
Journal of Information Security, 2018, 9, 299-314

http://www.scirp.org/journal/jis

ISSN Online: 2153-1242

ISSN Print: 2153-1234

DOI: 10.4236/jis.2018.94020 Oct. 15, 2018 299 Journal of Information Security

SecSPS: A Secure and Privacy-Preserving

Framework for Smart Parking Systems

Ali Alqazzaz1, Ibrahim Alrashdi1, Esam Aloufi1, Mohamed Zohdy2, Hua Ming1

1Computer Science and Engineering Department, Oakland University, Rochester, MI, USA
2Electrical and Computer Engineering Department, Oakland University, Rochester, MI, USA

Abstract

Smart parking systems are a crucial component of the “smart city” concept,

especially in the age of the Internet of Things (IoT). They aim to take the

stress out of finding a vacant parking spot in city centers, due to the increas-

ing number of cars, especially during peak hours. To realize the concept of

smart parking, IoT-enabling technologies must be utilized, as the traditional

way of developing smart parking solutions entails a lack of scalability, compa-

tibility with IoT-constrained devices, security, and privacy awareness. In this

paper, we propose a secure and privacy-preserving framework for smart

parking systems. The framework relies on the publish/subscribe communica-

tion model for exchanging a huge volume of data with a large number of

clients. On one hand, it provides functional services, including parking va-

cancy detection, real-time information for drivers about parking availability,

driver guidance, and parking reservation. On the other hand, it provides se-

curity approaches on both the network and application layers. In addition, it

supports mutual authentication mechanisms between entities to ensure de-

vice/data authenticity, and provide security protection for users. That makes

our proposed framework resilient to various types of security attacks, such as

replay, phishing, and man-in-the-middle attacks. Finally, we analyze the per-

formance of our framework, which is suitable for IoT devices, in terms of

computation and network overhead.

Keywords

IoT, Publish/Subscribe, Messaging Protocol, Security, Parking System

1. Introduction

Due to the rapid increase in automobile numbers, finding an available parking

space in city centers during peak hours has become a serious problem for driv-

How to cite this paper: Alqazzaz, A.,

Alrashdi, I., Aloufi, E., Zohdy, M. and

Ming, H. (2018) SecSPS: A Secure and

Privacy-Preserving Framework for Smart

Parking Systems. Journal of Information

Security, 9, 299-314.

https://doi.org/10.4236/jis.2018.94020

Received: August 3, 2018

Accepted: October 12, 2018

Published: October 15, 2018

Copyright © 2018 by authors and

Scientific Research Publishing Inc.

This work is licensed under the Creative

Commons Attribution International

License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2018.94020
http://www.scirp.org
https://doi.org/10.4236/jis.2018.94020
http://creativecommons.org/licenses/by/4.0/

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 300 Journal of Information Security

ers. It is estimated that 30% of daily traffic jams in crowded areas is caused by

car-owners looking for vacant parking spaces, and that a driver spends, on aver-

age, 7.8 minutes trying to find an available spot [1] [2]. This problem not only

consumes time and fuel, but increases air pollution and driver frustration. As the

situation becomes worse, so the demand for smart parking systems and services

is rapidly growing. The Internet of Things (IoT)-enabling technologies have

great potential for providing an ideal solution—a smart parking system to sig-

nificantly reduce traffic congestion and improve the quality of life of citizens.

To minimize hassle and inconvenience for drivers, several solutions have been

proposed in recent years. Most of them entail building parking guidance infor-

mation (PGI) systems for better parking management [3]-[10]. PGI systems are

able to provide drivers with dynamic information on the location of vacant

parking spaces in car lots within controlled environments, and direct them to

available parking spots. The accurate operation of PGI systems is based on the

use of sensors that are able to detect the presence of vehicles, and thus can mon-

itor parking spots. Such systems cannot guarantee the availability of such a

parking spot when the driver actually arrives at the parking facility, however.

Other researchers have used various technologies to ensure smoothness of traffic

in and around parking spots, including the Global Positioning System for park-

ing spot detection, based on self-localization, video cameras for collecting and

collating information on vehicle parking spaces, radio frequency identification

(RFID) technologies for entering and exiting parking spots, cloud-based, and

text-messaging-based parking reservation services [11]-[21]. To their credit, all

of these proposed solutions have introduced sensible improvements in the field

of parking management, but they still suffer from a lack of suitability and adap-

tability to IoT requirements to ensure their openness, reliability, and networking

accessibility. First, they utilize the traditional request/response communication

model, which is not suitable for building large-scale IoT solutions, and handling

massive volumes of data. Moreover, they rely on HTTP as the messaging proto-

col, which is not the ideal choice for IoT devices. In addition, all of them are

characterized by several functional requirements, but they do not pay enough

attention to the non-functional requirements, among which security and privacy

play important roles, due to the existence of diverse cyber attacks targeting most

cyber-physical systems.

