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Abstract

Background: The β-galactosidase from Kluyveromyces lactis is a protein of outstanding biotechnological interest

in the food industry and milk whey reutilization. However, due to its intracellular nature, its industrial production

is limited by the high cost associated to extraction and downstream processing.

The yeast-system is an attractive method for producing many heterologous proteins. The addition of a secretory

signal in the recombinant protein is the method of choice to sort it out of the cell, although biotechnological

success is not guaranteed. The cell wall acting as a molecular sieve to large molecules, culture conditions and

structural determinants present in the protein, all have a decisive role in the overall process.

Protein engineering, combining domains of related proteins, is an alternative to take into account when the task

is difficult. In this work, we have constructed and analyzed two hybrid proteins from the β-galactosidase of K.

lactis, intracellular, and its Aspergillus niger homologue that is extracellular. In both, a heterologous signal peptide

for secretion was also included at the N-terminus of the recombinant proteins. One of the hybrid proteins

obtained has interesting properties for its biotechnological utilization.

Results: The highest levels of intracellular and extracellular β-galactosidase were obtained when the segment

corresponding to the five domain of K. lactis β-galactosidase was replaced by the corresponding five domain of

the A. niger β-galactosidase. Taking into account that this replacement may affect other parameters related to the

activity or the stability of the hybrid protein, a thoroughly study was performed. Both pH (6.5) and temperature

(40°C) for optimum activity differ from values obtained with the native proteins. The stability was higher than the

corresponding to the β-galactosidase of K. lactis and, unlike this, the activity of the hybrid protein was increased

by the presence of Ni2+. The affinity for synthetic (ONPG) or natural (lactose) substrates was higher in the hybrid

than in the native K. lactis β-galactosidase. Finally, a structural-model of the hybrid protein was obtained by

homology modelling and the experimentally determined properties of the protein were discussed in relation to it.

Conclusion: A hybrid protein between K. lactis and A. niger β-galactosidases was constructed that increases the

yield of the protein released to the growth medium. Modifications introduced in the construction, besides to

improve secretion, conferred to the protein biochemical characteristics of biotechnological interest.
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Background
The enzymatic hydrolysis of lactose by β-galactosidase
(E.C. 3.2.1.23) is one of the most promising biotechno-
logical processes in development to use the sugar of the
milk whey, a by-product of cheese manufacture with high
polluting power [1]. β-galactosidases are widely distrib-
uted in nature and are produced by animals, plants and
microorganisms (bacteria, fungi and yeast). However, the
preparations that are commercially available and rated
GRAS come from only a few species of yeast and micro
fungi, the most important being Kluyveromyces lactis and
K. fragilis, Aspergillus niger and A. oryzae. Micro fungi
secrete this enzyme extracellularly, however, they produce
a lower quantity of enzymatic units than do yeasts and the
optimum pH is acid. Micro fungal β-galactosidase utiliza-
tion for hydrolyzing lactose is restricted to acid wheys [2].
In contrast, yeast β-galactosidase optimum pH is near
neutral, consequently making it suitable for saccharifying
milk and sweet whey. However, the production and
industrial use of this intracellular enzyme are problematic
due to the high cost associated with its extraction from the
cells and to the low yields obtained as a result of its insta-
bility [3].

The secretion of β-galactosidase to the culture medium
would facilitate remarkably the downstream processing,
eliminating the step of extraction from the cells and reduc-
ing the risk of degradation by intracellular proteases. In
the case of small peptides or proteins, efficient secretion
can be achieved simply by fusing a secretory signal
sequence 5' to the gene. However, for large oligomeric
proteins of cytosolic origin, like the β-galactosidase of K.
lactis, [4] consecution of efficient secretion is not so easy.
Protein secretion in yeast heterologous systems is influ-
enced by the composition of the medium, culture condi-
tions, phase of growth and structure of the cell wall [5-7].
Protein determinants like size, three-dimensional struc-
ture, load, isoelectric point or the glycosylation state are
also important [8-10], although their influence has not
been completely clarified yet.

Recent studies indicate that the most outstanding struc-
tural features influencing secretion are, directly or indi-
rectly, related to protein folding: formation of disulphide
bridges [11,12], glycosylation [13,14], and union to BiP
[15] or to ubiquitine [12]. Not surprisingly, previous trials
of heterologous secretion of β-galactosidase by S. cerevi-
siae rendered levels of 40% of the enzyme in the culture
medium in the case of the protein from A. niger. This
enzyme is extracellular in the micro fungus and therefore
suitable structural characteristics for this localization are
endogenous. On the contrary, in similar conditions but
with the Escherichia coli protein, cytosolic in origin, secre-
tion did not surpass 2% in the culture medium [16,17].

In this work, we successfully attempted to convert the
intracellular β-galactosidase of K. lactis in a protein
secreted to the medium. We used engineering techniques
based on the construction of hybrid proteins with the
extracellular β-galactosidase of A. niger. Changes intro-
duced in the hybrid proteins have been evaluated by bio-
chemical methods and discussed to the light of predicted
structural models and biotechnological value.

Results and discussion
Construction of hybrid enzymes between the intracellular 

β-galactosidase of K. lactis and the extracellular β-

galactosidase of A. niger

The extracellular β-galactosidase of Aspergillus niger
presents, along its primary structure, a lower number of
charged amino acids (Figure 1) compared to the intracel-
lular K. lactis β-galactosidase, showing the A. niger β-galac-
tosidase a 50% reduction in histidine and 43% in lysine
content. This difference in charged amino acids could
facilitate the secretion of the A. niger β-galactosidase, since
amino acid charge distribution plays an important role in
the localization of secreted and membrane proteins [18].

