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Island arc volcanism in the Greater Antilles persisted for >70 m.y. Y/Yb is>1, indicating that garnet and amphibole were insignificant
as residual phases and that melting occurred predominantly withinfrom Middle Cretaceous to Late Eocene time. During the initial

50 m.y., lavas in central Puerto Rico shifted from predominantly relatively dry spinel lherzolite. Yb concentrations, which provide
constraints on degree of melting, are consistent with a narrow rangeisland arc tholeiites (volcanic phase I, Aptian to Early Albian,

120–105 Ma), to calc-alkaline basalts (phase II, Late Albian, from 30 to 35% melting in volcanic phase I, but with a much
broader range from 25 to 40% melting during phase III. It seems105–97 Ma), and finally to high-K, incompatible-element-enriched

basalts (phases III and IV, Cenomanian–Maastrichtian, likely that such high degrees of melting were attained through a
combination of flux-related melting and buoyancy-driven pressure-97–70 Ma). Following an island-wide eruptive hiatus, geochemical

trends were reversed in the Eocene with renewed eruption of calc- release fusion. Nb abundances, which reflect degree of incompatible
element enrichment compared with fertile MORB mantle (FMM),alkaline basalts (phase V, 60–45 Ma). Progressive increases in

large-ion lithophile elements (LILE)/light rare earth elements are low in volcanic phase I, consistent with >2% low-degree
pressure release melting of source material in the back-arc region(LREE), LILE/high field strength elements (HFSE), LREE/

HFSE, and HFSE/heavy rare earth elements (HREE) characterize before entry into the arc melting zone. Subsequent lavas from phases
II and III have N-MORB-like or higher Nb abundances, indicatingthe compositional evolution of the first four volcanic phases. The

shift in trace element compositions is mirrored by increasing radiogenic that (1) back-arc processes peaked in intensity during the first
10−20 m.y. and later declined in significance, and/or (2) thecontent of the lavas. Pb�8/4 values, representing deviations of

208Pb/204Pb from the Northern Hemisphere Reference Line (NHRL), degree of incompatible element enrichment gradually increased as a
result of subduction of a thickening accumulation of pelagic sediment.range from −20 to almost +2·0 in phases I and II, and up to

+25 in phase III. Similarly, �Nd values decrease slightly from Isotope mixing models indicate that the proportion of authigenic
pelagic sediment incorporated into Puerto Rican basalts increased+8 to almost +6 between volcanic phases I and III. Finally,

initial (i) 87Sr/86Sr values in phase I basalts have a narrow range from negligible levels in phase I to as high as 2% in phases III
and IV. Although the absolute magnitude of the sediment componentfrom 0·7033 to 0·7040, near the upper limit of altered mid-ocean

ridge basalt (MORB), whereas values from phases III and IV increased progressively, a narrow range of Th/La in mafic end-
members indicates that the terrigenous contribution remained uniformbasalts have a broader range from 0·7034 to 0·7044. N-MORB-

normalized incompatible element distribution patterns of Puerto throughout volcanism, consistent with the insular setting of the
eastern Greater Antilles Arc.Rican volcanic rocks have uniformly flat HREE segments and
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Fig. 1. Tectonic setting of the Puerto Rico–Virgin Islands and associated fault-bounded tectonic blocks (modified from Speed & Larue, 1991)
of the eastern Greater Antilles Island Arc. Muertos Thrust and 19E Latitude Fault represent broad thrust zones, with teeth representing the
overridden surface; scarps on faults designate downthrown sides. V–V′, westernmost active volcanic chain of the modern Lesser Antilles Island
Arc.

KEY WORDS: Cretaceous subduction; fluid flux; mantle melting; Puerto within the thick Puerto Rican stratigraphic succession
Rico; Greater Antilles; Caribbean (Glover, 1971; Mattson, 1979; Donnelly, 1989; Lebron

& Perfit, 1994). Trace element studies ( Jolly et al., 1998a;
Schelleckens, 1998) reveal that the geochemical pro-
gression is marked by twofold increases in abundances
of the more incompatible elements, such as Th, Nb,INTRODUCTION
and light rare earth elements (LREE), and by order ofThe extinct Greater Antilles Island Arc, consisting of
magnitude increases in certain incompatible elementCuba, Hispaniola, Puerto Rico, and the Virgin Islands,
ratios, such as Th/Y and Nb/Y. The fortunate oc-represents the long-lived, intraoceanic island arc system
currence of this prominent compositional shift within suchmarking the Cretaceous boundary between the modern
a complete and well-constrained stratigraphic frameworkCaribbean and North American plates (Fig. 1). The
uniquely qualifies Puerto Rico as representative of bothdeeply dissected sequence of volcanic strata in Puerto
long-term geochemical trends in maturing arc systemsRico, located together with the Virgin Islands at the
in general, and of the evolution of physicochemicaleastern end of the arc, ranges in age from Middle
conditions within the eastern part of the Greater AntillesCretaceous to Eocene and contains a complete record
subduction zone during formation of the northern bound-of all stages of arc development spanning almost 70 m.y.
ary of the Caribbean Plate in particular.Island-wide geological mapping by the US Geological

Although investigation of an extinct island arc systemSurvey at a scale of 1:20 000 [see summary by Jolly et al.
produces a stratigraphic perspective not accessible in(1998b)] has firmly established stratigraphic correlations
modern arcs, where recent eruptive rocks rapidly burywithin the sequence. As a result, the island not only
older strata, effects of degradation severely limit geo-represents one of the longest intraoceanic island arc
chemical study of ancient volcanic piles. In the Greatersequences preserved, but also has one of the most highly
Antilles, devitrification, zeolite-grade alteration, andconstrained stratigraphic frameworks of ancient arcs in
other low-temperature diagenetic processes producedthe world.
considerable scatter in distribution of the large-ion litho-Major element geochemical data demonstrate that a
phile elements (LILE; Rb, Ba, K, Sr) as a result ofprofound geochemical shift, from early island arc tholei-

ites to late K-rich calc-alkaline assemblages, is present pervasive mobilization of these soluble components. To
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avoid secondary effects, the focus of this investigation is Rico until >85 Ma (mid-Santonian; Jolly et al., 1998b).
At that time left-lateral strike-slip faulting shortened theconcentrated on the less soluble rare earth elements

(REE) and high field strength elements (HFSE), and the arc and juxtaposed the fault-bounded central and north-
eastern volcanic provinces (denoted C and NE, re-highly incompatible but relatively insoluble element Th.