To solve the aforementioned parking problems, and to fully realize the con-

cept of a smart parking system, IoT-enabling technologies must be taken into

account. This paper proposes a secure and privacy-preserving framework for

smart parking systems called SecSPS, which consists of three main components:

a sensor network that is responsible for monitoring vehicles going in and out of

the parking facility; one or more smart gateways, based on the size of the car lot;

and a broker, who takes responsibility for information dissemination in real

time.

Firstly, the SecSPS framework can provide a real-time parking information

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 301 Journal of Information Security

and navigation service to users in search of parking spots, so that drivers can

easily and quickly find vacant parking spaces. As a result, the time and gasoline

consumed in search of free parking spaces can be reduced. It also helps in re-

ducing carbon monoxide emissions, among other pollutants, as well as reducing

traffic congestion in city centers.

Secondly, parking reservation is a key feature of any smart parking system.

Therefore, our framework enables drivers to reserve a parking spot in advance,

in order to ensure the availability of the vacant parking space by the time they

arrive. On one hand, less time spent parking leads to less stress and happier cus-

tomers, i.e., improves overall customer experience. On the other hand, this

creates car lots that are easy to manage, while maximizing revenues and effi-

ciency.

Thirdly, to the best of these authors’ knowledge, this is the first framework

based on publish/subscribe (pub/sub) architecture, which is a very powerful way

for IoT devices to interact. This architecture offers distributed, asynchronous,

loosely-coupled many-to-many communication between message producers (pub-

lishers) and message consumers (subscribers). In our case, each parking facility

(publisher) publishes its own available parking information under a topic, and

drivers (subscribers) who are interested in that information find about it more

or less instantly by simply subscribing to the same topic.

Finally, our framework provides a secure communication channel among

end-points when sending data over the Internet by using a transport layer secu-

rity (TLS) protocol. Unlike with HTTP, a pub/sub client need only establish a con-

nection once per session, rather than re-establishing a connection with every re-

quest, which makes the TLS less costly in terms of CPU and bandwidth. Moreo-

ver, the framework guarantees confidentiality, integrity, and notification authen-

ticity by encrypting the packet’s payload. In other words, it allows end-to-end

encryption for the application data, even for untrusted environments. This ap-

proach does not require any additional custom mechanism on the broker side

for decrypting the data in order to route the message to subscribers.

The reminder of this paper is organized as follows: Section 2 fills in the re-

quired background; Section 3 describes the system model, threat model, and de-

sign goals; Section 4 provides a detailed description of the proposed framework;

Section 5 analyzes the security of our framework; and Section 6 covers the per-

formance evaluation. Finally, we conclude our work in Section 7.

2. Background

2.1. Publish/Subscribe (Pub/Sub) Model

The pub/sub model is an alternative to the traditional client/server model, whe-

reby a client communicates directly with an endpoint. It is a data-centric archi-

tecture, whereby messages are delivered to interested destinations without know-

ing the IP addresses of these destinations. In other words, it decouples the send-

er of a specific message (publisher) from another client, who is getting the mes-

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 302 Journal of Information Security

sage (subscriber), and allows communication via a third component (the bro-

ker). It also provides a greater scalability than the traditional approach be-

cause operations on the broker side can be parallelized and processed in an

event-driven manner [22]. The aforementioned three main entities in such a

system—publisher, subscriber, and broker—are shown in Figure 1. Publishers

are the generators and owners of the content, i.e., the service providers. Sub-

scribers are any members who are interested in receiving the particular content

and subscribe to it. The subscribers receive the desired content through an in-

formation delivery system—the broker.

The broker can filter messages in various ways, so that each subscriber gets

only the messages they are interested in [23]. The first such way is a topic-based

filtering, where messages are filtered by topic or subject. The receiving client

subscribes only to the topic(s) they are interested in, and then gets notified based

on that/those topics. Topic names are generally represented by a URL-like nota-

tion with a hierarchical structure. The second approach is a content-based fil-

tering, where the broker filters the message, based on the actual content of the

considered event(s). A big drawback of this type is that the content of the mes-

sage must be known in advance and cannot be encrypted. The third option is a

type-based filtering, which filters according to the type (class) of the message

(event). In this scenario, subscribers can listen to all messages, which are of type

X, or any subtype thereof. As a downside to this option, subscribers need to

know in advance the structure of the published data.

2.2. Transport Layer Security (TLS) Protocol

In 1999, the Internet Engineering Task Force standardized a new cryptograph-

ic protocol called a TLS protocol. It primarily aims to achieve three main

goals—authentication, confidentiality, and data integrity—which are critically

important to securely communicate over the Internet. Confidentiality can be

achieved using symmetric encryption with a strong block cipher, such as the ad-

vanced encryption standard (AES). On the other hand, authentication is accom-

plished with public-key cryptography. Finally, data integrity can be checked us-

ing message authentication code (MAC). In TLS, confidentiality and authentica-

tion are achieved through a series of messages called a “handshake”.

