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Abstract

The accuracy of optical flow estimation algorithms has

been improving steadily as evidenced by results on the

Middlebury optical flow benchmark. The typical formula-

tion, however, has changed little since the work of Horn

and Schunck. We attempt to uncover what has made re-

cent advances possible through a thorough analysis of how

the objective function, the optimization method, and mod-

ern implementation practices influence accuracy. We dis-

cover that “classical” flow formulations perform surpris-

ingly well when combined with modern optimization and

implementation techniques. Moreover, we find that while

median filtering of intermediate flow fields during optimiza-

tion is a key to recent performance gains, it leads to higher

energy solutions. To understand the principles behind this

phenomenon, we derive a new objective that formalizes the

median filtering heuristic. This objective includes a non-

local term that robustly integrates flow estimates over large

spatial neighborhoods. By modifying this new term to in-

clude information about flow and image boundaries we de-

velop a method that ranks at the top of the Middlebury

benchmark.

1. Introduction

The field of optical flow estimation is making steady

progress as evidenced by the increasing accuracy of cur-

rent methods on the Middlebury optical flow benchmark

[6]. After nearly 30 years of research, these methods have

obtained an impressive level of reliability and accuracy

[33, 34, 35, 40]. But what has led to this progress? The

majority of today’s methods strongly resemble the original

formulation of Horn and Schunck (HS) [18]. They combine

a data term that assumes constancy of some image property

with a spatial term that models how the flow is expected

to vary across the image. An objective function combin-

ing these two terms is then optimized. Given that this basic

structure is unchanged since HS, what has enabled the per-

formance gains of modern approaches?

The paper has three parts. In the first, we perform an ex-

tensive study of current optical flow methods and models.

The most accurate methods on the Middlebury flow dataset

make different choices about how to model the objective

function, how to approximate this model to make it com-

putationally tractable, and how to optimize it. Since most

published methods change all of these properties at once,

it can be difficult to know which choices are most impor-

tant. To address this, we define a baseline algorithm that

is “classical”, in that it is a direct descendant of the original

HS formulation, and then systematically vary the model and

method using different techniques from the art. The results

are surprising. We find that only a small number of key

choices produce statistically significant improvements and

that they can be combined into a very simple method that

achieves accuracies near the state of the art. More impor-

tantly, our analysis reveals what makes current flow meth-

ods work so well.

Part two examines the principles behind this success. We

find that one algorithmic choice produces the most signifi-

cant improvements: applying a median filter to intermedi-

ate flow values during incremental estimation and warping

[33, 34]. While this heuristic improves the accuracy of the

recovered flow fields, it actually increases the energy of the

objective function. This suggests that what is being opti-

mized is actually a new and different objective. Using ob-

servations about median filtering and L1 energy minimiza-

tion from Li and Osher [23], we formulate a new non-local

term that is added to the original, classical objective. This

new term goes beyond standard local (pairwise) smoothness

to robustly integrate information over large spatial neigh-

borhoods. We show that minimizing this new energy ap-

proximates the original optimization with the heuristic me-

dian filtering step. Note, however, that the new objective

falls outside our definition of classical methods.

Finally, once the median filtering heuristic is formulated

as a non-local term in the objective, we immediately recog-

nize how to modify and improve it. In part three we show

how information about image structure and flow boundaries

can be incorporated into a weighted version of the non-local

term to prevent over-smoothing across boundaries. By in-

corporating structure from the image, this weighted version

does not suffer from some of the errors produced by median

filtering. At the time of publication (March 2010), the re-



sulting approach is ranked 1st in both angular and end-point

errors in the Middlebury evaluation.

In summary, the contributions of this paper are to (1) an-

alyze current flow models and methods to understand which

design choices matter; (2) formulate and compare several

classical objectives descended from HS using modern meth-

ods; (3) formalize one of the key heuristics and derive a new

objective function that includes a non-local term; (4) mod-

ify this new objective to produce a state-of-the-art method.

In doing this, we provide a “recipe” for others studying op-

tical flow that can guide their design choices. Finally, to en-

able comparison and further innovation, we provide a public

MATLAB implementation [1].

