
Geol. Mag. 143 (5 ), 2006, pp. 561–608. c© 2006 Cambridge University Press 561
doi:10.1017/S0016756806002421 Printed in the United Kingdom

Secular variation in Late Cretaceous carbon isotopes:

a new δ
13C carbonate reference curve for the

Cenomanian–Campanian (99.6–70.6 Ma)

IAN JARVIS*, ANDREW S. GALE‡§, HUGH C. JENKYNS¶ & MARTIN A. PEARCE‖

∗School of Earth Sciences & Geography, Centre for Earth and Environmental Science Research,
Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK

‡Department of Earth & Environmental Sciences, University of Greenwich, Chatham, Kent ME4 4AW, UK
§Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, UK

¶Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK
‖Statoil, Forus N-4035, Stavanger, Norway

(Received 27 April 2005; revised version received 26 January 2006; accepted 30 January 2006)

Abstract – Carbon stable-isotope variation through the Cenomanian–Santonian stages is characterized
using data for 1769 bulk pelagic carbonate samples collected from seven Chalk successions in England.
The sections show consistent stratigraphic trends and δ

13C values that provide a basis for high-
resolution correlation. Positive and negative δ

13C excursions and inflection points on the isotope profiles
are used to define 72 isotope events. Key markers are provided by positive δ

13C excursions of up to
+ 2 ‰: the Albian/Cenomanian Boundary Event; Mid-Cenomanian Event I; the Cenomanian/Turonian
Boundary Event; the Bridgewick, Hitch Wood and Navigation events of Late Turonian age; and the
Santonian/Campanian Boundary Event. Isotope events are isochronous within a framework provided
by macrofossil datum levels and bentonite horizons. An age-calibrated composite δ

13C reference
curve and an isotope event stratigraphy are constructed using data from the English Chalk. The
isotope stratigraphy is applied to successions in Germany, France, Spain and Italy. Correlation with
pelagic sections at Gubbio, central Italy, demonstrates general agreement between biostratigraphic and
chemostratigraphic criteria in the Cenomanian–Turonian stages, confirming established relationships
between Tethyan planktonic foraminiferal and Boreal macrofossil biozonations. Correlation of the
Coniacian–Santonian stages is less clear cut: magnetostratigraphic evidence for placing the base
of Chron 33r near the base of the Upper Santonian is in good agreement with the carbon-iso-
tope correlation, but generates significant anomalies regarding the placement of the Santonian and
Campanian stage boundaries with respect to Tethyan planktonic foraminiferal and nannofossil zones.
Isotope stratigraphy offers a more reliable criterion for detailed correlation of Cenomanian–Santonian
strata than biostratigraphy. With the addition of Campanian δ

13C data from one of the English sections,
a composite Cenomanian–Campanian age-calibrated reference curve is presented that can be utilized
in future chemostratigraphic studies.

The Cenomanian–Campanian carbon-isotope curve is remarkably similar in shape to supposedly
eustatic sea-level curves: increasing δ

13C values accompanying sea-level rise associated with
transgression, and falling δ

13C values characterizing sea-level fall and regression. The correlation
between carbon isotopes and sea-level is explained by variations in epicontinental sea area affecting
organic-matter burial fluxes: increasing shallow sea-floor area and increased accommodation space
accompanying sea-level rise allowed more efficient burial of marine organic matter, with the preferential
removal of 12C from the marine carbon reservoir. During sea-level fall, reduced seafloor area, marine
erosion of previously deposited sediments, and exposure of basin margins led to reduced organic-
carbon burial fluxes and oxidation of previously deposited organic matter, causing falling δ

13C values.
Additionally, drowning of carbonate platforms during periods of rapid sea-level rise may have reduced
the global inorganic relative to the organic carbon flux, further enhancing δ

13C values, while renewed
platform growth during late transgressions and highstands prompted increased carbonate deposition.
Variations in nutrient supply, changing rates of oceanic turnover, and the sequestration or liberation of
methane from gas hydrates may also have played a role in controlling carbon-isotope ratios.
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1. Introduction

The first detailed carbon and oxygen stable-isotope
study of the Upper Cretaceous was published 25 years

∗Author for correspondence: i.jarvis@kingston.ac.uk

ago (Scholle & Arthur, 1980). This pioneering work
included summary δ

13C profiles based on the analysis
of bulk carbonate samples from sections of the English
Chalk at Dover–Folkestone, in Norfolk, and on the
Isle of Wight which, together with other data from
NW Europe, the Italian Apennines and Mexico, were
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Figure 1. Location of European Upper Cretaceous sections

discussed in the text. Turonian (90 Ma) palaeogeographic base

map modified from Voigt et al. (1999). Thin lines represent

the outlines of continental blocks and continents. Land areas

indicated by thick lines and vertical hatching. Inset map (top

right) shows location of English Chalk study sections; grey

areas are outcrop and sub-Pleistocene subcrop of Cretaceous

sediments.

used to demonstrate the potential of carbon isotopes
for global correlation. Scholle & Arthur’s (1980) work
was refined by detailed, metre-scale sampling tied to
detailed stratigraphic logs by Jenkyns, Gale & Corfield
(1994), who confirmed the good correlation between
east Kent in England and Gubbio, Italy, and produced
δ

13C profiles for the two areas which have been used
subsequently as international stratigraphic reference
curves (e.g. Voigt & Hilbrecht, 1997; Wiese, 1999;
Voigt, 2000; Coccioni & Galeotti, 2003; Skelton,
2003).

In this paper, new carbon stable-isotope data are
presented for the Cenomanian–Campanian of Culver
Cliff, Isle of Wight (Fig. 1; 295 samples) and the Trunch
borehole, Norfolk (223 samples), plotted against
detailed litho- and biostratigraphic logs. The profiles
are correlated with a new compilation of published δ

13C
data from East Kent (535 samples), Speeton, North
Yorkshire (255 samples), Banterwick Barn, Berkshire
(106 samples), Seaford Head and Eastbourne, East
Sussex (86 and 269 samples, respectively) plotted, in
most cases for the first time, against detailed strati-
graphic logs. A combination of macrofossil biostrati-
graphy and a marker-bed lithostratigraphy that includes
six key bentonite horizons in the Turonian–Coniacian
provides a tight correlation framework for the seven
sections that confirms the synchroneity of shifts in the
carbon-isotope profiles.

Significant δ
13C excursions and inflection points on

the correlated English Chalk profiles are used to define
an event chemostratigraphy that enables more refined
regional correlation. Substantial variations in thickness
and facies are demonstrated between the localities, with
no single section providing a complete record of the

entire succession. A composite δ
13C reference profile

is constructed using data from the most complete parts
of each section, and this is compared with recently
published high-resolution data for coeval successions
in Italy and Germany. Excellent agreement between
δ

13C profiles throughout Europe confirms the syn-
chroneity of changes in the isotope record through the
Cenomanian–Santonian, and illustrates the potential
of the composite δ

13C reference curve as a primary
criterion for trans-continental correlation.

2. Study sections

2.a. Stratigraphic framework

Over the last two decades, a comprehensive named
marker-bed stratigraphy has been developed for the
English Chalk that enables detailed correlation of sec-
tions throughout the region. Some of these marker-bed
names were introduced in the nineteenth century, such
as the Totternhoe Stone (Whitaker, 1865b) and the Cast
Bed (Price, 1877) in the Cenomanian, and the Whitaker
3-inch Flint (Whitaker, 1865a) in the Santonian.
However, more recently, a large number of additional
beds have been named independently in northern
(Wood & Smith, 1978) and in southern (Mortimore,
1983) England, which have been used for regional cor-
relation. For the southern England sections described
in this paper (Fig. 1), the marker-bed terminology
of Mortimore (1983) is used in preference to the
North Downs lithostratigraphy of Robinson (1986)
where marker-bed correlations throughout the area
are well established. Marl seams, including geochem-
ically distinct bentonites (Wray & Gale, 1993; Wray
et al. 1996; Wray & Wood, 1998; Wray, 1999; Wiese,
Wood & Wray, 2004), have proven to be particularly
reliable for regional correlation. Where appropriate,
marker-bed names in general use prior to the work of
Mortimore (1983) are retained.

