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A metric complex M is a connected, locally-finite simplicial complex 
linearly embedded in some Euclidean space Rl. Metric complexes M and 
M' are isometric if they have subdivisions L and L and if there is a simplicial 
isomorphism h:L -• L such that for every a e L, the linear map determined 
by h\a -• h(a) is an isometry (that is, it extends to an isometry of the 
affine spaces generated by these simplexes). This note is concerned with 
certain characteristics of a metric complex M which are intrinsic, i.e., 
which depend only on the isometry class of M. The basic such characteris
tic is the intrinsic metric, which is best described in the piecewise linear 
context by H. Gluck [3]; for a more general treatment see W. Rinow 
[8]. 

Let M ç Rl be a metric complex and let p be a point of M. Then the 
tangent cone TPM of M at p is defined to be the infinite cone with vertex p 
generated by link(/?, M). The isometry class of TPM is intrinsic to M, for 
each p. An infinite ray px in TpM will be called a tangent direction at p 
to M. 

Let NPM be a subcone of TPM and let j be a nonnegative integer. Let 
Rj x NPM be given the metric in which its factors are orthogonal. For 
various choices of NpM and j \ Rj x NPM will be isometric to TPM. 
For example if p is in the interior of a /-simplex of M, such a factoring 
exists. Consider those factorings of TPM for which j is maximal; then the 
corresponding NPM are all isometric. Such an NPM will be called the 
normal geometry of p in M, and denoted vpM. For example, if M is an 
«-manifold and p is in the interior of an (n — 1)- or «-simplex, then 
vpM = {/?}. If M is a 2-manifold, then vpM = {p} unless/? is a vertex of 
nonzero curvature, when vpM — TPM. 

Clearly j and vpM determine the metric geometry of M near p. 
For any pe M and any tangent direction px at p lying in vpM I have 

defined numbers k+(px) and k_(px), with k+(px) ^ k-(px), called the 
maximum and minimum curvatures of M at /? in the direction /?3c. The 
definitions are too long to give here. Roughly speaking, k-(px) equals: 
2n minus twice the maximum "angle" that can occur between px and 
any other py £ vpM as y varies; k+{px) is defined similarly, using a 
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mini-max. If M is a 2-manifold, then k+(px) = k_(px) and depends only 
on/?; they are both equal to the standard piece wise linear curvature of M 
at p (see Aleksandroff and Zalgaller [1] or W. Rinow [8]). There seems to 
be some connection between k_(px) and, in the smooth case, the minimum 
sectional curvature at a point of two-planes containing a given tangent 
vector at that point; likewise between k+(px) and the maximum such 
sectional curvature. To support this intuition I offer these results: 

THEOREM 1. Let M be a complete metric complex such that k+(px) ^ 0 
for allp e M and all tangent directions px Ç vpM. Then: 

(i) for any p,qe M and any homotopy class \j/ of paths fromp to q there 
is exactly one shortest path in \j/; 

(ii) in particular, if M is simply connected, then it is contractible; 
(iii) if M is a simply-connected manifold without boundary of dimension 

n ^ 6, then M is piecewise linearly isomorphic to Euclidean space Rn. 

Theorem 1 is analogous to a theorem proved for smooth manifolds by 
E. Cartan [2] under the hypothesis that every sectional curvature be 
go. 

THEOREM 2. Let M be a complete metric complex which is an n-manifold 
without boundary. Assume that whenever a is an (n — 2)-simplex, whenever 
p G int a and whenever px ^ vpM, then k_(px) ^ 0. Then: 

(i) if n is even and M orientable, then M is simply connected; 
(ii) if n is odd, then M is orientable. 

In the smooth case a theorem analogous to (i) was proved by J. Synge 
[10], and (ii) is an elementary consequence of his method observed by A. 
Preissman [7]. 

THEOREM 3. Let M be a complete metric complex which is an n-manifold 
without boundary. Assume: 

1. there is a number k ^ 0 such that whenever a is an (n — 2)-simplex, 
whenever p e int a and whenever px ^ vpM, then dim vpM = 2 and 
k-{px) ^ k; 

2. there is a number Q such that whenever a is an n-simplex of M and M 
is represented as a linear complex in Rl, then the n-sphere in Rl that passes 
through the vertices of a has radius g Q . Then: 

(i) M is compact (I can in fact give a crude estimate for the diameter of Ad) ; 
(ii) M has positive curvature "everywhere": k_(px) ^ 0 provided that p 

is not in the interior of an (n — 1)- or n-simplex. 