2. Previous Work

It is important to separately analyze the contributions of

the objective function that defines the problem (the model)

and the optimization algorithm and implementation used to

minimize it (the method). The HS formulation, for example,

has long been thought to be highly inaccurate. Barron et al.

[7] reported an average angular error (AAE) of ~ 30 degrees

on the “Yosemite” sequence. This confounds the objective

function with the particular optimization method proposed

by Horn and Schunck1. When optimized with today’s meth-

ods, the HS objective achieves surprisingly competitive re-

sults despite the expected over-smoothing and sensitivity to

outliers.

Models: The global formulation of optical flow intro-

duced by Horn and Schunck [18] relies on both brightness

constancy and spatial smoothness assumptions, but suffers

from the fact that the quadratic formulation is not robust

to outliers. Black and Anandan [10] addressed this by re-

placing the quadratic error function with a robust formula-

tion. Subsequently, many different robust functions have

been explored [12, 22, 31] and it remains unclear which is

best. We refer to all these spatially-discrete formulations

derived from HS as “classical.” We systematically explore

variations in the formulation and optimization of these ap-

proaches. The surprise is that the classical model, appropri-

ately implemented, remains very competitive.

There are many formulations beyond the classical ones

that we do not consider here. Significant ones use oriented

smoothness [25, 31, 33, 40], rigidity constraints [32, 33],

or image segmentation [9, 21, 41, 37]. While they deserve

similar careful consideration, we expect many of our con-

clusions to carry forward. Note that one can select among a

set of models for a given sequence [4], instead of finding a

“best” model for all the sequences.

Methods: Many of the implementation details that are

thought to be important date back to the early days of op-

1They noted that the correct way to optimize their objective is by solv-

ing a system of linear equations as is common today. This was impractical

on the computers of the day so they used a heuristic method.

tical flow. Current best practices include coarse-to-fine es-

timation to deal with large motions [8, 13], texture decom-

position [32, 34] or high-order filter constancy [3, 12, 16,

22, 40] to reduce the influence of lighting changes, bicubic

interpolation-based warping [22, 34], temporal averaging of

image derivatives [17, 34], graduated non-convexity [11] to

minimize non-convex energies [10, 31], and median filter-

ing after each incremental estimation step to remove outliers

[34].

This median filtering heuristic is of particular interest as

it makes non-robust methods more robust and improves the

accuracy of all methods we tested. The effect on the objec-

tive function and the underlying reason for its success have

not previously been analyzed. Least median squares estima-

tion can be used to robustly reject outliers in flow estimation

[5], but previous work has focused on the data term.

Related to median filtering, and our new non-local term,

is the use of bilateral filtering to prevent smoothing across

motion boundaries [36]. The approach separates a varia-

tional method into two filtering update stages, and replaces

the original anisotropic diffusion process with multi-cue

driven bilateral filtering. As with median filtering, the bi-

lateral filtering step changes the original energy function.

Models that are formulated with an L1 robust penalty

are often coupled with specialized total variation (TV) op-

timization methods [39]. Here we focus on generic opti-

mization methods that can apply to any model and find they

perform as well as reported results for specialized methods.

Despite recent algorithmic advances, there is a lack of

publicly available, easy to use, and accurate flow estimation

software. The GPU4Vision project [2] has made a substan-

tial effort to change this and provides executable files for

several accurate methods [32, 33, 34, 35]. The dependence

on the GPU and the lack of source code are limitations. We

hope that our public MATLAB code will not only help in un-

derstanding the “secrets” of optical flow, but also let others

exploit optical flow as a useful tool in computer vision and

related fields.

3. Classical Models

We write the “classical” optical flow objective function

in its spatially discrete form as

E(u,v) =
∑

i,j

{ρD(I1(i, j) − I2(i + ui,j , j + vi,j)) (1)

+λ[ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)

+ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1)]},

where u and v are the horizontal and vertical components of

the optical flow field to be estimated from images I1 and I2,

λ is a regularization parameter, and ρD and ρS are the data

and spatial penalty functions. We consider three different

penalty functions: (1) the quadratic HS penalty ρ(x) = x2;



(2) the Charbonnier penalty ρ(x) =
√

x2 + ǫ2 [13], a dif-

ferentiable variant of the L1 norm, the most robust convex

function; and (3) the Lorentzian ρ(x) = log(1+ x2

2σ2 ), which

is a non-convex robust penalty used in [10]. Note that this

classical model is related to a standard pairwise Markov

random field (MRF) based on a 4-neighborhood.

