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Cell surface proteolysis is essential for communication

between cells and results in the shedding of membrane-

protein ectodomains. However, physiological substrates of

the contributing proteases are largely unknown. We

developed the secretome protein enrichment with click

sugars (SPECS) method, which allows proteome-wide

identification of shedding substrates and secreted proteins

from primary cells, even in the presence of serum proteins.

SPECS combines metabolic glycan labelling and click

chemistry-mediated biotinylation and distinguishes be-

tween cellular and serum proteins. SPECS identified 34,

mostly novel substrates of the Alzheimer protease BACE1

in primary neurons, making BACE1 a major sheddase in

the nervous system. Selected BACE1 substrates—seizure-

protein 6, L1, CHL1 and contactin-2—were validated in

brains of BACE1 inhibitor-treated and BACE1 knock-out

mice. For some substrates, BACE1 was the major sheddase,

whereas for other substrates additional proteases contrib-

uted to total substrate shedding. The new substrates point

to a central function of BACE1 in neurite outgrowth and

synapse formation. SPECS is also suitable for quantitative

secretome analyses of primary cells and may be used

for the discovery of biomarkers secreted from tumour or

stem cells.
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Introduction

Proteolysis is an irreversible post-translational modification

mediated by over 500 different proteases in man. Proteases

control the function or mediate the degradation of virtually

all proteins in the cell, but the biological functions of many

proteases are unknown, because no or only few physiological

substrates have been identified. This is particularly true for a

large class of membrane-bound proteases, referred to as

sheddases, which mostly cleave single-span membrane pro-

teins at the extracellular surface of cellular membranes. This

process is termed as ectodomain shedding and is essential for

the communication between cells (Reiss and Saftig, 2009;

Bai and Pfaff, 2011; Lichtenthaler et al, 2011). Shedding is

involved in various physiological and pathophysiological

conditions, including Alzheimer’s disease.

One of the sheddases is the aspartyl protease BACE1

(b-secretase), which is a key drug target for Alzheimer’s

disease, as it mediates the shedding of amyloid precursor

protein (APP) and catalyses the first step in the generation

of the pathogenic Ab peptide (Vassar et al, 2009). Possible

side effects of BACE1 inhibition in patients may result

from a reduced cleavage of additional, largely unknown

physiological BACE1 substrates. Besides APP, BACE1 also

cleaves neuregulin-1 and contributes to myelination in the

peripheral nervous system (Hu et al, 2006; Willem et al,

2006). Additionally, several new phenotypes of BACE1-

deficient mice were reported recently, such as schizophrenic

symptoms, increased mortality, epileptic seizures, hyper-

activity, anxiety, impaired axon guidance and protection

against diet-induced obesity (Harrison et al, 2003;

Dominguez et al, 2005; Laird et al, 2005; Savonenko et al,

2008; Wang et al, 2008; Hu et al, 2010; Farah et al, 2011;

Meakin et al, 2011; Rajapaksha et al, 2011). These phenotypes

mostly affect brain and pancreas, where BACE1 expression is

highest (Vassar et al, 1999), but it remains unclear which

substrates are affected in these tissues.

The secretome of a cell comprises soluble, secreted pro-

teins and the membrane protein ectodomains proteolytically

released by sheddases (sheddome). Proteomic identification

of secretome proteins from the conditioned medium of cells is

in principle possible by mass spectrometry, but has been

difficult due to three fundamental limitations (Makridakis

and Vlahou, 2010). First, secretome proteins have low

concentrations in conditioned media. Second, the use of

media supplements such as fetal calf serum or the neuronal

supplement B27 introduces albumin and other serum

proteins at concentrations (up to 5 g/l) much higher than

the secretome proteins (Price and Brewer, 2001). Third,
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secretome proteins can be masked by highly abundant

cytosolic proteins released from broken or apoptotic cells.

Thus, the mass spectrometer used for protein identification

predominantly identifies albumin, other serum proteins and

cytosolic proteins, but not the cell-derived secretome

proteins. To circumvent these limitations, previous studies

used serum- or protein-free cell culture conditions. However,

cellular stress and incompatibility with the culture of many

cell types are major drawbacks of this approach, making

identification and quantification of secreted proteins in

primary cells, such as neurons, impossible. Additionally,

many sheddases are less active in the absence of serum.

As a consequence, the desired protease is frequently over-

expressed or added exogenously in vitro, as carried out for

example for BACE1, meprin b and MT1-MMP (Tam et al,

2004; Hemming et al, 2009; Jefferson et al, 2011). While this

type of approach can demonstrate which substrates may in

principle be cleaved by a protease, false positive substrate

identification is a major risk of protease overexpression, for

example because of mislocalization of the protease (Huse

et al, 2002).

Here, we developed a novel technique for quantitative

proteomics of cell culture supernatants containing serum or

albumin, called secretome protein enrichment with click

sugars (SPECS), which solves the challenges mentioned

above. SPECS distinguishes between secretome proteins and

exogenous serum proteins within the conditioned medium.

We used SPECS to determine the secretome of human em-

bryonic kidney 293 (HEK293T) cells and of primary, murine

neurons in the presence of serum proteins. Additionally,

SPECS was used to identify novel, physiological BACE1

substrates in primary neurons. Selected BACE1 substrates—

seizure-protein 6, L1, CHL1 and contactin-2—were validated

in brains of BACE1 inhibitor-treated and BACE1 knock-out

mice.

Results

Development of the SPECS method

SPECS exploits the fact that the majority of secreted proteins

(66%) and potential shedding substrates (87% of type I and

type II transmembrane proteins) is glycosylated as annotated

in Uniprot. SPECS consists of metabolic labelling of cellular

glycoproteins with azido sugars followed by copper-free click

chemistry-mediated biotinylation of cellular, but not of

serum glycoproteins (Figure 1A). The click-chemistry reac-

tion consists of the bioorthogonal, chemical [3þ 2] cycload-

dition of an azide moiety with a strained cycloalkyne

(Jewett and Bertozzi, 2010). We used the biotinylated,

strained cycloalkyne dibenzylcyclooctyne (DBCO-PEG12-

biotin) (Figure 1B) and tetraacetyl-N-azidoacetyl-mannosa-

mine (ManNAz), which is metabolically converted to

N-azidoacetyl-sialic acid and incorporated into terminal posi-

tions in N- and O-linked glycans (Sletten and Bertozzi, 2011).

