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ABSTRACT 53 

Background 54 

Hospital wastewater is a major source of antimicrobial resistance (AMR) outflow into the 55 

environment. This study uses metagenomics to study how hospital clinical activity impacts 56 

antimicrobial resistance genes (ARGs) abundances in hospital wastewater. 57 

 58 

Methods 59 

Sewage was collected over a 24-hour period from multiple wastewater collection points 60 

representing different specialties within a tertiary hospital site and simultaneously from 61 

community sewage works. High throughput shotgun sequencing was performed using Illumina 62 

HiSeq4000. ARG abundances were correlated to hospital antimicrobial usage (AMU), data on 63 

clinical activity and resistance prevalence in clinical isolates. 64 

 65 

Results 66 

Microbiota and ARG composition varied between collection points and overall ARG 67 

abundance was higher in hospital wastewater than in community influent. ARG and microbiota 68 

compositions were correlated (Procrustes analysis, P=0.014). 69 

Total antimicrobial usage was not associated with higher ARG abundance in wastewater. 70 

However, there was a small positive association between resistance genes and antimicrobial 71 

usage matched to ARG phenotype (IRR 1.11, CI 1.06 - 1.16, P<0.001). Furthermore, analysing 72 

carbapenem and vancomycin resistance separately indicated that counts of ARGs to these 73 

antimicrobials were positively associated with their increased usage (carbapenem rate ratio 74 

(RR) 1.91, 95% confidence intervals (CI) 1.01 – 3.72, P=0.07, and vancomycin RR 10.25, CI 75 

2.32 – 49.10, P<0.01). Overall, ARG abundance within hospital wastewater did not reflect 76 

resistance patterns in clinical isolates from concurrent hospital inpatients. However, for clinical 77 

isolates of the family Enterococcaceae and Staphylococcaceae, there was a positive 78 

relationship with wastewater ARG abundance (odds ratio (OR) 1.62, CI 1.33 – 2.00, P<0.001, 79 

and OR 1.65, CI 1.21 – 2.30, P=0.006 respectively). 80 

 81 

Conclusions 82 

We found that the relationship between hospital wastewater ARGs and antimicrobial usage or 83 

clinical isolate resistance varies by specific antimicrobial and bacterial family studied. One 84 

explanation we consider is that relationships observed from multiple departments within a 85 

single hospital site will be detectable only for ARGs against parenteral antimicrobials uniquely 86 
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used in the hospital setting. Our work highlights that using metagenomics to identify the full 87 

range of ARGs in hospital wastewater is a useful surveillance tool to monitor hospital ARG 88 

carriage and outflow and guide environmental policy on AMR. 89 

 90 

KEYWORDS 91 

antimicrobial resistance; metagenomics; hospital waste water; surveillance; environmental 92 

risk; Resistance dissemination; Antibiotic usage93 
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INTRODUCTION 94 

In response to the antimicrobial resistance (AMR) crisis, a challenge for the research and 95 

medical communities is understanding the flow of AMR between different environmental 96 

niches (Woolhouse et al. 2015) and deciding where to focus surveillance and interventions to 97 

inform effective policies and action (Laxminarayan et al. 2016). There is an increasing interest 98 

in the contribution of hospital wastewater to AMR in the environment. Sewage treatment does 99 

not completely eradicate antimicrobial resistance genes (ARGs) and thus ARGs can enter the 100 

food chain through water and the use of sewage sludge in agriculture (Woolhouse and Ward 101 

2013; Woolhouse et al. 2015). As a complex matrix representing human bodily waste the 102 

potential of community sewage as a surveillance tool to monitor the global epidemiology of 103 

AMR has recently been explored (Hendriksen et al. 2019; Aarestrup and Woolhouse 2020). 104 

 105 

Hospitals are epidemiologically important nodal points for concentrated antimicrobial 106 

consumption and are sources of resistant pathogens (Versporten et al. 2018). Secondary care 107 

surveillance, guided by national and international policies, is based on passive reporting of 108 

phenotypic and molecular laboratory results for specific pathogens or from screening samples 109 

on specific high risk patients (Tornimbene et al. 2018; Department of Health and Social Care 110 