In the remainder of this section we define a baseline

method using several techniques from the literature. This

is not the “best” method, but includes modern techniques

and will be used for comparison. We only briefly describe

the main choices, which are explored in more detail in the

following section and the cited references, especially [30].

Quantitative results are presented throughout the remain-

der of the text. In all cases we report the average end-point

error (EPE) on the Middlebury training and test sets, de-

pending on the experiment. Given the extensive nature of

the evaluation, only average results are presented in the

main body, while the details for each individual sequence

are given in [30].

3.1. Baseline methods

To gain robustness against lighting changes, we follow

[34] and apply the Rudin-Osher-Fatemi (ROF) structure

texture decomposition method [28] to pre-process the in-

put sequences and linearly combine the texture and struc-

ture components (in the proportion 20:1). The parameters

are set according to [34].

Optimization is performed using a standard incremental

multi-resolution technique (e.g. [10, 13]) to estimate flow

fields with large displacements. The optical flow estimated

at a coarse level is used to warp the second image toward

the first at the next finer level, and a flow increment is cal-

culated between the first image and the warped second im-

age. The standard deviation of the Gaussian anti-aliasing

filter is set to be 1√
2d

, where d denotes the downsampling

factor. Each level is recursively downsampled from its near-

est lower level. In building the pyramid, the downsampling

factor is not critical as pointed out in the next section and

here we use the settings in [31], which uses a factor of 0.8
in the final stages of the optimization. We adaptively de-

termine the number of pyramid levels so that the top level

has a width or height of around 20 to 30 pixels. At each

pyramid level, we perform 10 warping steps to compute the

flow increment.

At each warping step, we linearize the data term, which

involves computing terms of the type ∂
∂x

I2(i+uk
i,j , j+vk

i,j),
where ∂/∂x denotes the partial derivative in the horizon-

tal direction, uk and vk denote the current flow estimate at

iteration k. As suggested in [34], we compute the deriva-

tives of the second image using the 5-point derivative filter
1
12 [−1 8 0 −8 1], and warp the second image and its deriva-

tives toward the first using the current flow estimate by bicu-

bic interpolation. We then compute the spatial derivatives of

Avg. Rank Avg. EPE

Classic-C 14.9 0.408

HS 24.6 0.501

Classic-L 19.8 0.530

HS [31] 35.1 0.872

BA (Classic-L) [31] 30.9 0.746

Adaptive [33] 11.5 0.401

Complementary OF [40] 10.1 0.485

Table 1. Models. Average rank and end-point error (EPE) on the

Middlebury test set using different penalty functions. Two current

methods are included for comparison.

the first image, average with the warped derivatives of the

second image (c.f . [17]), and use this in place of ∂I2

∂x
. For

pixels moving out of the image boundaries, we set both their

corresponding temporal and spatial derivatives to zero. Af-

ter each warping step, we apply a 5 × 5 median filter to the

newly computed flow field to remove outliers [34].

For the Charbonnier (Classic-C) and Lorentzian

(Classic-L) penalty function, we use a graduated non-

convexity (GNC) scheme [11] as described in [31] that lin-

early combines a quadratic objective with a robust objective

in varying proportions, from fully quadratic to fully robust.

Unlike [31], a single regularization weight λ is used for both

the quadratic and the robust objective functions.

3.2. Baseline results

The regularization parameter λ is selected among a set of

candidate values to achieve the best average end-point error

(EPE) on the Middlebury training set. For the Charbonnier

penalty function, the candidate set is [1, 3, 5, 8, 10] and

5 is optimal. The Charbonnier penalty uses ǫ = 0.001 for

both the data and the spatial term in Eq. (1). The Lorentzian

uses σ = 1.5 for the data term, and σ = 0.03 for the spa-

tial term. These parameters are fixed throughout the exper-

iments, except where mentioned.

