
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 2006

SecRout: A Secure Routing Protocol for Sensor Networks SecRout: A Secure Routing Protocol for Sensor Networks

Jian Yin

Sanjay Kumar Madria
Missouri University of Science and Technology, madrias@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
J. Yin and S. K. Madria, "SecRout: A Secure Routing Protocol for Sensor Networks," Proceedings of the
20th International Conference on Advanced Information Networking and Applications - Volume 1
(AINA'06), Institute of Electrical and Electronics Engineers (IEEE), Jan 2006.
The definitive version is available at https://doi.org/10.1109/AINA.2006.297

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F276&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/AINA.2006.297
mailto:scholarsmine@mst.edu

SecRout: A Secure Routing Protocol for Sensor Networks

Jian Yin Sanjay Madria
Department of Computer Science, University of Missouri-Rolla, MO 65401, USA

{jian, madrias}@umr.edu

Abstract
In this paper, we present a Secure Routing

Protocol for Sensor Networks (SecRout) to safeguard
sensor networks under different types of attacks. The
SecRout protocol uses the symmetric cryptography to
secure messages, and uses a small cache in sensor
nodes to record the partial routing path (previous and
next nodes) to the destination. It guarantees that the
destination will be able to identify and discard the
tampered messages and ensure that the messages
received are not tampered. Comparing the
performance with non-secure routing protocol AODV
[1] (Ad hoc on Demand Distance Vector Routing), the
SecRout protocol only has a small byte overhead (less
than 6%), but packet delivery ratio is almost same as
AODV and packet latency is better than AODV after
the route discovery.

Keywords: Routing, Security, Sensor Networks

1. Introduction

For many sensor network applications, security is
one of the most important aspects [2,3]. Secure routing
protocols in sensor networks present challenges due to
resource limitations, the ad hoc nature, and no
centrally administered secure routers. An existing
route could be broken down or a new route could be
prevented from being established because of the
attacks [4-6]. There are several examples of attacks
against routing in sensor networks. For instance, the
routing packet is dropped or tampered; the attacker
inserts spurious messages in the sensor network.

In this paper, we propose a Secure Routing
Protocol for Sensor Networks (SecRout) to safeguard
sensor networks using the two-level architecture. The
sensor network is divided into clusters with one cluster
head for each cluster. The nodes in the cluster send the
data to the cluster head instead of sending data directly
to the sink node (the destination node). Then, the
cluster head aggregates the data from the sensor nodes
in the cluster and sends it to the sink node. The two-
level architecture can greatly lower the message
overhead. It can greatly save the energy, and decrease
the usage of memory and bandwidth.

The SecRout protocol guarantees that the sink
node will be able to identify and discard the tampered
messages and ensure that the accepted messages are
not tempered with. The asymmetric cryptography
algorithms [7-9] for cryptography and authentication
are not suitable for sensor networks due to the large
computation and communication overhead. The
SecRout protocol uses symmetric cryptography to
secure the messages, and uses a small cache in sensor
nodes to record the partial routing path (previous and
next nodes) to the sink node. Due to the frequent
communications in the cluster, we use the cluster key
in the cluster to secure the messages. The cluster head
uses the preloaded key to secure aggregated messages
to send them to the sink node.

In the remainder of the paper, the detail protocol
description is given in Section 2. Section 3 describes
security analysis. Section 4 provides performance
evaluation of the SecRout protocol. Section 5
addresses the related works. We conclude in Section 6.

2. Secure Routing Protocol

In the proposed SecRout protocol, we assume that
every node has a unique identity (ID) and a preloaded
key [4]. The network is divided into clusters after self-
organization [10] and each cluster has a cluster head,
which knows the ID of the sensor node in its cluster.
The sensor node knows the ID of its cluster head. The
sink node knows the topology of the sensor network
after self-organization. We assume that the sink node
is a super node, which has more power and memory. It
stores a table containing (ID, Key) pairs of all the
sensor nodes. In the proposed SecRout protocol, we
have one sink node, which is trusted. All other sensor
nodes can be compromised.