2019). These methods do not represent the full impact of antimicrobial use and inpatient 111 

activity on AMR carriage within a hospital and thus risk of transmission.  Nor do they capture 112 

all pertinent ARGs. As hospital wastewater contains inpatient bodily waste we hypothesised 113 

that it could be used as a representation of hospital inpatient carriage of AMR and as such may 114 

be a useful surveillance tool. 115 

 116 

Many previous studies have identified key pathogens and resistant genes in hospital wastewater 117 

and attempts have been made to correlate resistance of specific organisms from hospital clinical 118 

isolates with hospital wastewater isolates with conflicting results (Tuméo et al. 2008; Drieux 119 

et al. 2016; Talebi et al. 2008; Yang et al. 2009; Maheshwari et al. 2016; Santoro, Romao, and 120 

Clementino 2012). There is currently a knowledge gap on how resistance in hospital 121 

wastewater quantitatively reflects clinical activity within hospitals. By applying the technique 122 

of metagenomics (Hendriksen et al. 2019) to obtain a universal view of ARG composition in 123 

hospital wastewater in this study we were able to interrogate this relationship in a multi-124 

departmental study. 125 

 126 

MATERIALS AND METHODS 127 
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Sewage collection and antibiotic residue analysis 128 

Sampling was performed in June 2017 on eight wastewater collection points (CP), representing 129 

different clinical departments, identified to capture the effluent from the majority of the 130 

Western General Hospital, Edinburgh (Supplementary Figure 1). Using composite sampling 131 

machines, 100 mL of wastewater was sampled every 15 minutes over a 24-hour period thus 132 

aiming to collect a representative sample of waste from the hospital inpatient population. 133 

Simultaneously, a 24-hour time proportional sample was collected at the inflow site to Seafield 134 

community sewage works (hereafter “Seafield”), which serves a population equivalent of 135 

760,000 from Edinburgh and the Lothians.  Samples were transported from the site on dry ice 136 

and stored at -80oC. Antibiotic residue analysis was performed on 1L of composite hospital 137 

wastewaters and 1L of domestic sewage using LC-MS/MS as previously described (Berendsen 138 

et al. 2015; Hendriksen et al. 2019). 139 

 140 

DNA extraction and analysis 141 

DNA was extracted from sewage using the QIAamp Fast DNA Stool mini kit with an optimized 142 

protocol as previously described(Knudsen et al. 2016) and sequenced on the HiSeq4000 143 

platform (Illumina) using 2x 150bp paired-end sequencing. The taxonomic origin of paired 144 

reads were  assigned using Kraken2 (Wood and Salzberg 2014) to the standard database, a 145 

database of representative bacterial genomes and a database of known vector sequences, 146 

UniVec_Core (downloaded 9th April 2019). Taxonomic assignments were summarized at the 147 

genus level using kraken-biom (Dabdoub 2019). One sample, CP2, was heavily contaminated 148 

and removed from further analysis. We used KMA version 1.2.12 to assign the paired and 149 

singleton reads to a database consisting of ResFinder reference genes (downloaded 5th of 150 

September, 2019). The following flags were used: “-mem_mode -ef -1t1 -cge -nf -shm 1 -t 1” 151 

[20]. Reads mapping to the human reference genome (GCA_000001405.15) were removed 152 

prior to submission to public sequence databases according to the protocol used in the Human 153 

Microbiome Project (Human Microbiome Project 2021; Sherry 2011). 154 

 155 

Data collection 156 

Data was collected on clinical isolates from the week surrounding the hospital wastewater 157 

sampling to represent pathogens in hospital inpatients. All types of clinical isolate were 158 

included but duplicate samples from the same patient within a 48-hour period were excluded. 159 