The construction of hybrid enzymes can be performed by
means of different procedures from which new variants
are arising constantly [19-23]. In our experimental design,
homologous recombination was discarded because the
homology between genes was insufficient [24,25]. There-
fore, the corresponding constructions were made by PCR
amplification of the selected domains, restriction and
ligation. Since previous work had demonstrated that, in K.
lactis, mutant β-galactosidases with large deletions in the
N-terminal region were inactive [3] we designed two
hybrid proteins between K. lactis and A. niger β-galactosi-
dases interchanging the C-terminal region. Constructions
were made in the pSPGK1 plasmid [26] and were called
pSPGK1-LAC4-LACA-BamHI and pSPGK1-LAC4-LACA-
KpnI. Both contain in the N-terminus the secretory signal
of the pre-sequence of the K. lactis killer toxin that has ren-
dered good levels of secretion in other trials [3]. In the first
construction, the 500 N-terminal amino acids of the K.
lactis β-galactosidase were fussed in frame to the 478
amino acids of the C-terminal side of the A. niger enzyme.
In the second, only the segment corresponding to the fifth
domain, 297 amino acids positioned at the C-terminus, of
the K. lactis β-galactosidase was replaced by the corre-
sponding fifth domain, 274 amino acids positioned at the
C-terminus, of the A. niger enzyme. The prediction of
domains in the proteins from K. lactis and A. niger (Figure
1) was done by multiple alignments and in comparison
with the sequence and structure of the E. coli β-galactosi-
dase experimentally determined by crystallography [27].



Microbial Cell Factories 2006, 5:41 http://www.microbialcellfactories.com/content/5/1/41

Page 3 of 13

(page number not for citation purposes)

Kinetics of secretion

To examine the kinetics of β-galactosidase secretion, a K.
lactis β-galactosidase mutant strain, MW190-9B, was
transformed with the above described constructions and
with the plasmid pSPGK1-LAC4, bearing the gene coding
for K. lactis β-galactosidase, as a control. Discontinuous
cultures were made in liquid medium in Erlenmeyer
flasks.

The levels of extracellular and intracellular β-galactosidase
produced were different in the three transformants (Figure
2). In all cases extracellular β-galactosidase activity was
detected in the media. It is important to remark that val-
ues of secreted protein are underestimated in this work if
compared to other data in the literature. Usually in the
bibliography the term extracellular activity includes also
the activity of the periplasmic enzyme that is not effec-

Amino acid sequence alignment of E. coli β-galactosidase with the K. lactis and A. niger β-galactosidaseFigure 1
Amino acid sequence alignment of E. coli β-galactosidase with the K. lactis and A. niger β-galactosidase. Multiple 
sequence alignment of Escherichia coli β-galactosidase (ECLACZ), Kluyveromyces lactis β-galactosidase (KLLAC4) and Aspergillus 
niger β-galacatosidase (ANLACA). "*" means that the residues in that column are identical in all sequences in the alignment. ":" 
means that conserved substitutions have been observed. "." means that semi-conserved substitutions are observed. Acid (blue 
colour) and basic (red colour) amino acids of K. lactis and A. niger β-galactosidase are marked. The coloured bar below the E. 
coli β-galactosidase represents the five different domains structurally determined in the protein (Domain 1: green; Domain 2: 
yellow; Domain 3: red; Domain 4: light blue; Domain 5: dark blue). The secondary structure of E. coli β-galactosidase was 
obtained from the Protein Data Bank [42]. The localization of the restriction sites BamHI (residues underlined and pink) and 
KpnI (residues underlined and blue) are indicated. The conserved residues in E. coli β-galactosidase and K. lactis β-galactosidase 
important for catalytic function in E. coli β-galactosidase are shown in green. The residues of A. niger signal sequence are in yel-
low and underlined.

ECLACZ ------ASGTAPFG-GE-IIDERGGYADRVTLRLNVENPKLW-SAEIPNLYRAVVELHTA

KLLAC4   SSLLNEENGNTTFSTKE-FISFSTKKNEETAFKINVKAPEHW-TAENPTLYKYQLDLIGS

ANLACA   ------ASGNNAPGTGKGAVDIYG--HDSYPLGFDCANPTVWPSGDLPTNFR-TLHLEQS

                .*. . .  :  :.      :  .: ::   *  * :.: *. ::  :.*  :

ECLACZ DGTLIEAEACDVGFREVRIENGLLLLNGKPLLI---RGVNRHEHHPLHGQVMDEQTMVQD

KLLAC4 DGSVIQSIKHHVGFRQVELKDGNITVNGKDILF---RGVNRHDHHPRFGRAVPLDFVVRD

ANLACA   PTT---------PYAIVEFQGGSYDPWGGPGFAACSELLNNEFERVFYKNDFSFQIAIMN

           :          :  *.::.*     *   :    . :*.. .:  . . .  :  : :

ECLACZ ILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANI--ETHGMV-PMNR-------

KLLAC4   LILMKKFNINAVRNSHYPNHPKVYDLFDKLGFWVIDEADL--ETHGVQEPFNRHTNLEAE

ANLACA   LYMI--FGGTNWGNLGYPNGYTSYD----YGSAVTESRNITREKYSELKLLGN-------

         : ::   . .      ***    *      *  * :. ::  *.:.    :..       