Due to the lack of an active transport of N-acetylamino sugars

across the plasma membrane of mammalian cells, the

hydroxy-groups of the sugar are peracetylated to permit

passive diffusion of the sugars into the cytosol, where the

acetyl groups are cleaved off by cellular esterases.

After ManNAz labelling the conditioned medium contained

the labelled ectodomains released by shedding together with

cell-derived secreted proteins (Figure 1A). Free ManNAz was

removed by ultrafiltration followed by in-vitro click reaction,

resulting in biotinylation of secretome proteins (Figure 1A).

Subsequent ultrafiltration removed excessive biotinylated

cyclooctyne. After streptavidin pull down, the protein sam-

ples were separated by SDS–PAGE, followed by in-gel trypsi-

nization. The resulting peptides were analysed by nanoLC

coupled to high-resolution mass spectrometry. Peptide iden-

tification was done by Andromeda. The SPECS method can

be carried out with little hands-on time within 6 days, which

includes 2 days of metabolic sugar labelling and 2 days of

mass spectrometric analysis.

To exclude any interference of metabolic glycan labelling

with cellular physiology, we investigated in primary neurons

the known shedding of the APP and its homologue, the

amyloid precursor-like protein 2 (APLP2), by the protease

BACE1, which is a main drug target in Alzheimer’s disease

(Vassar et al, 2009) and is also involved in myelination (Hu

et al, 2006; Willem et al, 2006). The presence of ManNAz

neither altered shedding of APP and APLP2 or its response

to the specific BACE1 inhibitor C3 (Stachel et al, 2004;

Figure 1C) nor did it affect neuronal viability, in agreement

with a previous study (Almaraz et al, 2012). Secreted APP

(sAPPtotal) was enriched by over 100-fold relative to albumin

(Figure 1D). These results demonstrate that SPECS works

successfully and is compatible with primary cells, such as

neurons.

Determination of cellular secretomes and sheddomes

Next, we used SPECS to determine the secretome of neurons

and of HEK293T cells, an immortalized cell line. HEK293T

cells were grown in the presence of serum with or without

ManNAz. In all, 254 proteins were specifically identified in

the presence but not in the absence of ManNAz and consti-

tute the secretome of HEK293T cells. The secretome com-

prised 142 membrane protein ectodomains, which constitute

the sheddome, and 112 secreted proteins (Figure 1E;

Supplementary Tables 1–4). To determine the neuronal se-

cretome, primary E15/E16 wild-type neurons were cultured

in the presence of ManNAz. Additionally, the neurons were

incubated with or without the BACE1 inhibitor C3 to deter-

mine which of the secretome proteins are BACE1 substrates

(next paragraph). Relative label-free protein quantification of

identified unique protein groups was performed using the

MaxQuant software suite. In all, 427 glycoproteins were

identified in total, with 283 of them being identified in at

least four out of five experiments without inhibitor. These 283

proteins comprise 97 secreted proteins and 186 shed mem-

brane proteins (sheddome) and constitute the secretome of

primary neurons (Figure 1E; Supplementary Tables 5 and 6,

raw data and peptides are given in Supplementary Tables 7

and 8). While a previous study identified 34 proteins as the

neuronal secretome using serum-free conditions (Thouvenot

et al, 2008), SPECS identified 283 proteins with high

sequence coverage, demonstrating the advantage of the

SPECS method. It is possible that neurons and HEK293T

cells secrete additional proteins, in particular low-abundant

proteins below the detection limit of the SPECS method

or proteins with a molecular mass o30 kDa, which

would be lost during the filtration steps of the SPECS

method. However, smaller molecular mass cut-off columns

may also be used, which would allow detection of small-sized

glycosylated secretome proteins. In all, 112 proteins of the
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Figure 1 Overview and validation of SPECS method. (A) Detailed description of the work flow of the SPECS method including a timeline.
(B) Schematic representation of the click reaction between the azide group (blue) of 1,3,4,6-acetyl-N-acetyl-azido-mannosamine (ManNAz)
and the strained alkyne (red) of dibenzylcycloocytne-PEG12-Biotin. (C) APP and APLP2 shedding were analysed in the presence of the BACE1
inhibitor C3 and ManNAz or DMSO as a control. Subsequently, click-chemistry reaction was performed in the conditioned medium. Full-length
APP (APPfl) and APLP2 (APLP2fl) in the lysates as well as secreted APP and APLP2 (sAPPtotal, sAPPb, sAPLP2) were detected by immunoblot.
The analysis shows no significant changes of the shedding of APP and APLP2 upon addition of ManNAz. Biotinylated proteins (specific bands
and broad smear) were detected with Streptavidin-HRP only when ManNAz was present. Acetylated (Ac) tubulin serves as a loading control.
(D) Purification of glycoproteins by streptavidin pull down after click-chemistry reaction. Left: aliquot of conditioned medium is directly loaded
(input). Right: upon streptavidin pull down, sAPPtotal is enriched by about two-fold, whereas serum albumin in the coomassie gel is reduced
over 50-fold, leading to a specific enrichment of the glycosylated sAPPtotal by over 100-fold. (E) Distribution of glycoprotein types among all
glycoproteins identified in the HEK293T (293T) secretome and the neuronal secretome. Only such proteins were included, which were detected
by at least two peptides. Detailed listing of identified proteins and their topology is in Supplementary Tables 1, 2, 5 and 6.
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neuronal secretome (47%) were shared with the HEK293T

cell secretome, whereas the remaining proteins include many

proteins with neuronal functions, such as neuroligins and

LINGO-1 (Supplementary Table 5).

Identification of neuronal BACE1 sheddome

While the majority of the neuronal secretome was not

affected by C3 treatment, 40 proteins showed a reduced

shedding or secretion (Table I, top part). Proteins were

included into this hit list, if their levels were quantifiable in

at least four out of the five biological replicates and had a

variance score p0.35 in the C3-treated samples. The 40

proteins include 34 membrane proteins (Table I), which we

refer to as the neuronal BACE1 substrates (BACE1 shed-

dome), even though it remains possible that the shedding

of some substrates may have been reduced indirectly. In all, 8

of the 34 proteins had previously been identified as candidate

substrates in BACE1 overexpressing cells (Hemming et al,

2009). The 23 remaining proteins besides APP and its

homologues are novel BACE1 substrates.