Table 1 summarizes the EPE results of the basic model

with three different penalty functions on the Middlebury

test set, along with the two top performers at the time of

publication (considering only published papers). The clas-

sic formulations with two non-quadratic penalty functions

(Classic-C) and (Classic-L) achieve competitive results de-

spite their simplicity. The baseline optimization of HS and

BA (Classic-L) results in significantly better accuracy than

previously reported for these models [31]. Note that the

analysis also holds for the training set (Table 2).

At the time of publication, Classic-C ranks 13th in av-

erage EPE and 15th in AAE in the Middlebury benchmark

despite its simplicity, and it serves as the baseline below. It

is worth noting that the spatially discrete MRF formulation

taken here is competitive with variational methods such as

[33]. Moreover, our baseline implementation of HS has a

lower average EPE than many more sophisticated methods.



Avg. EPE significance p-value

Classic-C 0.298 — —

HS 0.384 1 0.0078

Classic-L 0.319 1 0.0078

Classic-C-brightness 0.288 0 0.9453

HS-brightness 0.387 1 0.0078

Classic-L-brightness 0.325 0 0.2969

Gradient 0.305 0 0.4609

Table 2. Pre-Processing. Average end-point error (EPE) on the

Middlebury training set for the baseline method (Classic-C) using

different pre-processing techniques. Significance is always with

respect to Classic-C.

4. Secrets Explored

We evaluate a range of variations from the baseline ap-

proach that have appeared in the literature, in order to illu-

minate which may be of importance. This analysis is per-

formed on the Middlebury training set by changing only one

property at a time. Statistical significance is determined

using a Wilcoxon signed rank test between each modified

method and the baseline Classic-C; a p value less than 0.05
indicates a significant difference.

Pre-Processing. For each method, we optimize the regu-

larization parameter λ for the training sequences and report

the results in Table 2. The baseline uses a non-linear pre-

filtering of the images to reduce the influence of illumina-

tion changes [34]. Table 2 shows the effect of removing

this and using a standard brightness constancy model (*-

brightness). Classic-C-brightness actually achieves lower

EPE on the training set than Classic-C but significantly

lower accuracy on the test set: Classic-C-brightness =

0.726, HS-brightness = 0.759, and Classic-L-brightness

= 0.603 – see Table 1 for comparison. This disparity sug-

gests overfitting is more severe for the brightness constancy

assumption. Gradient only imposes constancy of the gra-

dient vector at each pixel as proposed in [12] (i.e. it robustly

penalizes Euclidean distance between image gradients) and

has similar performance in both training and test sets (c.f .

Table 8). See [30] for results of more alternatives.

Secrets: Some form of image filtering is useful but simple

derivative constancy is nearly as good as the more sophisti-

cated texture decomposition method.

Coarse-to-fine estimation and GNC. We vary the number

of warping steps per pyramid level and find that 3 warping

steps gives similar results as using 10 (Table 3). For the

GNC scheme, [31] uses a downsampling factor of 0.8 for

non-convex optimization. A downsampling factor of 0.5
(Down-0.5), however, has nearly identical performance

Removing the GNC step for the Charbonnier penalty

function (w/o GNC) results in higher EPE on most se-

quences and higher energy on all sequences (Table 4). This

suggests that the GNC method is helpful even for the con-

vex Charbonnier penalty function due to the nonlinearity of

Avg. EPE significance p-value

Classic-C 0.298 — —

3 warping steps 0.304 0 0.9688

Down-0.5 0.298 0 1.0000

w/o GNC 0.354 0 0.1094

Bilinear 0.302 0 0.1016

w/o TAVG 0.306 0 0.1562

Central derivative filter 0.300 0 0.7266

7-point derivative filter [13] 0.302 0 0.3125

Bicubic-II 0.290 1 0.0391

GC-0.45 (λ = 3) 0.292 1 0.0156

GC-0.25 (λ = 0.7) 0.298 0 1.0000

MF 3 × 3 0.305 0 0.1016

MF 7 × 7 0.305 0 0.5625

2× MF 0.300 0 1.0000

5× MF 0.305 0 0.6875

w/o MF 0.352 1 0.0078

Classic++ 0.285 1 0.0078

Table 3. Model and Methods. Average end-point error (EPE) on

the Middlebury training set for the baseline method (Classic-C)

using different algorithm and modeling choices.