We build the secure route from the source node to
the sink node using SecRout. We guarantee that a
packet reaches the sink node even if malicious nodes
exist on the route. It guarantees that the message is
originated from the authenticated source node and is
not tampered on the route. In our secure route
discovery, the malicious node on the route can be
detected. Therefore, the route created using our route
discovery protocol is secure. The SecRout protocol has
the following four features:

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

1) The routing packet and data packet are very small
because they only include the partial path information.
We do not use the source routing because in source
routing the identities of the traversed intermediate
nodes are accumulated in the route request [11].
2) We create the route first, and then we forward the
data to the sink node along the route. We do not flood
the data packet to the sink node because the data
packet has much bigger size than the routing packet.
3) It uses the two-level architecture, where the cluster
head aggregates the data, then sends it to the sink node
along the route. It lowers the communication overhead.
4) It only uses high efficient symmetric cryptographic
operations to secure messages.

Table 1 provides the notation description which
will be used in this paper.

Table 1. Notation description
Notation Description

A, B Principles, such as sensor nodes
M1|M2 The concatenation of messages M1 and M2

KA The secret key held by A
MAC(K,M) The message authentication code of

message M using a symmetric key K [12]
EK(M) Encryption of message M with key K [13]

NA A nonce generated by node A, which is a
random number

IDA The identity of node A

2.1. Secure Route Discovery

The source node initiates the route discovery
process through sending the route request (RREQ) to
the sink node. When the sink node receives the RREQ,
it creates the route reply (RREP) to the source node.
After the route discovery, every node along the route
has established the appropriate routing table.

2.1.1. Secure Route Request. The Source node
initiates the route discovery by broadcasting the RREQ
to its neighbors, which is constructed as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)|||,(

||||

sin

sin

sourceRREQksourcesource

sourceRREQksource

NIDIDIDKMAC

NIDIDID

Where IDRREQ is a random number.
The intermediate node only accepts the first

RREQ according to IDRREQ. The routing table is
updated through adding the ID of the previous two
hops, IDsource, and IDRREQ. Then, it updates the RREQ.
It adds its ID to the RREQ which is directly from the
source node. Or it replaces IDthis, IDpre embedded in
the RREQ with its previous and current ID if the
RREQ is from other nodes. Finally, it broadcasts the
updated RREQ, which is constructed as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)|||,(

||||||

sin

sin

sourceRREQksourcesource

sourceRREQksourceprethis

NIDIDIDKMAC
NIDIDIDIDID

Where IDpre and IDthis are the IDs of previous and
current node.

When the sink node receives the RREQ, it gets the
key of the source node from the (ID, Key) pair table,
which is used to verify the MAC. It only accepts the
first RREQ with the valid MAC according to the
source node and IDRREQ. Then it stores IDsource, IDRREQ
and previous two hops in the routing table.

2.1.2. Secure Route Reply. When the sink node
accepts the RREQ, it constructs the RREP as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)|||,(

|||||||

sinsin

sinsin

kRREQksourcesource

kRREQksourcenextthispre

NIDIDIDKMAC

NIDIDIDIDIDID

Where IDnext is the ID of the next node. Then it
broadcasts it.

The intermediate node with the same ID as the
IDpre embedded in the RREP updates the IDpre, IDthis
and IDnext in the RREP with the IDs of its previous,
current, and next nodes. Then it broadcasts the updated
RREP packet. Simultaneously it updates its routing
table to add IDs of the next two hops. If it cannot get
acknowledge from its next hop within the specified
time, the previous node may be a malicious node. It
drops any other RREQs during the next route
discovery. If it detects the RREP broadcasted by its
previous hop with the wrong IDpre since it stores two
previous hops in its routing table, it blocks its previous
hop which may be a malicious node.

The source node verifies the MAC after it receives
the RREP. If the verification succeeds, it inserts the
IDs of the next two hops on the route to its routing
table. After the route discovery, the intermediate node
has the routing table as shown in Table 2.

Table 2. Routing table
Source Node Previous Two Hops Next Two Hops

IDsource1 IDpre2, IDpre1 IDnext1, IDnext2
IDsource2 IDpre2, IDpre1 IDnext1, IDnext2

… … …
IDsourceN IDpre2, IDpre1 IDnext1, IDnext2

2.1.3. Secure Route Maintenance. If a sensor node
has no route in its routing table when it starts to send
the data, it initiates the route discovery. If the source
node gets the error message after it sends data or
routing packet, or it is out of the specified time, it
triggers a new route discovery.