Figure 1. The publish/subscribe architecture.

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 303 Journal of Information Security

As shown in Figure 2, the handshake process starts with the exchange of

ClientHello and ServerHello messages, for purposes of exchanging certificates

and negotiating a cipher suite that will be used during the session. Cipher suites

are a combination of security algorithms that usually include a key exchange al-

gorithm, an encryption algorithm, and a MAC algorithm. An example of a ci-

pher suite name is TLS_RSA_WITH_AES_128_CBC_SHA, which defines a ses-

sion that uses:

• RSA for key establishment and authentication;

• a 128-bit AES in Cipher Block Chaining (CBC) mode for confidentiality; and

• a secure Hashing Algorithm (SHA) for integrity.

After validation and negotiation of certificates are completed, both client and

server exchange a secret key (session key). Finally, they exchange Finished mes-

sages to tell each other that, from now on, everything will be authenticated and

encrypted. This handshake is officially complete when the client and server ex-

change the Finished messages [24] [25].

3. Models and Goals

In this section, we cover the main components of our framework, threat model,

and design goals.

3.1. Proposed Framework

As shown in Figure 3, our proposed framework consists of several components,

involving a large number of parking spaces equipped with sensor nodes, a smart

gateway, a broker, and clients. In the following subsections, we briefly describe

the main functions of each component. Note that our framework is applicable to

a wide range of parking areas, including malls, airports, universities, city centers,

and hospitals. Also, it is suitable for both indoor and outdoor deployments.

3.1.1. Sensor Nodes

The main objective of this component is to monitor each car lot and detect the

presence of vehicles, in order to calculate the total number of free parking spaces

Figure 2. Illustration of TLS handshake process.

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 304 Journal of Information Security

Figure 3. The architecture of our proposed framework (SecSPS).

in each car lot at any time. To this end, each parking spot is equipped with a

sensor to identify its status; however, there are various sensing technologies that

can be reliably used to detect vehicles, technologies involving ultrasonic, mag-

netic, radar, and optical (infrared) sensors. In identifying the right technology,

different factors must be taken into account, including size of target, sensing

range, sensor mounting, accuracy, whether the sensor is indoor or outdoor, cost,

and environmental conditions. That being said, it may be beneficial to combine

two sensing techniques to achieve an advanced level of accuracy.

3.1.2. Smart Gateway

In general, IoT gateways perform various critical functions, such as device con-

nectivity, protocol translation, data filtering and processing, security, updating,

management, and more. Here, the smart gateway is responsible for receiving the

states of parking spots from the sensor nodes, analyzing and encrypting this da-

ta, and sending them to the specific broker.

3.1.3. Broker

The broker is the heart of any pub/sub system. It is primarily responsible for re-

ceiving all encrypted messages from the smart gateway, filtering them, deciding

who is interested in them, and then sending the messages to the subscribed

clients. Since the application data itself stays encrypted all the time, and the bro-

ker has no way of looking into the encrypted data, it uses the unencrypted mes-

sages metadata (i.e., topic name) for routing. Note, the broker can be either pub-

lic or private; for example, it can be owned by the Department of Transporta-

tion.

3.1.4. Client

A client is any electronic device, from a micro-controller up to a fully-fledged

server that is equipped with custom software that enables connecting to a broker

over the Internet, such as a laptop, tablet, smartphone, or desktop. It can con-

nect to the broker, subscribe to one or more topic(s), and be notified whenever

there are new messages.

3.2. Threat Model

In [26], authors show that the semi-honest model tends to be widely accepted

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 305 Journal of Information Security

by the scientific research community, as it offers a sufficient level of security

within reasonable computational and communication costs. Thus, we assume

the semi-honest model in this paper, meaning that all parties correctly follow the

rules of the protocol. But they also attempt to obtain as much information as

possible. This model does not take into account powerful attackers who have

physical access to the devices and control them, however. In addition, we assume

that the certificate authority (CA), which issues certificates, is secure and trusted.

3.3. Design Goals

This section is dedicated to identifying the goals that our framework should sa-

tisfy.

• Correctness: If both the broker and the client follow the rules honestly, the

client can get correct real-time parking availability information. Moreover,

the client with a parking reservation is guaranteed to get a parking spot by

the time he/she arrives. In other words, the framework must provide all its

services in a correct manner when the rules are honestly followed.