Figure 1. Different penalty functions for the spatial terms: Char-

bonnier (ǫ = 0.001), generalized Charbonnier (a = 0.45 and

a = 0.25), and Lorentzian (σ = 0.03).

the data term.

Secrets: The downsampling factor does not matter when

using a convex penalty; a standard factor of 0.5 is fine.

Some form of GNC is useful even for a convex robust

penalty like Charbonnier because of the nonlinear data term.

Interpolation method and derivatives. We find that bicu-

bic interpolation is more accurate than bilinear (Table 3,

Bilinear), as already reported in previous work [34]. Re-

moving temporal averaging of the gradients (w/o TAVG),

using Central difference filters, or using a 7-point deriva-

tive filter [13] all reduce accuracy compared to the base-

line, but not significantly. The MATLAB built-in function

interp2 is based on cubic convolution approximation [20].

The spline-based interpolation scheme [26] is consistently

better (Bicubic-II). See [30] for more discussions.

Secrets: Use spline-based bicubic interpolation with a 5-

point filter. Temporal averaging of the derivatives is proba-

bly worthwhile for a small computational expense.

Penalty functions. We find that the convex Charbonnier

penalty performs better than the more robust, non-convex

Lorentzian on both the training and test sets. One reason

might be that non-convex functions are more difficult to op-

timize, causing the optimization scheme to find a poor local



(a) With median filtering (b) Without median filtering

Figure 2. Estimated flow fields on sequence “RubberWhale” using

Classic-C with and without (w/o MF) the median filtering step.

Color coding as in [6]. (a) (w/ MF) energy 502, 387 and (b) (w/o

MF) energy 449, 290. The median filtering step helps reach a so-

lution free from outliers but with a higher energy.

optimum. We investigate a generalized Charbonnier penalty

function ρ(x) = (x2 + ǫ2)a that is equal to the Charbon-

nier penalty when a = 0.5, and non-convex when a < 0.5
(see Figure 1). We optimize the regularization parameter λ
again. We find a slightly non-convex penalty with a = 0.45
(GC-0.45) performs consistently better than the Charbon-

nier penalty, whereas more non-convex penalties (GC-0.25
with a = 0.25) show no improvement.

Secrets: The less-robust Charbonnier is preferable to the

Lorentzian and a slightly non-convex penalty function (GC-

0.45) is better still.

Median filtering. The baseline 5 × 5 median filter (MF

5×5) is better than both MF 3×3 [34] and MF 7×7 but the

difference is not significant (Table 3). When we perform 5×
5 median filtering twice (2× MF) or five times (5× MF) per

warping step, the results are worse. Finally, removing the

median filtering step (w/o MF) makes the computed flow

significantly less accurate with larger outliers as shown in

Table 3 and Figure 2.

Secrets: Median filtering the intermediate flow results once

after every warping iteration is the single most important

secret; 5 × 5 is a good filter size.

4.1. Best Practices

Combining the analysis above into a single approach

means modifying the baseline to use the slightly non-

convex generalized Charbonnier and the spline-based bicu-

bic interpolation. This leads to a statistically significant

improvement over the baseline (Table 3, Classic++). This

method is directly descended from HS and BA, yet updated

with the current best optimization practices known to us.

This simple method ranks 9th in EPE and 12th in AAE on

the Middlebury test set.

5. Models Underlying Median Filtering

Our analysis reveals the practical importance of median

filtering during optimization to denoise the flow field. We

ask whether there is a principle underlying this heuristic?

One interesting observation is that flow fields obtained

with median filtering have substantially higher energy than

those without (Table 4 and Figure 2). If the median filter

is helping to optimize the objective, it should lead to lower

energies. Higher energies and more accurate estimates sug-

gest that incorporating median filtering changes the objec-

tive function being optimized.