The protein list of BACE1 substrates includes APP and its

homologues APLP1 and APLP2 (Table I), which are all three

known BACE1 substrates and validate the SPECS analysis.

Importantly, the extent to which the shedding of APP and its

homologues was reduced (Table I) corresponds well to pre-

vious results obtained by quantitative immunoblots in neu-

rons or brain (Vassar et al, 1999; Sala Frigerio et al, 2010; Hogl

et al, 2011; May et al, 2011). For example, total APP shedding

was only mildly inhibited with C3, because inhibition of

BACE1 cleavage of APP has been shown to be accompanied

by an increase in the ADAM10-mediated cleavage, resulting in

only a moderate inhibition of total APP shedding upon BACE1

inhibition (Vassar et al, 1999; May et al, 2011). These results

demonstrate that SPECS is well suited for the quantitative

analysis of protein shedding. For other proteins on the BACE1

sheddome list shedding was reduced by about 20%

(transmembrane protein 132A) to over 95% (seizure 6-like

protein) (Table I, top part), suggesting that for some substrates

(transmembrane protein 132A) BACE1 only contributes to a

small extent to total shedding, whereas other substrates are

nearly exclusively cleaved by BACE1 in neurons.

Peptides identified from individual membrane proteins

were exclusively derived from their ectodomains (Supple-

mentary Figure 1A, shown in yellow), indicating that they

derive from true ectodomain shedding and not from

full-length proteins released by broken cells. Additionally,

for three BACE1 substrates (APP, APLP1, seizure 6-like

protein 1 (SEZ6L1)) semi-tryptic peptides were identified

(Supplementary Figure 1A, shown in green), which were

reduced after BACE1 inhibition (Supplementary Figure 1B),

suggesting that they derive from direct BACE1 cleavage.

Indeed, the peptide from APP corresponds exactly to the

known BACE1 cleavage site (Supplementary Figure 1B) and

demonstrates that SPECS allows cleavage site determination.

Six of the forty proteins were soluble proteins and showed

an inhibition of secretion by about 20–90% (Table I, middle

part), including the TGFb superfamily member activin b and

insulin-like growth factor-binding protein 2. Because these

are known soluble proteins, their reduced secretion is likely

to be a secondary consequence of BACE1 inhibition.

However, they may be useful as diagnostic markers to moni-

tor the efficacy of BACE1 inhibitors in Alzheimer’s patients.

Validation of BACE1 substrates in primary neurons

To further validate the SPECS data, the shedding inhibition by

C3 was analysed in the absence of ManNAz and quantified by

immunoblot for four novel BACE1 substrates besides APP,

APLP1 and APLP2. For most of the novel substrates, no

antibodies are available which allow detection of the endo-

genous, shed ectodomain by immunoblot. We chose four

proteins, where suitable antibodies were available and which

showed mild, moderate and strong shedding inhibition by C3

in the SPECS measurement (Table I, top part). The quantitative

comparison of SPECS and immunoblots yielded the following

shedding inhibition upon C3 treatment: 12.3/7.8% (SPECS/

immunoblot) for seizure protein 6 (SEZ6) (Figure 2A and

quantification in Figure 2B); 23/21% for cell adhesion protein

L1; 49/35% for close homologue of L1 (CHL1); 56/64% for

contactin-2, a GPI-anchored protein. The values obtained by

immunoblots were similar to the SPECS measurements and

demonstrate the quantitative accuracy of SPECS. The reduced

shedding was accompanied by increased levels of the full-

length proteins in the cell lysate (Figure 2A and quantification

in Figure 2B), showing that C3 reduced substrate shedding and

not simply substrate expression. Interestingly, a strong reduc-

tion in shedding was not always accompanied by a strong

increase in full-length protein levels in the lysate, suggesting

that additional cellular mechanisms besides shedding control

the full-length protein levels.

To rule out a C3 inhibitor off-target effect, the shedding

analysis was repeated in primary neurons from E15/E16

BACE1 knock-out mouse brains (Figure 3A). For all four

investigated substrates, shedding reduction in the superna-

tant and accumulation in the cell lysate was very similar to

the C3-treated neurons (quantification in Figure 3B).

BACE1 inhibition increases cell surface levels of

contactin-2

Among the four tested proteins, a strong increase (nearly

three-fold) in the cellular protein levels upon BACE1 inhibi-

tion and knock-out was observed for contactin-2. Contactin-2

is a cell adhesion protein with different binding partners,

including APP (Ma et al, 2008), and is involved in the

organization of axonal subdomains at the node of Ranvier

of myelinating fibres (Karagogeos, 2003; Poliak and Peles,

2003). To localize the cellular compartment of contactin-2

accumulation, neurons were treated with or without the

BACE1 inhibitor C3 and stained for cell surface contactin-2.

Under control conditions, a discrete punctate staining was

observed for contactin-2 (Figure 3C). In contrast, C3-treated

neurons showed a prominent surface staining of contactin-2

in their neuronal processes. This result demonstrates that

BACE1 negatively regulates contactin-2 levels at the plasma

membrane of the neurites.

Validation of BACE1 substrates in BACE1-deficient

mouse brains

Next, the proteolytic processing of the novel substrates was

analysed in postnatal day 7 (P7) wild-type and BACE1-

deficient mouse brains. The shedding reduction of SEZ6,

CHL1 and L1 resembled the reduction observed in the C3

inhibitor-treated neurons and the BACE1 knock-out neurons

(Figure 4A and quantification in Figure 4B).