2.2. Secure Data Forwarding

The SecRout protocol is based on the two-level
architecture. The cluster heads are at the higher level,
and the other nodes are at the lower level. The cluster
head aggregates the data from the nodes in its cluster.
Then it sends it to the sink node. We use the cluster

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

key to provide the secure communication in the
cluster. The cluster key can be established during the
self-organization [4]. We use the preloaded key to
secure the message which is sent to the sink node.

2.2.1. Secure Data Forwarding in the Cluster. A
sensor node sends the data packet to its cluster head
using the cluster key, which is constructed as follows:

{ })](|,[|)(| dataEIDCKMACdataEID CKCK
Where ID is the ID of the cluster head, and CK is the
cluster key shared by the nodes within the cluster. The
node with the same ID as the ID embedded in the data
packet such as the cluster head verifies the MAC. If the
verification succeeds, it decrypts the data using the
cluster key. Then it aggregates the data from the
sensor nodes in the cluster, and constructs the data
packet which will be sent to the sink node.

2.2.2. Secure Data Forwarding among the Clusters.
The cluster head becomes the source node after it
aggregates the data. If there is a route in the routing
table, it constructs the following data packet:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)](|||,[

|)(|||||

sin

sin

dataEQIDIDKMAC

dataEQIDIDIDID

source

source

KIDksourcesource

KIDksourcenextthis

Where QID is the Query ID from the sink node, which
is a random number. Then it broadcasts it.

The intermediate node with the same ID as the
IDnext embedded in the packet will rebroadcast the
updated packet, where the IDthis and IDnext are replaced
by its ID and the ID of the next hop in the routing
table. Other intermediate nodes drop the packet.

If the source node can not receive the packet again
that the next hop rebroadcasts, it triggers a new route
discovery. If the intermediate node cannot get the
packet broadcasted by the next hop within a certain
time, it reports the error message to the source node.
Simultaneously it adds the next hop in its blacklist. It
will not accept the RREP from the node in its blacklist.

After the sink node receives the packet, it verifies
the MAC using the key of the source node from the
{ID, Key) pair table. If the verification succeeds, it
gets the result by decrypting the encrypted data.

2.2.3. Further Data Verification. After the sink node
gets the data packet, two operations need to be
executed: 1) the sink node compares the replies from
other cluster heads which are residing the neighboring
clusters of the source node; 2) the sink node will
compare the replies with the history record.

If the data packet is abnormal, the sink node must
verify it by sending the further request query to the
nodes in the cluster as shown in Figure 1. They
broadcast the result of the request query to the sink
node, which is constructed as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)](|||,[

|)(|||

sin

sin

dataEQIDIDKMAC

dataEQIDID

source

source

KIDksourcesource

KIDksource

The sink node continues the further analysis after it
receives the further result from these nodes.

source node
sink node

malicious node
normal node

VerifyReqQ

VerifyRepQ

Figure 1. Reply verification

2.3. Secure Query Dissemination

The sink node wants to get the information from a
particular area or from the whole sensor network.
According to these two scenarios, the request query
(reqQ) is respectively sent to a particular area or the
whole sensor network.

2.3.1. Query a Particular Area. The sink node
checks its routing table whether the route to the cluster
head of that area exists. If yes, it sends the reqQ
packet to the cluster head of that area, which is
constructed as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)](|||,[

|)(|||||

sin

sin

reqQEQIDIDKMAC

reqQEQIDIDIDID

source

source

KIDsourceksource

KIDsourcekprethis

 Otherwise, it broadcasts the reqQ packet to the
cluster head, which is constructed as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)](|||,[

|)(|||

sin

sin

reqQEQIDIDKMAC

reqQEQIDID

source

source

KIDsourceksource

KIDsourcek

 When the cluster head receives the query request
packet, it verifies the MAC. If the verification
succeeds, it decrypts the reqQ using its secret key.
Then it sends the reqQ to the nodes in that cluster
using its cluster key, which is constructed as follows:

{ })](|,[|)(| reqQEIDCKMACreqQEID GKCK
Where ID is the ID of the cluster head, and CK is the
cluster key. The nodes in the cluster receive reqQ after
they decrypt the packet using the cluster key.