The application of higher order stratigraphic ter-
minology at the member, formation and group levels
remains controversial (e.g. Gale, Wood & Bromley,
1987; Gale et al. 1999a; Robinson, 1987; Mortimore,
1988; Bristow, Mortimore & Wood, 1997; Bristow,
1999; Rawson, Allen & Gale, 2001; Peake, 2002;
Woods et al. 2002). Here, the traditional member
subdivisions of the Cenomanian (Gale et al. 1999a)
are used, whereas the terminology of Gale (1996) is
employed for the Turonian, and that of Gale, Wood &
Bromley (1987) for the Coniacian–Campanian. This
member terminology has been plotted against the litho-
stratigraphic logs of the Culver section for reference
purposes. However, it is recognized that some member
boundaries are diachronous, and that the southern
England member terminology is not applicable to the
lithologically different Trunch and Speeton sections of
eastern and northern England (Fig. 1).
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Table 1. Key biostratigraphic datum levels used to constrain the carbon-isotope chemostratigraphy

Datum Description

Campanian
45 LAD Uintacrinus anglicus
44 FAD U. anglicus
43 LAD Marsupites testudinarius (base Campanian)

Santonian
42 FAD Marsupites testudinarius
41 FAD Marsupites laevigatus
40 FAD Uintacrinus socialis
39 base Echinocorys aff. elevata bed
38 LAD Cladoceramus
37 base second abundant Cladoceramus bed (Cladoceramus Bed 2)
36 base first abundant Cladoceramus bed (Cladoceramus Bed 1) (base Santonian)

Coniacian
35 FAD Volviceramus involutus
34 acme Volviceramus koeneni
33 FAD Cremnoceramus schloenbachi
32 FAD Cretirhynchia subplicata
31 FAD Cremnoceramus deformis erectus (base Coniacian)

Turonian
30 FAD Cremnoceramus walterdorfensis hannovrensis
29 FAD Mytiloides scupini
28 base abundant Micraster leskei and Cretirhynchia
27 FADs Micraster leskei and Inoceramus costellatus
26 FAD Inoceramus securiformis, abundant I. lamarcki
25 FAD Inoceramus lamarcki
24 FAD Inoceramus cuvieri
23 base second abundant Roveacrinus bed (Roveacrinus Bed 2), FAD Mytiloides subhercynicus
22 base Filograna avita bed, abundant Mytiloides mytiloides
21 FAD Mytiloides mytiloides
20 base first abundant Roveacrinus bed (Roveacrinus Bed 1)
19 FAD Mytiloides puebloensis (base Turonian)

Cenomanian
18 base abundant Orbirhynchia wiesti (Plenus Marl Bed 7)
17 base Actinocamax plenus – Lyropecten (Aequipecten) arlesiensis – Oxytoma seminudum bed (Plenus Marl Bed 4)
16 base Orbirhynchia multicostata bed (Plenus Marl Bed 2)
15 LAD ‘Cenomanian’ benthonic macrofauna (top Grey Chalk)
14 base abundant Amphidonte bed
13 base abundant Pycnodonte bed (Jukes-Browne Bed 7)
12 FADs Acanthoceras jukesbrownei and Inoceramus atlanticus
11 sharp increase in proportion of planktonic foraminifera (P/B break)
10 base third abundant Orbirhynchia mantelliana beds (O. mantelliana Bed 3)
9 base Praeactinocamax primus – Oxytoma seminudum bed
8 base Lyropecten (Aequipecten) arlesiensis – Oxytoma seminudum bed
7 base second abundant Orbirhynchia mantelliana beds (O. mantelliana Bed 2)
6 base first abundant Orbirhynchia mantelliana beds (O. mantelliana Bed 1)
5 base abundant Inoceramus virgatus (I. virgatus beds)
4 FAD Inoceramus virgatus
3 base abundant Inoceramus crippsi crippsi (I. crippsi beds)
2 LAD Aucellina
1 FAD Inoceramus crippsi crippsi

Macrofossil biostratigraphy is used to constrain fur-
ther the isotopic correlations. The ammonite zonation
of the Cenomanian–Turonian (Wright & Kennedy,
1981, 1984; Gale, 1995, 1996) is accompanied by the
‘traditional’ macrofossil subdivisions of the Turonian–
Campanian (Rowe, 1899, 1900, 1908; Rawson et al.

1978) employing inoceramid bivalves, brachiopods,
echinoids and crinoids. The location of zonal bound-
aries is based on our own observations supplemented
by literature information. However, macrofossil zonal
biostratigraphy above the Cenomanian provides a rel-
atively coarse stratigraphic resolution with individual
zones attaining a thickness greater than 100 m, and
zonal boundaries are commonly difficult to place pre-
cisely, particularly in boreholes. Additional constraints
are provided by the positions of macrofossil datum

levels (Table 1), including the first appearances (FAD),
last appearances (LAD) and flood abundances of key
taxa.

2.b. East Kent (Cenomanian–Campanian)

The east Kent coast is situated above the southern
margin of the London-Brabant Massif, an extensive
area of shallow Palaeozoic basement that marks the
northern fringe of the Cretaceous Anglo-Paris Basin.
Cliff sections in east Kent near Folkestone and Dover
(Fig. 1; UK national grid reference TR 26153830–
38014767; N 51◦05′58′′ E 01◦13′43′–N 51◦10′43′′

E 01◦24′14′′), and on the Isle of Thanet between
Ramsgate and Margate (TR 3668 6408–3835 7162;
N 51◦19′36′′ E 01◦23′45′′–N 51◦23′37′′ E 01◦25′39′′),
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provide a complete and readily accessible succession
of shallow-dipping Upper Cretaceous (Cenomanian–
lowest Campanian) strata. These sections have a long
history of study (e.g. Phillips, 1821; Price, 1877;
Rowe, 1900; Jukes-Browne & Hill, 1903, 1904).
Detailed locality information and logged sections have
been published by Kennedy (1969), Robinson (1986),
Jenkyns, Gale & Corfield (1994), Mortimore (1997)
and Mortimore, Wood & Gallois (2001). The logs
presented here are derived from Jenkyns, Gale &
Corfield (1994) for the Cenomanian, and are based
on work by Jarvis between 1984 and 2004 for the
remainder of the section. The latter compilations agree
well with most published logs but with some differences
in thickness and lithological detail. The Cenomanian–
lowest Campanian is 259 m thick.

A filtered and smoothed δ
13C curve for the

Cenomanian–lowest Campanian of Dover–Folkestone
was published by Scholle & Arthur (1980, fig. 2), but no
detailed stratigraphic framework was provided. Jarvis
et al. (1988a) documented carbon- and oxygen-isotope
curves across the Cenomanian/Turonian boundary. The
isotope data reported here are those of Jenkyns, Gale &
Corfield (1994), replotted against our revised logs, with
additional higher resolution sample data for the Middle
Cenomanian from Paul et al. (1994b) and Mitchell,
Paul & Gale (1996), and for the Cenomanian/Turonian
boundary interval from Lamolda, Gorostidi & Paul
(1994).

2.c. Culver Cliff, Isle of Wight (Cenomanian–Campanian)

The Isle of Wight is situated towards the central
part of the Anglo-Paris Basin. Cenomanian to middle
Campanian chalks are well exposed on the steeply
dipping (50–65◦) northern limb of the Sandown
Anticline at Culver Cliff (Fig. 1) and Whitecliff (SZ
6295 8550–6407 8573; N 50◦39′57′′ W 01◦06′38′′–
N 50◦40′04′′ W 01◦05′41′), on the eastern tip of the
island. Briefly described by Rowe (1908), and reviewed
by White (1921), summary logs have been published for
the Cenomanian–Lower Turonian (Jarvis, Murphy &
Gale, 2001), Coniacian–Campanian (Mortimore,
Wood & Gallois, 2001), Santonian (Prince, Jarvis &
Tocher, 1999) and Campanian (Jenkyns, Gale &
Corfield, 1994). The complete Cenomanian–basal
Campanian succession (300 m), logged by Jarvis
during 1994–1996, is documented for the first time
in this paper.

A filtered and smoothed δ
13C curve for the

Cenomanian–Campanian of the Isle of Wight was
published by Scholle & Arthur (1980, fig. 2). Jenkyns,
Gale & Corfield (1994, fig. 7) documented the δ

13C
profile of the Campanian at Whitecliff. Paul et al.

(1994b, fig. 3) described carbon-isotope variation in
the lower Middle Cenomanian of Culver Cliff, and
Jarvis, Murphy & Gale (2001, fig. 3) published a
detailed Cenomanian–Lower Turonian δ

13C profile.

A composite curve for the Cenomanian–Campanian,
incorporating new data for the Turonian–Santonian, is
presented here.

2.d. Speeton, North Yorkshire (Cenomanian)

Speeton is situated close to the fault-bounded southern
margin of the Cleveland Basin, a western extension
of the Anglo-Dutch Basin (Fig. 1) of the southern
North Sea (Cameron et al. 1992). Buckton Cliffs, 2 km
east of Speeton, and the adjacent foreshore provide
a continuous, albeit intermittently exposed, gently
southerly dipping Cenomanian section (TA 1747 7487–
1865 7460; N 54◦09′22′ W 00◦12′10′′–N 54◦09′13′′ W
00◦11′05′′) that includes an expanded succession across
the Albian/Cenomanian boundary, which is unique in
England (Mitchell, 1995).