This group of components, when considered jointly with spectively, in Fig. 1). A second period of tectonism uplifted
and exposed the entire island to erosion during thePb, Nd, and Sr isotope data, provides insight into crustal

and mantle processes involved in island arc petrogenesis. Paleocene (Donnelly et al., 1990; Pindell & Barrett, 1990).
Arc volcanism finally terminated during the Late EoceneThe principal objectives of this paper include the fol-

lowing: (1) geochemical classification of the Puerto Rican following collision of the arc with the Bahama Islands.
In subsequent Oligocene time, eastern Puerto Rico wasvolcanic suite and determination of the role of subvolcanic

fractional crystallization (fc); (2) evaluation of the modal rotated 30°E counterclockwise to its present position
(Reid et al., 1991).composition and melting patterns in the peridotite source

(mantle wedge component, MC), primarily using HFSE
and heavy REE (HREE) abundances, with a view toward

Development of the Puerto Rican arcproviding constraints on Late Mesozoic subduction para-
platformmeters in the eastern Greater Antilles subduction zone

and the associated back-arc region; (3) estimation of the Arc-related crust in eastern Puerto Rico is unusually thick,
composition and relative abundance of the subduction- reaching a maximum in the NE of >30 km (Boynton et
related component (SC), from variations in isotope com- al., 1979). Measured stratigraphic thicknesses reach only
positions and Th–REE abundances, with the purpose >14 km in the central part of the island ( Jolly et al.,
of identification of subducted pelagic sediments, and 1998b). Donnelly et al. (1990) suggested that the balance
estimation of the relative proportions of terrigenous ma- represents underplating by arc-related intrusive bodies
terial subducted by the Greater Antilles Arc during Late (Lidiak & Jolly, 1996a). The volcanic core of the island
Cretaceous time. consists of three volcanic provinces (Figs 1 and 2), sep-

arated by major left-lateral strike-slip fault zones of mid-
Santonian age. Cretaceous volcanic centers occur in
four subparallel east-trending belts (Fig. 2), analogous to

GEOLOGICAL SETTING volcanic fronts of modern island arcs (see, e.g. Carr et
The island of Puerto Rico, on the eastern flank of the al., 1990), each of which formed along the northern flank
Greater Antilles, is located south of the broad, structurally of precursors. The oldest deposits (volcanic phase I,
diffuse Puerto Rico Trench, which forms the boundary Aptian to Early Albian age, >120–105 Ma) contain

basalts and related volcanic rocks resembling modernbetween the North American and Caribbean plates (Fig.
low-K island arc tholeiites (Fig. 2a). Slightly younger1). The modern island is aligned with the west-trending
strata (phase II, Late Albian to Cenomanian, 105–90 Ma)Trench and Muertos Trough, which represent the north
contain predominantly calc-alkaline basalts and felsicand south borders of the fault-bounded Puerto Rico–
derivatives with CaO/(Na2O + K2O) >1 (Fig. 2b).Virgin Islands block and associated Northslope block
Subsequent units (phases III and IV, Cenomanian to(Speed & Larue, 1991), respectively. West of Puerto Rico
mid-Maastrichtian, 90–70 Ma) contain high-K basaltslie the Mona Passage and Hispaniola. To the east across
(Fig. 2c and d). Geochemical trends were reversed duringthe Anegada Passage are the Virgin Islands and the
the Early Tertiary (phase V, Paleocene to Eocene age)westernmost active volcanic chain of the modern Lesser
when felsic calc-alkaline flows and pyroclastic rocks, notAntilles Arc (denoted V–V′ in Fig. 1).
considered in this investigation, dominated volcanism.A deformed southward-dipping Tertiary subduction
Emphasis in this paper is on the three initial volcaniczone is preserved in the upper mantle beneath modern
phases erupted before strike-slip faulting associated witheastern Puerto Rico (Sykes et al., 1982). However, the
juxtapositioning of the central and northeastern volcanicpolarity of subduction during Cretaceous time has not
provinces. However, the petrographic character of phasebeen established in any of the islands of the Greater
IV volcanic rocks is considered and their geochemicalAntilles Arc system. Investigators agree that subduction
fields, which overlap those of phase III, are included inwas preceded by generation of the proto-Atlantic Ocean,
variation diagrams for reference.the southwestern (proto-Caribbean) arm of which bridged

the developing gap between North and South America
(Burke, 1988; Donnelly, 1989; Pindell & Barrett, 1990).

Petrography of the Puerto Rican volcanicThe proto-Caribbean arm became extinct at >125 Ma,
suiteinitiating convergence between the North American and

Pacific (Farallon) plates. Structural and stratigraphic evi- Lavas in central Puerto Rico are predominantly de-
vitrified basalts with abundant, commonly euhedraldence of major tectonic discontinuities is absent in Puerto
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phenocrysts of labradorite, ferroaugite, and chloritized from phase III (Fig. 2c), contain sparse orthopyroxene
invariably degraded to chlorite. Even though relict min-pseudomorphs of olivine ( Jolly et al., 1998a), all char-
eralogy and degree of alteration are monotonous through-acteristic products of low-total pressure (low-Pt) sub-
out the sequence, textures and phenocryst proportionsvolcanic gabbroic fractionation. Hornblende is absent
are distinctive such that individual units are readilyfrom all eruptive rocks in volcanic phases I–IV, but is
recognizable. Post-depositional diagenesis and zeolite andpresent in a few stocks and sills of Late Cretaceous age
prehnite–pumpellyite metamorphism has recrystallized(Pease, 1968; Glover, 1971). Accessory minerals include
or overprinted original groundmasses of Puerto Ricanapatite and subhedral magnetite grains. Perchas basalts
volcanic rocks (Cho, 1991), but relict textures and pheno-
crysts of augite and partly albitized plagioclase are pre-
served in most specimens. Stratigraphic reconstructions
and secondary mineral compositions indicate that meta-
morphism occurred at shallow levels, normally
<1·5–3 km. Cho (1991) suggested that widespread sub-
volcanic plutonic activity associated with volcanism el-
evated regional geothermal gradients.

ANALYTICAL DATA AND
GEOCHEMICAL PARAMETERS
Analytical techniques
Jolly et al. (1998a) summarized isotope, inductively
coupled plasma mass spectrometry (ICP-MS), in-
strumental activation analysis (IAA), and X-ray fluor-
escence (XRF) trace element analytical techniques and
precision limits. Nb was determined by a variety of
methods, including ICP-MS and XRF techniques. Du-
plicate analyses by both methods in several laboratories
reveal differences that are within the analytical error
limit of 0·5 ppm. Rocks analyzed for Nb were ground
in identical steel vessels to insure minimal contamination,
and samples analyzed for isotopes were routinely leached
overnight in hot concentrated HCl to minimize effects
of low-temperature alteration. Duplicate analyses of un-
leached samples revealed no significant differences. Table
1 lists data for diagnostic elements [SiO2 and MgO

Fig. 2. Paleogeographic evolution of the eastern Puerto Rican arc
platform. (a) Early Albian, 110 Ma (volcanic phase I), marine
(Formations A and B) and subaerial (Formation C) strato-volcanic
accumulations. (b) Late Albian, 100 Ma (volcanic phase II); subaerial
to partly subaerial Torrecilla and Pitahaya volcano-stratigraphic belt;
TOR, Torrecilla Breccia; PTH, Pitahaya Fm; RAB, Rı́o Abajo Fm.
(c) Cenomanian, 90 Ma (volcanic phase III), marine to subaerial Rı́o
Orocovis volcano-stratigraphic belt; units from the main volcanic axis
(VA) include: TET, Tetuán Fm; MAS, Mameyes Lava; MLB, Malo
Breccia–Cotorra Tuff; Pe, Perchas Lava; RG, Rı́o Grande Pluton
(subvolcanic equivalent of Perchas basalt); Av, Avispa Lava (late-stage,
post Perchas lavas). Flank volcanic (FV) units include: LL, Lapa Lava;
LT, Las Tetas Lava. (d) Campanian, 75–80 Ma (volcanic phase IV),
Pozas and Alonzo Formations, pyroclastic and epiclastic alluvial fans;
left-lateral movement on the Cerro Mula Fault juxtaposed the north-
eastern volcanic province. ALZ, Alonzo Fm; POZ, Pozas Fm; RdP,
Rı́o de la Plata Sandstone; TTG, Tortugas Andesite; MAM, Mamey
Lava; LPS, Los Panes Stock; LGA, La Guaba Lava of Cariblanco
Formation.
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(wt %); Th, Nb, La, Zr, Y, and Yb (ppm)] together with (Tonga, South Sandwich, New Britain, Marianas, North-
ern Lesser Antilles, Aleutians), whereas the high-LREEisotope ratios (i87Sr/86Sr, �Nd, and Pb�8/4).
series (La/Yb >5) consists of arcs developed in proximity
to continental margins (Philippines, Southern Lesser An-
tilles, Aeolian Islands). Central Puerto Rican lavas from