ECLACZ ---------------LTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGNESG-------

KLLAC4   YPDTKNKLYDVNAHYLSDNPEYEVAYLDRASQLVLRDVNHPSIIIWSLGNEAC-------

ANLACA   --------------FAKVSPGYLTASPGNLTTSGYADTTDLTVTPL-LGNSTGSFFVVRH

                         . .* :  *   . :     * .. ::    ***.:        

ECLACZ MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQL----RSL-

KLLAC4   MS--------CLIPENLRNPKKVHENRL-------------PTRAYYYDQDIF---ESL-

ANLACA   MK-LSSACAIALLAA--QAAGASIKHRI---NGFTLTEHSDPAKRELLQKYVTWDDKSLF

         *.         *     . .     :*:              ::    .: :    .** 

ECLACZ   -NGEWRFAWFPA---PEAVPESWLECDLPEA---DTVVVPSNWQMH---GYDAPIYTNVT

KLLAC4 -NGPWAFALFDA---PLDAPDAK-NLDWETAKKWSTISVPSHWELQEDWKYGKPIYTNVQ

ANLACA   INGE-RIMIFSGEFHPFRLPVKELQLD---------------------------IFQKVK

          **   :  * .   *   *    : *                           *: :* 

ECLACZ   YPITVNPPFVPTENPTGCYSLTFNVDESWLQEGQTRIIFDGVNSAFHLWCNGRWVGYGQD

KLLAC4   YPIPIDIPNPPTVNPTGVYARTFELDSKSIESFEHRLRFEGVDNCYELYVNGQYVGFNKG

ANLACA   --------------ALGFNCVSFYVDWALVEGKPGEYRADGIFDLEPFFDAASEAGIYLL

                       . *  . :* :*   ::    .   :*: .   ::  .  .*    

ECLACZ   SRLPSEFDLSAFLR--AGENRLAVMVLRWSDGSYLEDQDMWRMSGIFRDVS---------

KLLAC4   SRNGAEFDIQKYVS--EGENLVVVKVFKWSDSTYIEDQDQWWLSGIYRDVS---------

ANLACA   ARPGPYINAESSGGGFPGWLQRVNGTLRSSDKAYLDATDNY-VSHVAATIAKYQITNGGP

         :*  . :: .       *    .  .:: ** :*::  * : :* :   ::         

ECLACZ   -LLHKP-TTQISDFHVATRFND-DFSRAVLEAEVQMCGELRDYLRVTVSLWQGETQV---

KLLAC4 -LLKLPKKAHIEDVRVTTTFVDSQYQDAELSVKVDVQGSSYDHINFTLYEPEDGSKVYDA

ANLACA   IILYQPENEYTSGCS-GVEFPDPVYMQ-YVEDQARNAGVVIPLINNDAS-----------

          :*  * .   ..    . * *  :    :. :.   *     :.               

ECLACZ ------ASGTAPFG-GE-IIDERGGYADRVTLRLNVENPKLW-SAEIPNLYRAVVELHTA

KLLAC4   SSLLNEENGNTTFSTKE-FISFSTKKNEETAFKINVKAPEHW-TAENPTLYKYQLDLIGS

ANLACA   ------ASGNNAPGTGKGAVDIYG--HDSYPLGFDCANPTVWPSGDLPTNFR-TLHLEQS

                .*. . .  :  :.      :  .: ::   *  * :.: *. ::  :.*  :

ECLACZ DGTLIEAEACDVGFREVRIENGLLLLNGKPLLI---RGVNRHEHHPLHGQVMDEQTMVQD

KLLAC4 DGSVIQSIKHHVGFRQVELKDGNITVNGKDILF---RGVNRHDHHPRFGRAVPLDFVVRD

ANLACA   PTT---------PYAIVEFQGGSYDPWGGPGFAACSELLNNEFERVFYKNDFSFQIAIMN

           :          :  *.::.*     *   :    . :*.. .:  . . .  :  : :

ECLACZ ILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANI--ETHGMV-PMNR-------

KLLAC4   LILMKKFNINAVRNSHYPNHPKVYDLFDKLGFWVIDEADL--ETHGVQEPFNRHTNLEAE

ANLACA   LYMI--FGGTNWGNLGYPNGYTSYD----YGSAVTESRNITREKYSELKLLGN-------

         : ::   . .      ***    *      *  * :. ::  *.:.    :..       

ECLACZ ---------------LTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGNESG-------

KLLAC4   YPDTKNKLYDVNAHYLSDNPEYEVAYLDRASQLVLRDVNHPSIIIWSLGNEAC-------

ANLACA   --------------FAKVSPGYLTASPGNLTTSGYADTTDLTVTPL-LGNSTGSFFVVRH

                         . .* :  *   . :     * .. ::    ***.:        

ECLACZ MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQL----RSL-

KLLAC4   MS--------CLIPENLRNPKKVHENRL-------------PTRAYYYDQDIF---ESL-

ANLACA   MK-LSSACAIALLAA--QAAGASIKHRI---NGFTLTEHSDPAKRELLQKYVTWDDKSLF

         *.         *     . .     :*:              ::    .: :    .** 

ECLACZ   -NGEWRFAWFPA---PEAVPESWLECDLPEA---DTVVVPSNWQMH---GYDAPIYTNVT

KLLAC4 -NGPWAFALFDA---PLDAPDAK-NLDWETAKKWSTISVPSHWELQEDWKYGKPIYTNVQ

ANLACA   INGE-RIMIFSGEFHPFRLPVKELQLD---------------------------IFQKVK

          **   :  * .   *   *    : *                           *: :* 

ECLACZ   YPITVNPPFVPTENPTGCYSLTFNVDESWLQEGQTRIIFDGVNSAFHLWCNGRWVGYGQD

KLLAC4   YPIPIDIPNPPTVNPTGVYARTFELDSKSIESFEHRLRFEGVDNCYELYVNGQYVGFNKG

ANLACA   --------------ALGFNCVSFYVDWALVEGKPGEYRADGIFDLEPFFDAASEAGIYLL

                       . *  . :* :*   ::    .   :*: .   ::  .  .*    

ECLACZ   SRLPSEFDLSAFLR--AGENRLAVMVLRWSDGSYLEDQDMWRMSGIFRDVS---------

KLLAC4   SRNGAEFDIQKYVS--EGENLVVVKVFKWSDSTYIEDQDQWWLSGIYRDVS---------

ANLACA   ARPGPYINAESSGGGFPGWLQRVNGTLRSSDKAYLDATDNY-VSHVAATIAKYQITNGGP

         :*  . :: .       *    .  .:: ** :*::  * : :* :   ::         