• Security: The framework must protect and guarantee the confidentiality and

integrity of transmitted data, and keep it secure over the network. On one

hand, the attacker cannot get the original data when given the encrypted

messages. On the other hand, the framework can secure the communication

channels between clients and brokers. Moreover, it should provide mutual

authentication between the pub/sub clients and the broker.

4. Framework Description Details

In this section, we describe in detail the proposed framework, which can use any

pub/sub messaging protocol, such as Message Queuing Telemetry Transport

(MQTT). In general, we will use the term “users” when referring to drivers or

vehicles. Initially, parking facility owners are required to register their identities

to a trusted authority (e.g., governmental transportation authorities) before par-

ticipating and launching secure services, in order to guarantee authentication

and enable secure communications. The trusted authority makes sure attackers

do not gain control of the network and protects sensitive data. Therefore, the

parking facility owners need to send registration and connection requests to the

broker’s security manager seeking the permission for providing service(s) (e.g.,

creating topics).

4.1. Parking Space Monitoring and Detection

As mentioned earlier, the parking spot status information at each car lot is im-

portant, so that the broker can get and manage information in real time. There-

fore, each parking space is equipped with a sensor (e.g., ultrasonic sensors),

which is capable of sensing and detecting free spaces. When a vehicle is detected,

a message is transmitted to the smart gateway to be interpreted and processed.

This phase of the framework is known as the monitoring module.

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 306 Journal of Information Security

4.2. Data Aggregation

The smart gateway aggregates all the readings from the sensors, processes these

data, and calculates two things: the number of free parking spots for each floor,

and the total number of free parking spots at the car lot with the corresponding

vacant percentages. Next, it encrypts all this information with the secret key of

the target topic, as will be described below. Finally, it sends the encrypted mes-

sage to the broker for distribution and delivery, over TLS. Here, TLS is used to

create a secure communication channel between the smart gateway and the bro-

ker, using the handshake mechanism. Using a secure channel makes it more dif-

ficult for third parties to intercept, or eavesdrop on, messages in transit. The

smart gateway uses the broker’s certificate, which is issued by a trusted and se-

cured authority, to verify its identity before sending a bit.

As mentioned earlier, our framework provides an additional security layer by

supporting the exchange of encrypted messages (known as payload encryption).

This approach ensures end-to-end encryption, preventing eavesdropping along

the way, and spoofing of valid application data. In this approach, only the payl-

oad of the message is encrypted (PUBLISH packet payload) to ensure that there

is no additional mechanism needed on the broker side for decrypting the data, in

order to deliver the message to the subscriber. The broker uses the unencrypted

packet metadata (e.g., topic name) for routing, the packet data itself stays en-

crypted, and the broker has no way of looking into the encrypted data, as shown

in Figure 4.

4.3. Information Dissemination

The broker is responsible for ensuring that messages are delivered to the correct

subscribers. In general, the broker performs several operations, including con-

nect, disconnect, publish, subscribe, and unsubscribe. These operations are

available for both users and parking owners who are authorized by the security

agent of the broker. The security agent is an entity that is responsible for the se-

curity evaluation of each request sent to the broker (e.g., checking the resource

access permissions).

Figure 4. End-to-End packet payload encryption.

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 307 Journal of Information Security

When a parking facility is granted permission to create a topic, it only needs

to send a “publish” request that includes the topic name and the message in en-

crypted format. The parking owner can define a set of access-control policies

associated with their topics to restrict topic access, based on user attributes.

These policies can be formally defined as a conjunction of attribute conditions

{cond1∧ ... ∧condn}. Each attribute condition is in the form of <namex, op, l>,

where namex is the name of the attribute, op is a comparison operator, such as =,

≠, <, ≤, ≥, >, and l is the value of attribute x.

4.4. Finding a Vacant Parking Space

End-users are provided with a custom mobile application (Parking Application).

This application enables them to find the available parking spaces near them, or

near their final destination, get the right directions to the target parking spot,

make a reservation, check the remaining parking time, and get notification when

the parking time has expired.

First of all, the user is required to connect to the broker through the mobile

app, which uses TLS. When the TLS handshake takes place, the client needs to

validate the identity of the broker using its X.509 certificate. After the handshake

process is completed, an encrypted communication between client and broker is

established, and no attacker can understand the content of the communication.

Next, the available car lots are displayed to the user, based on the user’s current

location or final destination. Each car park is considered as an individual topic.

The users can subscribe to one or more topics, based on their needs. After sub-

scribing to a certain topic, they would start receiving messages from the corres-

ponding car lot. Each topic provides real-time parking information, including

parking rate, number of available regular parking spots, number of vacant ac-

cessible parking spots, and total number of parking spaces. The end-user will be

notified whenever there is an update on the parking information. Note that the

received messages will be encrypted, and the user needs to decrypt them using

the topic password.

