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Abstract

This paper assesses how structural transformation is affected by sectoral differences in

labor–augmenting technological progress, capital intensity, and substitutability between

capital and labor. We estimate CES production functions for agriculture, manufacturing,

and services on postwar US data and compare them with Cobb–Douglas production func-

tions with different and with equal capital shares. We find that sectoral differences in labor–

augmenting technological progress are the main force behind the trends in observed sec-

toral labor and relative prices. As a result, Cobb–Douglas production functions with equal

capital shares (which by construction abstract from differences in capital intensity and the

elasticity of substitution) capture the main economic forces behind postwar US structural

transformation that originate on the technology side.
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1 Introduction

The reallocation of production factors across the broad sectors agriculture, manufacturing, and

services is one of the important stylized facts of growth and development: as economies develop

agriculture shrinks, manufacturing first grows and then shrinks, and services grow. A growing

recent literature has studied this so called structural transformation and has shown that it has

important implications for the behavior of aggregate variables such as output per worker, hours

worked, and human capital.1 This paper is part of a broader research program that asks what

economic forces are behind structural transformation. Herrendorf et al. (2013b) addressed the

preference aspect of this question and quantified the importance of income effects and substitu-

tion effects for changes in the composition of households consumption bundles. In this paper,

we focus on the technology aspect of this question. In particular, we ask how important are

sectoral differences in technological progress, capital intensity, and the substitutability between

capital and labor for structural transformation.

There are two different views in the literature about this question. Most papers on structural

transformation use sectoral production functions of the Cobb–Douglas form with capital shares

that are equal to the aggregate capital share. The advantage of this way of proceeding is that

it is convenient, as sectoral Cobb–Douglas production functions with equal capital shares can

be aggregated to an economy–wide Cobb–Douglas production function with the same capital

share. However, this way of proceeding assumes away differences in sectoral capital intensity

and the substitutability between capital and labor that may imply potentially important eco-

nomic forces behind structural transformation. To see how these forces operate, suppose first

that technological progress is even (i.e., is the same in all sectors) and compare two sectoral

production functions that only differ in the relative capital intensity. When the economy is

poor and capital is relatively scarce compared to labor, then the price of the output of capital–

intensive sector relative to that of the labor sector will be high. As even technological progress

takes place, the economy develops and capital becomes less scarce compared to labor and the

relative price of the output of the capital–intensive sector will fall. Acemoglu and Guerrieri

1The recent literature started with the papers by Kongsamut et al. (2001) and Ngai and Pissarides (2007).
Herrendorf et al. (2013a) provide a review of this literature.
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(2008) emphasized this economic force behind structural transformation. Now suppose that

technological progress is still even and compare two sectoral production functions that only

differ in the elasticity of substitution between capital and labor. As before, when the econ-

omy is poor, the relative price of the output of the sector with low substitutability will be high.

As even technological progress takes place, the relative price of the output of the sector with

low substitutability will fall. Alvarez-Cuadrado et al. (2012) emphasized this economic force

behind structural transformation.

In order to assess how quantitatively important the different features of sectoral technol-

ogy are for structural transformation, we estimate CES production functions for agriculture,

manufacturing, and services on postwar US data. We also estimate Cobb–Douglas production

functions with sector–specific capital shares and Cobb–Douglas production functions with a

common capital share equal to the aggregate capital share. We then endow competitive stand–

in firms in each sector with the estimated technologies and ask how well their optimal choices

replicate the observed sectoral allocation of labor and the sectoral relative prices. The reason

for focusing on sectoral labor is that it is the most widely available measure of sectoral activity,

which is most commonly used in the context of structural transformation.

The estimation of the sectoral CES production functions yields the following results. First,

labor–augmenting technological progress is fastest in agriculture and slowest in services and the

differences in the growth rates are sizeable. Second, agriculture is the most capital–intensive

sector and manufacturing is the least capital–intensive sector. Services are more capital inten-

sive than manufacturing because services include the capital–intensive industry owner–occupied

housing. Third, capital and labor are most easily substitutable in agriculture and least easily

substitutable in services. Moreover, in agriculture capital and labor are more substitutable than

in the Cobb–Douglas case and in manufacturing and services they are less substitutable than in

the Cobb–Douglas case.2

In order to assess how quantitatively important the different features of the estimated sec-

toral production functions are for structural transformation, we compare the predicted trends

2The finding that in agriculture capital and labor are more substitutable than in the Cobb–Douglas case is
consistent with the view that a mechanization wave led to massive substitution of capital for labor in US agriculture
during the 1950s and 1960s; see for example Schultz (1964).
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in sectoral labor with those of Cobb–Douglas production functions with equal and with dif-

ferent capital shares. It turns out that uneven labor–augmenting technological progress is the

dominant force behind these trends. As a result, sectoral Cobb–Douglas production functions

with equal capital shares (which by construction abstract from differences in the elasticity of

substitution and in capital shares) do a good job at capturing the reallocation of labor across

sectors during the process of US structural transformation. The reason for this finding is that

the CES production function of agriculture has both the largest relative weight on capital and

the largest elasticity of substitution whereas the CES production function of manufacturing has

both the smallest relative weight on capital and the smallest elasticity of substitution. Hence,

the effects on structural transformation of different relative weights on capital and different elas-

ticities of substitution go in opposite directions and largely cancel each other, leaving the effects

of uneven labor–augmenting technological progress as the dominating force behind structural

transformation. We also show that similar conclusions hold for relative prices, that is, Cobb–

Douglas production functions with equal shares do a good job at predicting the relative prices

of sectoral outputs.