2.3.2. Query the Whole Sensor Network. The sink
node broadcasts the plaintext reqQ, which can be
eavesdropped, modified or dropped by the malicious
node. However, the reqQ can reach any sensor node
even if a malicious node drops it because of broadcast.
The sensor nodes get the query result according to the
reqQ. The query result is the most important. In our
approach, either the sink node gets the correct
information or it detects that the tampered query reply.
The query reply ReplyQ is constructed as follows:

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)](||||,[

|)(||||||

sin

sin

dataEreqQQIDIDKMAC

dataEreqQQIDIDIDID

source

source

KIDksourcesource

KIDksourcenextthis

Then the sensor node applies the same technique as
data forwarding process. But unlike data forwarding,
the query reply includes the reqQ, which is also
authenticated using MAC. If a malicious node modifies
the reqQ, the sink node can verify it using MAC.

3. Security Analysis

We divide the attacks into two categories
according to the compromised nodes. First, the source
node is a normal node, but the intermediate node is a
malicious node; the second, the source node is a
malicious node. If the intermediate node is a malicious
node, it can perform the following three actions: 1)
Broadcast; 2) Drop; 3) Modify. (See Figure 2)

source node
sink node

NM
malicious node
normal node

Figure 2. Sensor networks embedded
malicious nodes

3.1. Intermediate Node Broadcasts Messages

In the RREQ process, the intermediate node
broadcasts the updated RREQ and creates the routing
table. The malicious node (Node M) may have three
choices to attack this process: Case 1, it updates the
RREQ by inserting the wrong ID of the current node;
Case 2, it does not create the routing table, or it creates
it with the wrong information; Case 3, it updates the
RREQ by inserting the wrong ID of the previous node.
Case 1: The next hop (Node N) records the wrong ID
of the previous node in its routing table. When the
RREP reaches Node N, it is updated using the
tampered ID of the previous node. Other nodes drop
this RREP since their ID does not match the tampered
ID. The node N detects that its previous hop is a
malicious node since it cannot hear its rebroadcast.
Then it refuses to broadcast other RREQs and the sink
node selects other routes during next route discovery.
Case 2: When the RREP packet reaches Node M, it
broadcasts it with a wrong ID of the previous node
since it has incorrect information in its routing table.
Node N can detect the tampered RREP broadcasted by
Node M since its routing table stores two previous
hops. It blacklists Node M.
Case 3: If Node M broadcasts the RREQ with the
wrong ID of its previous node, the previous node can
detect it through comparing its ID with the ID of the
previous node embedded in the RREQ. It blacklists the

malicious node M and informs the source node. The
source node blocks the malicious node M. It triggers
another route discovery with the RREQ as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)||||,(

|||||

sin

sin

sourceRREQksourceMsource

sourceRREQksourceM

NIDIDIDIDKMAC
NIDIDIDID

If the malicious node M receives the RREQ, it
broadcasts the updated RREQ as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

)||||,(

|||||||

sin

sin

sourceRREQksourceMsource

sourceRREQksourceMprethis

NIDIDIDIDKMAC
NIDIDIDIDIDID

Its neighbors ignore it since the IDM is the same as the
IDthis embedded in the RREQ. If Node M tampers IDthis
and rebroadcasts it, it’s similar to Case 1 of the RREQ
process. If Node M tampers IDM, the sink node can
detect it when it verifies the MAC.

In the RREP process, a malicious node (Node M)
broadcasts a tampered ID of the previous node, the
current node or the next node. This is the same as case
2 in the RREQ process. The next hop of Node M,
Node N, can detect it.

In the data forwarding process, if the node along
the route tampers IDnext, other nodes drop it since their
IDs cannot match the IDnext embedded in the data
forwarding packet. The sender can detect the tampered
IDnext since every node records its next two hops. It
blacklists the next hop as the malicious node and
reports it to the source node.

3.2. Intermediate Node Drops Messages

In the route discovery, if a malicious node drops
the RREQ packet, it blocks itself. The sink node can
receive the RREQ packet through other routes. If the
malicious node (Node M) drops the RREP packet, the
next hop (Node N) can detect it since it cannot receive
the packet again. In a data forwarding process, if a
malicious node drops the data packet, the sender can
detect it since it can not get acknowledgement from
the next hop. It will inform it to the source node.