Section details have been provided by Hill (1888),
Jeans (1973, 1980), Paul et al. (1994b), Gale (1995),
Mitchell (1995, 1996), Mitchell, Paul & Gale (1996)
and Mortimore, Wood & Gallois (2001). A high-
resolution carbon-isotope stratigraphy of the Up-
per Albian–basal Turonian has been documented
by Mitchell and co-workers (references above); the
stratigraphic and δ

13C data presented here are those
of Mitchell, Paul & Gale (1996, fig. 5), supplemented
by additional lithological details derived from Mitchell
(1995, 1996) and new logging by Gale.

2.e. Trunch, Norfolk (Cenomanian–Campanian)

Trunch is situated above the northern margin of
the East Anglian Massif (Fig. 1). Gently easterly
dipping (∼ 0.5◦) Upper Cretaceous sediments occur
throughout Norfolk but are generally obscured by a
thick Quaternary cover. A continuously cored well sunk
at Trunch (TG 2933 3455; N 52◦51′34′′ E 01◦24′19′′)
in 1975 by the British Geological Survey (BGS; then
the Institute of Geological Sciences) sampled 468 m
of Cenomanian–basal Maastrichtian Chalk (Wood,
Morter & Gallois, 1994). This borehole provides the
most complete onshore Upper Cretaceous record in
England. The lithostratigraphy and macrofossil bio-
stratigraphy (Gallois & Morter, 1976; Wood, Morter &
Gallois, 1994) have been described, but lithological
logs have been published only for the Campanian
(Jarvis et al. 2002). During the present study, the
unpublished written and graphic logs of Mr A. A.
Morter (BGS) were combined with our interpretation
of gamma, resistivity and sonic e-log data to generate
a new detailed log of the Cenomanian–Santonian
succession (206 m).

A filtered and smoothed δ
13C curve for the

Cenomanian–Maastrichtian of Norfolk was presented
by Scholle & Arthur (1980, fig. 2), but no detailed
stratigraphic data were published. McArthur et al.

(1993) included carbon and oxygen stable-isotope
values for a few widely spaced samples, as part of
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a strontium-isotope stratigraphy study of the borehole.
Jenkyns, Gale & Corfield (1994, fig. 7) provided metre-
resolution δ

13C and δ
18O curves for the Campanian.

New data for the Cenomanian–Santonian interval are
here added to the published Campanian data (Jenkyns,
Gale & Corfield, 1994) to construct a complete
Cenomanian–basal Campanian curve.

2.f. Banterwick Barn, Berkshire (Turonian–Coniacian)

Banterwick Barn borehole 2, located (UK national grid
reference SU 5134 7750; N 51◦29′39′′ W 1◦15′43′′)
near the village of Hampstead Norries in Berkshire,
was drilled by the BGS in 1996, and sampled
97 m of Turonian–Coniacian chalk (Murphy, Jarvis &
Edmunds, 1997). The locality is situated close to the
NW margin of the Anglo-Paris Basin (Fig. 1), in an area
termed the Berkshire–Chilterns Shelf by Mortimore
(1983). Here, the middle to upper Turonian becomes
highly condensed and is represented by a diachronous
complex of well-developed, mineralized and highly
indurated hardgrounds, the Chalk Rock (Bromley &
Gale, 1982; Gale, 1996; Woods & Aldiss, 2004).

Detailed lithostratigraphic, chemostratigraphic, pa-
lynological, and porewater geochemical studies have
been undertaken (Murphy, Jarvis & Edmunds, 1997;
A. M. Murphy, unpub. Ph.D. thesis, Kingston Univ.
1998; Pearce et al. 2003) on the borehole. Carbon-
and oxygen-isotope curves for the succession were
presented in Murphy, Jarvis & Edmunds (1997) and
Pearce et al. (2003). These data were used in the
present study. The stratigraphy of the borehole was
discussed most recently by Woods & Aldiss (2004),
who correlated the section with others in the Berkshire
Downs.

2.g. Seaford Head, East Sussex (Santonian–Campanian)

The gently folded Chalk on the East Sussex coast
between Brighton and Eastbourne displays some of
the thickest Cenomanian–Santonian successions in the
Anglo-Paris Basin (Mortimore & Pomerol, 1987). At
Seaford Head (Fig. 1) a continuously exposed and
accessible Upper Turonian–Lower Campanian section
(TV 5010 9750–4885 9817; N 51◦39′23′′ E 00◦10′07′′–
N 51◦39′45′′ E 00◦09′03′′), first zoned by Rowe
(1900), dips at approximately 15◦ to the west. The
lithological succession was described by Mortimore
(1986, 1997), and Jenkyns, Gale & Corfield (1994,
fig. 14) published a detailed log of the Middle
Santonian–Lower Campanian. The locality has been
proposed as a Lower/Middle Coniacian substage
boundary stratotype (Kauffman, Kennedy & Wood,
1996), and as a potential boundary stratotype section
for both the Santonian (Lamolda & Hancock, 1996)
and the Campanian (Hancock & Gale, 1996) stages.

The log of the uppermost Coniacian–basal Campan-
ian (80 m) presented here, measured by Jarvis during

1993, agrees well with the recently published logs of
Mortimore, Wood & Gallois (2001). Published isotope
data for the Middle Santonian–Lower Campanian
(Jenkyns, Gale & Corfield, 1994), replotted against
our revised section, will be used in the following
correlations.

2.h. Eastbourne, East Sussex (Cenomanian/Turonian

boundary interval)

The succession exposed at Gun Gardens (TV
5880 9543; N 50◦44′12′′ E 00◦14′57′′), Beachy
Head, Eastbourne (Fig. 1), affords the thickest
Cenomanian/Turonian boundary section in the Anglo-
Paris Basin (Jefferies, 1962, 1963; Gale et al. 1993,
2005; Paul et al. 1999). The macrofossil (Mortimore,
1986; Gale et al. 1993, 2000, 2005) and microfossil
(Paul et al. 1999; Keller et al. 2001) biostratigraphy
of the section has been documented in detail, and
Paul et al. (1999) have published high-resolution (5–
10 cm sample spacing) δ

13C and δ
18O curves for a

24 m section incorporating the Cenomanian/Turonian
boundary. Similar but lower resolution carbon-isotope
curves were presented by Leary & Peryt (1991), Gale
et al. (1993), Jenkyns, Gale & Corfield (1994), Keller
et al. (2001) and Tsikos et al. (2004).

The Gun Gardens section has become established
as a reference for the Cenomanian/Turonian boundary
succession in the chalk facies of NW Europe (Tsikos
et al. 2004; Amédro, Accarie & Robaszynski, 2005;
Erbacher et al. 2005; Kolonic et al. 2005; Kuhnt et al.

2005). Published data will be used here to illustrate the
consistency of major carbon-isotope trends across the
boundary interval.

3. Carbon-isotope stratigraphy and correlation

Scholle & Arthur (1980) recognized four key
carbon-isotope ‘excursions’ in the Cenomanian–Lower
Campanian: ‘light events’, close to the Albian/
Cenomanian and Turonian/Coniacian boundaries, and
‘heavy events’ around the Cenomanian/Turonian and
Santonian/Campanian boundaries. The remarkable
coincidence between carbon-isotope events and stage
boundaries was ascribed to oceanographic changes
driving biotic turnover in the marine fossil record, and
highlighted the potential of carbon-isotope correlation
as a global stratigraphic tool. The global nature of
these events, particularly the large positive excursion
spanning the Cenomanian/Turonian boundary, has
been confirmed subsequently by many workers (e.g.
Schlanger et al. 1987; Arthur et al. 1990; Gale et al.

1993, 2005; Pratt et al. 1993; Jenkyns, Gale & Corfield,
1994; Jenkyns, Mutterlose & Sliter, 1995; Hasegawa,
1997, 2003; Voigt & Hilbrecht, 1997; DeCabrera, Sliter
& Jarvis, 1999; Hasegawa & Hatsugai, 2000; Voigt,
2000; Keller et al. 2001; Wang et al. 2001; Jarvis
et al. 2002; Tsikos et al. 2004; Amédro, Accarie &
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Robaszynski, 2005; Erbacher et al. 2005; Kolonic
et al. 2005; Li et al. 2006).

Jenkyns, Gale & Corfield (1994) defined eight
correlative events between east Kent and Italy
for the Cenomanian–Lower Campanian. However,
more detailed studies of specific intervals, such as
the Middle Turonian–Lower Coniacian of Germany
(Voigt & Hilbrecht, 1997; Wiese, 1999), where at
least ten events can be recognized, has demonstrated
the potential for further refinement. In this paper, 39
events are defined between the Albian/Cenomanian
and Santonian/Campanian boundaries, providing a
stratigraphic resolution of around 400 kyr; a further
33 datum levels are provisionally identified that offer
potential for even greater stratigraphic refinement.

