of miRNA top candidates

for further analysis and validation.

In addition to the aforementioned, other differences

may have contributed to varying results, (i) how compar-

isons were defined, (ii) cutoff for retaining a miRNA in

the dataset, (iii) cutoff for significance (log fold change

was added as a criterion in our analysis), and (iv) missing

value imputation.

We believe that the solid bioinformatic framework and

data integration implemented in our study have resulted

in new and valuable biological insights while highlighting
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the major impact of data correction and choice of statis-

tical set-up has for down-stream results.

Overall, our analysis revealed a set of miRNAs which

were upregulated in tumor interstitial fluids from mainly

TNBC patients with high-grade and high immune infiltra-

tion score tumors. Subsets of these miRNAs were pre-

dicted to have target genes, which were also differentially

expressed in tumors from the same cohort of patients.

Table 4 shows the overall best candidate interstitial fluid

miRNAs and predicted gene targets, based on all analyses

and database support.

In the following sections, we will discuss some of these

most interesting miRNAs and genes, in greater detail.

Breast cancer subtypes

Common to subtypes

The most interconnected DE miRNAs from the compar-

isons of BC subtypes were miR-9, miR-15b, miR-17,

miR-19a, and miR-30d. We found these to be depleted

in tumor interstitial fluids from patients with luminal

and Her2-enriched breast cancers, compared to samples

from TNBC patients. Interestingly, all of these miRNAs

have been shown to be highly abundant in the basal-like

BC subtype, which is largely similar to TNBC [115, 116].

Patients with basal-like/TNBC tumors are known to

have the poorest prognosis, and this subtype is associ-

ated with high-grade and rate of metastasis [8]. In ac-

cordance with this, miR-17 and miR-19a belong to the

miR-17-92 cluster, also denoted OncomiR-1 (13q31.3)

[117]. We found these two miRNAs, along with other

members of OncomiR-1 (miR-19b, miR-18a, and miR-

20a), to be differentially co-expressed. The miR-17-92

cluster of miRNAs has been shown to target the well-

studied tumor-suppressor PTEN (phosphatase and ten-

sin homolog), as well as key players involved in TGF-β

(transforming growth factor beta) signaling [118].

Multiple studies on miR-17 have found an association

between the over-expression of this family of miRNAs

with poor patient prognosis (poor disease-free survival

and overall survival) [119, 120] and, in connection with

this, cancer cell migration and invasion in breast cancer

[121, 122].

Over-expression of miR-30d and miR-9 has been asso-

ciated with an aggressive phenotype, shorter time to re-

currence, and a poor prognosis in patients with breast

cancer [123, 124]. More specifically, miR-30d is pro-

posed to be an inhibitory regulator of autophagy [125],

and the miR-30 family of miRNAs is thought to promote

non-attachment growth of breast cancer cells [126].

MiR-9, miR-15b, miR-17, miR-19a, and miR-30d were

predicted to interact with a set of differentially expressed

genes, some of which were common to the three subtype

comparisons. Common genes were AR (androgen recep-

tor), CERS6 (ceramide synthase 6), FOXA1 (forkhead box

A1), GPR160 (G protein-coupled receptor 160),

KIAA1244 (ARFGEF family member 3), KLK5 (kalli-

krein-related peptidase 5), SPDEF (SAM pointed

domain-containing ETS transcription factor), and XBP1

(X-box binding protein 1), all of which were upregulated

in luminal types and Her2-enriched TIF samples vs

TNBC. Three of these genes belonged to the PAM50

set: AR, FOXA1, and GPR160 [7], while the remaining

genes had all been individually associated with breast

cancer subtypes [92–96].

Luminal subtypes

While some genes were common to the three contrasts,

others were subtype-specific, such as ESR1 (estrogen re-

ceptor 1), KIF3B (kinesin family member 3B), KRT4

(keratin 4), and NFIB (nuclear factor I B), which were

associated with luminal types only. KIF3B was upregu-

lated in the luminal samples, and in accordance with

this, KIF3B has been shown to be over-expressed in ER-

positive tumors, with estrogen directly inducing the ex-

pression of KIF3B [127]. KRT4 and NFIB were downreg-

ulated in luminal subtypes compared to TNBC. KRT4

and NFIB have both been shown to be over-expressed in

basal/TNBC tumors [128, 129], supporting our findings.