This paper falls into a large literature that estimates production functions at the aggregate

level, the industry level, or the firm level. Three recent studies most closely related to our

work are Antràs (2004), Klump et al. (2007) and León-Ledesma et al. (2010), who revisited the

question how substitutable capital and labor are at the level of the aggregate US economy. We

adopt the methodology of León-Ledesma et al. (2010) to the level of the three broad sectors

that are relevant in the context of structural transformation.

The remainder of the paper is organized as follows. In Section 2 we introduce the concept of

value–added production functions. Section 3 discusses the estimation issues that arise and the

data that we use. In Section 4, we present the estimation results and in Section 5 we compare the

CES production function with the Cobb–Douglas production functions. Section 6.2 discusses

the implications of our results for building multi–sector models and section 7 concludes.
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2 Value–added Production Functions

We start with the question of whether to write production functions in gross–output form or in

value–added form. Since value added equals the difference between gross output and intermedi-

ate inputs, the difference between the two possibilities is whether one counts everything that the

sector produces (“gross output”) or whether one counts only what the sector produces beyond

the intermediate inputs that it uses (“value added”). To see the issues involved in this question,

it is useful to start with the aggregate production function. In a closed economy, GDP equals

value added by definition. Therefore, GDP G is ultimately produced by combining domestic

capital K and labor L, and we can write the aggregate production function as a value–added

production function:

G = H(K, L)

where H has the usual regularity conditions. In an open economy, GDP is in general not equal

to domestic value added anymore because of imported intermediate inputs. Therefore, GDP is

ultimately produced with domestic capital, labor, and imported intermediate inputs Z:

G = H(K, L,Z)

While imported intermediate inputs are often abstracted from, they can be quantitatively im-

portant, in particular in small open economies that have few natural resources.

Turning now to sectoral production functions, the question which production function to

use arises even in a closed economy. The reason for this is that all sectors use intermediate

inputs from other sectors, and so sectoral output practically never equals sectoral value added.

Therefore, it is natural to start with a production function for gross output. Denoting the sector

index by i ∈ {a,m, s}, the production function for sectoral gross output can be written as:

Gi = Hi(Ki, Li,Zi)

The question then arises under which conditions a value–added production functions Fi(., .)
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exist such that sectoral value added is given by:

Yi ≡
PgiGi − PziZi

Pyi
= Fi(Ki, Li)

where Pgi, Pzi, and Pyi denote the prices of gross output, intermediate inputs, and value added,

all expressed in current dollars.

Sato (1976) answered that question by showing that a value added production function exists

if there is perfect competition and if the other input factors are separable from intermediate

inputs, that is, the gross–output production function is of the form

Gi = Hi(Fi(Ki, Li),Zi) (1)

where Hi and Fi have the usual regularity conditions (i.e., the are continuously differentiable and

concave in each input factor and the Inada conditions hold). To see Sato’s argument, consider

the problem of a stand–in firm that takes prices and gross output as given and chooses capital,

labor, and intermediate inputs to minimize its costs subject to the constraint that it produces the

given output:

min
Ki,Li,Zi

RiKi + WiLi + PziZi s.t. Hi(Fi(Ki, Li),Zi) ≥ Gi (2)

where Ri and Wi denote the rental rates for capital and labor, both expressed in current dollars.

The first–order conditions to this problem imply:

Pyi = λi
∂Hi(Fi(Ki, Li),Zi)

∂Yi
(3)

Ri = λi
∂Hi(Fi(Ki, Li),Zi)

∂Yi

∂Fi(Ki, Li)
∂Ki

(4)

Wi = λi
∂Hi(Fi(Ki, Li),Zi)

∂Yi

∂Fi(Ki, Li)
∂Li

(5)

where λi is the multiplier on the constraint. Substituting the first equation into the second and

5



third equation gives:

Ri = Pyi
∂Fi(Ki, Li)

∂Ki
(6)

Wi = Pyi
∂Fi(Ki, Li)

∂Li
(7)

Using that the envelope theorem implies that the multiplier on the constraint equals the price

of value added Pyi, it is straightforward to show that these are the first–order conditions to the

problem of a stand–in firm that takes prices and value added as given and chooses capital and

labor to minimize its costs subject to the constraint that it produces the given value added:

min
Ki,Li

RiKi + WiLi s.t. Fi(Ki, Li) ≥ Yi (8)

The question remains if condition (1) holds in the data. A sufficient condition is that the

sectoral production function is Cobb–Douglas between value added and intermediate inputs:

Gi = [Fi(Ki, Li)]ηiZ1−ηi
i (9)