4.5. Parking Reservation

For smart parking systems, the parking reservation service is a key feature. Our

framework allows a user to reserve a parking spot in advance to guarantee a free

spot by the time the user arrives. After determining the target car lot, the driver

can send a message to the broker under a subtopic named reservation. For ex-

ample, let us assume that the topic corresponding to the chosen car lot is called

t1, and the driver wants to reserve a parking space at it. Then he will need to

publish a message under a certain topic, namely, t1/reservation. The published

message contains different information, such as phone number, license plate

number, type of parking spot, and parking time. By default, the car lot is the on-

ly subscriber to this topic. Therefore, the car lot will be immediately notified

whenever there is a reservation request, and will decrease its total number of free

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 308 Journal of Information Security

parking spaces accordingly. Note that each car park maintains its own database,

which stores all reservation requests. When the driver arrives at the entrance

gate, they must be checked to see whether or not they have a reservation. If they

have one, the gate opens and they can park in any free space. Otherwise, they

will be rejected. Thus, the entrance gate unit must query the reservation database

to accomplish this task. This verification process may be done using the user’s

mobile parking pass.

5. Security Analysis

In this section, we analyze the security of the proposed framework against dif-

ferent cyberattacks, and how it can counter these attacks. We assume that the

end-user’s mobile device has a secure environment in which to perform crypto-

graphic operations.

5.1. Phishing Attacks

The intension of this type of attack is to steal sensitive information, such as

username, password, and credit card numbers, by masquerading as a trusted

entity. The proposed framework is an anti-phishing mechanism because there is

no exist for static username and password during the authentication phase. In

addition, there is no existing for username and password update. When the TLS

handshake takes place, both client and broker authenticate each other using their

X.509 certificates. As a result, the broker is able to verify the identity of the

client, and vice versa, with no credentials required.

5.2. Man-in-the-Middle (MITM) Attacks

A man-in-the-middle (MITM) attack is a common type of cybersecurity attack

that allows a malicious element to insert itself into a conversation between two

parties, impersonate both parties, and gain access to information that the two

parties are trying to send to each other. In general, a successful MITM execution

has two distinct steps—interception and decryption. The first phase intercepts

the network traffic before it reaches its destination. The second phase decrypts

any two-way SSL traffic without alerting the user or application. Therefore, we

need to provide some method of authentication for messages in order to be se-

cured against MITM attacks. To block and prevent the risk of MITM, we rely on

TLS to exchange messages over a secure channel. In such a structure, a client

and broker exchange certificates, which are issued and verified by a trusted CA.

Since we are assuming that this CA is trusted and secure, then the certificates,

issued by the CA, can be used to authenticate the messages sent by the owner of

such a certificate. Thus, our framework relies on a mutual authentication me-

chanism to thwart both ends of the MITM attack.

5.3. Replay Attacks

In this type of network attack, the intruder captures valid network traffic and

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 309 Journal of Information Security

then sends the same data transmission to its original destination, posing as the

original sender. It is obvious that this kind of attack requires the ability to inter-

cept the network traffic, as well as the ability to perform a masquerade attack.

Moreover, the intruder will be able to perform the attack, even if the packet

payload is encrypted. Therefore, our proposed framework uses the TLS to create

a secure communication channel between two parties. Consequently, no attacker

can eavesdrop on any part of the communication. This enables our framework

to resist replay attacks.

5.4. Broker Hijack

For whatever reasons, some people and small businesses may prefer to use a free

public broker; however, using a free public broker comes with a price. It in-

creases the risk of being compromised by malicious hackers. If any broker is

compromised, it literally opens a gateway for the attacker to gain access to sensi-

tive information, and we can easily lose the data confidentiality and privacy of

the user. Our framework takes that into account, and provides end-to-end en-

cryption of the application data. In this scenario, if attackers get control over the

broker, they still cannot look into the data itself because the data is encrypted.

Thus, user privacy and confidentiality of encrypted messages can be guaranteed.

5.5. Shoulder-Surfing Attacks

This type of technique (looking over the victim’s shoulder) is commonly used to

obtain confidential information, such as username and password. It can also be

performed remotely, using hardware assistance such as binoculars. This makes

the static username and password not good enough for authentication. To pre-

vent a shoulder-surfing attack, we use X.509 client certificates, which allow the

client to be authenticated before establishing a secure connection.

6. Performance Analysis

As discussed earlier, our framework relies on TLS to secure communications

over the Internet; however, using TLS comes with a price, as with any security

measure. The main cost with TLS is that of resource consumption (e.g., CPU

and network bandwidth), which is significantly higher compared to plain TCP.

There are two main sources of such overhead. The first source is the TLS hand-

shake process, i.e., the number of handshakes and the size of the messages

transmitted in each handshake. The second source is related to the involved

cryptographic operations while sending each message, i.e., the cipher suite em-

ployed. Our design is based on the key observation that the pub/sub client only

needs to establish a connection once per session, however, unlike with other

protocols, such as HTTP, which require a connection to be re-established upon

every request. In other words, the TLS handshake takes place only once in the

lifetime of the client.