BACE1 expression in the brain is high during mouse

development until about 2 weeks after birth and then drops
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sharply (Willem et al, 2006). This raises the possibility that

some substrates are cleaved by BACE1 as long as BACE1

expression is high, but that their shedding is taken over by

other proteases when BACE1 expression decreases. To test

this possibility, the proteolytic processing of SEZ6, L1, CHL1

and contactin-2 was analysed in P60 BACE1 knock-out brains

Table I Changes in protein secretion and shedding upon BACE1 inhibitor C3 treatment

Protein name IPIa Meanb s.e.m.c VSd Pepte Protein typef

Membrane proteins showing reduced shedding upon C3 treatment
Seizure protein 6-like 1 IPI00674241 0.04 0.01 1.28E� 02 13 Type I
Seizure protein 6 IPI00380749 0.08 0.03 3.08E� 02 19 Type I
Amyloid precursor-like protein 1 IPI00129249 0.11 0.02 2.32E� 02 27 Type I
VWFA and cache domain-containing protein 1 IPI00350425 0.12 0.12 1.31E� 01 6 Type I
Golgi apparatus protein 1 IPI00122399 0.21 0.05 6.69E� 02 11 Type I
L1 IPI00785371 0.21 0.03 3.79E� 02 24 Type I
Leucine-rich repeat neuronal protein 1 IPI00126070 0.25 0.06 7.69E� 02 7 Type I
Plexin domain-containing protein 2 IPI00471179 0.25 0.10 1.38E� 01 3 Type I
Neurotrimin IPI00417005 0.33 0.14 2.08E� 01 6 GPI
Cell adhesion molecule with homology to L1CAM IPI00831546 0.35 0.05 7.25E� 02 49 Type I
Peptidyl-glycine a-amidating monooxygenase IPI00323974 0.36 0.12 1.83E� 01 23 Type I
Alpha-1,4-N-acetylhexosaminyltransferase EXTL2 IPI00112900 0.36 0.16 2.47E� 01 5 Type II
Protocadherin g A11 IPI00129686 0.42 0.15 2.56E� 01 7 Type I
Amyloid precursor-like Protein 2 IPI00121338 0.43 0.09 1.57E� 01 20 Type I
ST3GAL-I sialyltransferase IPI00108849 0.44 0.17 2.98E� 01 3 Type II
Latrophilin-1 IPI00918724 0.45 0.10 1.79E� 01 19 Polytopic
Neuroligin 4 IPI00858277 0.45 0.08 1.38E� 01 22 Type I
Semaphorin-6D IPI00396759 0.47 0.09 1.70E� 01 3 Type I
Lysosomal membrane glycoprotein 1 IPI00469218 0.48 0.16 3.14E� 01 2 Type I
Neurexin I-a IPI00468539 0.51 0.04 7.94E� 02 30 Type I
Protocadherin-20 IPI00222278 0.52 0.16 3.22E� 01 10 Type I
Latrophilin-3 IPI00411157 0.53 0.10 2.09E� 01 7 Polytopic
Latrophilin-2 IPI00876558 0.56 0.10 2.17E� 01 10 Polytopic
Sodium/potassium-dependent ATPase subunit b-1 IPI00121550 0.57 0.14 3.33E� 01 3 Type II
Delta and Notch-like epidermal growth factor-related receptor IPI00170342 0.57 0.09 2.19E� 01 3 Type I
Interferon a/b receptor 2 IPI00395209 0.58 0.12 2.84E� 01 4 Type I
Neuroligin-2 IPI00468605 0.58 0.11 2.55E� 01 16 Type I
Seizure 6-like protein 2 IPI00128454 0.60 0.14 3.41E� 01 13 Type I
Leucine-rich repeat and fibronectin type-III domain-containing protein 2 IPI00330152 0.62 0.13 3.37E� 01 4 Type I
CX3C membrane-anchored chemokine IPI00127811 0.64 0.11 2.97E� 01 4 Type I
Contactin-2 IPI00119970 0.64 0.06 1.81E� 01 39 GPI
Amyloid precursor protein IPI00114389 0.67 0.08 2.44E� 01 30 Type I
Neuroligin-1 IPI00309113 0.73 0.08 2.86E� 01 13 Type I
Transmembrane protein 132A IPI00464151 0.82 0.06 3.45E� 01 38 Type I

Soluble proteins reduced upon C3 treatment
Activin b-B chain IPI00355134 0.14 0.08 8.87E� 02 7 Secreted
Adamts3 IPI00672899 0.30 0.18 2.53E� 01 7 Secreted
Insulin-like growth factor-binding protein 2 IPI00313327 0.41 0.12 2.10E� 01 2 Secreted
Extracellular matrix protein 1 IPI00889948 0.49 0.13 2.63E� 01 5 Secreted
Neuronal olfactomedin-related ER localized protein IPI00136712 0.50 0.12 2.28E� 01 10 Secreted
Reelin IPI00121421 0.85 0.04 2.87E� 01 21 Secreted

Selection of proteins unaltered upon C3 treatment
Hepatocyte growth factor receptor IPI00130420 0.83 0.13 7.60E� 01 8 Type I
Neogenin IPI00129159 0.90 0.09 8.56E� 01 33 Type I
Protocadherin-g C3 IPI00129613 0.81 0.13 6.86E� 01 12 Type I
Receptor-type tyrosine-protein phosphatase sigma IPI00230067 0.90 0.19 1.90Eþ 00 20 Type I
Leucine-rich repeat-containing protein 4B IPI00381059 0.91 0.18 2.13Eþ 00 20 Type I
Netrin receptor DCC IPI00137347 1.00 0.18 1.38Eþ 02 31 Type I
Prostaglandin F2 receptor-negative regulator IPI00515319 0.85 0.15 1.04Eþ 00 29 Type I
Neural cell adhesion molecule 1 IPI00122971 0.99 0.16 1.12Eþ 01 28 Type I

aIPI accession number of the protein.
bMean ratio between BACE1 inhibitor treatment (C3) and control (DMSO) conditions of the summed unique peptides intensities identified for
a unique protein group for five biological replicates (C3/DMSO) shows remaining ectodomain levels upon BACE1 inhibition. SPECS values for
remaining shedding of APP (0.67¼ 67%), APLP1 (0.11¼11%) and APLP2 (0.42¼ 42%) correspond well to the literature. In neurons, APLP1
is mainly cleaved by BACE1 (Sala Frigerio et al, 2010), whereas APLP2 shedding is mediated to about 60% by BACE1 (Hogl et al, 2011). In
contrast, total APP shedding was only mildly inhibited with C3, because it is known that inhibition of BACE1 cleavage of APP is
accompanied by an increase in the ADAM10-mediated cleavage, resulting in only a moderate inhibition of total APP shedding upon BACE1
inhibition (Vassar et al, 1999; May et al, 2011).
cStandard error of the mean for five biological replicates.
dVariance score was calculated for all proteins. Proteins with a variance score of p0.35 were considered as proteins with a consistent change
under BACE1 inhibition.
eNumber of identified peptides of the protein group.
fProtein type: Secreted: Secreted, soluble protein, Type I: type I membrane protein, Type II: type II membrane protein, Polytopic: membrane
protein with multiple transmembrane domains, GPI: GPI-anchored membrane protein.
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(Figure 5A). The reduction of shedding and accumulation of

full-length proteins of SEZ6, L1 and contactin-2 was compar-

able to the reduction in P7 knock-out brains, demonstrating

that the three proteins are still efficiently cleaved in the brain

at a time when BACE1 expression has dropped. Full-length

CHL1 accumulated, similarly to the P7 brains, but no reduc-

tion of total CHL1 shedding was observed (Figure 5B).