In this case, perfect competition implies that the share of intermediate inputs is constant over

time. Figure 1 plots the intermediate good shares for the post–war US. We can see that none of

them has a pronounced trend. We take that to mean that the functional form (9) is a reasonable

approximation when one is interested in secular trends in the US, which is what the literature

on structural transformation focuses on. We will therefore proceed under the assumption that

sectoral value–added production functions exist.
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Figure 1: Intermediate Inputs Shares in the US
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Source: Input–Output Tables for the United States, Bureau of Economic Analysis

3 Estimating Sectoral Production Functions

3.1 Deriving the system to estimate

We restrict our attention to the class of CES production functions:

Yit = Ai

[
θi (Kit)

σi−1
σi + (1 − θi)

(
exp(γit)Lit

)σi−1
σi

] σi
σi−1

(10)

where i ∈ {a,m, s} denotes the sector, Ai is TFP, θi is the relative weight of capital, σi is the

elasticity of substitution, and γi is the growth rate of labor–augmenting technological progress.3

León-Ledesma et al. (2010) show that for estimation purposes it is advantageous to repa-

rameterize this production function in normalized form:

Yit = Fi(Kit, Lit) = ξiȲi

θ̄i

(
Kit

K̄i

)σi−1
σi

+ (1 − θ̄i)
(
exp(γi(t − t̄))Lit

L̄i

)σi−1
σi


σi
σi−1

(11)

3In contrast, Jorgenson et al. (1987) estimated translog production functions for 45 disaggregate US industries
during 1948–79. Although we recognize that translog production functions have many advantages in empirical
work, we focus on CES production functions here because they are more common in multi–sector growth models.
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where Ȳi, K̄i and L̄i are the geometric averages of output, capital and labor over the sample

period; t̄ is the arithmetic average of the time index; and ξi is an auxiliary parameter close to

unity. The advantage of working with the normalized form (11) instead of (10) is that θ̄i equals

the average capital share in sector i. This means that the value of θ̄i can be obtained from the

data directly and independently of the estimated value of σi. In contrast, θi depends on σi, and

so identification may be an issue when one estimates the two parameters together.

We assume that each sector has a stand–in firm, which behaves competitively and takes as

given sectoral value added, the sectoral interest rate and wage when it chooses sectoral capital

and labor to minimize its costs subject to the constraint that it produces at least the given sectoral

output. Denoting the price of value added in sector i by Pyit and the real interest rate and real

wage in sector i by

rit ≡ Rit

Pyit
, wit ≡ Wit

Pyit
(12)

we can write the problem of the stand-in firm as:

min
Kit ,Lit

ritKit + witLit s.t. Fi(Kit, Lit) ≥ Yit (13)

The first–order conditions to this problem imply

rit =
θ̄iȲi

K̄i
ξ

σi−1
σi

i

(
YitK̄i

ȲiKit

) 1
σi

(14)

wit =
(1 − θ̄i)Ȳi

L̄i
ξ

σi−1
σi

i exp
(

σi

σi − 1
γi(t − t̄)

) (
YitL̄i

ȲiLit

) 1
σi

(15)

Taking logs of (11) and (14)–(15) and rearranging, we arrive at a system of three equations for
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each sector:

log
(
Yit

Ȳi

)
=

σi

σi − 1
log

θ̄i

(
Kit

K̄i

)σi−1
σi

+ (1 − θ̄i)
(
exp(γi(t − t̄))Lit

L̄i

)σi−1
σi

 + log(ξi) (16)

log(rit) = log
(
θ̄i

Ȳi

K̄i

)
+

1
σi

log
(
Yit

Ȳi

K̄i

Kit

)
+
σi − 1
σi

log(ξi) (17)

log(wit) = log
(
(1 − θ̄i)

Ȳi

L̄i

)
+

1
σi

log
(
Yit

Ȳi

L̄i

Lit

)
+
σi − 1
σi

[
γi(t − t̄) + log(ξi)

]
(18)

We observe Yit/Ȳi, Lit/L̄i, Kit/K̄i, wit, rit, and θ̄i. Specifically, wit is the part of value added

that goes to labor divided by the product of sectoral labor and the sectoral price level and rit

is the part of value added that does not go to labor divided by the product of sectoral capital

(which includes sectoral land) and the sectoral price level. θ̄i is the share of capital income in

sector i’s value added, which we calculate according to the method of Gollin (2002).

We estimate σi, γi, and ξi from the equations (16)–(18) for the aggregate economy and

the three sectors using three–stage least squares with an AR(1) error structure.4 For the ag-

gregate economy this results in a three–equation system, and for the sectoral estimation in a

nine–equation system with three equations for each of the three sectors. By estimating the

three sectors together, we allow for the possibility that error terms across equations and sec-

tors are correlated. Several right–hand side variables are endogenous. To deal with that, we

follow León-Ledesma et al. (2010) and use as instrumental variables the one–period lagged

values (appropriate to each sector or the aggregate economy) of the log rental rate on capital,

log real wage, log normalized output, log normalized capital, and log normalized labor. Addi-

tionally, we include a time trend with the instruments for equations (16) and (18) because it is

an exogenous right–hand side variable in both equations.