The expression levels of keratins change during meta-

static progression of breast cancer, and over-expression

of some keratins have been associated with poor patient

survival [130]. Of particular interest was NFIB, which

has directly been proposed as a potential gene target for

ER-negative breast tumors. NFIB was found to be over-

expressed in TNBC compared to ER-positive tumors,

and over-expression of this gene was associated with a

high nuclear grade [129]. ESR1 and CERS6 (see the sec-

tion above) were co-expressed in the green module,

along with C6orf211 (ARMT1, acidic residue methyl-

transferase 1), CCND1 (cyclin D1), and THSD4 (throm-

bospondin type 1 domain containing 4). This set of genes

has been suggested as markers for a prognostic luminal

signature [104] and has more recently been highlighted

as the key players in a novel, FOXA1/ESR1-interacting

pathway [131], highlighting their association with estro-

gen receptor status.

Luminal A subtype

The gene CCND1 was upregulated and highly intercon-

nected in the luminal A vs TNBC comparison. CCND1

is a well-studied breast cancer driver gene [132], the

amplification of which is more prevalent in luminal sub-

types compared to Her2 and basal-like [133]. Amplifica-

tion of this gene has been found to be more prevalent in

luminal B tumors compared to luminal A [134]. How-

ever, as CCND1 amplification is also associated with a

more aggressive phenotype within both luminal sub-

types, as well as in familial and sporadic tumors [134],
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this might explain the slight discrepancy we observe

here, e.g., different compositions and sizes of luminal

sets, resulting in this gene not reaching significance in

the luminal B vs TNBC comparison. A comparison of

miRNA-gene pairs with MiRTarBase resulted in support

for the CCND1 gene and its predicted miRNA

regulators.

Luminal B subtype

For the contrast of luminal B vs TNBC, the ELOVL6

(ELOVL fatty acid elongase 6) gene was found to be up-

regulated and interact with both a larger number of

genes and miRNAs. A high level of ELOVL6 (oncogene

in prostate cancer) has been proposed to be a marker of

poor prognosis in BC [135], which is of great interest, as

patients with luminal B type tumors generally have

poorer outcomes than those with luminal A types [8].

Dysregulated expression of genes involved in mammary

gland fatty acid and phospholipid metabolism, such as

the ELOVL6 gene, have been proposed to characterize

cell proliferation and differentiation state, and many of

these have been linked to BC patient survival [136].

STRING network analysis with the set of eight co-

expressed from the red module (including ELOVL6),

returned the gene ontology term sphingolipid metabol-

ism. Genes assigned to this term were ELOVL6, NEU1

(neuraminidase 1), and SERINC3 (serine incorporator 3).

A literature search revealed that another gene from this

module, FLOT1 (flotillin), had recently been linked to

the sphingolipid pathway, proposed to be a regulator of

cellular sphingolipid distribution and signaling [137]. All

genes from the red module, except CCN1, were specific-

ally upregulated in luminal B vs TNBC, but not in lu-

minal A type, indicating that over-expression of

sphingolipid-related genes might be specific to luminal B

tumors. Interestingly, ELOVL6, NEU1, and SERINC3

were the predicted targets of miR-23a, which was also

highly interconnected and downregulated in the luminal

B vs TNBC comparison. A literature search for miR-23a

revealed this miRNA to be a well-known oncogenic

miRNA, and a recent study by Ma et al. [138] found that

over-expression of miR-23a induced EMT, migration, in-

vasion, and metastasis of breast cancer both in vitro and

in vivo [138]. miR-23b has been proposed to be a circu-

lating biomarker for BC diagnosis, subtyping, and dis-

ease recurrence [139], many times over, highlighted by a

novel review on this miRNA [140].

Estrogen-positive tumors

The DE expression network generated for ER+ vs ER−

tumors and interstitial fluids showed ESR1, GATA3

(GATA binding protein 3), and GREB1 (growth-regulat-

ing estrogen receptor binding 1) to all be upregulated,

while ERBB2 (Erb-B2 receptor tyrosine kinase 2) was

downregulated. Both GATA3 and GREB1 have been

linked to estrogen receptor-positive breast tumors and

have been proposed as markers for patient response to

hormone treatment [141–143].