However, the secreted CHL1 appeared to have a slightly

lower apparent molecular weight, which may be indicative
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of processing by an alternative protease in the absence of

BACE1. Additionally, in the adult brain, CHL1 is not only

expressed in neurons but also in oligodendrocyte precursors

and astrocytes (Hillenbrand et al, 1999), where BACE1 is not

expressed or only at low levels. Thus, it is possible, that in the

whole brain the reduction of neuronal BACE1-mediated CHL1

shedding is not visible when CHL1 shedding by other

proteases still occurs normally in non-neuronal brain cells.

Taken together, the analysis of P7 and P60 BACE1-deficient

mouse brains demonstrates that SEZ6, L1, CHL1 and con-

tactin-2 are physiological BACE1 substrates not only in

dissociated neurons, but also in vivo in whole brain.

BACE1 inhibitor reduces substrate cleavage in vivo in

mice

A reduction in BACE1 substrate shedding can be used to

demonstrate efficient BACE1 inhibition in clinical trials of

Alzheimer’s disease as recently shown for APPsb (May et al,

2011). To test whether the newly identified substrates may
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also be suitable to monitor BACE1 inhibition in vivo, we

treated P10 mice for 16 h with a single dose of the BACE1

inhibitor LY2811376, which was recently shown to efficiently

reduce Ab generation in a phase I clinical trial (May et al,

2011). sAPPb served as a positive control for BACE1

inhibition and was reduced to 19% (Figure 6A and quantifi-

cation in Figure 6B). Likewise, shedding of SEZ6, L1, CHL1

and contactin-2 was reduced, suggesting that, besides APPsb,

a reduced secretion of novel BACE1 substrates may be tested

as biomarker to monitor BACE1 inhibition.

Discussion

Ectodomain shedding is essential for the communication

between cells and is mediated by over 20 different mem-

brane-anchored sheddases (Freeman, 2009; Reiss and Saftig,

2009; Vassar et al, 2009; Lichtenthaler et al, 2011). However,

for many sheddases, including BACE1, little is known about

their substrates, and thus their function, in particular under

physiological conditions. The novel method SPECS is well

suited for substrate identification of sheddases. Because

SPECS also identifies soluble, secreted proteins, additional

applications of this method include whole secretome studies,

such as secretory processes in Tcells, neurons and pancreatic

cells as well as discovery of biomarkers, for example, secreted

from tumour and stem cells.

Compared to previous studies, SPECS is a fundamentally

different approach to identify secreted proteins and shedding

substrates. SPECS allows growing cells in the presence of

serum, which avoids cellular stress induced by serum-free

conditions. The purification and enrichment of secretome

proteins yields enhanced protein sequence coverage and

allows more reliable protein identification and quantification.

Furthermore, primary cells, such as neurons, which require

albumin-rich or serum-like culture supplements, become

amenable to quantitative secretome and sheddome analysis.

Thus, SPECS allows studying biological processes directly in

the relevant primary cell type.

Previous studies carried out under serum-free conditions

frequently required protease overexpression of the protease

of interest or its recombinant addition in vitro to the cell

medium (Tam et al, 2004; Hemming et al, 2009; Jefferson

et al, 2011). The major risk of this approach is artificial

substrate discovery, which is clearly seen from our BACE1

substrate list in comparison to a previous study, which

identified potential substrates of the neuronal BACE1

protease based on BACE1 overexpression in HEK293T and

HeLa cells (Hemming et al, 2009). While eight substrates are

in common, several of the previously identified proteins

(hepatocyte growth factor receptor, neogenin, protocadherin

gamma C3, receptor-type tyrosine-protein-phosphatase sigma

and NCAM) did not show a significant shedding change in

our substrate list of primary neurons (see lower part of

Table I) and are likely to be false positives due to BACE1

overexpression in the previous study. In contrast, SPECS

enabled the study of endogenous BACE1 inhibition in neu-

rons and additionally yielded quantitative data about the

extent of substrate cleavage by BACE1.

The identification of the BACE1 sheddome provides new

insights into the mechanisms that govern ectodomain

shedding in general. First, BACE1 has been considered as a

sheddase for a few specific proteins, including APP and
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Figure 6 Validation of BACE1 substrates in brain extracts of BACE1
inhibitor-treated mice. (A) P10 mice were treated with BACE1 inhibitor
LY2811376 for 16h. Brains were separated into a soluble (DEA) and a
membrane fraction (Lys), containing the soluble proteins (DEA) and
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neuregulin, whereas the metalloproteases ADAM10 and

ADAM17 have been assumed to mediate the majority of

membrane protein shedding (Reiss and Saftig, 2009).

However, the 34 identified neuronal membrane proteins,

which require BACE1 for their shedding, correspond to 19%

of the 183 shed membrane proteins identified in neurons,

making BACE1 a major contributor to the shedding process in

neurons. Second, some proteins are nearly exclusive BACE1

substrates (top of Table I, SEZ6L1, SEZ6, APLP1, VWFA and

cache domain-containing protein 1), whereas the other

ones are also cleaved to a variable degree by additional

proteases. For example, shedding of APLP2 in neurons is

mediated to about 40% by ADAM10, as shown previously

(Hogl et al, 2011), and to about 60% by BACE1 (Table I).