Antimicrobial usage was collated from weekly pharmacy issues to each ward over the 3 months 160 

prior to sampling and presented as defined daily dose per 100 occupied bed days 161 
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(DDD/100OBDs). Pharmacy issues for prescriptions for outpatient use and for theatres were 162 

excluded.  163 

 164 

Data analysis 165 

All statistical analysis and plots were produced using R version 3.6.0. The abundance of ARGs 166 

and bacterial genera were calculated as Fragments Per Kilobase of transcript per Million 167 

mapped bacterial reads (FPKM) (Munk et al. 2018) Bray-Curtis dissimilarity matrices were 168 

determined using Hellinger transformation of the FPKM. Resistance genes from the ResFinder 169 

database were grouped into clusters with 90% sequence homology. The top 50 ARGs were 170 

visualised using a heatmap and gene-wise and collection point dendrograms as previously 171 

described (Hendriksen et al. 2019). Procrustes analysis was used to test the association between 172 

the resistome and bacteriome dissimilarities. 173 

 174 

Correlation between inpatient activity and ARG abundance  175 

The source of variance in the abundance of ARGs between the collection points was 176 

investigated using a multilevel Poisson model with the dependent variable as counts of ARG 177 

reads at each collection point aggregated at the 90% homology cluster level. We used an offset 178 

term with the log of the average gene-length per cluster in the ResFinder database, multiplied 179 

by the total bacterial reads per collection point. Random effects of collection point, 70% 180 

sequence homology cluster, and observation were included in the model, the latter to model 181 

the over dispersion inherent to count data (Harrison 2014).  182 

 183 

In the main model, we accounted for co- and cross-resistance by fitting both a measure of direct 184 

selection for resistance (effect of department-level usage of antimicrobials on ARGs that confer 185 

resistance to those antimicrobials) and indirect selection (effect of total department-level AMU 186 

on ARG abundance). In a second set of three models we tested the association between 187 

resistance genes and antimicrobial usage of three specific antimicrobials of interest chosen to 188 

represent parenteral antimicrobials only used in a hospital setting (carbapenems, vancomycin) 189 

and an antimicrobial widely used in both community and hospital (amoxicillin). We use a 190 

Bonferroni correction on P values of these additional tests to account for increased risk of type 191 

I error. We used all antimicrobial resistance phenotypes suggested for any gene in a 90% 192 

homology cluster from either the ResFinder or STARAMR (National Microbiology Laboratory 193 

2021) databases. The average length of stay per department was also used to assess the role of 194 

clinical activity on sewage resistance abundance in the main model. The fixed effects structure 195 
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of the main model was further adjusted using AIC minimising methods, assessing whether any 196 

interaction effect should be included. 197 

 198 

To assess the relationship between AMR in clinical isolates and ARG abundance in hospital 199 

wastewater a binomial generalised linear mixed effects model was used including random 200 

effects for site, the class of the antimicrobial used to test the isolates, and for the species of the 201 

isolate to control for inter-species heterogeneity. Two fixed effects were estimated for the log 202 

FPKM of all resistance genes in the sewage that had the same resistance phenotype as the 203 

isolates: one for isolates that were urinary or faecal, and a second for all other isolate types, 204 

due to the different dynamics of inpatient bodily waste being represented in the wastewater 205 

system. Using separate binomial regression models, we accounted for heterogeneity between 206 

the taxonomic family of the isolates in the relationship between AMR in clinical isolates and 207 

sewage ARGs. As some families were rarely tested, the sample size was too small for this 208 

heterogeneity to be assessed in a single model. Therefore, the three most frequently isolated 209 

families were assessed (Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae), with 210 

the log FPKM of phenotypically matched resistance genes as the only model effect. A 211 

Bonferroni correction was used to adjust the P values of the effects of these models to account 212 

for multiple testing. A similar model was used to evaluate the relationship between AMU and 213 