Theorem 3 is a weak analogue of a theorem proved for smooth manifolds 
by S. Myers [6] under the hypothesis that the mean curvature be every
where bounded above 0. I suspect that the curvature hypothesis of 
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Theorem 3 can be weakened once one has the right piecewise linear 
notion of mean curvature. 

An amusing consequence of Theorem 3 is: 

THEOREM 4. Let K be a simplicial 3-manifold without boundary. Assume 
that every 1-simplex is a face of at most five 3-simplexes. Then K is finite. 

The proof is to give K a metric by making all the tetrahedra regular of 
side length 1; then the hypotheses of Theorem 3 are satisfied. A. Phillips 
has pointed out to me that R3 can be triangulated so that every 1-simplex 
is a face of at most six 3-simplexes. 

DISCUSSION OF THEOREM 1. The proof of this theorem is analogous to 
the proof of Cartan's theorem in the smooth case (see J. Milnor's [5]) 
The curvature hypothesis on M is equivalent to the hypothesis that M has 
unique geodesies locally. This means: every/? e M has a neighbourhood 
U such that whenever x, y e U, then there is a unique geodesic in M from 
x to y. Hence for any /?, q e M one can approximate (as in [5]) the space Q 
of paths from p to q and the energy function E:Q -* R1 by a finite-
dimensional space V and a function F : V -> R1. F is not smooth; nonethe
less one can show that F has no "critical points" except local minima. 
Conclusion (i) follows, as in [5]. 

In the smooth case one proves (iii) by inferring that at any point p e M 
the exponential map expp : TpM -• M is globally defined and is a diffeo-
morphism. In the piecewise linear case this argument fails, even for 
2-manifolds. However one can consider the function distance-from-/? 
pp\M -• R1 and verify that its only "critical point" is p. It follows from a 
theorem of J. S tailings [9] (in the piecewise smooth context) that M is 
piecewise diffeomorphic to Rn, and hence from triangulation theory (see 
M. Hirsch and B. Mazur [4]) that M is piecewise linearly isomorphic to 
Rn. At one point in this argument the A-cobordism theorem is used to 
show that certain points are not "critical"; hence the restriction n ^ 6. 

DISCUSSION OF THEOREM 3. (The proof of Theorem 2 is quite similar to 
that of Theorem 3.) The first (curvature) hypothesis on M implies that the 
whole (n — 2)-skeleton M"~2 is intrinsic to M, for it is the coarsest possible 
triangulation of the "singular set" of M—that is, of the set of points where 
the normal geometry is nontrivial. The second hypothesis then says that 
the singular set is "fairly dense" in M; it implies for example that every 
point of M is distant at most Q from the singular set. 

Let P be a number ^>Q. Let a be a linear simplex in Rl which satisfies 
hypothesis 2. Let S be an (/ — l)-sphere with centre C and radius P which 
passes through the vertices of a. Then C does not lie in the affine plane 
spanned by a, so I can project a into S from C. Call the image a# ; then 
a# is the P-spherical simplex associated to a. Let M be the simplicial 
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complex M re-metrized by replacing each a G M by the associated 
P-spherical simplex. 

The proof of Theorem 3 now falls into four parts. First, whenever P is 
large enough, then Ji satisfies hypothesis 1 (with a different bound 
fc# ^ 0 for the curvature). Second, one shows by induction on dim vpM 
that conclusion (ii) holds for M and for Ji'. The inductive step is based on 
the third part, assumed proved in dimensions ^n. The third part is to 
show that then Ji has diameter rgrcP. Finally, one has to compare the 
intrinsic metrics on M and Ji. 

The nub of the proof is the third part. It is proved by inferring from 
hypothesis 1 for M that any geodesic a in Ji meets the singular set Jin~2 

at most in the endpoints of a. Hence a neighbourhood of a can be immersed 
isometrically in the standard «-sphere S of radius P. If a has length 
^ 71JP, then its image a' in S, having the same length as a, can be approxi
mated by shorter paths /?' with the same endpoints. But any /?' close enough 
to a' corresponds to a path P in Ji with the same endpoints as a and the 
same length as ƒ?'. Thus a is not a shortest path; this proves the assertion. 
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