Thus, cleavage of a shedding substrate by two (or even

more) distinct proteases is not a rare event, but appears to

be occurring frequently, at least in the brain. Future

studies need to address whether the distinct proteases lead

to functionally different cleavage products, as it seems to be

the case for APP (Ring et al, 2007; Li et al, 2010). Third,

substrate cleavage by a sheddase is a tissue-specific event,

which is in agreement with high BACE1 expression in

neurons and its lower expression in non-neuronal tissue

(Vassar et al, 1999). For example, CHL1 in neurons is

largely cleaved by BACE1 (Table I), whereas it is mainly

cleaved by ADAM8 in non-neuronal tissue (Naus et al,

2004). Another example is L1, which—similarly to APP—is

predominantly cleaved by ADAM10 in non-neuronal cells

(Maretzky et al, 2005), but mainly requires BACE1 for its

shedding in neurons (Table I).

Besides APP and its homologues, a few additional glyco-

sylated membrane proteins were previously described as

BACE1 substrates (Vassar et al, 2009; Lichtenthaler et al,

2011), but not identified by SPECS in neurons. Some of

them are not expressed in neurons (e.g., PSGL-1). For other

ones (e.g., neuregulin), the levels of the secreted ectodomains

may have been below the detection limit of the mass

spectrometric analysis or the molecular mass of the

ectodomain was below 30 kDa (e.g., voltage-gated sodium

channels), such that the ectodomains would be lost during

the filtration steps of the SPECS method.

The BACE1 sheddome contains a larger number of proteins

with unknown functions, including APP. However, several of

these proteins have been implicated in neurite outgrowth

(SEZ6, L1, LRRN1, neurotrimin, CHL1, brain EGF-repeat

containing transmembrane protein) and synapse formation

(neurexin-1a and neuroligins), pointing to a function of

BACE1 in development and correct wiring of the brain,

which is in agreement with the high BACE1 expression during

development and in the early postnatal period (Willem et al,

2006). A role for BACE1 in neurite outgrowth is in good

agreement with two recent studies demonstrating defects in

axon guidance in the olfactory bulb in BACE1-deficient mice

(Rajapaksha et al, 2011; Cao et al, 2012). Several of the above

substrates are expressed in the olfactory bulb, such that their

reduced cleavage may be responsible for the observed deficits

in axonal targeting in BACE1-deficient mice.

Some proteins, for example, L1 and CHL1 (Zhang et al, 2008),

contribute to myelination, raising the intriguing possibility

that the peripheral hypomyelination in BACE1 knock-out mice

(Hu et al, 2006; Willem et al, 2006) is not exclusively mediated

by the reduced cleavage of neuregulin-1.

The two top hits in the BACE1 sheddome list are SEZ6

(Gunnersen et al, 2007), which was known to undergo

shedding by an unknown protease (Osaki et al, 2011), and

its homologue SEZ6L1, which are predominantly expressed

in neurons (Miyazaki et al, 2006). A third homologue, seizure

6-like protein 2 (SEZ6L2), is also on the substrate list, but

requires BACE1 to a much lower extent for its total shedding.

For SEZ6, we can further conclude that the cleavage site must

lie between the most C-terminal SEZ6 peptide identified

(Supplementary Figure 1) and the transmembrane domain.

A good candidate for the cleavage site is the peptide

bond between leucine906 and aspartate907 (Supplementary

Figure 1), which is composed of the same amino acids as the

efficiently BACE1-cleaved, Swedish variant of APP (Vassar

et al, 1999).

For most of the BACE1 sheddome proteins, it remains

unknown whether the biological function is mediated by

the soluble ectodomain, as it appears to be the case for

neuregulin (Willem et al, 2006), or by the full-length

protein, as recently shown for TMEM27, a substrate for

BACE2, a pancreatic protease homologous to BACE1

(Esterhazy et al, 2011). Thus, future studies need to address

whether loss-of-BACE1 cleavage leads to gain or loss-of-

function of a given substrate and how this is phenotypically

reflected in BACE1-deficient mice. Potentially, the phenotypes

are not just mediated by a single substrate but by

combinations of different ones. Interestingly, mutations in

SEZ6, which dramatically reduce the length of SEZ6 protein,

are found to a high incidence in epileptic patients (Yu et al,

2007), raising the possibility that loss of SEZ6 shedding may

contribute to the higher susceptibility of epileptic seizures in

BACE1 knock-out mice (Hu et al, 2010).

The identification of novel BACE1 substrates by SPECS is

not only the basis for a better understanding of BACE1

function and of the phenotypes in BACE1 knock-out mice,

but will also allow to better evaluate the therapeutic potential

of BACE1 and to develop biomarkers for monitoring potential

side effects of BACE1 inhibition in clinical trials of

Alzheimer’s disease.

Materials and methods

Materials
The following antibodies were used: pAb CHL1 (AF2147), pAb
Contactin-2 (AF4439; R&D Systems), L1 C-terminal (Clone 2C2;
Abcam), mAb L1 antibodies 14.10 and 555 (kindly provided by
Peter Altevogt), pAb Sez6 (kindly provided by Jenny Gunnersen),
PTPRF (Neuromab), mAb APP C-terminal antibody 2C11, mAb
sAPPb BAWT (Kuhn et al, 2010), pAb 192wt (kindly provided by
Dale Schenck), mAb 22C11 (kindly provided by Konrad
Beyreuther), pAb EP2456Y clone TAU (Millipore), mAb clone C32
N-Cadherin (BD Bioscience), mAb Acetylated tubulin (Sigma-
Aldrich, T7451), mAb BACE1 3D5 (kindly provided by Bob
Vassar), pAb APLP1 antibody (Proteintech; 12305-2-AP), pAb
APLP2 antibody (Calbiochem; 171617, 171616), HRP coupled anti-
mouse and anti-secondary (DAKO), HRP coupled anti-goat and anti-
sheep (Santa Cruz). The following reagents and media were used:
neurobasal medium, HBSS and B27 (Invitrogen), C3 (b-secretase
inhibitor IV; Calbiochem, 565788), acetonitrile (ACN), water, formic
acid with LC-MS grade, iodoacetamide (Sigma-Aldrich), Trypsin
(Promega), TO-PRO-3-Iodide (Invitrogen).