To evaluate the impact of using TLS on the CPU utilization of a pub/sub bro-

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 310 Journal of Information Security

ker, we conducted an experiment on the Eclipse Mosquitto broker using 10,000

real clients. For this experiment, we compare the CPU utilization for scenarios

with and without TLS. We install the Mosquitto broker on a 2.5 GHz-processor

computing machine using 16 GB of RAM. Table 1 presents our experiment pa-

rameters. We connect the clients to the broker in batches of 100 clients per

second, subscribe all clients to a unique topic per client, and finally each client

publishes one message in 10 seconds. We conducted two types of experiment:

with and without TLS. Each experiment was repeated five times and the average

results were reported.

Figure 5 presents the result of our experiment. It is noticeable that once the

TLS handshake phase is finished, the CPU consumption is very small, and not

worth considering compared to the scenario without TLS. However, the

worst-case scenario may happen when the broker faces frequent client recon-

nects, so that the TLS handshake consumes too much CPU. In such scenarios,

the following alternative techniques could be used to minimize the consumption

of resources.

6.1. Using Elliptic Curve Cryptography (ECC) Certificates

Using elliptic curve cryptography (ECC) certificates instead of RSA certificates

could significantly reduce the computation overhead. ECC creates stronger se-

curity keys with shorter key lengths than RSA does, which makes it faster and

more efficient to implement. Table 2 shows a comparison of key sizes between

ECC and RSA in the provision of a certain equivalent security level. Because of

the smaller key size with an ECC certificate, less data is transmitted during the

TLS handshake. Therefore, ECC certificates require less CPU and memory, and

increase network performance accordingly. Due to this, the ECC approach is

more suitable for IoT devices, as it reduces computational time, as well as data

transmitted and stored.

Figure 5. The CPU utilization for scenarios with and without TLS.

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 311 Journal of Information Security

Table 1. Experiment parameters.

Parameter Value

Pub/Sub Clients 10,000

Messages per second 1000

Connections per second 100

Quality of Service Level 1

Cipher suite TLS_RSA_WITH_AES_128_CBC_SHA

Certificate key size 2048

Table 2. Comparison of RSA and ECC keys length.

Security Level RSA Key Length ECC Key Length Ratio

80 1024 160 6:1

112 2048 224 9:1

128 3072 256 12:1

192 7860 384 20:1

256 15,360 512 30:1

6.2. Using Session Resumption

TLS session resumption is a technique that allows to reuse of an already nego-

tiated TLS session after reconnecting to the broker, so that the client and broker

do not need to do the full TLS handshake again. In short, this technique can be

used to avoid a complete TLS handshake whenever a client reconnects, in order

to reduce the overhead. Figure 6 shows what the TLS handshake looks like when

using session resumption with session ID. Note that, the ClientHello message

will contain extra bytes for the session ID that it wants to resume. Using this ap-

proach can reduce the overhead of establishing a new TLS connection from 1789

bytes to 332 bytes, i.e., an 81.4% reduction in the size of the messages transmit-

ted in each handshake [27].

6.3. Using Load Balancers

A load balancer plays an important role in traffic routing and traffic shaping for

IoT solutions. One advantage of using it is the TLS offloading. In such a me-

chanism, expensive cryptographic operations take place on the load balancer,

instead of the broker. This can increase the broker’s performance remarkably.

Figure 7 shows the architecture of using load balancers with brokers.

6.4. Using Broker Clusters

The pub/sub architecture depends on a broker as the central distributor of mes-

sages. To avoid the single-point-of-failure potential in such messaging systems,

broker clusters are required. A broker cluster is a distributed system that acts as

one logical broker. It contains multiple broker nodes that are typically installed

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 312 Journal of Information Security

Figure 6. The TLS handshake using session resumption with session ID.

Figure 7. The relationship between load balancer and broker cluster.

on different physical machines, and connected over a network. Thus, clients can

connect to any broker node to resume sessions, and this increases the availability

of the provided services. Also, it can easily scale from a few broker nodes to

thousands. Another advantage of using a broker cluster is that it is fully resilient

and fault-tolerant in case of infrastructure problems.