The insight that follows from this is that the median fil-

tering heuristic is related to the minimization of an objective

function that differs from the classical one. In particular the

optimization of Eq. (1), with interleaved median filtering,

approximately minimizes

EA(u,v, û, v̂) = (2)
∑

i,j

{

ρD(I1(i, j) − I2(i + ui,j , j + vi,j))

+λ[ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)+

ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1)]
}

+λ2(||u − û||2 + ||v − v̂||2)
+

∑

i,j

∑

(i′,j′)∈Ni,j

λ3(|ûi,j − ûi′,j′ | + |v̂i,j − v̂i′,j′ |),

where û and v̂ denote an auxiliary flow field, Ni,j is the set

of neighbors of pixel (i, j) in a possibly large area and λ2

and λ3 are scalar weights. The term in braces is the same

as the flow energy from Eq. (1), while the last term is new.

This non-local term [14, 15] imposes a particular smooth-

ness assumption within a specified region of the auxiliary

flow field û, v̂2. Here we take this term to be a 5×5 rectan-

gular region to match the size of the median filter in Classic-

C. A third (coupling) term encourages û, v̂ and u,v to be

the same (c.f . [33, 39]).

The connection to median filtering (as a denoising

method) derives from the fact that there is a direct relation-

ship between the median and L1 minimization. Consider

a simplified version of Eq. (2) with just the coupling and

non-local terms, where E(û) =

λ2||u − û||2 +
∑

i,j

∑

(i′,j′)∈Ni,j

λ3|ûi,j − ûi′,j′ |. (3)

While minimizing this is similar to median filtering u, there

are two differences. First, the non-local term minimizes the

L1 distance between the central value and all flow values

in its neighborhood except itself. Second, Eq. (3) incorpo-

rates information about the data term through the coupling

equation; median filtering the flow ignores the data term.

The formal connection between Eq. (3) and median fil-

tering3 is provided by Li and Osher [23] who show that min-

2Bruhn et al. [13] also integrated information over a local region in a

global method but did so for the data term.
3Hsiao et al. [19] established the connection in a slightly different way.



Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3

Classic-C 0.589 0.748 0.866 0.502 1.816 2.317 1.126 1.424

w/o GNC 0.593 0.750 0.870 0.506 1.845 2.518 1.142 1.465

w/o MF 0.517 0.701 0.668 0.449 1.418 1.830 1.066 1.395

Table 4. Eq. (1) energy (×10
6) for the optical flow fields computed on the Middlebury training set. Note that Classic-C uses graduated

non-convexity (GNC), which reduces the energy, and median filtering, which increases it.

imizing Eq. (3) is related to a different median computation

û
(k+1)
i,j = median(Neighbors(k) ∪ Data) (4)

where Neighbors(k) = {û(k)
i′,j′} for (i′, j′) ∈ Ni,j and

û
(0) = u as well as

Data = {ui,j , ui,j ± λ3

λ2

, ui,j ± 2λ3

λ2

· · · , ui,j ± |Ni,j |λ3

2λ2

},

where |Ni,j | denotes the (even) number of neighbors of

(i, j). Note that the set of “data” values is balanced with

an equal number of elements on either side of the value ui,j

and that information about the data term is included through

ui,j . Repeated application of Eq. (4) converges rapidly [23].

Observe that, as λ3/λ2 increases, the weighted data val-

ues on either side of ui,j move away from the values of

Neighbors and cancel each other out. As this happens,

Eq. (4) approximates the median at the first iteration

û
(1)
i,j ≈ median(Neighbors(0) ∪ {ui,j}). (5)

Eq. (2) thus combines the original objective with an ap-

proximation to the median, the influence of which is con-

trolled by λ3/λ2. Note in practice the weight λ2 on the

coupling term is usually small or is steadily increased from

small values [34, 39]. We optimize the new objective (2) by

alternately minimizing

EO(u,v) =
∑

i,j

ρD(I1(i, j) − I2(i + ui,j , j + vi,j))

+λ[ρS(ui,j − ui+1,j) + ρS(ui,j − ui,j+1)

+ρS(vi,j − vi+1,j) + ρS(vi,j − vi,j+1)]

+λ2(||u − û||2 + ||v − v̂||2) (6)

and

EM (û, v̂) = λ2(||u − û||2 + ||v − v̂||2) (7)

+
∑

i,j

∑

(i′,j′)∈Ni,j

λ3(|ûi,j − ûi′,j′ | + |v̂i,j − v̂i′,j′ |).

