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Abstract. For a self-gravitating viscoelastic compressib-
le sphere we have shown that unstable modes can exist by
means of the linear viscoelastic theory by both initial-value
and normal-mode approaches. For a uniform sphere we have
derived analytical expressions for the roots of the secular de-
terminant based on the asymptotic expansion of the sphe-
rical Bessel functions. From the two expressions, both the
destabilizing nature of gravitational forces and the stabi-
lizing influences of increasing elastic strength are revealed.
Fastest growth times on the order of ten thousand years are
developed for the longest wavelength. In contrast, a self-
gravitating incompressible viscoelastic model is found to be
stable. This result of linear approximation suggests that a
more general approach, e.g., non-Maxwellian rheology or a
non-linear finite-amplitude theory, should be considered in
global geodynamics.

Introduction

It is commonly assumed that the Maxwellian viscoelas-
tic responses of the Earth models to surface loads with the
Heaviside time-dependence reach a static equilibrium after
sufficiently long times [e.g., Wu and Peltier, 1982]. There
has been a long debate as to the conditions required for
static stability of this fluid [see Fang, 1998]. It was shown
[Longman, 1963] that the compressible fluid can be stable,
if the density distribution satisfies the Adams-Williamson
equation.

The density distribution of realistic Earth models, e.g.
PREM [Dziewonski and Anderson, 1981], does not satisfy
the Adams-Williamson equation, neither do simplified com-
pressible models consisting of a finite number of homoge-
neous layers. The question arises as to the long-time asymp-
totic behaviour of such models. Plag and Jüttner [1995] in-
vestigated the instabilities of the PREM model. They found
unstable modes with the characteristic times comparable to
those of the stable modes. On the other hand, Wolf [1985]
considered a uniform compressible half-space model and did
not find any instabilities in the analytical solution, based on
field equations with neglected internal buoyancy.

Here we will present results for one-, two- and three-
layered self-gravitating spherical compressible models. In
particular, we will demonstrate the secular instability of
a homogeneous compressible sphere analytically. Although
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the considered models are rather simple to represent a suffi-
cient approximation of the real Earth, we can gain valuable
insights into the fundamental physics and be in a better po-
sition to learn more when a more complicated model will be
investigated.

Analysis of the Gravitational Instability

Responses of the self-gravitating viscoelastic compres-
sible spherical models have already been studied by means
of normal-mode expansion [e.g., Yuen and Peltier, 1982, Wu
and Peltier, 1982]. We have employed our initial-value tech-
nique [Hanyk et al., 1996, 1998] for examining the behaviour
of the response for the homogeneous model, both elastically
compressible and elastically incompressible, with parame-
ters listed in Table 1 (i.e., density ρ, shear modulus µ, bulk
modulus K and viscosity η). Much to our surprise, we have
found that a secular instability with a growing trend appears
in the compressible model. Both the vertical displacement
and the gravitional perturbation load Love numbers, hn(t)
and kn(t), are shown for angular order n = 2 in Fig. 1, where
a growing unstable timescale of around 20 kyr is obtained.
On the contrary, an equilibrium state is attained for the in-
compressible model. We will now employ the normal-mode
theory for verifying this result.

Table 1. Physical Parameters of the Models

model 1: homogeneous sphere
radius 6371 km
density 5517 kg m−3

shear modulus 1.4519× 1011 Pa
bulk modulus 4.4967× 1011 Pa
viscosity 1021 Pa s

model 2: core-mantle sphere
core radius 3480 km
core density 10926 kgm−3

mantle density 4314 kg m−3

core bulk modulus 3.5288× 1011 Pa
core shear modulus 0 Pa
core viscosity 0 Pa s
otherwise see model 1

model 3: core-mantle sphere with a lithosphere
lithospheric thickness 120 km
lithospheric viscosity →∞ Pa s
otherwise see model 2
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Figure 1. Temporal responses of the vertical displacement and the gravitational perturbation load Love numbers h2(t) and
k2(t) for both compressible (solid curves) and incompressible (dashed curves) homogeneous spheres (model 1). A Heaviside
function in time has been used. Angular order n = 2 has been considered.