The most interesting miRNA from this network was

miR-32-5p, which was over-expressed in ER+ tumors vs

ER− tumors, and the most interconnected miRNA in the

network. Not much is known about this miRNA in con-

nection with breast cancer; interestingly, however, miR-

32-5p interacts with genes NFIB, SOX11 (SRY-box 11),

and DSC2 (desmocollin 2) (downregulated in ER+ vs

ER−), all three of which are known to be over-expressed

in basal-like/TNBC/ER− tumors and associated with

poor survival [129, 144, 145].

Her2-enriched subtype

Specific to the contrast Her2-enriched vs TNBC, were

genes ERBB2, GRB7 (growth factor receptor bound pro-

tein 7) and LASP1 (LIM and SH3 protein 1), all of which

were upregulated. These genes are well-supported cen-

tral players in Her2-enriched cancers and belong to the

Her2 amplicon (chromosome region 17q-12-21) [98].

ERBB2 and GRB7 are both Pam50 genes [7]. Another

gene specific to the Her2 set was CPD, which overall

had the most interactions in the miRNA-mRNA net-

work. CPD (carboxypeptidase D) is another gene known

to be amplified in patients with Her2-enriched tumors

on chromosome 17, right upstream of ERBB2 (chromo-

some region 17q-11-2) [146].

Tumor-infiltrating lymphocyte scores and tumor grade

Analysis of the miRNA-mRNA pairs differentially

expressed in high TILs (2, 3) vs low TILs (0,1) revealed

the NEDD4L (NEDD4 like E3 ubiquitin protein ligase)

gene, to be paired with the highest number of miRNAs.

NEDD4L, which was downregulated in samples with

high tumor-infiltrating lymphocytes scores, has been

shown to be a negative regulator of Wnt-signaling

[147]—a pathway often perturbed in cancer [148]. Wnt

signaling is central in the regulation of immunity and

has been reported to facilitate immune evasion via den-

dritic cells and T regulatory cells [149]. In a study by

Ding et al. [147] on NEDD4L inhibitory effects on the

Wnt signaling, it was noted that NEDD4L is often found

to be downregulated in cancers, while its Wnt-target Dvl

(disheveled), which is modified by NEDD4L for proteaso-

mal degradation, is often upregulated in the same can-

cers [147]. This could indicate that the accumulation of

Dvl contributes to an oncogenic type of Wnt signaling.

Furthermore, the downregulation of NEDD4L has been

implicated in the initiation of breast tumor development,

and this gene has been proposed as a prognostic lung

cancer marker linked to histological grade, tumor stage,

and lymph node metastasis [86, 150]. These findings
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support the results of our analysis, as samples with high

immune scores were also those with a high histological

grade (grade 3 tumors). Additionally, our analysis re-

vealed that NEDD4L interacts with PARD6B (Par-6

family cell polarity regulator beta) and CGN (cingu-

lin). These two genes were co-expressed in the green

module and were downregulated in cluster 1 (high

TILs and high-grade, mainly TNBC) vs cluster 2 (low

TILs and lower grade, mainly luminal). PARD6B,

CGN (cingulin), and NEDD4L belong to the KEGG

pathway, tight junction (TJ) (hsa04530). Aberrant

levels of tight junction proteins result in incorrect

formation and maintenance of cellular polarity,

contact inhibition, and proliferation, contributing to

epithelial-mesenchymal-transition (EMT) [151]. PARD6B

expression is critical for TJ assembly, and decreased ex-

pression of this gene has been proposed to result in epi-

thelial cell changes and tumor metastatic behavior [152].

PARD6B has been shown to be amplified in breast cancer

[153]; however, in a comparison of BC subtypes, the ex-

pression of this protein was specifically proposed to be up-

regulated in the luminal type compared to basal-like and

Her2-enriched tumors [154]. This observation is in ac-

cordance with our findings, as it was had a higher expres-

sion level in cluster 2 than in cluster 1. Although PARD6B

is generally considered to be an oncogene, it has also been

linked to suppression of cell proliferation in breast cancer,

indicating that the role of this gene may be complex [155].