Geochemical parameters volcanic phase I fall entirely within the low-LREE/Yb
island arc group, whereas those from phase II straddleMineralogical modes of peridotite adopted for use in
the boundary. Lavas from phases III and IV overlap themelting models (McKenzie & O’Nions, 1991) include:
high-LREE/Yb group, with La/Yb up to 15. Temporalspinel lherzolite—olivine (ol) 57·8 vol. %, orthopyroxene
trends of other incompatible trace element ratios are(opx) 27·0%, clinopyroxene (cpx) 11·9%, spinel (sp) 3·3%;
also enriched upward in the stratigraphic section. Forgarnet lherzolite—ol 59·8%, opx 21·1%, cpx 7·6%, gar-
example, both Th/Y and Nb/Y increase by over annet (gt) 11·5%. Rates of phase disappearance during
order of magnitude (Fig. 4a and b), whereas Sm/Yb ispartial melting utilized in the models include cpx 30%,
doubled (Fig. 4c).gt 15% and opx 45% (McKenzie & O’Nions, 1991); and

Al-spinel 80% (Pearce & Parkinson, 1993). The set of
incompatible element mineral–melt trace element par- Subvolcanic fractional crystallization (fc)
tition coefficients (D values) compiled by McKenzie &

Covariation of Th/La and Zr/Yb is relatively insensitiveO’Nions (1991), with modifications from the com-
to degree of melting. Although Th/La is highly sensitiveplementary sets of Hawkesworth et al. (1993a) and, for
to contamination of source materials by terrigenous sedi-Th and Nb, Bédard (1999), is adopted.
ment and incompatible element-enriched ocean islandUpward re-equilibration of melts with the mantle and
basalt (McDermott & Hawkesworth, 1991), this ratio hasmelt retention by the residue ( Johnson & Dick, 1992)
a limited range in mafic end-members of the Puerto Ricanare simulated in mantle melting models by combining
volcanic suite, averaging >0·120. Because fractionalnon-modal equilibrium batch melting processes (Shaw,
crystallization is the only major process affecting Th/1970) with corrections for trapped melt. The trapped La and Zr/Yb, their covariation provides a convenient

melt is treated as a separate phase with a partition fractional crystallization grid (Fig. 5c). The grid is based
coefficient (D value) of 1·0, according to the method of on fractionation vectors for plagioclase (plfc) and augite
Pearce & Parkinson (1993). This procedure increases bulk (cpxfc), the only major phases present in Puerto Rican
distribution coefficients for all incompatible elements, but lavas, together with vectors for combined fractionation
especially for the most incompatible end-members (i.e. of 0·75 plagioclase (pl) + 0·25 augite (cpx), 0·50 pl +
including Th, Nb, La, Ce, Pr, and Nd). A value of 1·0% 0·50 cpx, and 0·25 pl + 0·75 cpx. Mafic end-members
trapped melt retention is adopted here, but retention from all volcanic phases (units A, PTH and RAB, TOR,
instead of 0·5% trapped melt in source residua does not PE, RGI) form a series of overlapping, horizontal fields
significantly alter results. Trace element inversion (INV) subparallel to the vector 0·5 pl + 0·5 cpx. This dis-
techniques, assuming a standardized 30% melt fraction, tribution is consistent with precipitation (or accumulation)
are utilized to estimate source compositions of selected of approximately equal proportions of plagioclase and
basalts. This method involves a modification of the Shaw augite; simultaneous assimilation and fractional crys-
batch melting equation; that is C0= [D0+ f (1 – D0)]CL, tallization (afc) of plagioclase-rich arc-related material
from equation (11) of Shaw (1970), where C0 represents produces similar trends. Individual fields for more evolved
the source composition of a particular element, CL the units (LT, HS, Av, LL, RGII), and the overall Puerto
melt (parental basalt) composition, D0 the bulk partition Rican trend, shift to higher slopes, subparallel to the
coefficient of the source, and f the estimated proportion fractionation vector 0·75 pl+ 0·25 cpx, indicating frac-
of fusion. tionation of increasing proportions of plagioclase (Fig.

5c). Felsic end-members of the Rı́o Grande Pluton (RGII)
have the most elevated Zr/Yb, representing a total of
>95% crystallization. Highly evolved lavas from For-

DISTRIBUTION OF INCOMPATIBLE mation J in phase I plot anomalously, as a result of late-
stage separation of REE–Zr-rich accessories, includingTRACE ELEMENTS
apatite and zircon.Geochemical classification of Puerto Rican

arc basalts
MORB-normalized incompatible elementHawkesworth et al. (1993a, 1993b) subdivided island arc
distribution patternsbasalts into two groups on the basis of LREE/HREE

(Fig. 3a and b). The low-LREE series (here restricted to Mid-ocean ridge basalt (MORB)-normalized plots of
incompatible trace elements reveal that Puerto RicanLa/Yb <5) comprises predominantly intraoceanic arcs
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Table 1: Geochemical data for SiO2, MgO, and selected incompatible trace elements; and Pb, Nb, and Sr