AMR in clinical isolates. 214 

 215 

Ethics 216 

This study was conducted following approval from NHS Lothian Research and Development 217 

committee under the sponsorship of University of Edinburgh. There was no direct patient 218 

contact and therefore the study did not require ethical board approval. 219 

 220 

RESULTS 221 

The hospital departments served by the wastewater collection points differed by pattern of 222 

antimicrobial use (Table 1, S2) and resistance in the 181 clinical isolates identified in the week 223 

surrounding wastewater sampling (Figure S3).  224 

 225 

Metagenomics of wastewater 226 

An average read pair count of 38.4 million (range 35.7-39.2 million) was obtained with an 227 

average of 62% (range 52-73%) of reads allocated to bacteria from the seven hospital 228 

wastewater samples and one community sewage sample 229 
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(https://www.ebi.ac.uk/ena/data/view/PRJEB34410). An average of 0.25% of reads mapped to 230 

ARGs in the seven hospital wastewater samples versus 0.1% from Seafield (Table S1). 231 

 232 

One thousand, one hundred and fifty-four unique bacterial genera were detected across all 233 

samples (range 1151 - 1154 genera per sample, Table S2). The top nineteen genera accounted 234 

for >70% of bacterial abundance in all samples (Figure 1.D). The most predominant genera 235 

were Pseudomonas and Acinetobacter, mainly environmental species such as Pseudomonas 236 

fluorescens, Acinetobacter johnsonii, likely representing bacteria usually present in the hospital 237 

pipes. When compared with Seafield, there was a difference in diversity in the hospital samples 238 

with a higher predominance of gut associated bacteria including Faecalibacterium, 239 

Bacteroides, Bifidobacterium and Escherichia. (Figure 1.B & D).  240 

 241 

ARG abundance and composition varied across different hospital collection points and Seafield 242 

(Figures 1.A & C, Figure 2, Figures S4 & S6). Apart from the wastewater collected at CP4 243 

which represents the acute receiving unit with patients directly admitted from the community, 244 

ARG abundance from hospital wastewater was higher than ARG abundance in Seafield (Figure 245 

2, Fig S4). ARG composition was strongly correlated with bacterial genus level composition 246 

(Procrustes, p=0.014) (Supplementary Figure 5). 247 

 248 

We detected 502 different resistance genes belonging to ten different antimicrobial classes 249 

(Table S3) but over 65% of the sample resistomes were composed of the 15 most abundant 250 

genes (Figure S6), mainly belonging to the aminoglycoside and macrolide antimicrobial classes 251 

(Figure 1.C). Key ARGs of interest to infection control including blaOXA, blaIMP and genes 252 

of the vanA cluster were identified. 253 

  254 

Inpatient activity and ARG abundance 255 

No significant relationships were observed between total antimicrobial usage or length of stay 256 

and the abundance of ARGs in sewage (Fig. 3, Table S5). This result indicates there was no 257 

evidence for indirect selection or for the impact of transmission among hospital patients on 258 

ARG abundance in sewage when all resistance phenotypes were modelled. There was a 259 

significant positive effect of increased phenotypically-matched antimicrobial usage on 260 

resistance gene abundance, indicating support for a small role of direct selection (IRR 1.11, CI 261 

1.06 - 1.16, P < 0.001). AIC comparison of fixed effect structures for the model indicated that 262 

no interaction effects improved model fit.  263 
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 264 

We next analysed data on the association between carbapenem, vancomycin and amoxicillin 265 

usage and ARGs conferring resistance to these specific antimicrobials in 3 separate models 266 

(Fig 3A, Table S5). We found positive associations that were significant between vancomycin 267 

ARGs and vancomycin usage (IRR 10.25, CI 2.32 – 49.10, P < 0.001)  and showed a trend 268 

towards significance between carbapenem ARG abundance and carbapenem antimicrobial 269 

usage (IRR 1.91, CI 1.01 – 3.72, P = 0.07). No evidence for an association between amoxicillin 270 

usage and amoxicillin ARGs was identified. We omitted the observation-level random effect 271 

from vancomycin model due to singular model fits, so overdispersion was not accounted for. 272 

 273 

ARG abundance at a class level within hospital wastewater did not reflect resistance patterns 274 

in clinical isolates when all the data was analysed in one model (Fig 3B, Table S6).  There was 275 

no difference between the relationship of isolates from urine and faecal samples with ARG 276 

abundance and isolates from other sample types, e.g. skin, which we expect to enter the 277 

wastewater system at different rates via sinks and showers. We next separately modelled the 278 

three most frequently isolated taxonomic families (Fig 3, Table S6). Enterococcaceae and 279 