3.a. Cenomanian

The Cenomanian Stage (99.6–93.5 Ma) offers the
possibility of the highest stratigraphic resolution for
global correlation of the Upper Cretaceous stages be-
cause widely distributed ammonite species, augmented
by inoceramid bivalves and planktonic foraminifera,
provide a temporal resolution of 100–400 kyr (Gale
et al. 2002). A prominent feature of Cenomanian
sediments in northern and eastern Europe is the
presence of clear primary bedding cyclicity, expressed
as decimetre-scale marl–chalk alternations (Fig. 2).
Lithological, macrofaunal and trace-fossil evidence
provide a basis for correlating individual couplets
on a regional scale. Cenomanian marl–chalk couplets

are interpreted to reflect Milankovitch-band climatic
forcing by precession (Gale et al. 1999b), each couplet
representing a mean duration of ∼ 20 kyr (cf. Berger,
Loutre & Dehant, 1989). Lithological variation within
couplets was probably controlled by productivity of
biogenic carbonate rather than being caused by changes
in clastic supply (Ditchfield & Marshall, 1989; Paul,
1992).

It has been suggested that modulation by the short
eccentricity cycle has generated ∼ 100 kyr bundles
(Gale, 1990; Mitchell & Carr, 1998; Gale et al. 1999b),
although these are generally less well expressed.
On longer time scales, third-order sequences (Vail,
Mitchum & Thompson, 1977) in the Cenomanian (e.g.
Robaszynski et al. 1998; Jarvis, Murphy & Gale, 2001)
may be interpreted as a sedimentary response to sea-
level changes driven by the 400 kyr long eccentricity
cycle (Gale et al. 2002). Astronomical tuning thus
offers the potential to date isotopic events to a resolu-
tion of 10–20 kyr. In this study, the cyclostratigraphic
units of Gale (1990, 1995) have been identified in
our sections, and are used to constrain our carbon-
isotope correlations at a couplet scale. Calibration of
the couplet scheme in individual sections was achieved
by identifying key faunal and lithological marker beds,
many of which were first defined in northern Germany
(Ernst, Schmid & Siebertz, 1983), but which have
been subsequently recognized in England and France
(Mitchell, Paul & Gale, 1996; Robaszynski et al. 1998).

In southern England, the Cenomanian has tradition-
ally been subdivided into four units (from base to
summit): Glauconitic Marl, Chalk Marl, Grey Chalk
and Plenus Marl (Jukes-Browne & Hill, 1903; Rawson
et al. 1978). The glauconitic sand and marl facies at
the bottom and top of the stage, respectively, represent
lithologically distinct packages that can be readily
distinguished throughout the area. The base of the
Grey Chalk (Fig. 2) is taken at the major increase
in carbonate content (calcimetry break) that occurs in
the Middle Cenomanian Acanthoceras rhotomagense

Zone. The four subdivisions are clearly expressed at
Dover and Culver (Fig. 3). In northern England, the
stage approximates to the Ferriby Chalk Formation of
Wood & Smith (1978). Here the succession (Fig. 3)
comprises red nodular chalks at the base (Hunstanton
Formation), rhythmically bedded grey marly chalks
with intermittent beds of calcarenitic chalk (Ferriby
Formation), and a thin (∼ 10 cm) black organic-rich
layer within a thin interval of marls at the summit
(Black Band, base of the Welton Formation). The
relatively expanded section at Speeton is approximately
half the thickness (∼ 40 m) of its equivalent in
southern England (∼ 80 m). In the Trunch borehole
(Fig. 3) the highly attenuated Cenomanian succession
(12 m) correlates well lithostratigraphically with that
at Speeton.

Based on the succession at Speeton, Mitchell, Paul &
Gale (1996) described seven isotope events in the
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Cenomanian: the Albian/Cenomanian Boundary Event
(ACBE); three Lower Cenomanian events (LCE I–III);
two Middle Cenomanian events (MCE I–II); and the
Cenomanian/Turonian Boundary Event (CTBE). The
uppermost three of these were correlated with southern
England and Germany. These events are recognized
here, and seven new events are defined.

3.a.1. Albian/Cenomanian Boundary Event

The base of the Cenomanian is defined by the first
appearance of the planktonic foraminifera Rotalipora

globotruncanoides Sigal (Tröger & Kennedy, 1996).
In the Global boundary Stratotype Section and Point
(GSSP) at Mont Risou, France (Fig. 1), this boundary
lies a short distance above the first occurrence of
R. gandolfi Luterbacher & Premoli-Silva and the
last occurrence of R. ticinensis (Gandolfi), and a
short distance below the base of the Mantelliceras

mantelli ammonite Zone (Fig. 4) and Neostlingoceras

carcitanensis Subzone (Gale et al. 1996).
A positive δ

13C excursion of around + 0.5 ‰ δ
13C,

with values up to 2.7 ‰, occurs in the upper part
of the Hunstanton Chalk Formation (Red Chalk) at
Speeton, spanning the Albian/Cenomanian boundary
(Mitchell, 1995). The excursion displays three separate
peaks (a–c in Figs 3, 4). Mitchell (1995) placed the
stage boundary in the trough between the uppermost
two peaks (b, c) based largely on a correlation of
the δ

13C curve with that of the GSSP (Fig. 4; Gale
et al. 1996), supplemented by evidence from the
distribution of macrofossil species. Ammonites and key
planktonic foraminifera are absent from the boundary
interval at Speeton, but the disappearance of coarse-
reticulate Aucellina spp. bivalves (Morter & Wood,
1983; Mitchell, 1995) offers a possible macrofossil
stage-boundary indicator that is supported by evidence
from brachiopods and benthonic foraminifera.

Elsewhere in England, the boundary between the
highest Albian and the Lower Cenomanian Mantelli-

ceras mantelli Zone is marked by a major hiatus of up
to 1.5 Myr (Gale, 1995). The well-defined δ

13C peak
in the lower Glauconitic Marl at Dover (Fig. 3) is here
correlated with Lower Cenomanian Event I rather than
the Albian/Cenomanian Boundary Event, since the first
appearance datum (FAD) of Inoceramus crippsi crippsi

Mantell (macrofossil Datum 1, Table 1) occurs a short
distance above the excursion.

3.a.2. Lower Cenomanian Events I–III

Three well-defined positive δ
13C excursions of + 0.2

to + 0.5 ‰ (Lower Cenomanian Events I–III), super-
imposed on a longer-term trend of gradually rising
values, are developed in the Mantelliceras mantelli

Zone at Speeton and Dover (Fig. 3). At Speeton, Lower
Cenomanian Event I attains values up to 2.4 ‰ δ

13C
and is associated with a weakly developed hardground

and overlying marly interval, immediately below a
facies change (Fig. 3; Mitchell, 1995) from red marls
and nodular chalks below (Hunstanton Chalk), to
dominantly grey, less clay-rich beds above (Ferriby
Chalk Formation). Following a minimum at the bottom
of the Ferriby Chalk, Lower Cenomanian Event II
reaches 2.1 ‰ δ

13C in the bed immediately above,
around the LAD of Aucellina (Datum 2). Lower
Cenomanian Events I and II are located towards the
base and at the summit of the Glauconitic Marl at
Dover.

Lower Cenomanian Event III, a positive excursion
of + 0.2 ‰ δ

13C with values up to 2.3 ‰, is developed
at Speeton in the marl and chalks immediately above
the Pycnodonte bed (Fig. 3), a prominent marker
that occurs at the top of a succession of calcarenitic
chalks containing abundant inoceramid bivalve shells
and shell debris, particularly large Inoceramus crippsi

crippsi (First Inoceramus Bed of Jeans, 1973). A
small + 0.1 ‰ carbon-isotope peak, which occurs at
the base of the beds containing a flood abundance of
I. c. crippsi (Datum 3), is here called the Crippsi Beds
Isotope Event. Lower Cenomanian Event III similarly
occurs above a series of beds containing abundant I. c.

crippsi in the upper M. mantelli Zone at Dover (Fig. 3).
Inoceramus c. crippsi occurs at a comparable level in
northern France (Robaszynski et al. 1998; Amédro &
Robaszynski, 1999) and an ‘I. crippsi event’ is
also recognized in northern Germany (Tröger, 1995;
Wilmsen, 2003). A single peak at the base of the Chalk
Marl within beds containing abundant I. c. crippsi at
Culver (Fig. 3) is tentatively correlated with the Crippsi
Beds Event.

3.a.3. Virgatus Beds Event

A minimum followed by a pronounced + 0.1 ‰ step in
the isotope profile occurs at couplet B15 of Gale (1995;
Mitchell, 1996) within beds containing abundant Ino-

ceramus virgatus Schlüter of the lower Mantelliceras

dixoni Zone at Speeton (Fig. 3), and is similarly
associated with the acme occurrence of whole and
fragmentary I. ex gr. virgatus (Datum 5) in the 3 m of
chalk (couplets B13–18 of Gale, 1995) below the
paired limestones with Mantelliceras dixoni Spath (M6
marker of Gale, 1989) at Dover. A similar step may be
seen in the I. virgatus shell bed at 509.3 m in the Trunch
borehole (Fig. 3). The step in the isotope profile defines
the Virgatus Beds Isotope Event (new name).