Note that an alternative formulation would drop the cou-

pling term and impose the non-local term directly on u and

v. We find that optimization of the coupled set of equations

is superior in terms of EPE performance.

The alternating optimization strategy first holds û, v̂
fixed and minimizes Eq. (6) w.r.t. u,v. Then, with u,v
fixed, we minimize Eq. (7) w.r.t. û, v̂. Note that Eqs. (3) and

Avg. EPE significance p-value

Classic-C 0.298 — —

Classic-C-A 0.305 0 0.8125

Table 5. Average end-point error (EPE) on the Middlebury train-

ing set is shown for the new model with alternating optimization

(Classic-C-A).

(7) can be minimized by repeated application of Eq. (4); we

use this approach with 5 iterations. We perform 10 steps of

alternating optimizations at every pyramid level and change

λ2 logarithmically from 10−4 to 102. During the first and

second GNC stages, we set u,v to be û, v̂ after every warp-

ing step (this step helps reach solutions with lower energy

and EPE [30]). In the end, we take û, v̂ as the final flow

field estimate. The other parameters are λ = 5, λ3 = 1.

Alternatingly optimizing this new objective function

(Classic-C-A) leads to similar results as the baseline

Classic-C (Table 5). We also compare the energy of these

solutions using the new objective and find the alternat-

ing optimization produces the lowest energy solutions, as

shown in Table 6. To do so, we set both the flow field u,v
and the auxiliary flow field û, v̂ to be the same in Eq. (2).

In summary, we show that the heuristic median filter-

ing step in Classic-C can now be viewed as energy min-

imization of a new objective with a non-local term. The

explicit formulation emphasizes the value of robustly inte-

grating information over large neighborhoods and enables

the improved model described below.

6. Improved Model

By formalizing the median filtering heuristic as an ex-

plicit objective function, we can find ways to improve it.

While median filtering in a large neighborhood has advan-

tages as we have seen, it also has problems. A neighborhood

centered on a corner or thin structure is dominated by the

surround and computing the median results in oversmooth-

ing as illustrated in Figure 3(a).

Examining the non-local term suggests a solution. For a

given pixel, if we know which other pixels in the area be-

long to the same surface, we can weight them more highly.

The modification to the objective function is achieved by

introducing a weight into the non-local term [14, 15]:

∑

i,j

∑

(i′,j′)∈Ni,j

wi,j,i′,j′(|ûi,j − ûi′,j′ |+ |v̂i,j − v̂i′,j′ |), (8)

where wi,j,i′,j′ represents how likely pixel i′, j′ is to belong

to the same surface as i, j.



Venus Dimetrodon Hydrangea RubberWhale Grove2 Grove3 Urban2 Urban3

Classic-C 0.817 0.903 1.202 0.674 2.166 3.144 1.954 2.153

Classic-C w/o MF 0.886 0.945 1.299 0.725 2.315 3.513 2.234 2.712

Classic-C-A 0.784 0.889 1.139 0.666 2.064 2.976 1.922 2.049

Table 6. Eq. (2) energy (×10
6) for the computed flow fields on the Middlebury training set. The alternating optimization strategy (Classic-

C-A ) produces the lowest energy solutions.

(a) (b)

Figure 3. Median filtering over-smoothes the rifle in the “Army”

sequence, while the proposed weighted non-local term preserves

the detail. Results of (a) Classic++ (b) Classic+NL.