ECLACZ   -LLHKP-TTQISDFHVATRFND-DFSRAVLEAEVQMCGELRDYLRVTVSLWQGETQV---

KLLAC4 -LLKLPKKAHIEDVRVTTTFVDSQYQDAELSVKVDVQGSSYDHINFTLYEPEDGSKVYDA

ANLACA   IILYQPENEYTSGCS-GVEFPDPVYMQ-YVEDQARNAGVVIPLINNDAS-----------

          :*  * .   ..    . * *  :    :. :.   *     :.               

ECLACZ QPFPAVPKWSIKKWLSLPGE-TRPLILCEYA-----HAMGNSLGG---FAKYWQAFRQYP

KLLAC4 --FEIMERWR-KNHTDENGKFEKPLILCEYG-----HAMGNGPGS---LKEYQELFYKEK

ANLACA   ---AEVFTW--KKFAD--GK-----VLVLYGGAGEHHELAISTKSNVTVIEGSESGISSK

              :  *  *:  .  *:     :*  *.     * :. .  .   . :  :   .  

ECLACZ  --HGANHDALYRW----------IKSVDPSRPVQYEGGGADTTATDI--ICPMYARVDED

KLLAC4 --YGRNHKAMYKL----------IKQLDPTRLVHYEGD-LNALSADI--FSFMYPT----

ANLACA   SDYSSEESTSYKLRLPTSAGSVTIPQLGGTLTLNGRDSKIHVTDHNVSGTNIIYST----

           :. :..: *:           * .:. :  :: ...  ..   ::     :*.   

ECLACZ QPFPAVPKWSIKKWLSLPGE-TRPLILCEYA-----HAMGNSLGG---FAKYWQAFRQYP

KLLAC4 --FEIMERWR-KNHTDENGKFEKPLILCEYG-----HAMGNGPGS---LKEYQELFYKEK

ANLACA   ---AEVFTW--KKFAD--GK-----VLVLYGGAGEHHELAISTKSNVTVIEGSESGISSK

              :  *  *:  .  *:     :*  *.     * :. .  .   . :  :   .  

ECLACZ  --HGANHDALYRW----------IKSVDPSRPVQYEGGGADTTATDI--ICPMYARVDED

KLLAC4 --YGRNHKAMYKL----------IKQLDPTRLVHYEGD-LNALSADI--FSFMYPT----

ANLACA   SDYSSEESTSYKLRLPTSAGSVTIPQLGGTLTLNGRDSKIHVTDHNVSGTNIIYST----

           :. :..: *:           * .:. :  :: ...  ..   ::     :*.   

ECLACZ QLLTPLRD----------QFTRAPLDNDIGVSEATRIDPNAW----VERWKAAGH-----

KLLAC4   SLKVKGKEISSKFEGSSITFWRPPTNND------EPRDFKNWKKYNIDLMKQNIHGVSVE

ANLACA   ------------------HFTATGNEST------FAIDTQGGSAFGSSVWLNGTY-----

                           *  .  :.          * :       .      :     

ECLACZ   YQAEAALLQCTADTLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASD

KLLAC4 KGSNGSLAVVTVNSRISPVVFYYGFETVQK-YTIFAN----KINLNTSMKLTGEYQ----

ANLACA   ---LGSWTGLYANSDYNA---TYNLPQLQAGKTYVIT---VVID---NMGLEENWTVGED

             .:     .::  ..          :   * . .     *:   .* :  :      

ECLACZ TPHPAR-IGLNCQLAQVAERVNW--LGLGPQENYPDRLTAACFDRWDLPLSDMYTPYVFP

KLLAC4   PPDFPR-VGYEFWLGDSYESFEW--LGRGPGESYPDKKESQRFGLYDSKDVEEFV-YDYP

ANLACA   LMKSPRGISTSCLPDGQAAPISWKLTGNLGGEDYEDKVRGPLNEGGLYAERQGFHQPEPP

           . .* :. .         ..*   *    *.* *:  .           : :     *

ECLACZ RLQGGFVWDWVD-----QSLIKYDEN---GNPWSAYGGDFGDTPNDRQFCMNGLVFADRT

KLLAC4   FYQGGFIWEWANHGIEFEDVSTADGK---LHKAYAYGGDFKEEVHDGVFIMDGLCNSEHN

ANLACA   QTSSSVVVGW-DVSTTRRIIQVGDLKILLLDRNSAYNYWVPQLATDGT--SPGFSTPEKV

           ....:  * :     . :   * :    .   **.  . :   *      *:  .:: 

ECLACZ   PHPALTEAKHQQQFFQFRLSG----------QTIEV-----TSEYLFRHSDNELLHWMVA

KLLAC4   PTPGLVEYKKVIEPVHIKIAH----------GSVTI-----TNKHDFITTDHLLF-----

ANLACA   ASSIIVKAGYLVRTAYLKGSGLYLTADFNATTSVEVIGVPSTAKNLFINGDKTSH----T

         . . :.:     .   :: :            :: :     * :  *   *:        

ECLACZ LDGKPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAW

KLLAC4   IDKDTGKTIDVP-SLKPE--ESVTIPSD---------TTYVVAVLKDDAGVLKAGHEIAW

ANLACA   VDKNGIWSATVDYN-APD----ISLPSLKDLD-----WKYVDTLPEIQSSYDDS----LW

         :* .   :  *  .  *:    : :*.             * .:    :.  .:     *

ECLACZ QQWRLAENLSVTLPAASHAIPHLTTSEMDFCIELGN-KRWQFNRQSG--FLSQMWIGDKK

KLLAC4   GQ--------AELPL---KVPDFVTETAEKAAKINDGKRYVSVESSGLHFILDKLLGKIE

ANLACA   PA--------ADLKQTKNTLRSLTTPTSLYSSDYGFHTGYLLYRG---------------

                   . *      :  :.*     . . .  . :   .                