The Inoceramus virgatus bioevent (Datum 5) is of
regional extent, and has been recognized in northern
and southern France (Gale, 1995; Robaszynski et al.

1998; Amédro & Robaszynski, 1999) and northern
Germany (the ‘virgatus/Schloenbachia event’ of Ernst,
Schmid & Siebertz, 1983; Gale, 1995; Wilmsen, 2003).
A step in the δ

13C profile occurring at the base of the
Inoceramus virgatus beds of Baddeckenstedt Quarry
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in the Lower Saxony Basin (Wilmsen & Niebuhr,
2002, fig. 6) confirms the regional significance of the
associated isotope event.

3.a.4. Mid-dixoni Event

A δ
13C minimum followed by a marked increase

of around + 0.2 ‰ occurs in the mid-Mantelliceras

dixoni Zone above Orbirhynchia mantelliana Band 1
(Datum 6), a well-defined marker bed that occurs
throughout England (Fig. 3), northern France
(Robaszynski et al. 1998; Amédro & Robaszynski,
1999) and northern Germany (Ernst, Schmid &
Siebertz, 1983; Wilmsen, 2003). This feature is here
termed the Mid-dixoni Isotope Event and is clearly
developed in the profiles at Dover and Speeton (Fig. 3).
The position of the isotope event at Culver is unclear,
possibly due to the presence of a hiatus in the thin devel-
opment of M. dixoni Zone represented in the section.

3.a.5. Mid-Cenomanian Event I

The litho-, bio- and chemostratigraphy of the basal
Middle Cenomanian in England and northern France

was described in detail by Paul et al. (1994b), who
documented a bed-scale cyclostratigraphic and δ

13C
correlation between their sections. At Dover, carbon-
isotope values increase sharply from the base of the
Cunningtoniceras inerme Zone (Fig. 3) in the lower part
of Orbirhynchia mantelliana Band 2 (Datum 7; couplet
B38), rising by + 0.5 ‰ δ

13C to form a marked positive
excursion with a value of 2.3 ‰ (Mid-Cenomanian
Event Ia, Fig. 3) in the arlesiensis bed of couplet
B41. The latter is an important NW European marker
bed (Datum 8) characterized by the occurrence of
the small bivalve Lyropecten (Aequipecten) arlesiensis

(Woods), together with Orbirhynchia mantelliana

(J. de C. Sowerby), Oxytoma seminudum (Dames),
and Cunningtoniceras inerme (Pervinquière). Records
of Rotalipora ex gr. reicheli Mornod at this level
(couplets B40–41 Mitchell, 1996) provide a basis for
correlation with Tethyan successions (Robaszynski &
Caron, 1979a, b), although the index species apparently
occurs much lower in the Cenomanian at Gubbio in
Italy (see Section 4.b).

Values fall to a trough in the upper C. inerme

Zone, couplets B42–43 (Fig. 3). They rise again by
+ 0.8 ‰ δ

13C from the base of the Acanthoceras
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rhotomagense Zone, to form a second larger peak with
a value of 2.9 ‰ (Mid-Cenomanian Event Ib, Fig. 3)
towards the top of the Cast Bed of Price (1877), couplet
C1, dropping sharply through the lower part of couplet
C2. A hiatus at the base of C1 is indicated by the
absence of couplets B44–45 in most sections (Gale,
1995). Carbon-isotope values then begin a long-term
fall that reaches a minimum around the calcimetry
break (the position of a sudden increase in carbonate

within the succession, represented by the boundary
between the Chalk Marl, below, and the Grey Chalk,
above, in southern England; Figs 2, 3), couplet C17, in
the mid-A. rhotomagense Zone. The Cast Bed (C1) is
another regional marker (Figs 2, 3; Datum 9) that yields
a unique and abundant fauna, particularly Praeactin-

ocamax primus (Arkhangelsky) belemnites, O. semi-

nudum, Acanthoceras rhotomagense (Brongniart) and
numerous small brachiopod species; the occurrence
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of P. primus indicates that the bed corresponds to the
‘primus Event’ in Germany (Ernst, Schmid & Siebertz,
1983; Christensen, 1990).

The two δ
13C peaks defining Mid-Cenomanian

Events Ia and Ib are clearly distinguished at Dover and
Speeton (Fig. 3), but at Culver, Mid-Cenomanian Event
Ia is less well defined because most of couplet B42 and
all of couplets B43–45 have been cut out by the basal
Cast Bed erosion surface (Gale, 1995; Jarvis, Murphy
& Gale, 2001). Mid-Cenomanian Event Ib attains a
maximum value of 2.2 ‰ δ

13C at Culver, in the basal
portion of couplet C2. At Speeton, the double δ

13C
peak, with values rising by + 0.3 ‰ (Mid-Cenomanian
Event Ia) and + 0.4 ‰ (Mid-Cenomanian Event Ib) and
maxima of 2.6 ‰ and 2.7 ‰, occurs in the calcarenitic
chalks of the Totternhoe Stone (Fig. 3; Grey Bed of
Hill, 1888). An equivalent small peak of 2.3 ‰ δ

13C
occurs in the phosphatic calcarenites of the Totternhoe
Stone at Trunch (Fig. 3). The double peaks defining
Mid-Cenomanian Events Ia and Ib are well developed
in northern France (Paul et al. 1994b), NW Germany
(Mitchell, Paul & Gale, 1996; Wilmsen & Niebuhr,
2002) and central Italy (Stoll & Schrag, 2000; Tsikos
et al. 2004).

Mid-Cenomanian Event I represents a major break-
point on the long-term carbon-isotope profiles (Fig. 3),
from the relatively constant to very slowly rising values
that characterize the Lower Cenomanian, to a trend of
generally increasing δ

13C values through the Middle
Cenomanian.

3.a.6. P/B Break Event

A sharp increase in the proportion of planktonic to
benthonic foraminifera (P/B break, Datum 11) can
be identified everywhere in England in the lower
Middle Cenomanian, lower A. rhotomagense Zone
above Orbirhynchia mantelliana Band 3 (Figs 2,
3, Datum 10), a succession of beds characterized
particularly by common O. mantelliana (d’Orbigny)
(in couplets C3–10 at Dover and C7–10 at Culver,
with peak abundance in C9–10) and Sciponoceras

baculoides Mantell (couplets C8–12) that is traceable
throughout England (e.g. Kennedy, 1969; Jeans, 1980)
and France (Gale, 1995; Amédro & Robaszynski,
1999), Germany (the Middle Cenomanian Event of
Ernst, Schmid & Siebertz, 1983; Meyer, 1990), and
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the Crimea (Marcinowski, 1980; Gale, Hancock &
Kennedy, 1999).

Planktonic foraminifera increase from around 5 %
to as much as 50 % of the microfauna in couplet C11
and above, and Rotalipora becomes a more significant
element of the planktonic foraminiferal assemblages.
Rotalipora cushmani (Morrow) first appears at this
level in England (Paul et al. 1994b; Mitchell, 1996),
marking the base of the R. cushmani Zone, but appears
earlier in Germany (Meyer, 1990). The P/B break has
also been called the ‘mid-Cenomanian non-sequence’
(e.g. Carter & Hart, 1977), although no clear evidence
of a sedimentary break occurs at this level in the
sections studied.

A weakly developed negative δ
13C excursion of up

to −0.2 ‰ or a broad δ
13C minimum occur above the

P/B break at Dover, Culver and Speeton (Fig. 3); at
the last locality an older minimum is also developed
below, in couplet C7. The main significance of the P/B
Break Isotope Event (new name) is that it corresponds
to a second inflection point on the long-term isotope
profiles, with a change to more rapidly rising δ

13C
values, particularly above the calcimetry break at
couplet C17. It is possible that the lower, sub-P/B
break δ

13C minimum at Speeton correlates to the supra-
P/B break minimum at Dover and Culver, with the
change in foraminiferal assemblage occurring later in
northern England. This interpretation is considered to
be unlikely, but higher resolution δ

13C profiles for the
southern England sections will be required to test this
hypothesis.

3.a.7. Mid-Cenomanian Event II

A marked negative excursion of around −0.3 ‰ occurs
in the upper Middle Cenomanian Acanthoceras jukes-

brownei Zone at Dover and Speeton (Fig. 3), termed
Mid-Cenomanian Event II by Mitchell, Paul & Gale
(1996). The isotopic signature of mid-Cenomanian
Event II is located in the lower part of the calcarenitic
chalks with scour structures that constitute ‘Jukes-
Browne Bed 7’ (Jukes-Browne & Hill, 1903) at Dover
and Culver (couplets D1–8), the lower beds of which
(D1–3) contain abundant Pycnodonte oysters (Datum
13). This prominent lithological marker occurs a short
distance above beds containing common Inoceramus

atlanticus Heinz, and can be traced to northern France
(Robaszynski et al. 1998; Amédro & Robaszynski,
1999); the I. atlanticus acme extends at least to the
Crimea (Gale, Hancock & Kennedy, 1999). However,
the isotope excursion of Mid-Cenomanian Event II
is developed immediately below the Nettleton Stone
calcarenites, which also have a concentration of
Pycnodonte at their base (Nettleton Pycnodonte Bed;
Gryphaea Bed of Bower & Farmery, 1910) at Speeton
and Trunch.