isotope data from central Puerto Rican volcanic rocks

Sample SiO2 MgO Th Nb La Zr Y Yb i 87Sr/86Sr �Nd Pb�8/4

A-3∗I 42·98 3·77 1·16 1·8 9·84 84 22·1 2·11 — — —
A-4∗I 53·20 4·75 0·96 0·9 5·45 81 22·3 2·34 0·7034 7·19 —
A-5∗I 53·36 5·21 0·92 0·9 0·16 72 19·8 2·12 0·7036 8·48 −16·5
A-7∗I 52·80 5·11 0·50 0·7 4·77 52 17·0 1·85 — — —
A-8∗I 55·30 4·56 0·85 1·1 7·29 71 25·1 2·90 0·7037 8·22 —
AV-148 III 55·87 8·69 2·40 3·8 13·20 114 23·0 2·53 0·7036 7·05 —
AV-159 III 57·64 2·54 3·10 4·6 18·10 142 29·5 3·16 0·7044 6·24 —
AV-54A III 57·97 1·88 2·70 3·6 17·70 120 28·6 2·99 0·7041 — —
AV-56 III 57·57 3·05 2·90 5·7 19·80 123 28·0 3·14 0·7038 — —
AV-74 III 56·55 2·63 2·20 2·6 14·00 86 21·1 2·29 — — —
AVB-43 III 58·53 1·52 7·70 4·8 34·30 128 27·2 2·90 0·7042 — —
J-44∗I 70·76 0·78 1·20 3·0 9·70 190 39·6 4·60 — — —
J-45∗I 70·20 1·46 1·07 2·2 8·38 175 39·5 5·12 — — —
J-77∗I 55·00 4·06 0·40 0·7 4·50 82 19·1 2·22 — — —
J-79∗I 67·03 1·39 0·80 2·3 8·16 127 38·5 4·21 — — —
J-80∗I 75·57 0·73 0·51 1·3 6·95 92 34·4 3·39 — — —
LL-11B III 54·80 2·10 4·10 4·6 16·10 97 16·1 1·72 0·7039 — —
LL-16B III 51·50 6·48 3·30 3·6 15·30 77 14·0 1·77 0·7040 — —
LL-37D III 55·10 4·21 3·70 1·7 17·30 72 14·0 1·78 0·7042 — —
LL-37J III 53·51 4·21 3·30 4·0 15·40 81 17·3 1·76 0·7041 — —
LL-38D∗III 58·40 1·07 2·90 4·8 15·60 100 16·7 2·02 0·7038 6·25 18·9
LL-54A III 58·50 2·12 5·20 5·7 21·10 125 18·2 2·11 0·7038 — —
LLL-9 III 58·60 1·87 3·30 4·6 19·70 131 28·1 3·19 0·7037 6·00 —
LT-27A III 51·60 4·47 1·20 2·0 6·66 50 15·0 1·55 0·7036 6·85 —
LT-60E III 49·00 4·74 1·30 1·7 7·48 57 17·2 1·62 0·7041 — —
Pe-111 III 47·87 8·53 2·70 2·1 18·00 44 13·8 1·69 0·7040 — —
Pe-115∗III 47·25 8·67 1·30 3·2 10·41 53 17·2 1·83 0·7040 6·04 11·2
Pe-182 III 47·20 6·92 2·90 3·2 20·40 53 12·0 1·41 — — —
Pe-229 III 47·72 9·07 2·60 2·7 16·60 47 15·1 1·51 0·7040 5·09 12·7
Pe-230 III 47·71 7·52 1·70 1·7 11·80 30 9·9 1·08 0·7039 — —
Pe-239 III 51·87 2·98 3·06 3·9 21·10 58 15·3 1·69 0·7040 — —
RG-594∗III 60·75 0·20 8·84 7·6 41·73 122 18·1 1·98 — — 16·3
RG-595∗III 49·98 8·44 2·69 2·5 19·72 48 16·2 1·42 — — —
RG-596∗III 50·76 6·27 1·99 1·8 15·95 42 14·9 1·30 — — —
RG-597∗III 56·03 4·04 11·66 8·3 38·09 154 16·8 2·34 — — —
RG-598∗III 49·02 6·89 2·99 2·8 19·36 51 13·9 1·29 — — —
RG599A∗III 48·01 9·24 2·07 1·9 16·23 42 15·0 1·32 — — −11·4
RG599B∗III 51·53 5·99 7·08 5·3 22·23 108 15·2 1·82 9·3
RG-601∗III 58·89 2·39 11·53 8·2 26·88 159 15·8 2·34 — — —
RG-602∗III 46·87 9·08 2·01 1·8 15·74 41 15·3 1·29 — — 6·3
RG-604∗III 59·07 1·07 11·44 8·2 38·58 139 17·4 2·06 — — —
PTH-22∗II 53·90 4·87 1·77 1·0 11·96 50 18·1 1·75 0·7037 6·52 −12·1
PTH-23 II 40·79 9·46 0·82 1·3 5·58 31 12·1 1·08 — — —
PTH-50 II 48·36 9·84 0·84 1·0 6·65 32 10·8 1·40 0·7039 — −8·5
PTH-51 II 49·81 5·51 0·77 0·9 7·46 44 16·6 1·64 — — —
RAB-53∗II 52·70 5·26 1·13 1·8 7·58 84 19·1 2·03 — — —
RAB-54∗II 60·70 2·65 1·16 2·2 7·81 83 19·9 2·42 — — —
TOR-42∗II 48·06 8·07 1·33 2·3 10·46 58 17·1 1·82 — — —
TOR-46 II 51·06 6·30 1·07 1·2 9·26 39 16·8 1·67 0·7042 8·06 —
TOR-48∗II 50·70 6·40 1·05 1·4 9·20 38 16·7 1·60 — — —
TOR-52∗II 50·23 3·84 0·80 0·9 6·28 38 16·2 1·51 — — —
CAJ-103B∗ 61·45 7·70 0·18 1·5 2·62 65 22·0 2·33 0·7043 8·92 −7·81

I, II, and III refer to Puerto Rican volcanic phases from Fig. 2. Additional data and sample locations have been given by Jolly
et al. (1998a). Key to trace element analyses: ∗XRF and ICP-MS methods, Memorial University of Newfoundland (MUN);
others by XRF and INAA methods, University of Western Ontario (UWO); trace elements in ppm, oxides in wt %. i 87Sr/86Sr,
initial Sr isotope ratios; �Nd, initial Nd isotope ratios with respect to the chondrite universal reference (CHUR); Pb�8/4, deviation
of 208Pb/204Pb from the Northern Hemisphere Reference Line (NHRL) with respect to 206Pb/204Pb.
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phases, reaching maximum levels in high-K basalts from
phase III (Perchas basalt, Fig. 2c). A series of flows from
the upper part of volcanic phase I (Formations B and
C) are relatively depleted in Th, Nb, and LREE and, as
a result, have anomalous flattened to slightly depleted
N-MORB-normalized REE patterns ( Jolly et al., 1998b).
Trace element and isotope melting models presented
elsewhere indicate that the patterns are consistent with
recycling of source material in the mantle wedge ( Jolly
et al., 2001).

Wedge- and subduction-related components
Although aqueous fluids are several orders of magnitude
less efficient than magmas as transporters of incompatible
elements (Hawkesworth et al., 1993a, 1993b), they are
abundant in arc environments as a result of dehydration
reactions in the downgoing oceanic crust (Pearce, 1983;
Arculus, 1994; Stolper & Newman, 1994; Pearce & Peate,
1995; Tatsumi and Eggins, 1995; Tatsumi & Kogiso,
1997), and are likely sources of wedge contamination
(Keppler, 1996; Ayers, 1998). Ionic potential [the ratio
of the ionic charge (Z ) and the ionic radius (r) of the
element in its normal oxidation state] provides a measure
of the mobility of an element in aqueous fluids (Fig. 6b).
Elements with ionic potentials <2 are mobile because of
formation of soluble chloride complexes (Keppler, 1996).
Conversely, elements with Z /r between three and seven
do not complex with Cl and are relatively immobile in
aqueous fluids (Bailey & Ragnarsdottir, 1994; Brenan et
al., 1995; Lidiak & Jolly, 1996b).