ECLACZ QLLTPLRD----------QFTRAPLDNDIGVSEATRIDPNAW----VERWKAAGH-----

KLLAC4   SLKVKGKEISSKFEGSSITFWRPPTNND------EPRDFKNWKKYNIDLMKQNIHGVSVE

ANLACA   ------------------HFTATGNEST------FAIDTQGGSAFGSSVWLNGTY-----

                           *  .  :.          * :       .      :     

ECLACZ   YQAEAALLQCTADTLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASD

KLLAC4 KGSNGSLAVVTVNSRISPVVFYYGFETVQK-YTIFAN----KINLNTSMKLTGEYQ----

ANLACA   ---LGSWTGLYANSDYNA---TYNLPQLQAGKTYVIT---VVID---NMGLEENWTVGED

             .:     .::  ..          :   * . .     *:   .* :  :      

ECLACZ TPHPAR-IGLNCQLAQVAERVNW--LGLGPQENYPDRLTAACFDRWDLPLSDMYTPYVFP

KLLAC4   PPDFPR-VGYEFWLGDSYESFEW--LGRGPGESYPDKKESQRFGLYDSKDVEEFV-YDYP

ANLACA   LMKSPRGISTSCLPDGQAAPISWKLTGNLGGEDYEDKVRGPLNEGGLYAERQGFHQPEPP

           . .* :. .         ..*   *    *.* *:  .           : :     *

ECLACZ RLQGGFVWDWVD-----QSLIKYDEN---GNPWSAYGGDFGDTPNDRQFCMNGLVFADRT

KLLAC4   FYQGGFIWEWANHGIEFEDVSTADGK---LHKAYAYGGDFKEEVHDGVFIMDGLCNSEHN

ANLACA   QTSSSVVVGW-DVSTTRRIIQVGDLKILLLDRNSAYNYWVPQLATDGT--SPGFSTPEKV

           ....:  * :     . :   * :    .   **.  . :   *      *:  .:: 

ECLACZ   PHPALTEAKHQQQFFQFRLSG----------QTIEV-----TSEYLFRHSDNELLHWMVA

KLLAC4   PTPGLVEYKKVIEPVHIKIAH----------GSVTI-----TNKHDFITTDHLLF-----

ANLACA   ASSIIVKAGYLVRTAYLKGSGLYLTADFNATTSVEVIGVPSTAKNLFINGDKTSH----T

         . . :.:     .   :: :            :: :     * :  *   *:        

ECLACZ LDGKPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAW

KLLAC4   IDKDTGKTIDVP-SLKPE--ESVTIPSD---------TTYVVAVLKDDAGVLKAGHEIAW

ANLACA   VDKNGIWSATVDYN-APD----ISLPSLKDLD-----WKYVDTLPEIQSSYDDS----LW

         :* .   :  *  .  *:    : :*.             * .:    :.  .:     *

ECLACZ QQWRLAENLSVTLPAASHAIPHLTTSEMDFCIELGN-KRWQFNRQSG--FLSQMWIGDKK

KLLAC4   GQ--------AELPL---KVPDFVTETAEKAAKINDGKRYVSVESSGLHFILDKLLGKIE

ANLACA   PA--------ADLKQTKNTLRSLTTPTSLYSSDYGFHTGYLLYRG---------------
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tively released to the medium. We have preferred to use
the term extracellular to design uniquely the enzyme
available in the medium, out of the cell, because its bio-
technological use is easier.

The strain transformed with the plasmid pSPGK1-LAC4-
LACA-BamHI showed a lower intracellular and extracellu-
lar β-galactosidase production than the control. This
result may be attributed to the fact that a portion of the
catalytic site of the K. lactis β-galactosidase was replaced
by the catalytic site of A. niger β-galactosidase. Neverthe-
less, MW190-9B transformed with pSPGK1-LAC4-LACA-
KpnI showed the highest absolute values of intracellular
and extracellular β-galactosidase production, almost three
times and twice higher, respectively, than those obtained
for MW190-9B transformed with pSPGK1-LAC4,
although β-galactosidase activity into the culture medium
reaches only 2.6% of the intracellular activity. In this case,
the catalytic site from the K. lactis enzyme remained intact,
since only the segment corresponding to the fifth domain
was exchanged.

However, the growth rate of MW190-9B transformed with
pSPGK1-LAC4-LACA-KpnI diminished to half of the
reached by the strain transformed with pSPGK1-LAC4.
Cellular lysis was discarded by measuring cellular viability
(Figure 2), therefore this slow growth may be attributed to
the fact that the cells direct the available energy towards β-
galactosidase production rather than division.

Two conclusions are obtained from these results. First, the
C-terminal region of A. niger β-galactosidase functionally
complements the C-terminal region of K. lactis β-galactos-
idase. Similarly, the fifth domain of the E. coli β-galactos-
idase has been related to the ω-fragment and early studies
have shown that it folds independently and complements
molecules missing this part of the sequence (ω-comple-
mentation) [27]. Second, the construction pSPGK1-
LAC4-LACA-KpnI is of biotechnological value and there-
fore we decide to further characterize this hybrid protein.