PARD6B, CGN (cingulin), and NEDD4L were all predicted

targets of the OncomiR-1 (13q31.3) cluster, or one of its

paralogues 106a/363 (Xq26.2) and 106b/25 (7q22/1),

miRNA included miR-17, miR-19a/b, miR-20a/a, and

miR-106a/b. In accordance with this, NEDD4L has experi-

mentally been shown to be the gene target of the miR-

106-25 cluster miRNAs [86].

Tumor grade

Network analysis of miRNA-mRNA DE pairs high-grade

tumors (grade 3) vs medium/low-grade tumors (grades

1, 2) revealed two genes of interest. One of these genes,

BTRC (beta-transducin repeat containing E3 ubiquitin

protein ligase) predicted to interact with miR-10a/b and

miR-107. Interestingly, we found these three miRNAs to

be co-abundant (module 1, Fig. 5). One study on

miRNA-10b found that this miRNA was secreted via

exosomes and that the uptake of these exosomes by re-

cipient cells resulted in a decrease of target gene levels

and induced invasiveness in otherwise non-malignant

cells [24]. Whereas miRNA-10b is generally considered

to promote tumor progression and metastasis [156], the

role of miR-107 in breast cancer seems less straightfor-

ward. Some studies suggest that miR-107 has a tumor-

suppressive role [157], while others have found that

over-expression of this miRNA promotes tumor

progression, is associated with lymph node metastasis

and poor patient prognosis [113, 158]. Just as for miR-

107, the role of β-TrCP (encode by BTRC) in cancer de-

velopment and progression is convoluted. BTRC has

been proposed to be a DRG, having oncogenic proper-

ties in one context and anti-tumor functions in another

[159]. More recent literature on β-TrCP, however, sug-

gests that this protein indeed suppressed tumor progres-

sion, as one study showed that β-TrCP regulates the

degradation of CDK1, high levels of which promote cer-

tain aspects of tumor malignancy [160]. Another study

on β-TrCP in glioma found that a low level of this pro-

tein was associated with a poor prognosis [161]. Our re-

sults agree with these studies; we see a downregulation

of BTRC in high-grade tumor tissues and an upregula-

tion of miR-10a, miR-10b, and miR-107 in matched

interstitial fluids of these tumors. Importantly, the inter-

action between miR-10a and the BTRC transcript has

been experimentally validated (luciferase reporter experi-

ment) [162]. Although we could not find any experimen-

tal validation for the BTRC-miR-107 interaction, a study

by Yang et al. [163] found that a combination of miR-

107-BTRC-UBR3-miR-16 expression could distinguish

between different BC subtypes, specifically between

basal-like tumors and luminal types [163].

Another gene of interest in relation to tumor grade

was CHST1 (carbohydrate sulfotransferase 1), which was

paired with miRNAs miR-301a/b and miR-454. Analysis

revealed miR-301a/b and miRNA-454 to be co-abundant

in the same module as miR-10a/b and miR-107 (module

1, 5), supporting the notion that these miRNAs might be

associated with tumor grade and progression. The litera-

ture on CHST1 and cancer is very limited; however,

studies on other members of the carbohydrate sulfo-

transferase (CS) family show that while some CS mem-

bers may be oncogenic, others could have tumor

suppressor functions. Overexpression of CHST3 and

CHST11 have been linked to BC aggressiveness, relapse,

and development of metastasis [164]; in contrast, down-

regulation of CHST10 and CHST14 has been linked to

invasive melanoma and to late stages of colon cancer

progression, respectively [165, 166]. In the current study,

we found CHST1 to be downregulated in grade 3 vs

grade 1|2 tumors. The miRNAs predicted to interact

with CHST1 are more well-studied then their target.

MiR-301 is thought to be a breast cancer oncomiR,

which promotes tumor invasion and nodal or distant re-

lapses via direct interaction with FOXF2, PTEN,

BBC3iso-2, and COL2A1 [167]. This microRNA has also

been shown to help regulate cancer-related immunity in

solid tumors [64]. In accordance with this, we found

miR-301a and miR-301b to be upregulated both in the

contrast of IF from high grade to medium/low grade and

between high TILs and low TILs. High expression of
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miR-454 has been associated with a poor overall and

disease-free survival in patients with TNBC [168]. These

findings were supported by a meta-study by Lu et al.