Staphylococcaceae had a significant positive association with the abundance of ARGs 280 

conferring resistance to the same antimicrobial class (OR: 1.62, C.I. 1.32 – 2.00, p < 0.001, and 281 

OR: 1.65, C.I. 1.21 – 2.30, p < 0.01, respectively), but there was no such relationship for 282 

resistance levels in Enterobacteriaceae. At an antimicrobial class level, clinical isolate 283 

resistance did not reflect the antimicrobial usage of that class in the preceding 3 months 284 

(Supplementary Table 4). 285 

 286 

Analysis of antibiotic residues reflected the high AMU within the hospital compared to the 287 

community with an average 12-fold increased residue concentration in hospital effluent 288 

(ranging between 4 and 13 µL-1) for the five classes measured (Supplementary Figure 7). Our 289 

residue data only represents the residue levels from the whole hospital and not individual 290 

collection points and thus could not be specifically correlated with ARG abundance.  291 

 292 

DISCUSSION   293 

This study identified that hospital AMU impacts ARG abundances in hospital effluent, with 294 

implications upstream for infection control in the hospital and downstream for AMR in the 295 

environment. Overall, the distribution of bacterial genera and ARGs in our hospital wastewater 296 
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samples and domestic sewage sample is similar to previously described sewage composition 297 

in European regions (Hendriksen et al. 2019; Buelow et al. 2018).  298 

 299 

There was a significant positive relationship between inpatient department-level AMU and the 300 

abundance of antimicrobial resistance phenotype matched ARGs when all data was considered 301 

together. No relationship was found for total department AMU and ARG abundance. This 302 

supports a role of direct selection from antimicrobial usage in overall patterns of ARGs in 303 

hospital waste water, but not for indirect selection. Previous studies have found a relationship 304 

at a country level between antimicrobial residues and ARG abundance in sewage from the 305 

community (Hendriksen et al. 2019). Indeed, our data shows that the hospital antimicrobial 306 

residues are within the minimum selection concentration range for Escherichia coli and 307 

ciprofloxacin resistance (Sandegren 2014), although recent work suggests that higher 308 

antimicrobial concentrations are needed to select for resistance in microbial communities such 309 

as sewage (Klümper et al. 2019).  310 

 311 

The association between phenotype-matched ARGs and AMU was weak. Sewage captures 312 

resistance acquired in both the community and in the hospital, but drivers of hospital- and 313 

community-acquired resistance differ. For example, amoxicillin is used in both the community 314 

and hospitals, and resistance is widespread in the UK (60% hospital isolates resistant to 315 

amoxicillin or ampicillin in 2019) (European Centre for Disease Prevention and Control 2020), 316 

suggesting patients commonly arrive in hospital with carriage of amoxicillin resistance genes. 317 

The acquisition of vancomycin or carbapenem resistance, on the other hand, is associated with 318 

prior use of these antibiotics in hospital (Vasilakopoulou et al. 2020; Zhao et al. 2020), and 319 

these antibiotics are solely used parenterally in a hospital setting. Factors affecting within-320 

hospital selection for and transmission of resistance, such as hospital antimicrobial usage, may 321 

play a stronger role in patterns of ARGs of vancomycin and carbapenems in hospital waste 322 

water than the ubiquitously used antibiotic amoxicillin. In support of this theory, we found a 323 

positive relationship between AMU and waste water ARGs for vancomycin and carbapenems, 324 

but not amoxicillin. Where a particular ward or department consumes high levels of 325 

carbapenem or vancomycin then this work demonstrates that there could be high levels of 326 

undetected faecal or urinary carriage of carbapenem and vancomycin resistance genes. This 327 

could warrant more stringent isolation of these patients, in fitting with concerns about 328 

“unsampled transmission chains” in carbapenem-resistant Enterobacteriaceae (Cerqueira et al. 329 