3.3. Intermediate Node Modifies Messages

In the route discovery, if a malicious node
modifies the RREQ core content, such as IDsource,
IDsink, IDRREQ, or Nsource, the sink node can detect it
through verifying the MAC. It drops the corrupted
RREQ packet, and receives it from other routes. If a
malicious node modifies the RREP core content, such
as sourceID , kIDsin or RREQID , the source node can
detect it through the MAC. In the data forwarding, we
use the same solution as the case of the modified
RREQ core content through verifying the MAC. In the
query dissemination in the whole sensor network, the
intermediate nodes can be compromised as Figure 3.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

source node
sink node

malicious node
normal node

ChangedReqQ reqQ reqQ

replyQ replyQ replyQ

Figure 3. Query dissemination
The intermediate malicious node modifies the request
query (reqQ) and broadcasts the changed request
query (ChangedReqQ). The other sensor node receives
the ChangedReqQ, and gets the query result which is
packed up in the reply Query (replyQ). The query
result contains the wrong information since the reqQ is
tampered. The sink node receives the replyQ, and gets
the reqQ from the replyQ packet. Here, the reqQ
actually is the ChangedReqQ. The sink node also can
get the correct reqQ according to the QID. Then, it
compares the correct reqQ with ChangedReqQ. If they
match, the sink node can trust the query result from
the reply packet. Otherwise, it drops it.

3.4. Source Node is a Malicious Node

If the source node is a malicious node, it tries to
send abnormal messages to the sink node. The sink
node can detect this after it compares the data with the
record in the history and the neighboring node’s
report. Then it sends the further request to the nodes in
the cluster, and waits for the replies from these nodes
for the further analysis.

4. Performance Evaluation

We use the NS2 [14] to evaluate the performance of
the SecRout. In our simulation study, we use one
source-destination pair. The source node sends a
Constant Bit Rate (CBR) flow of 50 data packets per
second. Each data packet is 50 bytes in size. We
measure the performance using the following metrics
[9]:
• Packet Delivery Ratio: The total number of packets

received is divided by the total number of
application–level packets originated.

• Byte Overhead: The total number of overhead bytes
transmitted.

• Packet Latency: The elapsed time between the
application layer passing a packet to the routing
layer and that packet first being received at the
destination.

The packet delivery ratios for SecRout and AODV
are shown in Figure 4. From Figure 4, we observe that
at the beginning the packet delivery ratio for SecRout
is lower than that for AODV. This is because AODV
builds the route faster than SecRout. But after SecRout

creates the route to the sink node, the packet delivery
rate is very close to AODV.

Packet Delivery Rate

0
0.2
0.4
0.6
0.8
1

1.2

0 50 100 150 200 250

Time (s)

Pa
ck

et
 D

el
iv

er
y

R
at

e

SecRout

AODV

Figure 4. Packet delivery rate
Byte overhead for SecRout and AODV is shown in

Figure 5. From Figure 5, we observe that at the
beginning SecRout has less byte overhead than AODV.
This is because AODV build the route faster, and then
sends data packets faster. Since data packet has bigger
size than the routing packet, SecRout has less byte
overhead when it is still doing the route discovery
while AODV has already sent the data packets. But on
the average, SecRout is a little more byte overhead
than AODV (less than 6%) since SecRout needs the
security parameters, which are embedded in the data
packets as well as in the route discovery packets.

Byte Overhead

0

2000000

4000000

6000000

8000000

10000000

0 50 100 150 200 250

Time (s)

B
yt

e
O

ve
rh

ea
d

SecRout

AODV

Figure 5. Byte overhead
Packet latency for SecRout and AODV is shown in

Figure 6. From Figure 6, at the beginning SecRout has
higher packet latency than AODV since AODV can
build the route faster and therefore data can be sent
faster. However, after SecRout builds the route,
SecRout performs better.

Packet Latency

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250

Time (s)

Pa
ck

et
 L

at
en

cy
 (s

)

SecRout

AODV

Figure 6. Packet latency

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

5. Related work

Perrig et al. [2] presented two security protocols,
SNEP and μTESLA, for sensor networks using
symmetric schemes. This paper only considers peer to
peer architecture, has not considered the sensor
network as a hierarchical structure. Failure of the
nodes has not been considered in this paper. Yi et al.
[15] proposed a security-aware routing protocol (SAR)
for wireless ad hoc networks. In this protocol, every
node is set by one security level. The routing packet
with the security parameters will make routing
decisions according to the security parameters and the
security level of the node. Papadimitratos and Haas
[11] proposed a secure routing protocol (SRP) in
MANET. The route request packet is composed of SRP
header in addition to the basic routing protocol packet
and IP header. This routing discovery protocol can
provide the correct connectivity information despite
some compromised nodes in ad hoc networks. Hu et
al. [9] proposed a secure efficient ad hoc distance
vector routing protocol (SEAD) based on the design of
the destination-Sequenced Distance-Vector routing
protocol (DSDV). In this protocol, efficient one-way
hash functions are used. �

6. Conclusions

In this paper, we proposed the secure routing
protocol for sensor networks (SecRout). The SecRout
can guarantee that the sink node gets the correct query
result from the sensor network. In the SecRout
protocol, only high efficient symmetric cryptography
is used. The two-level architecture is used, which
dramatically lowers message overhead. Within the
cluster, we secure messages using the cluster key.
Among clusters, we encrypt the message using the
shared key. In this paper, we also gave the security
analysis for our protocol. We analyzed the different
kinds of attacks, which may present in sensor
networks. Our protocol is robust in presence of these
attacks.

7. References

[1] C.E. Perkins and E.M. Royer, “Ad hoc On-Demand
Distance Vector Routing”, Proceedings of the 2nd
IEEE Workshop on Mobile Computing Systems and
Applications, New Orleans, LA, Feb 1999, pp. 90-100.

[2] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D.
Tygar, “SPINS: Security Protocols For Sensor
Networks”, In Proceedings of Mobicom, 2001

[3] C. Karlof and D. Wagner, “Secure Routing in Wireless
Sensor Networks: Attacks and Countermeasures”, First
IEEE International Workshop on Sensor Network
Protocols and Application, May 2003.

[4] S. Zhu, S. Setia and S. Jajodia, “LEAP: Efficient
Security Mechanisms for Large-Scale Distributed
Sensor Networks”, In Proceedings of 10th ACM
Conference on Computer and Communications Security
(CCS '03), Washington D.C., October, 2003.

[5] P. Ning and K. Sun, “How to Misuse AODV: A Case
Study of Insider Attacks against Mobile Ad-hoc
Routing Protocols”, Proceedings of the 2003 IEEE
Workshop on Information Assurance United States
Military Academy, West Point, NY June 2003.

[6] D.W. Carman, P.S. Kruus, and B.J. Matt, “Constraints
and approaches for distributed sensor network
security”, NAI Labs Technical Report #00-010,
September 2000.

[7] M.G. Zapata, “Secure Ad hoc On-demand
Distance Vector Routing”, ACM SIGMOBILE
Mobile Computing and Communications Review,
Volume 6, Issue 3, July 2002.

[8] M. Tubaishat, J. Yin, B. Panja, and S. Madria, “A
Secure Hierarchical Model for Sensor Network”, ACM
SIGMOD Record, Vol. 33, No. 1, March, 2004.

[9] Yih-Chun Hu, David B. Johnson, and Adrian Perrig,
“SEAD: Secure Efficient Distance Vector Routing for
Mobile Wireless Ad Hoc Networks”, Fourth IEEE
Workshop on Mobile Computing Systems and
Applications, WMCSA’02

[10] Budhaditya Deb, Sudeept Bhatnagar and Badri Nath,
“A Topology Discovery Algorithm for Sensor
Networks with Applications to Network Management”,
In IEEE CAS workshop, September 2002

[11] P. Papadimitratos and Z.J. Haas, “Secure Routing for
Mobile Ad Hoc Networks”, SCS Communication
Networks and Distributed Systems Modeling and
Simulation Conference (CNDS 2002), San Antonio,
TX, January 27-31, 2002

[12] Krawczyk, H., Bellare, M., and R. Canetti, “HMAC:
Keyed-Hashing for Message Authentication”, RFC
2104, February 1997

[13] R. L. Rivest, “The RC5 Encryption Algorithm”, Proc.
1st Workshop on Fast Software Encryption, pages 86–
96, 1995

[14]NS2 web site, http://www.isi.edu/nsnam/ns
[15] Seung Yi, Prasad Naldurg, And Robin Kravets, “A

Security-Aware Routing Protocol for Wireless Ad Hoc
Networks”, Poster presentation, ACM Symposium on
Mobile Ad Hoc Networking & Computing (Mobihoc
2001), Long Beach, California, October, 2001

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

	SecRout: A Secure Routing Protocol for Sensor Networks
	Recommended Citation

	untitled