Fig. 3. La–Yb abundances in central Puerto Rican volcanic rocks. (a) Plots of ionic potentials (Fig. 6b) and N-MORB-nor-
Fields (CI, CII, and CIII) enclose central Puerto Rican volcanic phases malized island arc basalt patterns (Fig. 6c) have similar
I, II, and III, respectively; symbols as in Fig. 6. Dashed field of phase features, which are utilized to apportion incompatibleIV (EIV), which occurs in both the central and northeastern volcanic

elements into wedge and subduction-related components.provinces, is included for comparison. (b) La–Yb abundances in modern
island arcs. Sources of arc data are as follows: Aeolian Islands, Ellam The MC is delimited by the line formed by the highly
et al. (1988); Central Aleutians, Romick et al. (1990); Grenada, Thirlwall insoluble elements Nb–Zr–Y–HREE. Because these ele-& Graham (1984); Japan, Tatsumi et al. (1988); Northern Lesser Antilles,

ments are added to the mantle by certain enrichmentDavidson (1986), White & Dupre (1986); Marianas, Woodhead (1988);
New Britain, Woodhead & Johnson (1993), Woodhead et al. (1998); processes, such as silicate magmatism, this procedure
Philippines, Defant et al. (1990), McDermott et al. (1993); South Sand- yields the maximum MC. The SC, contributed primarily
wich, Cohen & O’Nions (1982); Tonga, Ewart & Hawkesworth (1987).

by fluids generated in the slab, or by leaching within
the wedge (Hawkesworth et al., 1993a, 1993b), is itself
subdivided into two end-members: (1) positive spikesvolcanic rocks, like Cretaceous lavas and granitoids from
above the line Th–La–Ce–Nd–Sm–Eu (representingother islands of the Greater Antilles (Donnelly, 1989;
over-enrichment in LILE with respect to REE) compriseLebron & Perfit, 1994; Lidiak & Jolly, 1996a), are uni-
the LILE-bearing end-member of the SC. This end-formly over-enriched in LILE with respect to LREE,
member is unsuited to geochemical evaluation in ancientmoderately enriched in LREE and Th, and strongly
volcanic rocks because of elemental redistribution duringdepleted in HFSE, all fundamental features of island arc
low-temperature alteration, and is not considered further.associations. Compared with other members of the Puerto
(2) The area between lines Nb–Zr–Y–HREE and Th–Rican volcanic assemblage, phase I basalts are the least
La–Ce–Nd–Sm–Eu (Fig. 6c) represents the minimumenriched in incompatible elements, and have the lowest
Th–REE-bearing end-member, probably contributed byLILE/HFSE and HFSE/HREE (Fig. 6a). In addition,
an H2O-saturated, low-degree silicate melt derived prim-they have the lowest LREE/HFSE and LREE/HREE.

Values of all these ratios increase in succeeding volcanic arily from subducted sediment (Nicholls et al., 1994). The
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Fig. 4. Geochemical stratigraphy in central Puerto Rico. Selected ratios of analyzed samples are plotted according to approximate age, estimated
from position in the stratigraphic section ( Jolly et al., 1998a). Volcanic phases from Fig. 2 are listed at left; a tectonic discontinuity between
phases CIII and EIV is denoted by a horizontal line. Symbols as in Fig. 6. (a) Th/Y; (b) Nb/Y; (c) Sm/Yb.

Th–REE-rich end-member forms the basis for ex- of HFSE compared with REE and LILE, producing
amination of the SC in this investigation. characteristic negative normalized Nb and Zr anomalies

(Fig. 6). Theoretical (Arculus & Powell, 1986), ex-
perimental (Ryerson & Watson, 1987; Ayers, 1998) and
observational (Ewart & Hawkesworth, 1987; McCullouchTHE MANTLE WEDGE COMPONENT
& Gamble, 1991; Pearce & Peate, 1995) data cast doubt

( MC) on the stability of titanates in modern arc environments,
Composition of Atlantic and Caribbean and indicate instead that HFSE depletions reflect low
Mesozoic MORB abundances of these elements in the wedge. HFSE dis-

tribution in the Puerto Rican suite is summarized inAltered basalts and amphibolites associated with partly
Fig. 7a, where Nb/Zr is compared with absolute Nbserpentinized peridotite in western Puerto Rico represent
concentrations. Intermediate and felsic samples with SiO2pre-arc Jurassic oceanic crust ( Jolly et al., 1998b). These
>55% are omitted to minimize effects of fractional crys-basalts have MORB-like �Nd values (average >9·0) and

elevated initial (i)87Sr/86Sr (average 0·7038), overlapping tallization of plagioclase (plfc) and augite (cpxfc), both of
the field of Cretaceous Atlantic MORB (averaging which have DNb ≈ DZr. Like modern arc lavas, Puerto
0·7040; Jahn et al., 1980), and the field of altered basalts Rican basalts overlap the MORB field, consistent with
from the Caribbean Cretaceous Basalt Province (88 Ma; MORB-like melting (DNb < DZr) rather than with retention
Donnelly, 1994; Jolly et al., 1998a). Pre-arc basalts have of residual phases (DNb > DZr). Also as in many modern
depleted normalized incompatible element patterns. arc lavas (Ryerson & Watson, 1987; McCullouch &
They also have low La/Sm and La/Nb, averaging about Gamble, 1991), mafic end-members are depleted in Nb
0·90 and 1·50, similar to Cretaceous Atlantic MORB and Zr compared with N-MORB (Fig. 7a).
( Jahn et al., 1980) and N-MORB (0·95 and 1·07; Sun Puerto Rican lavas have uniformly flat N-MORB-
& McDonough, 1989). Available data, therefore, indicate normalized HREE segments (Ho to Lu), denoted by (Y/
that both plates associated with Greater Antilles sub- Yb)N ≈ 1·0 (Fig. 6a). Consequently, covariation of Nb/
duction had fertile MORB mantle (FMM)-type upper- Zr–Y/Yb is aligned along spinel peridotite rather than
mantle compositions. more fractionated garnet peridotite melting vectors. The

scarcity of convex-downward N-MORB-normalized
REE patterns (Fig. 6a) also excludes amphibole as a

Melting regime significant residual phase in the mantle source. Thus,
normalized incompatible element patterns are consistentHFSE (Nb, Ta, Zr, Hf, Ti) have high ionic potentials
with melting in a relatively dry spinel lherzolite source,(Z /r), rendering these elements insoluble in aqueous
an interpretation consistent with the absence of horn-fluids (Pearce, 1983). Hence, abundances are virtually
blende as a phenocryst phase in even the most felsic end-independent of aqueous flux from the descending slab.

Island arc magmas typically carry low concentrations members.
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Fig. 5. Th/La vs Zr/Yb in central Puerto Rican lavas. (a) Volcanic
phases I and II. (b) Volcanic phase III. (c) Fields of Puerto Rican units
plotted on a fractional crystallization grid, constructed from calculated
fractionation vectors for pure plagioclase (plfc) and augite (cpxfc)
together with vectors for mixed assemblages (0·75pl + 0·25cpxfc;
0·5pl + 0·5cpxfc; 0·25pl + 0·75cpxfc); tick marks indicate per cent
crystallization.