3.2 Data

For output, we use the BEA’s “GDP–by–Industry” tables 1947–2010, which contain value

added at current prices and quantity indexes of value added by industries according to the North

American Industrial Classification (NAICS). We define sectors in the obvious way: agriculture

4Including one lag is sufficient to ensure that the innovations to the errors are white noise.
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comprises farms, fishing, forestry; manufacturing comprises construction, manufacturing, and

mining; and services comprise all other industries (i.e. government, education, real estate,

trade, transportation, etc.). Real output for sector i, Yit, is defined by the sector’s value added

expressed in 2005 prices.

An additional issue arises with measuring value added in agriculture. As standard in na-

tional income accounting, NIPA reports “Rent paid to nonoperator landlords” as part of value

added of the real estate industry. Since both the labor and capital that generate this rent are

reported as input factors in agriculture, consistency requires us to treat this rent as part of value

added of agriculture. Therefore, we add “Rent paid to nonoperator landlords” (as reported by

the BEA in NIPA Table 7.3.5 “Farm Sector Output, Gross Value Added, and Net Value Added”)

to the value added of agriculture and subtract it from the value added of services.

Turning to inputs, we calculate the capital stocks by sector from the BEA’s “Fixed Asset”

tables 1947–2010, which contain the year–end current cost and quantity index in 2005 prices

of the net stock of fixed assets. Fixed assets are constructed according to NAICS. Since the

BEA fixed assets only includes reproducible capital, we add the value of farm land from the

USDA to the fixed assets in agriculture.5 Given that the data report year–end capital stocks, we

calculate the capital stocks during period t as the geometric averages of the relevant year–end

capital stocks in t and t − 1.6

We calculate labor input by sector from two data sources. The BEA’s “GDP–by–Industry”

tables 1947–2010 follow the NAICS classification consistently, but report only full- and part-

time employees by industry. The BEA’s “Income–and–Employment–by–Industry” tables 1948–

2010 again change the industry classification: they use SIC72 during 1947–1987, SIC87 during

1987–1997, and NAICS during 1998–2010, but they contain much more detailed information

about hours worked by full-time and part-time employees by industry; full-time equivalent em-

ployees by industry; self-employed persons by industry; and persons engaged in production by

5The data are from “Land in farms” and “Farm real estate values” tables of the “U.S. and State Farm Income
and Wealth Statistics” tables from the U.S. Department of Agriculture (USDA). The data includes the quantity of
land in acres and the value of land per acre.

6Since the BEA publishes neither the value added nor the capital stock data for the sectors as we define them,
we have to construct these aggregates from the underlaying BEA data ourselves. Since the BEA calculates real
quantities with the chain–weighted method, they are not additive. We use the so called cyclical expansion proce-
dure to aggregate real quantities; see Appendix B for a description of this method.
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industry. To construct sectoral hours worked, we use the GDP–by–Industry Tables to the max-

imum extent possible and the Income–and–Employment–by–Industry Tables to the minimum

extent possible. In particular, we merge the two data sources as follows:

Self–empNAICS =
Self–empS IC

Part– and full–time empS IC
Part & full–time empNAICS

Full–time eq empNAICS =
Full–time eq empS IC

Part & full–time empS IC
Part & full–time empNAICS

Hours full–time eq empNAICS =
Hours full–time eq empS IC

Full–time eq empS IC
Full–time eq empNAICS

Hours persons engagedNAICS = Hours full–time eq empNAICS

+
Hours full–time eq empNAICS

Full–time eq empNAICS
Self–empNAICS

Labor input for sector i, Lit, is defined as hours worked in sector i constructed above.

We also need the rental prices of the production factors, which for sector i are defined as:

rit =
θitYit

Kit
wit =

(1 − θit)Yit

Lit

where θit is the share of capital income in sector’s i value added in period t. We already

described the construction of Yit, Kit and Lit from the data, so we only need to describe the

construction of the capital share in value added. We use the BEA’s “Components–of–Value–

Added–by–Industry” Tables 1947–2010 as follows: “compensation of employees” is labor in-

come; “gross operating surplus minus proprietors’ income” is capital income; proprietors’ in-

come is split into capital and labor income according to above shares. In the case of agriculture,

we add “Rent paid to nonoperator landlords” to “gross operating surplus” since rent is capital

income. An issue arises because the industry classification changes over time in these tables.