The analytical solutions for the homogeneous compres-
sible sphere in the Laplace domain were given by Wu and
Peltier [1982] and recently by Vermeersen et al. [1996]. Our
purpose is to search for roots of the secular determinant
detM(s) of this model for the positive values of the Laplace
variable, s > 0. In the upper panel of Fig. 2 we show a set
of roots which appear in the region of s → 0+. Following
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Figure 2. Secular determinant as a function of s (solid lines), inverse relaxation times (diamonds) according to eqn. (1)
and (2) for both unstable (upper panel) and stable (lower panel) modes. Model 1 for angular order n = 2 is considered.
Zoom-in views are shown for the so-called dilatation modes (Dm).

the notation by Plag and Jüttner [1995], we will refer to
the RT (Rayleigh-Taylor) modes for the unstable responses
corresponding to these positive roots of the secular determi-
nant.

A simple calculation clarifies the presence of these roots:
the secular determinant is expressed in terms of spherical
Bessel functions of the argument k(s)r, where r denotes the
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Table 2. Responses of the Model 1, n = 2

mode i si2 1/si2 hi2/s
i
2 ki2/s

i
2

[10−11 s−1] [kyr]

M0 −2.891240 −1.096 −1.40088 −0.83084

D0 −14.158778 −0.224 −0.00585 −0.00033
D1 −8.935232 −0.355 0.00000 0.00000
D2 −9.948630 −0.319 −0.00012 +0.00005

RT1 +0.200408 +15.81 +0.20535 +0.04479
RT2 +0.025711 +123.25 +0.04034 +0.00431
RT3 +0.007258 +436.57 +0.01852 +0.00113

he2, ke2 −0.58151 −0.22005∑
e,M0,D0−D10

−1.98840 −1.05116∑
e,M0,D0−D10,RT1−RT100

−1.66921 −1.00000

The analytical values of the isostatic load Love numbers

are his
n = −(2n+ 1)/3 , kis

n = −1 .

radius and for k(s) see Wu and Peltier [1982]. In the limit
of s→ 0+, the value of k(s) goes to +∞, hence the number
of roots of spherical Bessel functions goes to +∞ and the
infinite number of roots of the secular determinant can be
anticipated.

We have substantiated this preliminary calculation by
derivation of the asymptotic expansion of the secular equa-
tion detM(s) = 0, using the asymptotic forms of the sphe-
rical Bessel functions involving large arguments. In the s→
0+ limit, the secular equation becomes sin(k(s)r− nπ/2) =
0, from which the analytical formula for the roots of the
RT modes follows,

s
RTm
n =

n(n+ 1)

Kη

(
r2ρξ

)2[
(2m+ n)π2

]4 . (1)

In (1), n is the angular order, m the overtone number and
ξ = 4

3πGρ. The asymptotic validity of this formula is
demonstrated in Fig. 2, where the roots according to (1)
are denoted by diamonds lying on the zero line.

It follows from (1) that the sRTm
n are positive (and the

RT modes unstable) for all finite and positive values of the
physical parameters. On the other hand, the values sRTm

n go
to the stable limit with a value of 0 in both incompressible
(K→∞) and elastic limits (η→∞). The lowest growth
time 1/sRT1

n , which dominates the response, must be found
numerically by root-finding procedures, as the asymptotic
formula (1) is not accurate for low m. However, formula
(1) can be considered as the analytical proof of existence of
the unstable modes and of the initial-value results shown in
Fig. 1.

For the sake of completeness, we also discuss the previ-
ous analysis of the stable branch of the secular determinant,
s < 0, by Vermeersen et al. [1996]. In that paper, both the
mistakingly used expression (33) and sign confusions in the
solution vector (27)–(32) caused the incorrect evaluation of
the secular determinant, most noticeable in locations of the
roots of the dilatation modes (D modes) with low overtone
numbers. The plot of the corrected analytical secular deter-
minant for negative values of the Laplace variable s and the
angular order n = 2 is shown in the lower panel of Fig. 2.