Fig. 6. (a) N-MORB-normalized elemental distribution diagrams of
representative central Puerto Rican volcanic rocks (N-MORB values
of Sun & McDonough, 1989). mg-number=Mg/(Mg+ Fe). (b) IonicConstraints on melting parameters are estimated from potentials (Z /r) of some selected incompatible elements (modified from

Nb–Y covariations according to the approach of Pearce Pearce, 1983), arranged from left to right in the order of increasing
incompatibility in N-MORB. (c) N-MORB-normalized Perchas basalt& Parkinson (1993). Use of this elemental pair is ap-
Pe-239 (the most highly incompatible element-enriched sample frompropriate not only because Yb concentrations reflect
volcanic phase III), illustrating the maximum MC and two end-degree of melting, but also because absolute Nb abund- members of the SC, including: (1) the LILE-bearing aqueous fluid end-

ances are indicative of the relative degree of incompatible member, and (2) the minimum Th–REE-bearing subduction-related
end-member. (See text for discussion.)element source enrichment (Fig. 8). In this procedure,

MgO–Y covariations are utilized to correct MgO content
of rocks to 9% to account for olivine fractionation during

generated in spinel peridotite sources. The melting gridmelt elevation from mantle depths (Fig. 8a). Although it
on Nb–Yb plots is established employing melting curvesis unlikely that all parental arc magmas had identical
for both FMM and the residue of a 5% melt of FMM.MgO concentrations, the technique provides a con-
The FMM melting curve further subdivides the field ofvenient comparison between individual samples within a

particular arc, as well as between various arc systems peridotite into enriched and depleted portions.
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Fig. 7. (a) Nb/Zr vs absolute Nb abundances plotted according to the method of McCullouch & Gamble (1991). The field of modern MORB
is from Le Roux et al. (1983) and Floyd (1986). Symbols as in Fig. 6. DNb and DZr represent bulk partition coefficients for Nb and Zr, respectively.
Calculated fractionation vectors for sample A8, with ticks representing the per cent crystallization, for plagioclase (plfc) and augite (cpxfc) are
included. (b) Y/Yb vs Nb/Zr in central Puerto Rico; volcanic phase fields as in Fig. 3a. Partial melting vectors are included for non-modal
equilibrium batch melting (EBM) of the inversion source (denoted A8INV30) of sample A8 for 30% melting in spinel and garnet peridotite;
IAB, island arc basalt. Limits of peridotite facies are from McKenzie & O’Nions (1991).

Rican basalts from phase II and, especially, phase III, inResults for central Puerto Rico are illustrated in Fig.
contrast, plot above the FMM melting vector, consistent8b, where corrected fields of basalts from volcanic phases
with generation from relatively enriched sources, as inI, II, and III are denoted CI9, CII9, and CIII9, re-
the northern Lesser Antilles, Vanuatu, and the Aleutians.spectively. Yb concentrations average >1·0 throughout

the suite, but the range increases significantly from 30
to 35% in phase I to between 25 and 40% in phase III.
Such high degrees of melting appear to conflict with

Back-arc processespetrographic and geochemical evidence that Puerto Ri-
Abundances of HFSE and HREE in Puerto Rican basaltscan melts were generated in relatively dry source
are slightly lower than in normal N-MORB. YbN (Figsmaterials. Therefore, it is likely that buoyancy-driven
6a and 9), for example, averages 0·7 and has a narrowerdecompression melting supplemented flux-related melt-
range from 1·1 to 0·6 in volcanic phase I, whereas NbNing within the wedge, as suggested by Davies & Stevenson
averages 0·9. Similar Nb depletions are common in many(1992), Pearce & Parkinson (1993), and Parkinson &
modern arc suites, and are widely attributed to an episodeArculus (1999). Compared with fields of modern arc
of low-degree, pressure-release melting in the back-arcsuites (from Pearce & Parkinson, 1993) that have flat
region before entry of source material into the meltingN-MORB-normalized HREE segments (consistent with
zone (Ewart & Hawkesworth, 1987; Ryerson & Watson,fusion in spinel peridotite), early Puerto Rican units from
1987; Plank & Langmuir, 1988; McCullouch & Gamble,volcanic phase I overlap Tonga, but are less depleted
1991; Pearce & Parkinson, 1993; Arculus, 1994). Inthan South Sandwich, and were derived by slightly higher
modern island arcs, a close correlation exists between thedegrees of melting than the Marianas (Fig. 8c). All of these
rate of subduction and the vigour of back-arc spreadingsuites plot below the FMM melting vector, indicating

that the source was depleted in the more incompatible (Rodkin & Rodkinvo, 1996). Arcs characterized by rapid
subduction (>10 cm/yr), such as Tonga–Kermadeccomponents relative to FMM. Fields of later Puerto
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Fig. 8. (a) Covariation of MgO–Yb concentrations in central Puerto Rico. Contours illustrate the derivation and uncertainty of fractionation
correction of Yb data to MgO content of 9·0 wt %; symbols as in Fig. 6. (b) Nb–Yb data from central Puerto Rico volcanic phases CI9, CII9,
and CIII9, corrected to MgO content of 9·0 wt %. Spinel peridotite melting vectors (EBM) for fusion of FMM and of a residue from 5%
melting of FMM are from Pearce & Parkinson (1993). PM represents the primitive mantle composition of Sun & McDonough (1989); fc,
fractional crystallization; symbols as in Fig. 6. (c) Covariation of corrected Nb–Yb in selected modern island arc suites with flat N-MORB-
normalized HREE patterns (fields from Pearce & Parkinson, 1993).

(Ewart & Hawkesworth (1987) and New Britain (Wood- of Nb depletion observed in Puerto Rican volcanic phase
I, relative to the FMM melting curve, and is indicativehead & Johnson, 1993; Woodhead et al., 1998), have

highly depleted NbN (as low as 0·05). Pearce & Parkinson of limited back-arc processing of source material. Phases
III and IV have higher Nb concentrations, indicating(1993) maintained that the lowest Nb abundances in

arcs reflect logarithmic rather than linear depletions, that (1) back-arc processes peaked in intensity during the
initial 10–20 m.y. and thereafter declined, and/or (2) theindicating loss of melt in the back arc rather than recycling

of depleted mantle source material within the wedge. At degree of incompatible element enrichment gradually
increased (Fig. 8b) as a result of subduction of a thickeningthe other extreme, arcs with low subduction rates, such

as the northern Lesser Antilles (3·7 cm/yr, Jarrard, 1986), accumulation of pelagic sediment.
have minimal back-arc volcanism and little or no HFSE
depletion (Thirlwall et al., 1994).

Analysis of relative motions between the Pacific and
Constraints on subduction parametersAtlantic plates (Fig. 9a) during Late Mesozoic time (Pin-

dell et al., 1988; Donnelly, 1989) reveals that the con- Paleogeographic reconstructions of the Puerto Rican arc
platform reveal that during volcanic phases III and IV,vergence rate in the Greater Antilles averaged 6 cm/yr.