Isolation of primary neurons
Wild-type and BACE1 knock-out mice used for preparation of
primary neurons and brain tissues were obtained from The
Jackson Laboratory (B6.129-Bace1tm1Pcw/J). All animal experiments
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were performed according to the European community council
directive (86/609/ECC). Neurons were isolated as described pre-
viously (Mitterreiter et al, 2010) at E15/E16 and cultured in
neurobasal medium supplemented with 2% B27, 100 U/ml
penicillin, 100mg/ml streptomycin and 0.5 mM glutamine.
Experiments were carried out after 4–7 days in vitro (DIV).

Immunofluorescence
In all, 30 000 primary neurons were seeded per well in a 96-well
format. Neurons were either treated with DMSO or C3. Media were
removed after 2 days of incubation and neurons were incubated in
primary antibody 4D7 (1:200) in 3% BSA for 30 min on ice followed
by post fixation with 4% PFA for 15 min on ice. Excessive PFA was
quenched with NH4Cl and neurons were washed twice with PBS.
Afterwards anti-mouse Alexa-488 (1:1000) in 3% BSA was incu-
bated for another hour on the fixed neurons. The next step
comprising a second 15 min post fixation with 4% PFA followed
by permeabilization with 0.1% Triton X-100 and a second quench-
ing of excessive PFA with NH4Cl. Afterwards, neurons were stained
with anti-Tau antibody (1:1000) for 1 h followed by rabbit Alexa-555
(1:1000) and TO-PRO-3-iodine (1:1000) for 1 h to stain for neuronal
processes and nuclei. Neurons were washed twice with PBS and
afterwards investigated with a Zeiss LSM5 confocal microscope.

Brain fractionation
Brains were isolated from P8 mice. The brains were homogenized in
2 ml of 41C cold diethyl amine buffer with a motorized potter
directly followed by neutralization of the homogenate with TRIS
buffer. Homogenate was briefly centrifuged at 14 000 r.p.m. for
10 min. Supernatant was transferred to a new vial and subject to
clarifying ultracentrifugation at 55 000 r.p.m. with a TLA55 rotor for
30 min. Meanwhile, the remaining pellets were washed once more
with PBS to remove the remaining soluble fraction. Pellet was lysed
in STE buffer (150 mM NaCl, 50 mM TRIS, 2 mM EDTA) with 1%
Triton for 30 min on ice followed by centrifugation in a cooled table-
top centrifuge at 14 000 r.p.m. Resulting lysate was transferred into a
fresh tube.

Metabolic labelling with azido sugar
For each condition, 40 million 4 DIV neurons were labelled with
1mmol of tetraacetyl-N-azidoacetyl-mannosamine diluted in 20 ml
neurobasal medium (50mmol/l) supplemented with 2% B27 for 2
days. Neurons were cultured in the presence or absence of 1mM
BACE1 inhibitor C3. For HEK293T, 40 million cells were used and
incubated in DMEM plus 5% FCS.

Purification of azido sugar-labelled proteins
Conditioned medium was collected and filtered through 0.45mm
PVDF filter (Millex) into a VivaSpin 20 column (30 kDa) at 41C. To
remove non-metabolized tetraacetyl-N-azidoacetyl-mannosamine
VivaSpin 20 columns were centrifuged at 4600 r.p.m. at 41C. The
retentate was filled with 20 ml PBS. This procedure was repeated
three times. In the last step, the PBS refill step was omitted. Instead,
250 nM of DBCO-PEG12-biotin (Click-chemistry tools) diluted in
1 ml ddH2O with 5% (v/v) DMSO was added to retentate to
biotinylate metabolically azide-labelled glycoproteins. Columns
were incubated overnight at 41C. For removal of non-reacted
DBCO-PEG12-Biotin, VivaSpin20 columns were subject to three
times of centrifugation with subsequent PBS buffer refill. After
last step of centrifugation, the retentate was diluted in 5 ml PBS
with 2% SDS (v/v) and 2 mM TCEP. For purification of biotinylated
proteins, the sample was loaded on a 10-ml polyprep column with a
streptavidin bed of 300ml beads. After binding of proteins, strepta-
vidin was washed 3� with 10 ml PBS with 1% SDS. Afterwards,
streptavidin beads were boiled with urea sample buffer containing
3 mM biotin to compete for the binding of biotinylated proteins with
streptavidin.

SDS–PAGE separation, trypsinization
Proteins were separated on a 10% Tris/glycine SDS gel. Afterwards,
qualitatively equal gel slices were cut out from the gel with the
exception of the remaining albumin band at around 60 kDa.
Proteins in the gel slices were subject to trypsinization according
to standard protocols (Shevchenko et al, 2006).

Mass spectrometric analysis
Mass spectrometry experiments were performed on an Easy nLC
nanoflow HPLC system II (Proxeon) connected to an LTQ-Velos
Orbitrap (Thermo Fisher Scientific). Peptides were separated by
reverse phase chromatography using in-house made 15 cm columns
(New Objective, FS360-75-8-N-S-C15) packed with C18-AQ 2,4mm
resin (Dr Maisch GmbH, Part No. r124.aq). A 90-min gradient
(5–40%) at a flow rate of 400 nl/min was used. The measurement
method consisted of an initial FTMS scan recorded in profile mode
with 30 000 m/z resolution, a mass range from 300 to 2000 m/z and
a target value of 1000 000. Subsequently, collision-induced disso-
ciation (CID) fragmentation was performed for the 14 most intense
ions with an isolation width of 2 Da in the ion trap. A target value of
10 000, enabled charge state screening, a monoisotopic precursor
selection, 35% normalized collision energy, an activation time of
10 ms, wide band activation and a dynamic exclusion list with 30 s
exclusion time were applied.

Analysis of mass spectrometry data
For data analysis of the HEK293Tone biological replicate and for the
neuronal secretome, five biological replicates were analysed with
the freely available MaxQuant suite (version 1.2.0.18) (Cox and
Mann, 2008). Protein identification was performed using the
integrated Andromeda search algorithm (Cox et al, 2011). Mass
recalibration was done by a first search in a reduced murine protein
database. Main search was performed using the murine IPI database
(version 3.68) allowing for N-terminal acetylation and oxidation
of methionine as variable modifications and carbamido-
methylation of cysteine as fixed modifications. Two missed
cleavages were allowed. Peptide as well as protein false discovery
rate was set to o1%. Mass accuracy was set to 6 p.p.m. for the
main search and 20 p.p.m. for the first search. Label-free
quantification was performed between control (DMSO) and the
treatment condition (C3) on the basis of unique peptides. A
variance score (VS¼ absolute value of (standard error of the
mean/(1�mean))) was calculated for all proteins. Proteins with a
VS of p0.35 were considered as proteins with a consistent change
upon BACE1 inhibition.