In particular, SIC72 applies to 1947–1987, SIC87 applies to 1987–1997, and NAICS applies to

1998–2010. We calculate the sectoral capital shares for each of the three subperiods and assume

that the same capital share also applies to the corresponding NAICS classifications. Since our

three sectors are fairly aggregated, this is not big issue here.
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Table 1: Estimation Results

Aggregate Agriculture Manufacturing Services

σ 0.69∗∗ 1.09∗∗ 0.77∗∗ 0.64∗∗

(0.022) (0.032) (0.015) (0.015)

γ 0.017∗∗ 0.092∗∗ 0.020∗∗ 0.012∗∗

(0.001) (0.001) (0.002) (0.002)

ξ 1.02∗∗ 0.98∗∗ 0.95∗∗ 1.04∗∗

(0.018) (0.010) (0.046) (0.053)

θ̄ 0.33 0.61 0.29 0.34

Standard errors in parentheses; ∗∗ p < 0.01

4 Estimation Results

The estimation results are summarized in Table 1.7 We find that capital and labor are most

substitutable in agriculture and least substitutable in services. In agriculture capital and la-

bor are more substitutable than in the Cobb–Douglas case, which is consistent with the view

that a mechanization wave led to massive substitution of capital for labor in agriculture af-

ter World War II. In manufacturing and services capital and labor are less substitutable than

Cobb–Douglas. On the aggregate, we find that capital and labor are less substitutable than

Cobb–Douglas, which is consistent with the previous results of Antràs (2004), Klump et al.

(2007) and León-Ledesma et al. (2010).

Labor–augmenting technological progress is fastest in agriculture and slowest in services

and the differences in the growth rates of technological progress are sizeable: in agriculture

technological progress grew by 9.2% per year, whereas in manufacturing it grew by 2.0% and

in services it grew by just 1.2%; these growth rates result in an average of 1.7% annual growth of

aggregate labor–augmenting technological progress. Since these numbers appear rather large,

7The appendix contains further information that shows that the fit (as measured by mean–squared error) is
good. Moreover, it reports multivariate Ljung–Box Q–statistics, which test for autocorrelation in the residuals,
and do not reject the null hypothesis of no residual autocorrelations. To conserve space we only report the test
statistics up to two lags, but the existence of higher order autocorrelation is also strongly rejected.
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it is useful to remember two qualifications. First, the growth in TFP implied by these numbers

is smaller because the labor share is smaller than one. Second, we have used measures of raw

sectoral labor that do not take into account sectoral human capital. Increases in sectoral human

capital then show up as an increases in labor–augmenting technological progress.

The fact that technological progress is slowest in services while the share of value added

produced in services is growing is sometimes referred to as Baumol “disease”, because Baumol

(1967) was the first to point out that these two facts imply decreasing growth rates of real

GDP. Moreover, if the current trends of structural transformation continue, then services will

dominate the economy in the limit, and so aggregate labor-augmenting technological progress

will fall from its 1.7% post-war average to the lower 1.2% post-war average for services.

The last row of Table 1 reports θ̄, that is, the average capital share in the post war period.

We can see that the aggregate capital share comes out as the standard value of 1/3, and that the

sectoral capital shares differ from that standard value. However, while the agricultural capital

share is considerably larger than the aggregate capital share, the capital shares in manufacturing

and services are fairly close to the aggregate capital share. The capital share in agriculture is

much larger than the other two capital shares because capital includes land and agriculture is

land intensive. The capital share in services is larger than in manufacturing because the capital–

intensive industry owner–occupied housing is part of services.

5 Sectoral Technology and Structural Transformation

5.1 Sectoral production functions

In this section, we evaluate the implications of the different features of sectoral technology for

structural transformation. To this end, we compare the unrestricted CES production functions

that we have estimated above with two restricted CES production functions: (i) we impose σi =

1 which results in a Cobb–Douglas production function with possibly different capital shares;

(ii) we impose σi = 1 and θ̄i = θ̄, which results in Cobb–Douglas production functions with

a common capital share equal to the aggregate capital share. We write these three functional
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forms as follows:

Yit =

θ̄i

(
ξiȲi

K̄i
Kit

)σi−1
σi

+ (1 − θ̄i)
(
ξiȲi exp(γi(t − t̄))

L̄i
Lit

)σi−1
σi


σi
σi−1

Yit =

(
Ȳi

K̄i
Kit

)θ̄i ( Ȳi exp(γi(t − t̄))
L̄i

Lit

)1−θ̄i

Yit =

(
Ȳi

K̄i
Kit

)θ̄ ( Ȳi exp(γi(t − t̄))
L̄i

Lit

)1−θ̄

To simplify the notation, we define (where ξi = 1 in the Cobb–Douglas cases):

Aik ≡ ξiȲi

K̄i
, Ailt ≡ ξiȲi exp(γi(t − t̄))

L̄i

and write:

Yit =
[
θ̄i (AikKit)

σi−1
σi + (1 − θ̄i) (AiltLit)

σi−1
σi

] σi
σi−1 (19)

Yit = (AikKit)θ̄i (AiltLit)1−θ̄i (20)

Yit = (AikKit)θ̄ (AiltLit)1−θ̄ (21)

To obtain the parameters the Cobb–Douglas production functions, we set θ̄ = 1/3, θ̄a =

0.54, θ̄m = 0.29, and θ̄s = 0.34. This leaves γi to estimate. We drop equations (17)–(18) and

estimate the output equations (16) jointly for the three sectors where we parameterize Ak and

Al in the same way as in the case in the CES and again assume AR(1) error terms. Table 2

reports the resulting average annual growth rates of labor–augmenting technological progress.