This moderate rate is consistent with the small degree volcanic accumulations developed on the southern flank
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Fig. 9. (a) Convergence between North American and Pacific plates from rotations of Pindell et al. (1988). Arrows indicate activity along oceanic
ridges; CCBP, Caribbean Cretaceous Basalt Province (Donnelly, 1994); I–V, Puerto Rican volcanic phases. Subduction rate in the early Lesser
Antilles has not been established and is assumed to decay progressively (dashed line) to the modern rate of 3·7 cm/yr ( Jarrard, 1986). (b) and
(c) schematic scale models (km) of central Puerto Rican Cretaceous subduction in a McKenzie & O’Nions (1991) mantle model. Minimum gap
between the trench and arc platform is maintained at 150 km. Range of probable subduction angles in central Puerto Rico, consistent with
melting in relatively pure spinel peridotite, is bracketed. Schematic melting columns are designated by bold lines. Subduction of 6 cm/yr is
indicated in 1 m.y. intervals along the slab-wedge boundary. Positions of principal volcanic axes (VAI–VAIV) within the volcanic platform are
positioned for diagrammatic purposes vertically above the Hb-out dehydration reaction, which increases in depth with age of the subduction
zone (Peacock, 1993). Induced wedge counterflow and limited associated spreading are indicated in back-arc region, and buoyancy-related
counterflow (Davies & Stevenson, 1992) is also indicated. In (c) a progressive shift of the subduction angle is indicated for each volcanic phase.
Angle � is proportional to the ratio between the increase in depth of the slab (�Pslab) and increase in average depth of Hb-out equilibrium
(�PHb-out) with respect to successive volcanic phases.

of the principal volcanic axis (Fig. 2c and d), consistent the Pacific (Farallon) Plate (Fig. 9b) and southwesterly-
dipping subduction of the North American Plate (Fig. 9c)with south-dipping subduction of the North American

Plate. However, the polarity of subduction in the Greater are considered. In both models continuity of subduction
polarity is assumed, in conformity with gradual evolutionAntilles is controversial (Donnelly, 1989; Pindell & Bar-

rett, 1990; Draper et al., 1996), and, in the absence of of geochemical trends and absence of regional evidence
of tectonism.direct evidence from any of the islands, inference of

subduction orientation from distribution of flank vol- Geochemical evidence that melting occurred in the
spinel peridotite facies at depths between 40 and 80 kmcanism is regarded as tentative. Therefore, tectonic mod-

els involving both northeasterly-dipping subduction of is not necessarily indicative of oblique subduction. The
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Marianas arc, for example, has the highest subduction key geochemical variables to provide insight into secular
variations in magnitude and composition of the SC.angle known ( Jarrard, 1986), and yet produces basalts

with consistently flat N-MORB-normalized HREE pat-
terns (Woodhead, 1988). Subduction rate is a more
reliable indicator of the dip of Benioff zones in modern

Th/Laintraoceanic arcs, and in general subduction angles in
rapidly subducting systems are acute, whereas angles in In the absence of an ocean island basalt (OIB) component,
arcs subducting at more moderate rates tend to be less Th/La in island arc suites is controlled by terrigenous
steep or even oblique ( Jarrard, 1986). As subduction sediment (McDermott & Hawkesworth, 1991). In Puerto
rates in the Greater Antilles were relatively modest (Fig. Rico, mafic end-members of all volcanic phases form

horizontal fields fixed along a line corresponding to a9a), schematic reconstructions employ oblique angles
Th/La of 0·12 (Fig. 10a). This element pair also tends(Fig. 9b and c). A 150 km gap width between trench and
to remain coupled in modern island arc suites, butvolcanic axes (VA), typical of modern arcs, is maintained.
absolute Th/La values are variable from arc to arc,Peridotite facies boundaries are from McKenzie &
ranging in intraoceanic settings from as low as 0·03 inO’Nions (1991). The four sequential central Puerto Rican
South Sandwich (Cohen & O’Nions, 1982) and 0·09 involcanic axes (VAI–VAIV) are positioned vertically above
the Marianas (McCullouch & Gamble, 1991) to >0·45the dehydration of hornblende (Hb-out) in the slab.
in the continental margin-type Aeolian Arc (Ellam et al.,Deflections of fluid flow within the wedge are neglected,
1988). The narrow range of Th/La in Puerto Ricanbut back-arc wedge counterflow, and flux-related buoy-
lavas indicates that the bulk composition of the SCancy (Davies & Stevenson, 1992) are included.
remained fixed, and that variations resulted from fluc-Secular models of thermal evolution in subduction
tuations in magnitude of the SC rather than a com-zones reveal that geothermal gradients approach steady
positional shift. Low values of Th/La, in turn, confirmstate in >50 m.y., and that, at constant subduction
the intraoceanic setting of the eastern Greater Antillesrate and shear stress, a decline in geothermal gradient
Island Arc, and indicate that surrounding continentalcoincides with increasing lithospheric thickness and depth
platforms [South America, Central America, and theof the Hb-out reaction (Peacock, 1993). In a Pacific
Bahamas (Fig. 1)] made minimal contributions to thesubduction model (Fig. 9b), melting follows the Hb-out
subduction zone.isotherms downward along the slab, and positions of

volcanic axes retreat northward away from the trench.
The melting zone migrates toward the thicker, warmer
core of the overlying mantle wedge and synchronous

Pb�8/4 valuescooling produces stable or decreasing degrees of melting.
Pb isotope ratios in central Puerto Rican units followIn an Atlantic subduction model (Fig. 9c), volcanic axes
mantle patterns, forming fields subparallel to the North-advance trenchward only when the subduction angle
ern Hemisphere Reference Line (NHRL; Hart, 1984).progressively steepens. The magnitude of advancement
Pb�8/4 values (Table 1), representing deviation ofis controlled by �, representing the ratio between increases
208Pb/204Pb from the NHRL with respect to 206Pb/204Pbin depth of the slab (�Pslab) and the Hb-out reaction
(Hart, 1984), are lowest in volcanic phases I and II,(�PHb-out). Hence, when �Pslab > �PHb-out, then � >0
ranging from 0 to −20. Values are higher in phase III,and volcanism advances northward toward the trench,
ranging from+10 to almost+20. Additional Pb isotopewhereas the melting zone is deflected trenchward. Re-
data from the Rı́o Grande Pluton extend the lower limitgardless of the polarity of subduction, downward de-
of Pb�8/4 values in phase III to less than −5. Inflection of dehydration reactions along the Benioff zone
comparison, Pb isotope compositions in the adjacentis consistent with the 40 km northward migration of the
northeastern volcanic province (denoted NE in Fig. 1c)volcanic axes in Puerto Rico as a result of long-term
cluster along the NHRL with values from 5 to−25 (Fig.cooling of the wedge.
10b).

THE SUBDUCTION-RELATED
�Nd values

COMPONENT (SC) Initial Nd isotope ratios in central Puerto Rico overlap
Nb/Zr as a secular indicator MORB values and, following patterns similar to those
In Puerto Rico Nb/Zr varies with degree of incompatible for Pb-isotopes, become gradually more enriched in
element enrichment of the source and is inversely pro- radiogenic Nd (Fig. 10c). �Nd values of early units range

from about 8·5 to 6·5, whereas phase III volcanic strataportional to age. Accordingly, this ratio is compared with
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is larger and overlaps those of earlier units. The wider
variation resembles modern highly enriched arc basalts,
which also typically have a large range in 87Sr/86Sr
(Hawkesworth et al., 1993b).