[169], although this review also highlighted the fact that

miR-454 might have a dual role, exerting oncogenic ef-

fects in some cancer types, such as breast cancer, and

tumor-suppressor functions in other types of cancer

[169].

Tumor-infiltrating lymphocytes

Analyses revealed a set of TIF miRNAs and co-expression

gene targets, which were associated with tumor-

infiltrating lymphocyte scores. This network included

miRNAs; miR-103a, miR-136, miR-146a, miR-299, miR-

301, miR-346, miR-369, and miR-494 predicted to interact

with gene transcripts: ASB2, BCL11B, BTLA, CD3D,

CD3G, CXCL13, CXCR5, FAM65B, IKZF3, IL7R, KCNA3,

KLRC4, LAMP3, and LTB. This set of genes, which were

all upregulated in high-TIL vs low-TIL samples, has all

been linked to immune system processes [170–173].

Genes such as CD3D and CD3G encode T cell surface gly-

coproteins and are well-known players in anti-tumor im-

munity [174]. High levels of these two antigens have been

linked to an overall better prognosis of patients with

breast cancer [175, 176]. The same is true for BCL11B,

IKZF3, and KLRC4, which have very recently been linked

to a prognostic immunogenic signature of triple-negative

breast cancers [173, 177]. Liu et al. [177] found that al-

most all populations of immune cells, immune system

pathways, and their genes were enriched in TNBC com-

pared to both normal samples and other breast cancer

subtypes. This is in accordance with our findings; we see

TNBC having not only overall higher grade but also infil-

trating lymphocyte scores.

Of particular interest was the co-expression of genes:

BTLA, CXCR5, CXCL13, IL7R, LAMP3, and LTB. The

protein products encoded by genes have been linked to

the presence or absence of high endothelial venules and

tertiary lymphoid structures in multiple cancer types

[178–181]. TLS, which are lymphoid formations, have

been found within tumors where they are thought to

participate in anti-tumor responses. A high number of

TLS is generally associated with an overall better pa-

tient’s survival in a range of different types of cancer

[182], and their presence correlates with the level of

both TILs and HEV [179, 180]. These observations are

supported by the fact that high endothelial venules,

which are specialized vessels normally found in the

lymph nodes, are proposed to act as gateways for the in-

filtration of lymphocytes within tumors [183]. The abun-

dance of lymphoid chemokines such as CXCR5 and

CXCL13 has been linked to both the presence of TLS

and HEV in breast cancer stroma [181]. Tertiary lymph-

oid structures are modulated by a network of cytokines,

and the central players in this network are lymphotoxin

LT-β-related cytokines [179]. One study [178] found that

lymphotoxin LT-β was overexpressed in breast tumors

and that overexpression of LT-β was correlated with a

high density of HEVs and dendritic cells. Dendritic cells

are thought responsible for the production of LT-β in

tumor tissues in general and in tertiary lymphoid struc-

tures. These findings might indicate that a high level of

LT-β should be predictive of a better patient outcome.

However, another study on the LT-β network in mice

has shown that high levels of lymphotoxin LT-β pro-

mote a tumor-permissive microenvironment resulting in

tumor progression [184]. The results of our analysis sup-

port those from the aforementioned studies, with this

set of genes found to be upregulated in samples with

high levels of lymphocyte infiltration. For a more in-

depth description of the relationship between TLS, TILs,

and HEV, as well as the roles of BTLA, IL7R, and

LAMP3 in relation to these, we refer to the original pub-

lications [178–180, 184].