7. Conclusion and Future Work

Cybersecurity is currently a growing issue in the IoT, which has tremendous

benefits in smart city applications, such as smart parking systems. In this paper,

we have proposed a secure and privacy-preserving framework for smart parking

systems, utilizing the pub/sub messaging model. It ensures the confidentiality,

integrity, and availability of real-time information by relying on two main secu-

rity mechanisms—a secured communication channel via TLS, and end-to-end

encryption for application data. It provides various services to the end-user, in-

cluding real-time parking information dissemination, car park navigation, and

parking reservation. Our framework is resilient to various security attacks, such

https://doi.org/10.4236/jis.2018.94020

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 313 Journal of Information Security

as replay, man-in-the-middle, and chosen-plaintext attacks. It has a low over-

head, due to the ECC-based certificates, which makes it ideal for securing

IoT-constrained devices. In the near future, we will implement a prototype

smart parking system, based on the proposed framework, on a large scale, in the

real world, to evaluate its performance metrics more precisely.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-

per.

References

[1] Inci, E. (2015) A Review of the Economics of Parking. Economics of Transporta-

tion, 4, 50-63. https://doi.org/10.1016/j.ecotra.2014.11.001

[2] Shoup, D.C. (2006) Cruising for Parking. Transport Policy, 13, 479-486.

https://doi.org/10.1016/j.tranpol.2006.05.005

[3] Thompson, R.G. and Bonsall, P. (1997) Drivers Response to Parking Guidance and

Information Systems. Transport Reviews, 17, 89-104.

https://doi.org/10.1080/01441649708716974

[4] Rajabioun, T. and Ioannou, P.A. (2015) On-Street and Off-Street Parking Availabil-

ity Prediction Using Multivariate Spatiotemporal Models. IEEE Transactions on In-

telligent Transportation Systems, 16, 2913-2924.

https://doi.org/10.1109/TITS.2015.2428705

[5] Sakai, A., Mizuno, K., Sugimoto, T. and Okuda, T. (1995) Parking Guidance and

information Systems. Proceedings of the 6thVehicle Navigation and Information

Systems Conference, Seattle, 30 July-2 August 1995, 478-485.

[6] Liu, Q., Lu, H., Zou, B. and Li, Q. (2006) Design and Development of Parking

Guidance Information System Based on Web and GIS Technology. Proceedings of

the 6th International Conference on ITS Telecommunications, Chengdu, 21-23

June 2006, 1263-1266.

[7] Polak, J.W. (1990) Parking Guidance and Information Systems: Performance and

Capability. Traffic Engineering and Control, 31, 519-524.

[8] Kotb, A.O., Shen, Y.C. and Huang, Y. (2017) Smart Parking Guidance, Monitoring

and Reservations: A Review. IEEE Intelligent Transportation Systems Magazine, 9,

6-16. https://doi.org/10.1109/MITS.2017.2666586

[9] Yoo, S.E., Chong, P.K., Kim, T., Kang, J., Kim, D., Shin, C., Sung, K. and Jang, B.

(2008) PGS: Parking Guidance System Based on Wireless Sensor Network. Pro-

ceedings of the 3rd International Symposium on Wireless Pervasive Computing,

Santorini, 7-9 May 2008, 218-222.

[10] Caicedo, F. (2010) Real-Time Parking Information Management to Reduce Search

Time, Vehicle Displacement and Emissions. Transportation Research Part D:

Transport and Environment, 15, 228-234. https://doi.org/10.1016/j.trd.2010.02.008

[11] Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M.L. and Vergallo, R. (2014) Inte-

gration of RFID and WSN Technologies in a Smart Parking System. Proceedings of

the 22nd International Conference on Telecommunications and Computer Net-

works, Split, 17-19 September 2014, 104-110.

[12] Wang, M., Dong, H., Li, X., Song, L. and Pang, D. (2017) A Novel Parking System

Designed for Smart Cities. Proceedings of the Chinese Automation Congress, Jinan,

https://doi.org/10.4236/jis.2018.94020
https://doi.org/10.1016/j.ecotra.2014.11.001
https://doi.org/10.1016/j.tranpol.2006.05.005
https://doi.org/10.1080/01441649708716974
https://doi.org/10.1109/TITS.2015.2428705
https://doi.org/10.1109/MITS.2017.2666586
https://doi.org/10.1016/j.trd.2010.02.008

A. Alqazzaz et al.

DOI: 10.4236/jis.2018.94020 314 Journal of Information Security

20-22 October 2017, 3429-3434.

[13] Hanif, N.H.H.M., Badiozaman, M.H. and Daud, H. (2010) Smart Parking Reserva-

tion System Using Short Message Services (SMS). Proceedings of the International

Conference on Intelligent and Advanced Systems, Manila, 15-17 June 2010, 1-5.

[14] Fraifer, M. and Fernstrm, M. (2016) Smart Car Parking System Prototype Utilizing

CCTV Nodes: A Proof of Concept Prototype of a Novel Approach towards

IoT-Concept Based Smart Parking. Proceedings of the 3rd IEEE World Forum on

Internet of Things, Reston, 12-14 December 2016, 649-654.