In Germany, a Pycnodonte event (Ernst, Schmid &
Siebertz, 1983) occurs around a prominent double marl

with an acme of oysters beneath, between and above
the marls. The negative isotope excursion of mid-
Cenomanian Event II straddles the pair of marls (e.g. at
Rheine, Westphalia: Lehmann, 1999). Thus the earliest
oyster occurrence in Germany would correspond to
the Pycnodonte concentration below Jukes-Browne
Bed 7 in southern England, and the latest occurrence
to the Pycnodonte Bed below the Nettleton Stone
calcarenites. However, the different lithologies of strata
recording Mid-Cenomanian Event II in southern and
northern England indicate that the facies change to
calcarenitic chalks is diachronous between the Anglo-
Paris Basin and the Cleveland–Lower Saxony Basins,
with the facies change occurring later in northern
England. This diachroneity is perhaps not surprising,
given the time-transgressive nature of onlap surfaces,
such as those inferred for the Pycnodonte event
(Mitchell, Paul & Gale, 1996).

The interval between the P/B Break Event and Mid-
Cenomanian Event II includes two broad δ

13C peaks
at Culver (a1, a2; Fig. 3) which are also developed at
Dover and Speeton. Peak a2 occurs at the base of the
Middle Cenomanian Acanthoceras jukesbrownei Zone
around the FADs of Acanthoceras jukesbrownei Spath
and Inoceramus atlanticus (Datum 12).

3.a.8. Jukes-Browne Event

A broad but clearly developed maximum in δ
13C values

with an overlying trough occurs in the upper beds of
the Acanthoceras jukesbrownei and lowest Calycoceras

guerangeri zones (couplets D11–17) at Dover, Culver
and Speeton (Fig. 3). The Jukes-Browne Isotope Event
(new name) provides a good marker for the base of the
Upper Cenomanian, at the bottom of couplet D14.

3.a.9. Amphidonte Bed Event

An inflection point on the long-term carbon-isotope
curves from rising to constant δ

13C values, the
Amphidonte Bed Isotope Event (new name), occurs
around the level of the Amphidonte Bed (Datum 14) at
Dover and Culver (couplets D21–22 in the expanded
Culver succession; Fig. 3), and an inflection point is
seen at a similar position in the Speeton profile. A
concentration of the small ostreid bivalve Amphidonte

occurs around the Middle/Upper Cenomanian bound-
ary at Speeton, immediately above the Nettleton Stone
(Mitchell, Paul & Gale, 1996). However, this oyster
concentration is older than the Amphidonte Bed in
southern England. A higher level of Amphidonte has
been identified elsewhere in northern England (Wood,
1992; Mortimore, Wood & Gallois, 2001), which
probably correlates to that in southern England. A lower
Upper Cenomanian oyster event, also characterized
by the presence of Amphidonte, has been recognized
in northern France (Amédro & Robaszynski, 1999),
northern Germany (Ernst, Schmid & Siebertz, 1983;
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Owen, 1996; Wilmsen, 2003) and the Crimea (Gale,
Hancock & Kennedy, 1999). This bioevent can be
recognized in southern England, but no corresponding
isotope data are available for the sections on continental
Europe.

3.a.10. Monument Event

A minimum in δ
13C values in the upper Calycoceras

guerangeri Zone, occurring a short distance above the
Monument Marls of Jarvis, Murphy & Gale (2001),
provides a clear inflection point on the profiles at Culver
and Dover which may be correlated with Speeton
(Fig. 3). This shift in the long-term isotope trend is
here termed the Monument Isotope Event.

Two small δ
13C peaks, labelled b1 and b2 in Fig-

ure 3, occur between the Amphidonte Bed and
Monument events at Culver and Speeton, but only b2

can be recognized in the Dover profile. These peaks
also have wider potential for correlation.

3.a.11. Cenomanian/Turonian Boundary Event

The positive δ
13C excursion spanning the Ceno-

manian/Turonian boundary (Fig. 3) is one of the
largest and best documented carbon-isotope events in
the geological record (Jenkyns, 1980, 1985; Scholle
& Arthur, 1980; Schlanger et al. 1987). This event
is conventionally interpreted as being related to
accelerated burial of marine organic matter, particularly
in the Atlantic, but also in other ocean basins (Herbin
et al. 1986; Arthur et al. 1990; Kuypers et al. 2002,
2004). The phenomenon is widely referred to as
the Cenomanian/Turonian Boundary Event (CTBE),
or Oceanic Anoxic Event 2 (OAE2; Arthur et al. 1990).

Detailed studies of the Cenomanian/Turonian
Boundary Event and the associated stable-isotope and
biostratigraphy in England have been undertaken at
Dover (Jarvis et al. 1988b; Lamolda, Gorostidi & Paul,
1994) and Eastbourne (Leary & Peryt, 1991; Gale
et al. 1993, 2005; Paul et al. 1999; Keller et al.

2001; Tsikos et al. 2004), and isotope curves have
also been published for Speeton (Mitchell, Paul &
Gale, 1996) and Culver (Jarvis, Murphy & Gale, 2001).
The Eastbourne Gun Gardens section in West Sussex
(Figs 1, 5) is the most expanded boundary section in
chalk facies in NW Europe (Paul et al. 1999), and is
increasingly being used as an international reference
for biostratigraphic and chemostratigraphic studies
(Amédro, Accarie & Robaszynski, 2005; Erbacher
et al. 2005; Kolonic et al. 2005; Kuhnt et al. 2005).
Carbon-isotope curves for the Cenomanian/Turonian
Boundary Event at Culver, Dover, Trunch and Speeton
are illustrated in Figure 3, and a detailed δ

13C
correlation between Eastbourne and Dover is shown
in Figure 6, which compares these sections with the
Turonian Global boundary Stratotype Section and Point
at Pueblo, Colorado, USA. The base of the Turonian
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is defined (Bengtson, 1996; Kennedy, Walaszczyk &
Cobban, 2000) as the base of Bed 86 at Pueblo
(Fig. 6), which contains the first occurrence of the
ammonite Watinoceras devonense Wright & Kennedy
and the inoceramid bivalve Mytiloides puebloensis

Walaszczyk & Cobban (Datum 19).
The positive δ

13C excursion defining the Ceno-
manian/Turonian Boundary Event spans the Plenus
Marl, Ballard Cliff Chalk and basal Holywell Chalk
members (Figs 3, 5) in southern England. The
stratigraphy of the Plenus Marl was described in detail
by Jefferies (1962, 1963), who used a combination
of lithological and faunal criteria to define eight
beds (numbered 1–8, Fig. 5) that could be correlated
throughout the Anglo-Paris Basin and beyond. The
Plenus Marl is everywhere underlain by a strongly
burrowed erosion surface at the top of the Grey
Chalk, the sub-Plenus erosion surface, and is directly
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overlain by white nodular chalks formerly referred
to the Melbourn Rock (Jefferies, 1963; Mortimore,
1986). In expanded basinal successions, such as that
at Eastbourne (Fig. 5), the latter beds show little litho-
logical similarity to the hard nodular chalks of the
Melbourn Rock in its type area of Cambridgeshire
(Penning & Jukes-Browne, 1881). In recognition of
this, Gale (1996) erected the Ballard Cliff Member for
the interval of marly weakly nodular chalks that extends
from the top of the Plenus Marl to the top of a distinctive
succession containing six marls (Fig. 5), Meads Marls
1–6 of Mortimore (1986). The overlying marly chalks
of the Holywell Member (Mortimore, 1986) contain
a succession of marl seam marker beds, including
Holywell Marls 1–7 at the base. This marker-bed
stratigraphy provides a basis for detailed comparison
of the study sections (Figs 3, 6).

Some remarkable similarities exist between the
faunal changes accompanying the Cenomanian/
Turonian Boundary Event and those associated with
Mid-Cenomanian Event I, including the temporary
appearance of the bivalves Lyropecten (Aequipecten)

arlesiensis and Oxytoma seminudum with belemnites
(Praeactinocamax plenus (Blainville)) (Datum 17) in
Plenus Marl beds 3–6 (couplets E4–E6). Characteristic
brachiopod ‘pulse’ faunas also occur in the sequence:
Orbirhynchia multicostata Pettit in the top of Bed 1a
and Bed 1b (couplet E3), and O. wiesti (Quenstedt)
(Datum 18) in Bed 7 (couplet E6). Major faunal
turnover occurred in most biotic groups through the
Cenomanian/Turonian Boundary Event (e.g. Jarvis
et al. 1988a; Paul et al. 1994a, 1999; Gale et al. 2000,
2005; Keller et al. 2001).