2017). In addition, if the 70% renal excretion of unchanged meropenem (Mouton and van den 330 
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Anker 1995) selects for resistant organisms in waste water, then procedures for treatment of 331 

the bodily waste of patients on meropenem may need to be reconsidered. 332 

 333 

Length of stay did not impact ARG abundance in this dataset, despite prolonged duration of 334 

inpatient stay being a risk factor for carriage and infection with resistant microorganisms in 335 

previous studies (Safdar and Maki 2002; Gupta et al. 2011; Founou, Founou, and Essack 2018). 336 

This appears not to support the theory of transmission of antimicrobial resistant organisms 337 

amongst patients and their local environment, including from the hospital water system (Kotay 338 

et al. 2017), during their inpatient stay. However, as these data were aggregated at the 339 

department-level there were few observations of length of stay, and further research with a 340 

greater sample size is needed to investigate this relationship.  341 

 342 

Metagenomics can capture ARGs carried by a wide variety of bacterial genera, which is of 343 

benefit as the majority of ARGs are carried by non-pathogenic commensal bacteria (Sommer, 344 

Dantas, and Church 2009). Although short-read sequencing cannot conclusively resolve 345 

associations between bacteria and ARGs, in our results ARGs are highly correlated with the 346 

bacteria identified at that collection point (Supplementary Fig 7). This can explain why levels 347 

of ARGs for aminoglycosides, tetracyclines and macrolides are higher than levels of 348 

phenotypic resistance in clinical isolates; the composition of bacterial genera within wastewater 349 

may have intrinsic or high levels of resistance to these antimicrobial classes. The potential for 350 

transfer of ARGs within the sewage network onto and between human pathogens has been 351 

demonstrated indicating the benefit of obtaining a universal view of ARGs (Ludden et al. 352 

2017). 353 

 354 

No quantitative relationship was observed between clinical isolates and ARG abundance in 355 

hospital wastewater when all data was considered together. In addition there was no 356 

relationship between AMU in the previous three months and resistance in clinical isolates.  This 357 

may be because clinical isolates are not representative enough of carriage of resistance in the 358 

inpatient population as there is a low rate of culture positivity. However, when examined 359 

separately, there was a positive relationship between resistance in Enterococcaceae or 360 

Staphylococcaceae, but not Enterobactericeae, and hospital wastewater ARG abundance. The 361 

literature on these relationships is divided (Tuméo et al. 2008; Talebi et al. 2008; Yang et al. 362 

2009; Ory et al. 2016; Hutinel et al. 2019; Zarfel et al. 2013) and future work on antimicrobial 363 

usage, specific organisms, isolate types and ARG abundance in sewage potentially over a 364 
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longer time period is required to interrogate these relationships further  (Mladenovic-Antic et 365 

al. 2016; Rogues et al. 2007).  366 

 367 

There was a higher abundance of ARGs in all hospital wastewater samples, bar one (CP4) 368 

which represents acute admissions unit, compared to Seafield. The lower abundance in Seafield 369 

could be due to dilution, and a decline in the relative abundance of AMR-gene carrying human 370 

commensal bacteria in the environment of sewerage system (Pehrsson et al. 2016), or possibly 371 

lower exposure to antimicrobial residues in community waste water. Associations between 372 

antimicrobial residues in community waste water and ARGs have been found (Hendriksen et 373 

al. 2019; Ju et al. 2019), and hospital waste water has been previously shown to have higher 374 

antimicrobial residue levels (Booth, Aga, and Wester 2020). Some studies comparing sewage 375 

influent in paired communities with and without a hospital have found minimal effect of a 376 

hospital on community influent (Gouliouris et al. 2019; Buelow et al. 2018).  In other work, 377 

comparing resistance in hospital and community waste water has indicated some associations 378 

(Ludden et al. 2017; Rogues et al. 2007; Pehrsson et al. 2016), although not all studies making 379 

this comparison have found evidence for a relationship (Paulshus et al. 2019).  380 