Characterization of the hybrid protein LAC4-LACA-KpnI

Determination of optimum pH and temperature, thermal
stability, effects produced by divalent cations upon enzy-
matic activity and calculation of kinetics constants was
performed. To carry out these measures, crude extracts of
the strain MW190-9B transformed with pSPGK1-LAC4-
LACA-KpnI and with pSPGK1-LAC4 (control) were
obtained at the moment of maximum expression of β-
galactosidase activity (80 hours).

Determination of the optimum pH

For the determination of the optimum pH, the measure-
ments of enzymatic activity were carried out in buffer Z
aliquots modified to obtain pH values from 5 up to 8.5.

As seen in Figure 3A, the optimum pH for the β-galactos-
idase of K. lactis is about 7, whereas for the hybrid protein
is slightly acid 6.5. The optimum pH values reported for
β-galactosidases from A. niger are from 2.5 to 4 [28]
whereas from K. lactis are from 7 to 7.5 [29,30]. Therefore,
the constructed hybrid protein has characteristics with
regard to the pH optimum that differs from its precursors.
It was reported that, at pH 6.5, the activity of K. lactis β-
galactosidase decreased significantly due to local changes
in charged residues [30]. The hybrid protein, with a differ-
ent composition in charged amino acids, may buffer these
local changes and therefore it may be more tolerant to pH
changes during culture.

Determination of the optimum temperature

The optimum temperature reported for A. niger β-galac-
tosidase is 50°C [31] whereas for K. lactis β-galactosidase
is 30°C [29]. For the determination of the optimum tem-
perature of the hybrid protein and K. lactis control, the
measurements of enzymatic activity were performed at
different temperatures, from 15°C to 50°C (Figure 3B). It
was observed that whereas in our conditions the optimum
temperature for K. lactis β-galactosidase is around 35°C,
in the hybrid protein is slightly greater, being near to
40°C. In the same way as for the optimum pH, the con-
structed hybrid protein presents characteristics that make
it more adequate to high temperature during catalysis.

Thermal stability

Thermal stability of the hybrid β-galactosidase was also
determined and compared to the native β-galactosidase of
K. lactis. Before performing the measurement of enzy-
matic activity, the enzymatic preparation was incubated in
buffer Z at different times and temperatures: 30°C, 42°C,
50°C and 60°C. The hybrid β-galactosidase presented a
higher stability than the one of K. lactis (Figure 4) at all
tested temperatures. Almost the 75% of the enzyme kept
stable after an hour of incubation at 30°C, the 60% after
15 minutes at 50°C, the 8% after 3 minutes at 60°C (data
not show in Figure 4), clearly in advantage to the native K.
lactis β-galactosidase stability (55%, 40% and 0% respec-
tively). Although biotechnological applications may
demand even higher thermal stability of the hybrid β-
galactosidase, other procedures exist to improve this fac-
tor, i.e. immobilization as previously shown [32].

Effects of the divalent cations

The activity of K. lactis β-galactosidase is stimulated by the
presence of some divalent cations, Mg2+ or Mn2+, and
inhibited by the presence of others, Ca2+, Zn2+ and Ni2+

[29,33]. The effect of Mg2+, Ca2+ and Zn2+on the activity of
the hybrid protein and the native K. lactis β-galactosidase
is similar (Figure 5A). Whereas the presence of Ca2+ or
Zn2+ causes a slight inhibition of the activity, Mg2+ stimu-
lates it clearly. Although an increase of the β-galactosidase



Microbial Cell Factories 2006, 5:41 http://www.microbialcellfactories.com/content/5/1/41

Page 5 of 13

(page number not for citation purposes)

Kinetics of growth and secretionFigure 2
Kinetics of growth and secretion. Growth (Optical Density at 600 nm), percentage of viable cells per ml, extracellular and 
intracellular β-galactosidase production (E. U. mL-1) by the MW190-9B strain transformed with the corresponding plasmids. 
Values represent the mean of 5 different cultures.
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Determination of the pH and temperature optimumFigure 3
Determination of the pH and temperature optimum. Optimum pH (A) and optimum temperature (B) for the hybrid 
enzyme between the β-galactosidase of K. lactis and A. niger (red) and the β-galactosidase of K. lactis (blue). Experimental varia-
tions are less than10% of the value of the point. Data are the mean of three independent experiments.
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B
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activity has been described in presence of Mn2+ [29], this
stimulatory effect could not be verified in this experiment
due to the interference produced by reducing agents
present in buffer Z (Figure 5B).

The cation Ni2+ exerts different effects in the activity of the
native and hybrid proteins (Figure 5B). As previously
described by other authors [33], the cation Ni2+ inhibits K.
lactis β-galactosidase activity but over the hybrid enzyme
the effect is activator. Crystallographic studies identified
possible divalent cations binding sites in the structure of
the E. coli β-galactosidase, although no functional signifi-
cance was ascribed to them [34]. Further studies to deter-
mine the relationship between structural features, cation
binding and activity of β-galactosidase will be required.

Determination of the kinetic constants

The values of kinetic constants for the hybrid and native
β-galactosidases were obtained from double-reciprocal
plots (Figure 6). Hybrid β-galactosidase presents a greater
affinity both for ONPG (Km 0.8 mM) and lactose (Km 8.7
mM) than K. lactis β-galactosidase (1.5 mM and 21 mM,
respectively). This striking increase in affinity aimed us to
look for a structural explanation of the change.