The most detailed isotope record of the Ceno-
manian/Turonian Boundary Event is that from East-
bourne Gun Gardens (Fig. 6; Paul et al. 1999, fig. 4),
based on sampling a 24 m section spanning the
Cenomanian/Turonian boundary at 5–10 cm intervals.
Carbon-isotope values rise by + 2.0 ‰ δ

13C, from
2.8 ‰ at the base of Plenus Marl Bed 1 to a maximum
of 4.8 ‰ towards the top of Bed 3, and then decline
again to a trough of 4.1 ‰ in the middle of Bed 4. This
part of the curve constitutes the lowest of three main
peaks (Figs 3, 6, ‘a’) forming the excursion. Values
increase to a second maximum of 5.4 ‰ δ

13C at the
top of Bed 8 (peak ‘b’; representing a + 2.6 ‰ δ

13C
increase from the base of the excursion), decline to a
plateau of 4.7 ‰ in the Ballard Cliff Member, and peak
again to 5.1 ‰ around Meads Marl 6 (peak ‘c’).

The base of the Turonian is marked by the coincident
appearance of Watinoceras and Mytiloides puebloensis

(Datum 19) immediately above Meads Marl 4 (Gale
et al. 2005). Carbon-isotope values fall back to more
constant levels of around 3.8 ‰ above Roveacrinus
Bed 1 (containing abundant microcrinoids, Roveac-

rinus communis Douglas, Datum 20; couplet E23) and
Holywell Marl 3 (top of the excursion of Paul et al.

1999). However, values continue to decline above this

at Culver and Dover, and only plateau within the upper
beds of the Lower Turonian Mammites nodosoides

Zone.
The carbon-isotope profile at Dover (Lamolda,

Gorostidi & Paul, 1994) is very similar to Eastbourne,
but with δ

13C values shifted by around − 0.4 ‰. The
three peaks of the Cenomanian/Turonian Boundary
Event excursion are clearly expressed (Fig. 6). How-
ever, at Dover the maximum defining peak ‘a’ occurs
in Bed 2 and the trough is developed in Bed 3. This
difference cannot be attributed to analytical or sampling
error since the same positions of the peaks are evident
in other published profiles for Eastbourne (Gale et al.

1993; Keller et al. 2001; Tsikos et al. 2004) and
Dover (Jarvis et al. 1988a; Jeans et al. 1991). The
low-resolution Culver profile (Jarvis, Murphy & Gale,
2001), by contrast, shows a Bed 2/3 peak and Bed 4
trough, like Eastbourne (Fig. 3).

The above differences may be due to the fact that the
Eastbourne succession is more complete. For example,
the last appearance of the key foraminifera index
species Rotalipora cushmani occurs in the middle of
Bed 4 at Eastbourne (Fig. 6), but at the base of the
bed at Dover. This suggests that only sediment of
upper Bed 4 age is represented at Dover, so the low
δ

13C interval that characterizes the lower part of the
bed at Eastbourne is absent at Dover. The different
positions of the peak ‘a’ maximum with respect to
Beds 2 and 3 may be due to the middle part of
Bed 3 at Eastbourne being unrepresented at Dover.
Alternative explanations would be that the first peak of
the excursion occurred earlier in Kent than in Sussex
and the Isle of Wight, the facies change from marl (Beds
2 and 4) to chalk (Beds 3 and 5) is diachronous, or that
local diagenetic factors have affected the Dover profile.
The first two alternatives are judged to be unlikely,
but diagenetic factors may have some influence, as
indicated by the generally lower δ

13C values at Dover.
Much lower δ

18O values characterize Bed 3 at Dover
than at Eastbourne (Lamolda, Gorostidi & Paul, 1994),
despite similar values through most of the section; these
low δ

18O values suggest selective alteration of Bed 3 at
Dover.

By contrast to peak ‘a’, the peak ‘b’ maximum
occurs everywhere in Bed 8 (Fig. 6), and is coin-
cident with a marked faunal turnover: Heterohelix

increases from 20 % to > 60 % of the planktonic
foraminifera assemblage (Heterohelix shift in Fig. 6)
above this level, and through the higher beds of the
Cenomanian/Turonian Boundary Event (Keller et al.

2001). The peak ‘c’ maximum at Meads Marl 6 also
appears to be consistent at Dover, Eastbourne and
Culver.

A lower resolution δ
13C curve obtained from organic

matter at Eastbourne (δ13Corg) has recently been
published (Gale et al. 2005) that broadly follows the
carbonate (δ13Ccarb) curve (Fig. 6), and a similar δ

13Corg

curve for the Plenus Marl was presented by Tsikos
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Figure 6. Correlation of the Cenomanian/Turonian Boundary δ
13C event between England and the GSSP at Pueblo, Colorado, USA.

The positions of stage, ammonite and planktonic foraminiferal zone boundaries, key fossil-occurrence datum levels, and key marker

beds are shown for comparison. The most detailed isotope record is available for carbonate (δ13Ccarb) analysed in bulk sediments

collected from Gun Gardens at Eastbourne, East Sussex (Paul et al. 1999). The Eastbourne δ
13C profile (thick black line, far left)

shows three carbon-isotope peaks (dark grey shaded horizons) within the overall positive excursion (pale grey shaded interval):

(a) near the base, within Plenus Marls Beds 2–3 of Jefferies (1962, 1963); (b) in the middle, spanning the Plenus Marl/Ballard Cliff

Member boundary (cf. Gale, 1996); and (c) at the top of the excursion, around Meads Marls 5–6 (MM5, MM6) of Mortimore (1986).

Peaks are developed in similar positions on a lower resolution carbon-isotope profile (dark grey curve) obtained from organic matter

(δ13Corg) isolated from the sediments (Gale et al. 2005), although peak maxima appear to be offset slightly below those of δ
13Ccarb.

The succession at Dover (Jarvis et al. 1988b) can be correlated at a bed scale to Eastbourne, and a detailed δ
13Ccarb profile (Lamolda,

Gorostidi & Paul, 1994) shows strong similarities to the Eastbourne curve. The three carbon-isotope maxima defined in England can

be correlated with the GSSP at Pueblo. The three peaks are well developed in the δ
13Corg profile (dark grey curve) of Pratt & Threlkeld

(1984). A δ
13Ccarb profile (black curve) derived from the analysis of small planktonic foraminifera (Hedbergella planispira) separated

from the section (Keller et al. 2004) shows broadly similar trends, despite the lower amplitude of δ
13C variation. Note, however, the

similarity in the absolute δ
13Ccarb and δ

13Corg values obtained from bulk sediments from all three sections. The isotope correlation

between England and North America can be tested using last and first appearance datum levels (LAD, FAD) and floods of key fossil

taxa in the reference sections. The relative positions of ammonite, inoceramid bivalve and planktonic foraminifera datum levels in the

sections are consistent with the isotope correlation (Jarvis et al. 1988b; Gale et al. 1993, 2005; Paul et al. 1999; Keller et al. 2001,

2004).

et al. (2004, fig. 2). There is evidence from both
curves that a small offset (< 10 kyr based on couplet
cyclostratigraphy) exists towards earlier maxima in
δ

13Corg, and that δ
13Corg minima occur at δ

13Ccarb

plateaux that precede the rises defining peaks ‘a–c’.
These differences may be significant and indicate
variable fractionation between organic and inorganic
carbon during the Cenomanian/Turonian Boundary
Event. A comparison with δ

13Corg and δ
13Ccarb profiles

for the Pueblo GSSP (Pratt & Threlkeld, 1984; Keller
et al. 2004; Gale et al. 2005; Sageman, Myers &

Arthur, 2006) demonstrates that peaks ‘a–c’ can be
recognized in North America (Fig. 6), and that they are
isochronous with England within the resolution of the
biostratigraphy.

The Cenomanian/Turonian Boundary Event at
Trunch and Speeton is registered in highly attenuated
successions. A single peak of 3.6 ‰ δ

13C at 499.75 m
in the Trunch borehole (Fig. 3) suggests that only
sediments from the final stages of the event are
preserved. The low δ

13C value of 3.2 ‰ in the planar
hardground at 500.10 m, below, indicates that this bed
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is also probably Lower Turonian (or possibly lowest
Metoicoceras geslinianum Zone), and certainly not
Upper Cenomanian Neocardioceras juddii Zone, as
suggested by Wood, Morter & Gallois (1994).