In-vivo BACE1 inhibitor experiment
Ten-day-old BALB/c mouse pups were purchased from Charles
River Laboratories (Wilmington, MA, USA). All animal experiments
were performed in accordance with the European Communities
Council Directive #86/609 and the directives of the Danish National
Committee on Animal Research Ethics. The specific BACE1 inhibitor
LY-2811376 [(S)-4-(2,4-difluoro-5-pyrimidin-5-yl-phenyl)-4-methyl-
5,6-dihydro-4H-[1,3]thiazin-2-ylamine] (May et al, 2011) was
synthesized following the schemes provided by Lilly Research
Labs (Indianapolis, IN, USA; patent WO2009134617) and
dissolved in 100% polyethylene glycol 400 for systemic
administration (subcutaneously, s.c.) as dictated by compound
solubility. Animals were treated every 12 h with 100 mg/kg and
16 h after the first application mice were sacrificed by decapitation.
Snap frozen brains were homogenized in 10 volumes (w/v) of 0.2%
diethylamine (DEA) containing 50 mM NaCl (pH 10) and protease
inhibitors. DEA fraction was ultracentrifuged at 100 000 g for
30 min. The resulting supernatant was retained as the soluble
fraction and neutralized by addition of 10% 0.5 M Tris/HCl, pH
6.8. The DEA insoluble material was homogenized with RIPA buffer
and cleared by ultracentrifugation for 30 min at 100 000 g.

Synthesis of 1,3,4,6-tetraacetyl-N-acetylazido-D-mannosamine

To a solution of D-mannosamine hydrochloride (1 g; 4.64 mmol)
in methanol (50 ml), sodium methylate (30%w/w NaOMe in
MeOH, 1.66 ml, 4.64 mmol, 1 equiv.) was added and the mixture

Proteomic identification of BACE1 substrates
P-H Kuhn et al

3166 The EMBO Journal VOL 31 | NO 14 | 2012 &2012 European Molecular Biology Organization



was stirred at room temperature for 30 min until complete dissolu-
tion. Then, NEt3 (0.47 g; 4.64 mmol, 1 equiv.) and chloroacetic
anhydride (871 mg; 5.1 mmol, 1.1 equiv.) were added to the solu-
tion, and stirred at room temperature overnight. After finishing, the
solvent was evaporated and the crude product was used in sub-
sequent reaction without further purification (if necessary sodium
bicarbonate was added to neutralize the solution!)

To a solution of N-chloroacetyl-mannosamine in MeOH/H2O
(10:1 (20/2 ml)), sodium azide NaN3 (1.06 g; 16.24 mmol, 3.5
equiv.) was added. The mixture was stirred for 5 h at 651C.
Subsequently, the reaction mixture was concentrated and dried in
vacuo. The residue was then suspended in pyridine (20 ml) and
acetic anhydride (20 m) was added to the solution. The reaction
was stirred at room temperature overnight. After concentration
in vacuo, the residue was dissolved in EtOAc (50 ml) and washed
with 1 N HCl, NaHCO3 and brine (each 50 ml) (CAUTION: extraction
with sodium bicarbonate causes gas formation and excess
pressure in the separating funnel). After drying over MgSO4 the
crude product was purified by column chromatography (CH/ EE 1:
1) to afford the desired product (mixture of anomers a/b—54/46)
as a white-yellowish oil that eventually can solidify upon
lyophilization.

Yield Y¼ 55% (over 3 steps).

1,3,4,6-Tetraacetyl-N-azidoacetyl-D-mannosamine
[a]D

20¼ þ 6.5 (c¼ 0.53; CHCl3).
1H-NMR: (400 MHz, CDCl3): d (p.p.m.)¼ 6.67 (d, 3J¼ 9.0 Hz, 1H),
6.63 (d, 3J¼ 9.3 Hz, 1H); 6.03 (d, 3J¼ 1.8 Hz, 1 H); 5.88
(d, 3J¼ 1.6 Hz, 1H), 5.33 (dd, 3J¼ 10.2 Hz, 3J¼ 4.3 Hz, 1H); 5.21
(t, 3J¼ 10.0 Hz, 1H); 5.15 (t, 3J¼ 9.8 Hz, 1H); 5.05 (dd, 3J¼ 9.9 Hz,
3J¼ 3.9 Hz, 1H); 4.72 (ddd, 3J¼ 9.0 Hz, 3J¼ 3.8 Hz, 3J¼ 1.6 Hz, 1H);
4.61 (ddd, 3J¼ 9.3 Hz, 3J¼ 4.2 Hz, 3J¼ 1.9 Hz, 1H); 4.27–4.19
(m, 2H); 4.16–3.99 (m, 7H); 3.81 (ddd, 3J¼ 9.6 Hz, 3J¼ 4.6 Hz,

3J¼ 2.5 Hz, 1H); 2.17 (s, 3H); 2.10 (s, 3H); 2.10 (s, 6H); 2.05
(s, 6H); 1.99 (s, 3H); 1.99 (s, 3H).
13C-NMR (100 MHz, CDCl3): d (p.p.m.)¼ 170.5; 170.1; 170.1; 169.6;
168.3; 168.1; 167.4; 166.8; 91.3; 90.3; 73.4; 71.4; 70.3; 68.8; 65.1;
65.0; 61.8; 61.7; 52.6; 52.4; 49.7; 49.3; 20.8; 20.7; 20.7; 20.6; 20.6.
IR (ATR Platinum Diamond): (cm� 1)¼ 3339 (vw), 1739 (w),
1208 (m), 1036 (m).
MS (FAB, 3-NBA), m/z (%): 371 [C14H19N4O8

þ ] (50), 139 (100).
HR-MS (FAB, 3-NBA), C16H22N4O10: cald. 431.1414; found 431.1417.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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