Prediction of the tertiary structure of the β-galactosidase 

of K. lactis and the hybrid protein

Three-dimensional protein structures are important for a
detailed understanding of the molecular basis of protein
function. In absence of direct experimental data, a compu-
tational approach by homology modelling is a reliably
method to generate a three-dimensional model for a pro-
tein. In order to understand the differences between the
hybrid and native K. lactis β-galactosidases, a prediction of
the tertiary structure of these proteins and the A. niger β-
galactosidase was made. The server for automated com-
parative modelling Swiss-Model [35] was used. The
amino acids E461, M502, Y503 and E537, considered
important residues for the catalytic activity of the E. coli β-
galactosidase [27,34] and which form the active-site
pocket, are highly conserved in the K. lactis β-galactosi-
dase (residues E482, M522, Y523 and E551) [36]. As
depicted in Figure 7A, a part of the active site is formed by
a deep pit that intrudes well into the core of the TIM barrel
at the third domain. In addition, there are loops coming
from the first and fifth domain. In the case of the hybrid
protein (Figure 7C), the fifth domain of the K. lactis β-
galactosidase was replaced by the corresponding domain
of the A. niger enzyme (Figure 7B). Structurally, as pre-
dicted by the model, this causes a slight opening of the
third domain. This could favour the accessibility of the
substrate and could explain the change in the kinetic con-
stants.

Determination of the thermal stabilityFigure 4
Determination of the thermal stability. Determination of the thermal stability at 30°C (green), 42°C (blue) and 50°C 
(red) for the hybrid enzyme between the β-galactosidase of K. lactis and A. niger (circles) and the native β-galactosidase of K. lac-
tis (square). Experimental variations are less than 10% of the value of the point. Results are the average of two independent 
experiments.
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Determination of the effects of the divalentcationsFigure 5
Determination of the effects of the divalentcations. Determination of the effects of the divalent cations Mg2+ (blue), 
Ca2+ (green) and Zn2+ (yellow) (A) and Mn2+ (red) and the Ni2+ (black) (B) on the enzymatic activity of the β-galactosidase 
hybrid between K. lactis and A. niger (circles) and the native β-galactosidase of K. lactis (square). Experimental variations are less 
than 10% of the value of the point. Results are the average of two independent experiments.
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Lineweaver-Burk plotsFigure 6
Lineweaver-Burk plots. Lineweaver-Burk plot of the reaction catalyzed by the β-galactosidase hybrid between K. lactis and 
A. niger (red circles) and the native β-galactosidase of K. lactis (square blue) in the presence of the synthetic substrate ONPG 
(A) or the natural substrate lactose (B). Experimental variations are less than 10% of the value of the point. Results are the 
average of two independent experiments.
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Conclusion
The cellular wall represents in yeasts an additional barrier
for the excretion of proteins to the culture. The secretory
signal directs the proteins across the secretion route up to
the periplasmic space but this does not imply that the pro-
tein could cross the cell wall. The hybrid protein obtained
in this work, by replacing the fifth domain of the β-galac-
tosidase of K. lactis by the one of A. niger, is active, reaches
the culture medium and presents, in addition, greater sta-
bility at high temperatures and more convenient kinetics
parameters for its biotechnological utilization. Some of
these features may be explained to the light of structural
changes predicted by homology modelling.

Methods
Strains and culture conditions

The Kluyveromyces lactis MW 190-9B strain (MATa lac4-8
uraA Rag+) was used. Liquid batch cultures of transformed
cells were grown in Erlenmeyer flasks filled with 20% vol-
ume of culture medium at 250 rpm, unless otherwise
stated. As inocula, a suitable volume of a stationary phase
culture in complete medium [37] without the amino acid
corresponding to the strain auxotrophy, was added to
obtain an initial OD600 of 0.2. The same medium was also
used as culture media. Samples were taken at regular time
intervals to measure growth (OD600), percentage of viable
cells, intracellular and extracellular β-galactosidase activ-
ity.

Vectors and DNA constructions

The pSPGK1-LAC4 [3], a derivative of pSPGK1 plasmid
[26] containing the secretory signal that corresponds to
the pre-sequence (16 amino acids) of the K. lactis killer
toxin (α-subunit) and the PCR-amplified LAC4 gene
(which codes for K. lactis β-galactosidase) inserted
between the constitutive promoter and the terminator of
the S. cerevisiae phosphoglycerate-kinase (PGK) gene, was
used for building new vectors. Vectors were constructed as
follows:

-pSPGK1-LAC4-LACA-BamHI: plasmid pSPGK1-LAC4 was
digested with BamHI. The BamHI-BamHI fragment that
contains the C-terminal segment of the K. lactis β-galactos-
idase was removed and replaced by the C-terminal seg-
ment of the Aspergillus niger β-galactosidase amplified
from pVK1.1 [16] with the following oligonucleotides cre-
ating BamHI sites on the ends of the PCR product: GAAG-
GATCCTGAGTCTGGCATCTCG,
CCACACCCGTCCTGTGGATCC.

-pSPGK1-LAC4-LACA-KpnI: plasmid pSPGK1-LAC4 was
digested with KpnI and ligated to the segment correspond-
ing to the five domain of the A. niger β-galactosidase
amplified from pVK1.1 with the following oligonucle-
otides generating KpnI sites on the ends of the PCR prod-
uct: GCGGTACCCCGCGGACACTTCACCGC,
GCGGTACCGCCATCTCCTTGCATGC.