From the asymptotic expansion of spherical Bessel func-
tions in the region of s→−(K/(K+ 4

3µ))(µ/η)+, where the

argument k(s) goes to +∞ again, we obtained the secular
equation in the asymptotical form cos(k(s)r−nπ/2) = 0, in
contrast to eq. (44) by Vermeersen et al. [1996]. Our analy-
tical formula for the roots of the dilatation modes reads

sDm
n = −

µ

η

[
(2m+n−1)π

2

]2
K − 4r2ρξ[

(2m+n−1)π
2

]2
(K+4

3
µ)− 4r2ρξ

, (2)

with n being the angular order and m the overtone number.
The dilatation modes can become also unstable, as was al-
ready shown by Vermeersen and Mitrovica [1998]. There is
a transition from the stable to the unstable modes with de-
creasing bulk modulusK from the numerator in (2), while µ
is fixed. From the denominator one sees that with a further
decrease in K the modes can become stable again.

We give the numerical roots sin of the M0 mode and the
first D and RT modes, corresponding growth times 1/sin,
the elastic parts hen, ken of the load Love numbers and their
modal amplitudes hin, kin for angular order n = 2 in Table 2.
An interesting observation can be made from the last two
columns of Table 2: the so-called isostatic limits, his

n and
kis
n , calculated independently as the response of a fluid in-

compressible sphere, cannot be reached by the values h∞n
and k∞n from the criterion of the completeness of the modal
decomposition,

h∞n = hen +

∞∑
i

hin/s
i
n , k∞n = ken +

∞∑
i

kin/s
i
n , (3)

when the M0 mode and the D modes only are included in
summation. However, the expressions (3) do fit the isostatic
limits accurately when the RT modes are taken into account.

In Fig. 3 we show a collection of growth times for unstable
modes of the homogeneous compressible sphere (model 1) for
several angular orders n. We note that the fastest growth
times are obtained for the lowest n and that for n < 16 the
growth times are less than 100 kyr.

In Fig. 4 we show the influences of increasing complexi-
ty in the model. Table 1 gives the physical parameters for
the additional models 2 and 3 to the homogeneous model 1,

10

100

1000

2 3 4 5 10 20 30 40 50 100     120

RT1

RT2

angular order n

1=sNm
n

[kyr]

Figure 3. Growth times 1/sRTm
n of the unstable RT modes

as a function of angular order n of the model 1. The fun-
damental (RT1) and the overtone branches (RT2–. . . ) are
shown.
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Figure 4. Temporal history of the vertical displacement
load Love number hn(t) for angular order n = 2. Results
for three different models with increasing number of layers
(see Table 1 for their physical parameters) are shown.

discussed up to now. The responses in the vertical displace-
ment or the load Love number hn(t) for angular order n = 2
are shown. The increase in the layering serves to increase
the growth time. This means that more complicated Earth
models would also have longer growth times than the simpler
models.

Concluding Remarks

In this study we have uncovered a set of unstable modes
for a homogeneous Maxwellian viscoelastic sphere. From
analytical expressions for the secular determinant, these
modes can be shown to have origins arising from the grav-
itational Rayleigh-Taylor instability of a compressible vis-
coelastic layer. Gravitation in combination with compresi-
bility is a crucial destabilizing factor; higher viscosity plays
a stabilizing role. The fact of existence of gravitational in-
stabilities in linear viscoelastic models raises the tantalizing
question of the influences played by finite-amplitude vis-
coelasticity in geodynamics, as has already been discussed
by several authors [Harder, 1991, Bercovici et al., 1992,
Moser et al., 1993, Plag and Jüttner, 1995]. In the linear
theory, the growth times of the unstable modes are the short-
est for the lowest angular orders, which suggests that also in
the finite-amplitude viscoelastic regime they may play a de-
cisive role in secular rotational instabilities [Moser et al.,
1993]. A recent citation of a large-amplitude rotational in-
stability with a deep geobiological consequence [Kirschvink
et al., 1997] has been invoked on the basis of paleomagnetic
data.
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