To put them into perspective, it is useful to calculate the implied growth rates of TFP. For the

two Cobb–Douglas production functions, they are obtained as exp(γiθ̄i). It is not clear how to

calculate TFP for the CES production function, so we don’t attempt to do this here. Table 3

shows the growth rates for TFP. They are sizeable compared to what other studies find; see for

example Jorgenson et al. (1987). The reason for this is that we have not taken into account

improvements in the quality of sectoral labor (e.g., through increases in years of schooling and

experience). In our estimation, such improvements show up as labor–augmenting technological
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Table 2: Average Annual Growth Rates of Labor–augmenting
Technological Progress (in %)

Aggregate Agriculture Manufacturing Services

CES 1.7 9.2 2.0 1.3

CD with θ̄i 1.8 9.3 2.1 1.5

CD with θ̄ 1.8 6.1 2.1 1.5

Table 3: Average Annual Growth Rates of TFP (in %)

Aggregate Agriculture Manufacturing Services

CD with θ̄i 1.2 3.5 1.5 1.0

CD with θ̄ 1.2 4.1 1.4 1.0

progress.

5.2 Sectoral labor allocations

We now turn to the sectoral labor allocations that result from the optimal choices of stand–in

firms with are endowed with these production functions. Solving the first-order conditions to

the firm problem, (14)–(15), for sectoral labor, we obtain for each functional form:

Lit =

θ̄i

(
1 − θ̄i

θ̄i

Ailtrit

Aikwit

)1−σi

+ (1 − θ̄i)


σi

1−σi Yit

Ailt
(22)

Lit =

(
1 − θ̄i

θ̄i

Ailtrit

Aikwit

)θ̄i Yit

Ailt
(23)

Lit =

(
1 − θ̄
θ̄

Ailtrit

Aikwit

)θ̄ Yit

Ailt
(24)

It is worth to take a moment and build intuition for how the different features of technology

affect the allocation of labor across the three broad sectors. The term Yit/Ailt is common to the

right–hand sides because more labor–augmenting technological progress implies that less labor
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is needed to produce the given quantity Yit of sectoral value added. The other right–hand–side

terms differ among the different functional forms. It is easiest to start with the Cobb–Douglas

cases. The term [(1 − θ̄i)/θ̄i]θ̄i is decreasing in θ̄i and captures that a sector with a larger capital

share receives less labor than a sector with a smaller capital share. The term [(Ailtrit)/(Aikwit)]θ̄i

captures that an increase in the relative rental rate of capital to labor (where both rental rates

are expressed relative to the relevant A’s) leads to a decrease in the sectoral capital–labor ratio

and an increase in sectoral labor, and that this increase is larger when the sectoral capital share

is larger.

When the economy is poor, the economy–wide capital–labor ratio is low and the relative

rental rate of capital to labor is high, implying that a sector with a larger capital share receives

relatively less labor. As the economy develops, the capital–labor ratio increases and the relative

rental rate of capital to labor decreases, implying an increase in the relative labor of this sector.

This is the mechanism that Acemoglu and Guerrieri (2008) emphasized.

For the case of the CES production functions, there is an additional substitution effect: if the

elasticity of substitution is larger than one, a higher rental rate of capital relative to labor leads

to larger reduction of the capital–labor ratio than in the Cobb–Douglas case; if the elasticity of

substitution is smaller than one, a higher rental rate of capital relative to labor leads to smaller

reduction of the capital–labor ratio than in the Cobb–Douglas case. Hence, when the economy

is poor and the relative rental rate of capital to labor is high, a sector with a smaller elasticity of

substitution receives relatively less labor. As the economy develops, the relative rental rate of

capital to labor decreases, implying an increase in the relative labor in this sector. This is the

mechanism that Alvarez-Cuadrado et al. (2012) emphasized.

Figure 2 plots the labor allocations that are implied by equations (22)–(24) when we plug

in the estimated parameter values for σi and θ̄i and the data values of the exogenous variables

Aik, Ailt, Yit, rit, and wit. Note that we have normalized hours worked in 1948 to one. We

can see that all three functional forms do a reasonable job at capturing the secular changes

in sectoral hours worked. In particular, the CES and the Cobb Douglas with different capital

shares perform nearly identical. The only noticeable difference between the two is that the

CES form does somewhat better at mimicking the short–run fluctuations in the manufacturing
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sector. The Cobb Douglas with equal capital shares does somewhat worse, in particular in

manufacturing and in agriculture. The reason for this is that it misses that manufacturing has a

larger labor share and agriculture has a smaller labor share than the aggregate. As a result, the

Cobb Douglas with equal labor shares systematically allocates too little labor to manufacturing

and too much labor to agriculture. Compared to the other two functional forms, manufacturing

hours predicted by the Cobb Douglas with equal shares are therefore lower and agricultural

hours are higher. Nonetheless, even the Cobb Douglas with equal shares gets the main secular

trends of hours mostly right.