[15] Funck, S., Mohler, N. and Oertel, W. (2004) Determining Car-Park Occupancy

from Single Images. Proceedings of the IEEE Intelligent Vehicles Symposium, Par-

ma, 14-17 June 2004, 325-328.

[16] Kianpisheh, A., Mustaffa, N., Limtrairut, P. and Keikhosrokiani, P. (2012) Smart

Parking System (SPS) Architecture Using Ultrasonic Detector. International Journal

of Software Engineering and Its Applications, 6, 51-58.

[17] Mathur, S., Kaul, S., Gruteser, M. and Trappe, W. (2009) ParkNet: A Mobile Sensor

Network for Harvesting Real Time Vehicular Parking Information. Proceedings of

the MobiHoc S3 Workshop on MobiHoc S3, New York, 18 May 2009, 25-28.

https://doi.org/10.1145/1540358.1540367

[18] Masmoudi, I., Elleuch, W., Wali, A. and Alimi, A.M. (2017) Smart Drivers’ Guid-

ance System Based on IoT Technologies for Smart Cities Application. Springer In-

ternational Publishing, Cham.

[19] Khanna, A. and Anand, R. (2016) IoT Based Smart Parking System. Proceedings of

the International Conference on Internet of Things and Applications, Pune, 22-24

January 2016, 266-270. https://doi.org/10.1109/IOTA.2016.7562735

[20] Pham, T.N., Tsai, M.F., Nguyen, D.B., Dow, C.R. and Deng, D.J. (2015) A

Cloud-Based Smart-Parking System Based on Internet-of-Things Technologies.

IEEE Access, 3, 1581-1591. https://doi.org/10.1109/ACCESS.2015.2477299

[21] Zhang, Z., Li, X., Yuan, H. and Yu, F. (2013) A Street Parking System Using Wire-

less Sensor Networks. International Journal of Distributed Sensor Networks, 9, Ar-

ticle ID: 107975. https://doi.org/10.1155/2013/107975

[22] Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec, A.M. (2003) The Many

Faces of Publish/Subscribe. ACM Computing Surveys, 35, 114-131.

[23] Esposito, C. and Ciampi, M. (2015) On Security in Publish/Subscribe Services: A

Survey. IEEE Communications Surveys Tutorials, 17, 966-997.

https://doi.org/10.1109/COMST.2014.2364616

[24] Eastlake, D. 3rd (2011) Transport Layer Security (TLS) Extensions: Extension Defi-

nitions.

[25] Turner, S. (2014) Transport Layer Security. IEEE Internet Computing, 18, 60-63.

https://doi.org/10.1109/MIC.2014.126

[26] Lindell, Y. and Pinkas, B. (2008) Secure Multiparty Computation for Priva-

cy-Preserving Data Mining. Encyclopedia of Data Warehousing and Mining.

https://eprint.iacr.org/2008/197

[27] Diro, A.A., Chilamkurti, N. and Kumar, N. (2017) Lightweight Cybersecurity

Schemes Using Elliptic Curve Cryptography in Publish-Subscribe Fog Computing.

Mobile Networks and Applications, 22, 848-858.

https://doi.org/10.1007/s11036-017-0851-8

https://doi.org/10.4236/jis.2018.94020
https://doi.org/10.1145/1540358.1540367
https://doi.org/10.1109/IOTA.2016.7562735
https://doi.org/10.1109/ACCESS.2015.2477299
https://doi.org/10.1155/2013/107975
https://doi.org/10.1109/COMST.2014.2364616
https://doi.org/10.1109/MIC.2014.126
https://eprint.iacr.org/2008/197
https://doi.org/10.1007/s11036-017-0851-8

	SecSPS: A Secure and Privacy-Preserving Framework for Smart Parking Systems
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. Publish/Subscribe (Pub/Sub) Model
	2.2. Transport Layer Security (TLS) Protocol

	3. Models and Goals
	3.1. Proposed Framework
	3.1.1. Sensor Nodes
	3.1.2. Smart Gateway
	3.1.3. Broker
	3.1.4. Client

	3.2. Threat Model
	3.3. Design Goals

	4. Framework Description Details
	4.1. Parking Space Monitoring and Detection
	4.2. Data Aggregation
	4.3. Information Dissemination
	4.4. Finding a Vacant Parking Space
	4.5. Parking Reservation

	5. Security Analysis
	5.1. Phishing Attacks
	5.2. Man-in-the-Middle (MITM) Attacks
	5.3. Replay Attacks
	5.4. Broker Hijack
	5.5. Shoulder-Surfing Attacks

	6. Performance Analysis
	6.1. Using Elliptic Curve Cryptography (ECC) Certificates
	6.2. Using Session Resumption
	6.3. Using Load Balancers
	6.4. Using Broker Clusters

	7. Conclusion and Future Work
	Conflicts of Interest
	References