 381 

Concern has been raised about the impact of hospital wastewater on urban influent and effluent 382 

and specific water treatments for hospital wastewater have been called for. This work 383 

highlights that physicians could consider prescribing environmentally degradable 384 

antimicrobials such as beta-lactams over antimicrobials which have persistent residues across 385 

environmental niches e.g. tetracycline to minimise the impact of antimicrobials on the 386 

environmental resistome (Wellington et al. 2013). The ultimate effect of environmental ARGs 387 

on human disease is an ongoing important research question (Bürgmann et al. 2018). 388 

 389 

The use of metagenomics is a key strength of this study, allowing quantification of resistance 390 

genes to a wide range of antibiotics and retrospective investigation if new resistance genes 391 

emerge. The 24-hour composite samplers provide a representative sample of the hospital (Chau 392 

et al. 2020), although hospital staff, outpatients and visitors will have also contributed to the 393 

effluent. In addition, some patients will have moved around the hospital during the sampling 394 

period. Although this study is limited to one hospital site at one time point the variation in 395 

antimicrobial use and inpatient characteristics in each department has allowed us to treat them 396 

as discrete treatment centres and draw conclusions about factors affecting ARG abundance.  397 

 398 
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There is little doubt that hospital resistant pathogens can be abundant in wastewater systems 399 

(Gouliouris et al. 2019; Ludden et al. 2017; Maheshwari et al. 2016).  However, using 400 

metagenomic sequencing we show that resistance in hospital wastewater may quantitatively 401 

reflect clinical isolate resistance for some bacterial species (Enterococcaceae and 402 

Staphylococcaceae), although not all. As a surveillance tool this novel technique can represent 403 

the burden of AMR carriage in hospital inpatients and hospital pipes for specific resistance 404 

genes relating to important parenteral antimicrobials such as carbapenems and vancomycin. It 405 

may also aid in identification of emerging patterns of ARG abundance and novel ARGs, and 406 

how they may relate to changing patterns of transmission, infection control policies and 407 

antimicrobial usage. Further longitudinal work evaluating the wastewater from multiple 408 

hospital sites is needed to establish AMU/ARG relationships, optimal collection points and 409 

sampling methods to be able to develop this as a surveillance technique. 410 

 411 

In conclusion, we show in a multi-departmental study that the relationships between ARG 412 

abundance in hospital wastewater and hospital AMU or clinical resistance levels may vary by 413 

antimicrobial type and bacterial species. Our study emphasises in a novel way the ARG burden 414 

from the high antimicrobial consuming and high resistance carriage environment of the hospital 415 

and that promoting active antimicrobial stewardship, particularly of key parenteral 416 

antimicrobials such as carbapenems and vancomycin, would impact the burden of 417 

environmental AMR. Hospital wastewater is an important source of AMR into the 418 

environment; this should be considered in environmental policy to reduce the flow of AMR 419 

between different environmental reservoirs.  420 
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 436 

STATEMENT OF CONTRIBUTION TO THE FIELD 437 

Sewage is an attractive medium for surveillance of antimicrobial resistance (AMR). In this 438 

study we interrogate the contribution of hospitals, as focal points of antimicrobial usage and 439 

bacterial infections, to resistance in urban waste water. Previous studies have compared 440 

resistance in hospital patients and their sewage effluent, but focus on only a single (or a few) 441 

bacterial species and antimicrobials, therefore insufficiently addressing the diverse 442 

microbiome(s) and resistome(s) in hospitals and wastewater. 443 

 444 

In this study, we apply metagenomics to hospital wastewater and investigate the relationship 445 

between the abundance of antimicrobial resistance genes (ARGs) in the sewage and clinical 446 

activity. Clinical activity included antimicrobial usage and resistance in disease-causing 447 

bacteria cultured from inpatients. This innovative analysis of sewage allows quantification of 448 

both the full range of ARGs to all antimicrobials and specific ARGs of clinical interest. 449 

 450 

We demonstrate variation between hospital departments in the abundance in ARGs in the 451 
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sewage which reflected differences in inpatients’ resistant bacteria and antimicrobial usage. 452 

Furthermore we show that the relationship between clinical activity and ARGs in wastewater 453 

vary by resistance type and bacterial species. We suggest that detection of these relationships 454 

is driven by ARGs to antibiotics only used in the hospital setting. 455 

 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

  464 
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 680 

Tables 681 

Collection 

Point  
Specialties  

No. of 

wards  

No. of 

pts  

Average 

length 

of stay 

in days 

(s.d.)  