The set of co-expressed immune genes discussed

above was mainly predicted to be the targets of miR-

146a and miR-494. We found these miRNAs, along with

miR-206, miR-369, and miR-376a, to be co-abundant

(module 2, Fig. 5). Both miR-146a and miR-494 have

been linked to immune system response in connection

with tumor development [185–188]. miR-146a is a cen-

tral player within the innate immune system, where it

functions as a fine-tuning mechanism, modulating the

scale of immunity vs tolerance [189]. Generally, this

miRNA is considered a negative regulator of immune re-

sponse. This is supported by mouse knock-down experi-

ments, in which loss of miR-146a was shown to result in

autoimmunity and development of myeloid malignancies

[189, 190]. Re-establishing miR-146a expression within

breast cancer has been shown to decrease the levels of

immunostimulatory genes and to antagonize NF-kB sig-

naling, reducing cancer cell migration and metastatic

mechanisms [185, 187]. The role of miR-494 in cancer

immunity is not straightforward. One study found that

this miRNA might help prevent anti-tumor immunity

through the accumulation of myeloid-derived cells in the

microenvironment, promoting tumor growth [186],

while another study showed that miR-494 suppresses the

progression of breast cancer, through downregulation of

CXCR4-mediated oncogenic communication [188]. Al-

though miR-146a and miR-494 had the most gene tar-

gets within the co-expressed immune gene cluster, other

miRNAs were also of interest here among miR-103a,

miR-301, and miR-369 all of which have been linked to

tumor immunity [64, 191]. A search thought the CMEP

database revealed all of these to be DE in the blood of

BC patients. miR-103a, miR-301a, miR-494, and miR-

369 were all downregulated in TNBC compared to other
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subtypes. This is in full accordance with our results, as

high immune score tumors were mainly TNBCs.

Conclusion
We identified genes that were differentially co-expressed

between tumors with high and low infiltrating lympho-

cyte scores—most of these had already been associated

with cancer immunity through other studies [170–173].

Of particular interest were CXCL13, BTLA, IL7R,

LAMP3, and LTB as these genes have been linked to the

presence of tertiary lymphoid structures (TLS) and high

endothelial venules (HEV) within tumors. TIF miR-146a

and miR-494, the most interconnected and co-abundant

miRNAs in this cluster, were both previously annotated

as negative regulators of immune-stimulatory genes and

were DE in the plasma from patients with BC [158, 192].

As tumor immune cell infiltration is highly related to pa-

tient prognosis [2], we propose genes and miRNA from

this module to be candidate markers of tumor immune

status, prognosis, and potentially patient response to

immunotherapy.

Another co-expression module encompassed genes,

which were DE between luminal B tumors and TNBC. A

subset of these was related to sphingolipid metabolism

and predicted to be co-regulated by miR-23a. miR-23a

has been found to be differentially abundant in the

serum of healthy individuals and breast cancer, as well

as between BC patients with different subtypes [140]. As

such, this miRNA is a candidate marker for BC subtype

and potentially a new therapeutic target. TIF miRNAs

DE between subtypes were all identified in contrasts of

TNBC vs another subtype. Many miRNAs identified in

these contrasts were generally related to BC progression

and metastasis, such as members of the OncomiR clus-

ters and miRNA families miR-30 and let-7. This obser-

vation is supported by other studies on secreted

miRNAs, and we therefore propose that levels of se-

creted miRNAs do not reflect gene-based subtyping, but

rather tumor aggressiveness, i.e., TNBC patients often

have higher-grade tumors and a poor prognosis.

A small set of genes and TIF miRNAs were more spe-

cifically associated with tumor grade, here among miR-

10a/b and gene target BTRC. The interaction of miR-10-

BTRC has been experimentally validated [162], and miR-

10b was found to be delivered via exosomes to recipient

cells, resulting in the downregulation of target genes

[24]. BTRC is proposed to have tumor-suppressive func-

tions [160, 161], while miR-10b is oncogenic; as such, it

should be of interest to study this pair in relation to

tumor invasiveness and metastasis.

Collectively, integration of expression data from inter-

stitial fluid miRNAs and paired solid tissue mRNAs re-

sulted in sets of miRNA-mRNA pairs, associated with

underlying molecular mechanisms and clinical features

of breast cancer.

Whether TIF miRNAs highlighted in our study are in-

deed transferred between cells in the tumor microenvir-

onment, or whether these merely reflect that level of

miRNAs within the tumor donor cells themselves, is un-

known. However, as the uptake of miRNAs from the

extracellular space is a well-known phenomenon, com-

munication and transcriptome regulation via interstitial

fluid miRNAs are an attractive therapeutic angle for can-

cer treatment.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13058-020-01295-6.