The reason for why the Cobb–Douglas production function with equal shares gets the main

secular trends of hours mostly right is that the CES production function of agriculture has both

the largest relative weight on capital and the largest elasticity of substitution whereas the CES

production function of manufacturing has both the smallest relative weight on capital and the

smallest elasticity of substitution. Hence, the effects on structural transformation of different

relative weights on capital and different elasticities of substitution go in opposite directions and

partly cancel each other, leaving the effects of uneven labor–augmenting technological progress

as the dominating force behind structural transformation.

5.3 Relative prices

We continue with the relative prices of sectoral value added that each of the three functional

forms implies under the maintained assumption that the sectoral stand–in firm behave compet-

itively. The first–order conditions to the firm problem (13) imply that the real wage wit equals

the marginal product of labor. Hence, cost minimization implies that the price of sector i’s value

added relative to services is given by:

Pit =
Pit

Pst
=

Wit

Wst

MPLst

MPLit

While we observe the nominal wages Wit and Wst in the data, the model implies the values for

the marginal products MPLit and MPLst.

Figure 3 reports the results that the three functional forms imply for the relative prices. We
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Figure 2: Hours Worked (Data=1 in 1948)
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can see that they all do reasonably well with respect to the relative price of agriculture. In

contrast, the CES does worst with respect to the relative price of manufacturing and the two

Cobb Douglas perform nearly identically well.

6 Implications for Building Multi–sector Models

6.1 Equalizing marginal value products

Many builders of multi–sector models assume that the marginal value products of each primary

factor of production (here capital and labor) are equalized across sectors. A set of assumptions

that implies this is: (i) competitive firms rent each factor of production in a common factor

market at a common nominal rental rate; (ii) each factor of production can be moved across

sectors without any frictions or costs. Unfortunately, it turns out that in the US the nominal

rental rates are not equalized across sectors. Figure 4 shows that the marginal value product is

somewhat higher in manufacturing than in services, and is much lower in agriculture than in the

other two sectors. Given this evidence, our estimation strategy of system (16)–(18) has been

to use the observed nominal rental rates and prices of sectoral value added instead of imposing

that nominal rental rates are equalized across sectors.

The previous paragraph raises the question, in which way, if any, our estimated sectoral

production functions may be used in multi–sector models that equalize marginal value products

across sectors. The answer is that in order to incorporate our estimated production functions

in a multi–sector model, one needs to add a reason for the difference in the marginal value

products across sectors. In the case of labor, the most obvious reason is differences in sectoral

human capital that reflect difference in innate ability, experience, and years of schooling like in

Jorgenson et al. (1987) or Herrendorf and Schoellman (2012). The latter paper, for example,

found that average sectoral human capital is lower in agriculture than in the rest of the US

economy, and that the difference accounts for almost all of the difference in nominal wages.

This implies that per efficiency unit of labor the average nominal wages were roughly equal in

agriculture and the rest of the US economy during the last thirty years. In the case of capital,

obvious reasons for the difference in the marginal value products across sectors are unmeasured
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Figure 3: Sectoral Prices Relative to Manufacturing (Data=1 in 1948)
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Figure 4: Sectoral Marginal Value Products of Labor (in logs)
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quality differences in the measured stock of sectoral capital and unmeasured parts of the stock

of capital; see Jorgenson et al. (1987) and McGrattan and Prescott (2005) for further discussion.

6.2 Value–added versus final–expenditure production functions

So far, we have focused on value–added production functions. While this is a natural start-

ing point when one studies the technology side of structural transformation, Herrendorf et al.

(2013b) pointed out that one can also interpret the sectoral outputs as final goods that are con-

sumed or invested. In this subsection we discuss the implications of our results for models of

structural transformation that interpret sectoral outputs in this way.

Before we delve into the details, an example may be helpful. Consider a household which

derives utility from the three consumption categories agriculture, manufacturing, and services.

Herrendorf et al. (2013b) pointed out that one can take two different perspectives on what these

categories are: the value–added perspective and the final–goods perspective. The value–added

perspective breaks the household’s consumption into the value–added components from the

three sectors and assigns each value–added component to a sector. For example, if the house-

hold consumes a cotton shirt, then the value added of producing raw cotton goes to agriculture,

the value added of processing to manufacturing, and the value added of distribution to ser-

vices. This means that the consumption categories in the utility function of the household are
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the value added that is produced in the three sectors agriculture, manufacturing, and services.

In contrast, the final–goods perspective assigns each consumption good to one of the three

consumption categories. The cotton shirt, for example, would typically be assigned to manu-

facturing. This means that the consumption categories in the utility function of the household

become final–goods categories. This dramatically changes the meaning of the three sectors, as

the manufacturing sector now produces the entire cotton shirt, implying that it combines the

value added from the different industries that is required to produce the cotton shirt.

Although the sectoral production functions under the two perspectives are very different

objects, we emphasize that they are two representations of the same underlying data, which are

linked through intricate input–output relationships. To see the implications of this, it is useful

to think that at a first approximation the sectoral output under the final–goods perspective are

some weighted average of the sectoral value added from the value–added perspective. This

implies that the properties of the production function under the final–goods perspective are

a weighted average of the properties of the properties of the production functions under the

value–added perspective. Valentinyi and Herrendorf (2008) showed that as a result the capital

shares of industry gross output tend to be closer to the aggregate capital share than the capital

shares of industry value added. This suggests that the sectoral capital shares under the final–

goods perspective should be closer to the aggregate capital share than the sectoral capital shares

under the value–added perspective. We conjecture that a similar argument applies also to the

elasticity of substitution, that is, for a given sector the elasticity of substitution is closer to one

under the final–goods perspective than under the value–added perspective.