Average 

age in 

years 

(s.d.)  

DDD 

per 100 

OBDs  

No. of 

clinical 

isolates  

CP1 Cardiology, 

Urology 

3 46 4.9 (0.8) 62.6 

(2.2) 

123.7 19 

CP3 Oncology, 

Haematology 

7 67 3.7 (2.7) 62.1 

(1.0) 

200.5 27 

CP4 Acute 

receiving unit 

5 35 0.9 (0.7) 70.5 

(2.3) 

325.8 45 

CP5 Neuroscience 3 59 3.3 (1.1) 53.5 

(2.1) 

73.5 8 

CP6 Intensive 

care, 

Surgery, 

Medicine 

3 70 7.6 (2.5) 66.6 

(1.7) 

223.8 17 

CP7 Infectious 

Diseases, 

Surgery, 

Medicine 

6 105 6.1 (3.2) 63.5 

(0.8) 

148.1 20 

CP8 Respiratory, 

Medicine for 

the Elderly, 

Urology, 

Surgical 

High 

Dependency 

6 133 12.8 

(9.0) 

69.0 

(1.0) 

116.4 25 

Table 1. Demographics of hospital collection points. Standard deviation only represents 682 

standard deviation of the average age and length of stay per week. Antimicrobial usage from 683 

previous three months does not include antibiotics issued for outpatient prescriptions or in 684 
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theatres. Clinical isolates are from inpatients in the week surrounding wastewater collection. 685 

Abbreviations: pts=patients, DDD=defined daily dose, OBDs=occupied bed days, 686 

s.d.=standard deviation.   687 

  688 
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Figure legends 689 

Figure 1. Hospital wastewater and community sewage resistome and microbiome 690 

abundance composition. A) Principal coordinate analyses of resistome based on Bray-Curtis 691 

dissimilarity. The percentage of variation explained is noted on the axis labels. B) Principal 692 

coordinate analyses for the microbiome. C) Relative abundance of ARGs by antimicrobial 693 

class. D) Relative abundance of the 19 most abundant bacterial genera in the wastewater and 694 

sewage microbiome. Abbreviations: CP=collection point within hospital, 695 

Seafield=community sewage works, TB=tuberculosis. 696 

Figure 2. Heat map of 50 most abundant antimicrobial resistance genes (ARGs). 697 

Relative abundance of ARGs (FPKM) were log transformed and both ARGs and collection 698 

points were clustered using complete-linkage clustering. For ARGs clustering was based on 699 

Pearson correlation coefficients, for collection points clustering was based on the BC- 700 

dissimilarity matrix (Figure 1) which uses all genes. 701 

Figure 3. Generalised linear mixed effects models for the relationship between 702 

antimicrobial resistance gene abundance, hospital department antibiotic consumption 703 

rates, and hospital department rates of resistance in clinical isolates. 704 

A) Effect of antimicrobial usage (AMU) measured in defined daily dose per 100 occupied 705 

bed days (DDD/100 OBDs) on antimicrobial resistance gene (ARG) abundance A.1.) The 706 

main model, with a single coefficient for all resistance phenotypes. A.2.) Separate models 707 

with coefficients for each antimicrobial. B) Association between antimicrobial resistance 708 

gene abundance in the sewage and clinical resistance rates. B.1.) Main model, with a single 709 

coefficient for all clinical isolate taxonomic family, stratified by sample type - urine or faecal 710 

samples (All: Urine), and for resistance genes and any other sample source (All: Other). B.2.) 711 

Separate models with coefficients for each isolate taxonomic family. 712 
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