Additional file 1: Figure S1. Multidimensional Scaling Plot. Plot depicts
the relationship (squared euclidian distances) between breast cancer
samples based on the abundance of interstitial fluid miRNA or expression
of intra-tumor mRNA. S1A = clustering based on miRNA abundances in
IFs before correction for patient-specific effects. Colors: grey = normal
interstitial fluids, red = tumor interstitial fluids. S1B = clustering based on
miRNA abundances in IFs after correction for patient specific effects (het-
erogeneity). Colors: grey = normal interstitial fluids, red = tumor intersti-
tial fluids. S1C = clustering based on miRNA abundances in TIFs. Colors
denote BC subtypes: dark green= luminal A, light green = luminal B, pink
= luminal B Her2-enriched, orange = Her2-enriched and deep red =
TNBC. S1D = clustering based on intra-tumor mRNA expression. Colors
denote BC subtypes: dark green= luminal A, light green = luminal B, pink
= luminal B Her2-enriched, orange = Her2-enriched and deep red =
TNBC.

Additional file 2: Table S1. K-means Clusters. Partitioning of samples
into two K-means clusters (C1, C2), based on interstitial fluid miRNA abun-
dances or intra-tumor mRNA expression levels. Dot represents an un-
matched sample. The column “consensus” denotes whether the sample
was assigned to the same cluster based both on miRNA and mRNA
levels.

Additional file 3: Figure S2. Comparison of Differentially Abundant
miRNAs. Comparison of differentially abundant miRNAs from current
analysis with original publication (Halvorsen, et al. 2017). S2A =
Comparison of miRNAs DA in TIF vs NIF, and expressed in paired serum,
set include (i) miRNAs DA between TIF vs NIF, from Halvorsen, et al. 2017,
(ii) miRNAs DA between TIF vs NIF, also in serum, from Halvorsen, et al.
2017, and (iii) miRNAs DA between TIF vs NIF from current analysis. S2B =
Comparison of miRNAs DA between BC subtypes. Sets include (i) miRNAs
DA between subtypes, from Halvorsen, et al. 2017, (ii) miRNAs DA
between subtypes significant after correction for multiple testing, from
Halvorsen, et al. 2017, (iii) miRNAs DA between subtypes significant from
current analysis and (iv) miRNAs DA between ER+ and ER- from current
analysis. S2C = Comparison of miRNAs associated with the degree of
tumor infiltrating lymphocytes. Sets include (i) miRNAs associated with
TILs and tumor percentage, from Halvorsen, et al. 2017, (ii) miRNAs DA
between high (+2|+3) vs low TILs (0/1) from current analysis. (iii) miRNAs
DA between high (gr 3) vs low/medium tumor grade (gr 1|2) from
current analysis, and (iv) miRNAs DA between TIF Cluster 1 vs Cluster 2
from current analysis.

Additional file 4: Table S2. This table contains sets of genes (mRNAs)
from miRNA-mRNA networks, with accompanying information on logFC,
adjusted p-values, information from the COSMIC database about fre-
quency of mutations (predicted to be pathogenic), copy number varia-
tions (loss, gain) and information about known role in cancer.
Additionally the table(s) also contains information about genes from Can-

cerMine text-mining tool, e.g. if a given gene has been referred to as an
oncogene, driver gene or tumour suppressor in literature. Genes are
ranked based on mutational burden and CNVs.
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Additional file 5: Figure S3. miRNA-Gene Interaction Networks. Net-
works of differentially expressed miRNAs and gene targets predicted by
TargetScan. Colors refer to expression directionality, red = up-regulated,
black = down-regulated. S3A = TIF Cluster 1 vs Cluster 2, S3B = High TILs
(+2|+3) vs low TILs (0|+1), S3C = High-grade (gr 3) vs medium/low-grade
(gr 1|2), S3D = Her2 vs TNBC, S3E = luminal A vs TNBC, S3F = luminal B
vs TNBC, S3G = ER+ vs ER-.

Additional file 6: Table S3. Set-wise Results of Differentially Abun-
dance/Expression Analysis. List of differentially expressed intracellular
mRNAs and interstitial fluid miRNAs from pairs which were either com-
mon across sets (Table S3.1) or unique to sets (Table S3.2).