These arguments suggest that under the final–goods perspective the sectoral production

functions are closer to the Cobb–Douglas production function with a common capital share

than under the value–added perspective. Since we have shown above that the Cobb–Douglas

production functions with a common capital share do a reasonable job at capturing sectoral

employment and relative prices under the value–added perspective, this suggests that they will

also do a reasonable job under the final–goods perspective. Note that since the aggregate cap-

ital share is the same under both perspectives, it is straightforward to parameterize the Cobb–

Douglas production functions with a common capital share under the final–goods perspective.
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7 Conclusion

In this paper, we have assessed the technological forces behind structural transformation, i.e.,

the reallocation of production factors across agriculture, manufacturing, and services. In par-

ticular, we have asked how important for structural transformation are sectoral differences in

labor–augmenting technological progress, the elasticity of substitution between capital and la-

bor, and the intensities of capital. We have estimated CES production functions for agriculture,

manufacturing, and services on postwar US data. We have found that differences in labor–

augmenting technological progress are the predominant force behind structural transformation.

As a result, sectoral Cobb–Douglas production functions with equal capital shares (which by

construction abstract from differences in the elasticity of substitution and in capital shares) do

a reasonably good job of capturing the main trends of US structural transformation.

In this paper, we have restricted our attention to the postwar US. It is also of interest to

extend this analysis to a larger set of countries, in particular to situations which feature a larger

range of real incomes. This will be useful in assessing the extent to which one can account for

the process of structural transformation with stable sectoral technologies.
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Appendix A

Table 4: Root Mean Square Errors – Equations (16)–(18)

log(r) log(w) log(Y)

Specification Agr Man Ser Agr Man Ser Agr Man Ser

C-D (equal) - - - - - - 0.083 0.026 0.010

C-D (unequal) - - - - - - 0.086 0.025 0.010

CES 0.057 0.048 0.019 0.048 0.026 0.011 0.087 0.025 0.010

Table 5: Multivariate Ljung-Box Q-Statistics

Specification # of Lags degrees freedom Q-statistic p-value

C-D (equal) 1 9 13.210 0.153

2 18 20.989 0.280

C-D (unequal) 1 9 14.434 0.108

2 18 21.975 0.233

CES 1 81 102.368 0.055

2 162 176.596 0.205
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Table 6: Root Mean Square Errors – Labor Allocation and Relative Prices

Labor Allocation Relative Prices

Specification Ag Man Ser Ag Ser

C-D (equal) 0.044 0.106 0.056 0.054 0.090

C-D (unequal) 0.063 0.104 0.050 0.057 0.087

CES 0.148 0.101 0.085 0.051 0.121

Appendix B: Approximate Aggregation of Chained Quantity

Indices

Chain indices relate the value of an index number to its value in the previous period. In contrast,

fixed–base indices relate the value of an index number to its value in a fixed base period. While

chain indices are preferable to fixed–base indices when prices change considerably over time,

using them may lead to problems because real quantities are not additive in general, that is, the

real quantity of an aggregate does not equal the sum of the real quantities of its components. In

practice, this becomes relevant when one is interested in the real quantity of an aggregate, but

the statistical agencies only report the real quantities of the components of this aggregate. This

appendix explains how to construct the real quantity of the aggregate according to the so called

cyclical expansion procedure.

Let Yit be the nominal value, yit the real value, Qit the chain–weighted quantity index, and

Pit the chain–weighted price index for variable i ∈ {1, . . . , n} in period t. Let t = b be the base

year for which we normalize Qib = Pib = 1. The nominal and real values of variable i in period

t are then given by:

Yit = Pit
Qit

Qib
Yib = PitQitYib,

yit =
Yit

Pit
= QitYib.

Let Yt =
∑n

i=1 Yit and suppose that the statistical agency reports yit, Qit and Pit for all components
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i but not yt, Qt and Pt. Since in general yt ,
∑

i yit, we need to find a way of calculating yt.

We start by approximating Qt using the “chain–summation” method:8

Qt

Qt−1
=

√ ∑
i Pit−1yit∑

i Pit−1yit−1

∑
i Pityit∑

i Pityit−1
.

Using this expression iteratively, we obtain Qt as:

Qt =
Qt

Qt−1

Qt−1

Qt−2
. . .

Qb+1

Qb
Qb =

Qt

Qt−1

Qt−1

Qt−2
. . .

Qb+1

Qb
,

where the last step used the normalization Qb = 1. The real value and the price in period t then

follow as:

yt = QtYb,

Pt =
Yt

QtYb
.

8This is only an approximation because sums like
∑

i Pit−1yit are not directly observable and the statistical
agency typically uses more disaggregate categories than i ∈ {1, . . . , n} to calculate them.
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