Ribbon representationsFigure 7
Ribbon representations. Ribbon diagram corresponding to the prediction of the tertiary structure of K. lactis β-galactosi-
dase (A), A. niger β-galactosidase (B) and hybrid β-galactosidase (C) using the Swiss-Model program. The residues mentioned in 
Figure 1 have been drawn as spheres of colours (E482 blue, M522 green, Y523 yellow, E551 red). D1–D5 identify the five 
domains of K. lactis β-galactosidase (A) predicted by alignment in comparison with the sequence of the E. coli β-galactosidase 
(Figure 1). The fifth domain of the A. niger β-galactosidase is coloured in green (B and C). The white arrow (C) shows the slight 
opening of the third domain in the hybridβ-galactosidase.
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PCR conditions

A 20 ng amount of template DNA was incubated with 30
pmol of primer-1 and 30 pmol of primer-2 in the presence
of 0.25 mM dNTPs, Taq or Pwo polymerase buffer and 2 U
of the corresponding polymerase. Initial denaturation was
done at 94°C for 2 min, followed by 30 cycles of 1 min at
95°C, 2 min at 50–57°C and 1.5–2.5 min at 72°C. There
was a final incubation at 72°C for 10 min to fill-in ends.

Molecular biology procedures

Escherichia coli DH5a strain (supE44 DlacU169
f80lacZDM15 hsdR17 recA1 endA1 gyrA96 thi-1 relA1) was
used for the construction of the plasmids and propagation
by means of the usual DNA recombinant techniques
according to Ausubel et al. [38]. Yeast strains were trans-
formed using the lithium acetate procedure [39]. Plasmid
uptake and β-galactosidase production by the trans-
formed strains were identified on plates with the chro-
mogenic substrate X-gal in the corresponding auxotrophic
medium.

Percentage of viable cells

The methylene blue solution, which contained 0.01%
Methylene Blue (Sigma-Aldrich, M9140) and 2% (w/v)
tri-sodium citrate dihydrate in phosphate-buffered saline
solution (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4
and 1.8 mM KH2PO4, pH 7.4), was mixed with an equal
volume of yeast suspension for 10 min. Unstained cells
were assumed to be viable. The stained cells in the mixture
were quantified under an optical microscope (Nikon
Eclipse 50i). The viability of 100 cells, from five replicates
of each sample, was assessed and expressed as the mean
percentage of viable cells.

β-galactosidase activity assays

The method of Guarente [40] as previously described [3]
was used. One enzyme unit (E. U) was defined as the
quantity of enzyme that catalyzes the liberation of 1 µmol
of ortho-nitrophenol from ortho-nitrophenyl-β-D-galact-
opyranoside per min under assay conditions. E.U. are
expressed per mL of culture medium.

Throughout this paper and unless otherwise specified, the
term extracellular β-galactosidase is used to mean the
enzyme in the culture medium and the term intracellular
β-galactosidase is used to mean the cell-associated
enzyme, both periplasmic and cytoplasmic.

Preparation of crude protein extracts

For the preparation of crude protein extracts, the cells
were harvested by centrifugation at 7000 rpm for 5 min at
4°C and washed once with distilled water. They were sus-
pended in 20 mM Tris-HCl, pH 7.8, 300 mM (NH4)2SO4,
10 mM MgCl2, 1 mM EDTA, 10% glycerol buffer with 0.1
mM PMSF, 4 mM Pepstatin, 4 mM Leupeptin and 2 µM β-

mercaptoethanol and broken using a sonicator at 16 µm
for a total of 20 min at 4°C making four exposures of 5
min, with 5 min intervals after each. Cell debris was
removed by centrifugation at 40000 rpm for 90 min at
4°C. The supernatant constituted the cell-free extract.

Protein determinations

Protein was determined by the method of Bradford [41]
using bovine serum albumin (Sigma) as a standard.

Characterization of the hybrid enzyme

The characterization was carried out from a crude extract
of the strain of K. lactis MW190-9B/pSPGK1-LAC4-LACA-
KpnI obtained at the moment of maximum expression of
β-galactosidase activity (80 hours). As a control, in all the
essays performed, the same quantity of protein of a crude
extract of the strain of K. lactis MW190-9B/pSPGK1-LAC4,
obtained at the moment of maximum expression of β-
galactosidase activity, was taken.

In order to calculate the optimum pH, 60 µg of the crude
yeast protein extract were incubated in buffer Z (100 mM
Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1.6 mM MgSO4
and 2.7 mL of β-mercaptoethanol for litre of dissolution)
adjusted respectively to pH 5; 5.5; 6; 6.5; 7; 7.5 and 8.

For optimum temperature determination, the enzymatic
activity of 60 µg of the crude protein extract was measured
at different temperatures: 15, 20, 25, 30, 35, 40, 45 and
50°C.

In thermal stability experiments, 30 µg of the yeast crude
protein extract were incubated during different periods of
time to different temperatures: 30, 42, 50 and 60°C.

For the determination of the effects of divalent cations on
the enzymatic activity, 100 µg of the crude protein extract
and several increasing concentrations (0.1, 0.5, 1.5 and 10
mM) of CaCl2, MgCl2, MnCl2, ZnSO4 or NiCl2 were added
to the buffer Z and the enzymatic activity was measured as
previously described.

Kinetic studies

The β-galactosidase activity was tested with the artificial
substratum ONPG and the natural substratum lactose.
The determination of the β-galactosidase activity in 30 µg
of the crude extract was made as above explained, but in
presence of different concentrations of ONPG: 2, 3, 6, 8
and 12 mM. Alternatively, 60 µg of the crude extract were
incubated with different concentrations of lactose: 5, 20,
40, 80 and 160 mM. To determine lactose hydrolysis, a
commercial kit was used (Boehringer-Mannheim) follow-
ing the supplier instructions. The method is based on the
oxidation of the product D-galactose by the β-galactose
dehydrogenase. The amount of NADH formed in this last
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reaction is stoichiometric to the amount of lactose and D-
galactose. The NADH production was measured following
the absorbance increase at 340 nm.

Homology modelling

The models of the K. lactis and A. niger β-galactosidases
and the hybrid protein were made with the fully auto-
mated protein structure homology-modelling server
Swiss-Model [35].
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