Additional file 7: Figure S4. Module Relationships. The hierarchical
clustering and heatmap show how similar the modules are (correlation
scale on the side). The color assignment is reported as well on the X and
Y axes.

Additional file 8: Table S4. Intramodular Connectivity. The table
contains results from the intramodular connectivity analysis, including
gene name, the module a gene belonged to, and interconnectivity
scores; kTotal (whole network), kWithin (within module), kOut = kTotal-
kWithin, and kDiff = kWithin-kOut. Additionally, the table includes
information about whether a gene was annotated as an oncogene |
tumor suppressor gene | dual role gene | driver gene | fusion gene in the
COSMIC census gene set, or in the filtered results of CancerMine text-
mining. The columns “DE Gene” and “Gene from Network” denote if a
gene was found to be differentially expressed in any comparison and
whether it was included in one of the miRNA-mRNA network, respect-
ively. The genes are ranked based on interconnectivity within modules.

Additional file 9: Figure S5. Intra-tumor mRNA Co-expression Modules.
Results of weighed Gene Co-expression Network Analysis. Upper part of
plot shows the clustering of the genes co-expressed in the 31 modules
from Weighed Gene Co-expression Network Analysis (WGCNA). Grey de-
notes that the gene was not assigned to any module. Modules are
named by their color. Lower part of plot shows the correlation between
patient clinical variables and modules.

Additional file 10: Figure S6. Overlap of Differentially Expressed
mRNAs with Co-expressed mRNAs. Venn diagrams, depicting the overlap
between differentially expressed mRNAs from contrasts, with modules,
which were correlated with the patient clinical feature of interest.

Additional file 11: Figure S7. Heatmaps of DE intra-tumor mRNAs
levels. Heatmaps showing the separation of tissue samples, based on the
best DE mRNA candidates from Weighed Gene Co-expression Network
Analysis (WGCNA). S7.A: luminal (A + B), Her2-enriched vs TNBC, S7.B: TIL
scores, S7.C: tumor grade (plus clusters minus genes from the TILs com-
parison) and S7.D: estrogen receptor status. Color scale denotes expres-
sion levels, purple = high expression, and yellow = low expression.

Additional file 12: Figure S8. Results of miRNA Co-abundance Network
Analysis. WGCNA resulted in three miRNAs co-abundance modules, de-
noted Module 1 (Blue, S7 A), Module 2 (Turquoise S7 B) and Module 3
(Red, S7 C). Shapes indicate which contrast a given miRNA was differen-
tially abundant within. X-axis = name of miRNA, y-axis = log fold change
for miRNA in contrast.

Additional file 13: Table S5. Interstitial Fluid miRNA and Intra-Tumor
mRNA Targets Supported by Databases. Differentially abundant miRNAs
with predicted mRNA target(s) from interaction networks and WCGNA,
supported by cancer miRNA databases. Databases were: (I) CMEP (Circulat-

ing MicroRNA Expression Profiling) http://syslab5.nchu.edu.tw/CMEP/ (II)
dbDEMC database of (Differentially Expressed MiRNAs in human Cancers)

http://www.picb.ac.cn/dbDEMC/ and (III) miRCancer (microRNA Cancer As-

sociation Database) http://mircancer.ecu.edu/download.jsp. Database in-
formation on miRNA expression is included, e.g. directionality in comparison,
experimental design.

Additional file 14: Table S6. Oncogenes and Tumor Suppressors in
Co-expression Modules. Co-expressed genes from modules that were an-
notated as oncogenes, tumor suppressors, dual role genes, driver genes
or fusion genes by COSMIC and/or CancerMine. As CancerMine is a pre-
diction tool, we imposed a cut-off of minimum of 10 annotations/cita-
tions for a gene (cancer other and pan-cancer) and a minimum of 5

annotations/citations for genes specifically associated with breast cancer
(See Materials and Methods).

Additional file 15: Table S7. Experimental Support for miRNA and
Gene Target Interaction. Prediction Differentially abundant tumor
interstitial fluid miRNAs and their experimentally validated intracellular
gene targets with support from MiRTarBase (Chou et al., 2017), release
7.0.
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