Isotope mixing models
Because compositions of Late Cretaceous pelagic sedi-
ments from the Atlantic Ocean basin are unknown,
meaningful trace element mixing models are not possible.
Sr–Nd isotope mixing between various modern pelagic
sediments and volcanic phase I basalts produce mixing
curves consistent with the presence of small amounts of
sediment in phases III and IV ( Jolly et al., 1998a).
However, the models are poorly constrained because of
the wide range in 87Sr/86Sr measured in phase III. The
overlap in Sr-isotope compositions between altered
MORB and arc basalts (Fig. 10d) leads naturally to the
interpretation that fluids emanating from the descending
oceanic crust transferred the signature of altered MORB
to the mantle wedge, and subsequently to arc magmas
derived from it (Hawkesworth et al., 1993b). The broad
range in 87Sr/86Sr indicates that the process was erratic
and patchy, probably owing in part to compositional
variation of altered MORB or to channeling of sub-
duction-related fluid flow (as in Tonga, Turner et al.,
1997).

Pb–Nd and Pb–Sr isotope mixing models are more
successful (Fig. 11), because addition of minute pro-
portions of sediment radically alters Pb isotope ratios in
basalts. Although the absolute composition of the mantleFig. 10. Composition of the SC in central Puerto Rican lavas with

SiO2 <55%. Symbols as in Fig. 6. (a) Th/La in central Puerto Rican source is unknown, the low-Pb�8/4 isotope signature of
volcanic rocks. (b) Pb�8/4 values, representing the deviation of 208Pb/ early arc basalts is similar to pre-volcanic Cretaceous204Pb from the Northern Hemisphere Reference Line (NHRL) of Hart

MORB (Cajul basalt CAJ-103 in Figs 10b, and 11a and(1984) with respect to 206Pb/204Pb. (c) �Nd values. (d) Puerto Rican 87Sr/
86Sr overlap the field of altered Mesozoic MORB [field includes b), consistent with a MORB-like source ( Jolly et al.,
Cretaceous Puerto Rican MORB ( Jolly et al., 1998a) and Atlantic 1998a). Hence, an estimate of the proportion of sediment
Cretaceous MORB ( Jahn et al., 1980)], but exceeds modern MORB

incorporated by more radiogenic volcanic phase III lavas,(data from Le Roux et al., 1983; Floyd, 1986). Isotope data for
northeastern Puerto Rico in (b), (c), and (d) are from Jolly et al. (1998a). relative to initial phase I, is obtained (Fig. 11) by mixing

an early sediment-poor basalt (sample A-5; Table 1) and
representative modern pelagic sediments (Table 2). In

are distinguished by �Nd <6·5. Rocks from the north- Pb�8/4–�Nd and Pb�8/4–i87Sr/86Sr plots, Puerto Rican
eastern volcanic province have only slight variations of data concentrate along calculated hyperbolic mixing
�Nd, and are limited to values >6·5. curves involving Pacific authigenic pelagic sediment (de-

noted 1 in Fig. 11a and b). Phase III basalts overlap the
mixing lines at the 10% level with respect to sample A-

i87Sr/ 86Sr 5, equivalent to incorporation of >2% sediment with
respect to FMM. As in many modern oceanic arc suitesSr isotope compositions broadly approach or overlap
(Keller et al., 1992; Woodhead et al., 1998), mixing modelscompositions of altered Mesozoic MORB ( Jolly et al.,
involving Pb�7/4 explain the data only if Pb isotope1998a; Fig. 10d), which is itself elevated in radiogenic
composition of contaminating sediments was similar tocontent with respect to modern MORB because of sea-
that of the basalts, with somewhat lower 207Pb/204Pb thanfloor alteration processes ( Jahn et al., 1980). Early vol-
for modern pelagic sediments.canic phase I basalts have the lowest i87Sr/86Sr (0·7033–

Results of isotope models conflict with absolute Pb0·7041). Basalts from phase III have higher average
values (>0·7039), but the range in values (0·7035–0·7044) concentrations [6–16 ppm in volcanic phase I compared
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basaltic crust (Hawkesworth et al., 1993b). Moreover,Table 2: Modern pelagic sediment
coherent isotope patterns imply that Sr, Nd, and Pb

compositions utilized in mixing models (Fig. derived from sediments were coupled on entry into the
11a and b) fluid phase. In comparison, highly variable absolute Pb

concentrations and Pb/Nd [correlation coefficient (R)
with respect to absolute Nd = 0·35] are indicative ofPelagic sediment type
decoupling in the bulk fluid. These contradictory relations
indicate that the LILE-bearing end-member and the

1 2 3
sediment-rich end-member were introduced into the

Atlantic Pacific S. Atlantic
wedge by two successive waves of fluid flux: (1) a viscous

detrital authigenic biogenic Th–REE-rich silicate melt phase (Nicholls et al., 1994)
with the non-MORB-like Pb–Nd-isotope signature of

208Pb/204Pb 38·92 38·70 38·59 pelagic sediment; (2) an LILE-rich chloride brine vapor
206Pb/204Pb 18·90 18·71 18·65 dominated by the Sr-isotope signature of oceanic crust.
Pb�8/4 46·16 45·82 41·19 Central Puerto Rican lavas, especially samples from
Pb (ppm) 33·8 55·7 13·4 volcanic phases I, II, and III, are anomalously enriched
�Nd −11·4 −4·1 −2·7 in the more incompatible elements ( Jolly et al., 1998a),
Nd (ppm) 41·5 50·0 9·4 compared with lavas of equivalent age in the adjacent
i 87Sr/86Sr 0·7161 0·7092 0·7089 northeastern volcanic province (denoted NE in Fig. 1).
Sr (ppm) 211 218 75 As the terranes have similar Th/La, it appears unlikely

that these two adjacent and simultaneous mid-oceanic arc
segments subducted pelagic sediment of widely differentThe table was compiled from the following sources: Hole et

al. (1984); White et al. (1985); Ben-Othman et al. (1989); Keller composition. Instead, amplified enrichment in the central
et al. (1992); Elliot et al. (1997). volcanic province probably resulted from localized lateral

variation of subduction parameters, such as variation in
plate convergence direction along a curving arc system,

with a range from 3 to >65 ppm in phase III; see table as in the Tonga–Kermadec (Ewart & Hawkesworth,
2 of Jolly et al. (1998a)], which are consistent with a 1987), Vanuatu (Peate et al., 1997) and northern Marianas
total Pb contribution to the SC >50%. Similar conflicts (Peate & Pearce, 1998) arcs. The higher degree of en-
between isotope models and trace element abundances richment in central Puerto Rico is consistent with lesser
are reported elsewhere and are commonly attributed to obliquity of convergence compared with the northeastern

province.incorporation of additional MORB-like Pb derived from

Fig. 11. Pb�8/4–�Nd and i 87Sr/86Sr isotope mixing between basalt sample A-5 (Pb 6 p.p.m., Nd 10·61 p.p.m., Sr 294 p.p.m.; other data in
Table 1) and representative modern pelagic sediments (see Table 2; compositions compiled from Hole et al., 1984; White et al., 1985; White &
Dupre, 1986; Ben-Othman, 1989; Keller et al., 1992; Elliot et al., 1997). Fields of analyzed central Puerto Rican samples are identified as follows:
CI, CII, and CIII; fields of the NE tectonic block (NEPR) and altered Puerto Rican pre-arc Cretaceous MORB basalt (sample CAJ-103) from
Jolly et al. (1998a, 1998b).
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