Of course, we do not know wi,j,i′,j′ , but can approximate

it. We draw ideas from [29, 36, 38] to define the weights ac-

cording to their spatial distance, their color-value distance,

and their occlusion state as wi,j,i′,j′ ∝

exp
{

− |i−i′|2+|j−j′|2
2σ2

1

− |I(i,j)−I(i′,j′)|2
2σ2

2

}o(i′, j′)

o(i, j)
, (9)

where the occlusion variable o(i, j) is calculated using

Eq. (22) in [29], I(i, j) is the color vector in the Lab space,

and σ1 = 7, σ2 = 7. Examples of such weights are shown

for several 15 × 15 neighborhoods in Figure 4; bright val-

ues indicate higher weights. Note the neighborhood labeled

d, corresponding to the rifle. Since pixels on the rifle are

in the minority, an unweighted median would oversmooth.

The weighted term instead robustly estimates the motion

using values on the rifle. A closely related piece of work is

[27], which uses the intervening contour to define affinities

among neighboring pixels for the local Lucas and Kanade

[24] method. However it only uses this scheme to estimate

motion for sparse points and then interpolates the dense

flow field.

We approximately solve Eq. (9) for û, v̂ as the following

weighted median problem

min
ûi,j

∑

(i′,j′)∈Ni,j∪{i,j}
wi,j,i′,j′ |ûi,j − ui′,j′ |, (10)

using the formula (3.13) in [23] for all the pixels

(Classic+NL-Full). Note if all the weights are equal, the

solution is just the median. In practice, we can adopt a fast

version (Classic+NL) without performance loss. Given a

current estimate of the flow, we detect motion boundaries

using a Sobel edge detector and dilate these edges with a

5 × 5 mask to obtain flow boundary regions. In these re-

gions we use the weighting in Eq. (9) in a 15×15 neighbor-

hood. In the non-boundary regions, we use equal weights in

a 5 × 5 neighoborhood to compute the median.

(a) (b) (c) (d) (e)

Figure 4. Neighbor weights of the proposed weighted non-local

term at different positions in the “Army” sequence.

Avg. EPE significance p-value

Classic+NL 0.221 — —

Classic+NL-Full 0.222 0 0.8203

Table 7. Average end-point error (EPE) on the Middlebury training

set is shown for the fast and full versions of the improved model.

Avg. Rank Avg. EPE

Classic++ 13.4 0.406

Classic++Gradient 15.1 0.430

Classic+NL 6.2 0.319

Classic+NL-Full 6.6 0.316

Table 8. Average end-point error (EPE) on the Middlebury test set

for the Classic++ model with two different preprocessing tech-

niques and its improved model.

Tables 7 and 8 show that the weighted non-local term

(Classic+NL) improves the accuracy on both the training

and the test sets. Note that the fine detail of the “rifle” is

preserved in Figure 3(b). At the time of publication, Clas-

sic+NL ranks 1st in both AAE and EPE in the Middlebury

evaluation and has the lowest average AAE and EPE among

all listed algorithms. The running time on the test “Ur-

ban” sequence is about 70 minutes for Classic+NL-Full

and about 16 miniutes for Classic+NL in MATLAB.

7. Conclusions

Implemented using modern practices, classical optical

flow formulations produce competitive results on the Mid-



dlebury training and test sets. To understand the “secrets”

that help such basic formulations work well, we quantita-

tively studied various aspects of flow approaches from the

literature, including their implementation details. Among

the good practices, we found that using median filtering to

denoise the flow after every warping step is key to improv-

ing accuracy, but that it increases the energy of the final re-

sult. Exploiting connections between median filtering and

L1-based denoising, we showed that algorithms relying on a

median filtering step are approximately optimizing a differ-

ent objective that regularizes flow over a large spatial neigh-

borhood. This principle enables us to design and optimize

improved models that weight the neighbors adaptively in an

extended image region. At the time of publication (March

2010), the resulting algorithm ranks 1st in both angular and

end-point errors in the Middlebury evaluation. The MAT-

LAB code is publicly available [1].

How far can the 2-frame classical methods be pushed?

Our sense is that they are likely to improve incrementally

for several years to come, but that the big gains will come

from methods that go beyond the classical formulation to

reason more explicitly about surfaces and boundaries and

how they move over time.
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