At Speeton, erratic but elevated δ
13C (up to 3.8 ‰)

values are associated with the Black Band succession
(Fig. 3), representing a positive excursion of + 0.8 ‰.
The Black Band, a thin ∼ 10 cm bed of dark organic-
rich marl containing up to 10 % organic carbon (Jeans
et al. 1991) can be traced throughout northern England
into the North Sea, and is probably equivalent to the
basal Turonian black shales overlying the ‘Plenus Lime-
stone’ in northern Germany (Wood & Ernst, 1998). At
South Ferriby, Humberside, the Black Band and the
immediately underlying white chalks display a clear
positive carbon excursion of up to 4.3 ‰ (Schlanger
et al. 1987), with maximum values occurring below
the organic-rich interval. Biostratigraphic evidence
(Hart & Leary, 1991; Wood & Mortimore, 1995) sug-
gests that the Black Band correlates with the Ballard
Cliff Member in southern England, and beds equivalent
to most of the Plenus Marl are generally thin or
absent in northern England, a conclusion supported
by the moderate maximum δ

13C values observed at
Speeton and South Ferriby. Three peaks in the profile
at Speeton (Fig. 3) are separated by very low δ

13C
values of <3 ‰. Such anomalously low values can be
attributed to overprinting by isotopically light cements
precipitated during diagenesis of the organic-rich
intervals.

3.b. Turonian

Turonian (93.5–89.3 Ma) sediments display less prom-
inent cyclicity than those of Cenomanian age, due to
the continued upwards decrease in clay content that
characterizes the European Chalk. Marl–chalk couplets
continue to be developed (Figs 5, 7), but marls are
thinner, contain less clay and commonly display a
distinct ‘flaser’ or ‘griotte’ texture. Couplets also tend
to be thicker, typically around 0.5–1 m, and where
more attenuated are nodular and contain abundant shell
debris. Local, decimetre-deep, metre-scale scours filled
with chalk pebble intraclasts and calcarenitic sediments
commonly cut out parts of the succession, particularly
in the Lower Turonian. Nodular flints become abundant
in the upper beds, where thalassinoid burrow flints are
the most prominent indicators of bedding cyclicity.
Strongly cemented and mineralized hardgrounds are
features of many Upper Turonian sections.

Considerable lateral variation in thickness and
lithology characterizes the Turonian successions of
England (Fig. 7), making cyclostratigraphic correlation
considerably more difficult than in the Cenomanian.
Nonetheless, a couplet stratigraphy has been success-
fully developed for the Lower and Middle Turonian
(Gale, 1996). In southern England, sediments above
the Ballard Cliff Chalk are divided into three members

(Fig. 7). These are, from base to summit: nodular
intraclastic chalks containing abundant inoceramid
debris (including common Mytiloides shell beds) of
the Holywell Member (Mortimore, 1983, 1986; Gale,
1996); soft marly chalks of the New Pit Member
(Mortimore, 1986; Gale, 1996); and nodular flaser
chalks of the St Margaret’s Member (Dowker, 1870;
Robinson, 1986), which contains abundant flints in
the upper part. Locally, a highly condensed succession
comprising a complex of strongly cemented and
mineralized hardgrounds is developed as the lateral
equivalent of the upper New Pit and St Margaret’s
Chalks. This Chalk Rock Member (Bromley &
Gale, 1982) is a distinctive but complex and highly
diachronous unit (Gale, 1996). The member is strongly
developed in Berkshire and is well displayed in the
Banterwick Barn borehole (Fig. 7).

In northern England the lithological succession is
very different, and marly, massively bedded chalks with
abundant nodular flints typify the Lower and Middle
Turonian: the Welton Chalk Formation of Wood &
Smith (1978). The base of the Welton Chalk is
taken at the erosion surface below the Black Band.
The appearance of large tabular flints and a general
change to more flinty sediments defines the base of
the Burnham Chalk (Wood & Smith, 1978) above,
approximating to the base of the Sternotaxis plana

Zone. Trunch lies at the southern limit of northern
England-type successions (Fig. 1), but shows stronger
lithological similarities (Fig. 7) to successions in North
Yorkshire, Humberside and Lincolnshire than those in
southern England.

Gale (1996, fig. 8) plotted the Turonian carbon-
isotope data of Jenkyns, Gale & Corfield (1994) from
Dover against a skeleton stratigraphy and named two
positive carbon-isotope excursions: the ‘Pewsey Event’
in the Middle Turonian uppermost Collignoniceras

woollgari Zone, and the ‘Hitch Wood Event’ in
the Upper Turonian upper Subprionocyclus neptuni

Zone. These and a number of other carbon-isotope
events have subsequently been widely recognized and
correlated to sections throughout northern Germany
and in northern Spain (Voigt & Hilbrecht, 1997; Wiese,
1999; Wiese & Kaplan, 2001). These sections include
Lengerich in the Münster Basin of NW Germany,
a candidate GSSP for the Middle/Upper Turonian
boundary (Wiese & Kaplan, 2001), and Salzgitter-
Salder in Lower Saxony, which has been proposed as a
Turonian/Coniacian boundary GSSP (Wood, Ernst &
Rasemann, 1984; Kauffman, Kennedy & Wood,
1996).

Detailed correlation of the Banterwick, Culver,
Dover and Trunch successions (Fig. 7), supplemented
by data from Germany and Spain, enables ten new
named events to be defined, in addition to the Pewsey
and Hitch Wood events. Fourteen other events (c1–i3

in Fig. 7) are recognized in some sections and provide
ancillary correlation points.
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3.b.1. Holywell Event

A small positive δ
13C excursion of + 0.2 ‰ occurring

above Holywell Marl 4 at Culver and Eastbourne
(couplet E25) is superimposed on the general trend of
falling carbon-isotope values above the Cenomanian/
Turonian Boundary Event (Figs 6, 7). A similar peak
occurs at the same stratigraphic position between
macrofossil Datum levels 20 and 21 at Dover. This
Holywell Isotope Event (new name), which is also
recognizable at Banterwick (Fig. 7), provides a useful
correlation point within the basal Turonian.

3.b.2. Lulworth Event

The basal marker of the New Pit Chalk is the Lulworth
Marl (Gale, 1996), which is overlain by Roveacrinus
Bed 2 (together constituting couplet F1). A significant

inflection point occurs at this level in the carbon-
isotope curves, with a change from falling δ

13C values
to rising values above. The δ

13C minimum occurs
within Roveacrinus Bed 2 (Datum 23, uppermost
Lower Turonian Mammites nodosoides Zone) at Culver,
and is apparently slightly lower (couplet E52) in the
more attenuated nodular chalks at Dover, although
this difference may be due to a combination of low-
resolution sampling and analytical error. The δ

13C
minimum and associated − 0.2 ‰ negative excursion,
with values of around 3 ‰, defines the Lulworth
Isotope Event (new name). The event lies in the
uppermost Lower Turonian, the base of the Middle
Turonian being placed 2 m above the Lulworth Marl at
Culver, at the first occurrence of C. woollgari (Mantell)
in couplet F3. An identical inflection point is seen in the
Lower Turonian profile at Söhlde in northern Germany
(Voigt & Hilbrecht, 1997).
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Figure 7. Correlation of English Turonian δ
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Between the Holywell Event, with δ
13C values

approaching 4 ‰, and the Lulworth Event, where
values fall to 3 ‰, isotope profiles in all four study
sections are characterized by two small δ

13C peaks
superimposed on the general long-term falling trend.
These + 0.1 to + 0.2 ‰ peaks (c1 and c2 in Fig. 7)
occur in couplet E37 (a short distance below Datum
22) and couplet E44 of the expanded succession at
Culver, and lie within sampling error of these positions
at Dover.

3.b.3. Round Down Event

Carbon-isotope values above the level that records
the Lulworth Event rise very gradually towards a

low Middle Turonian maximum (typically around
3.1 ‰ δ

13C) in the lower C. woollgari Zone, below the
Round Down Marl (Fig. 7) of Robinson (1986; base of
couplet F20). This marl is a distinctive marker that can
be traced from Kent into Dorset and Wiltshire, and is
overlain by several levels containing abundant small
fragmentary Inoceramus cuvieri (J. Sowerby). The
underlying carbon-isotope maximum is here termed
the Round Down Isotope Event.

Within the succession between the levels of the
Lulworth and Round Down events, two small (+ 0.1
to + 0.2 ‰) weakly developed δ

13C peaks (d1, d2)
occur that may be significant, but inadequate sampling
resolution and the irregular nature of the profiles makes
it impossible to resolve their positions with respect to
the cyclostratigraphy.



578 I . JARVIS AND OTHERS

Table 2. Key bentonite marker beds used to constrain the
carbon-isotope chemostratigraphy

Bentonite Marl marker bed equivalence

Coniacian
B6 unknown, East Cliff Marl 2 (Shoreham Marl 2),

Little Weighton Marl 2
Turonian

B5 TF tuff, Lewes Marl, Ulceby Marl
B4 TE tuff, Bridgewick Marl 1, North Ormsby Marl
B3 TD1 tuff, Caburn Marl, Deepdale Lower Marl
B2 TC2 tuff, Southerham Marl 1, Melton Ross Marl
B1 TC tuff, Glynde Marl 1, Barton Marl 1

Marl equivalence after Wray (1999). Marker beds named are from
northern Germany, southern England, and northern England,
respectively.

3.b.4. Low-woollgari Event

A further significant break point in the carbon-isotope
profiles occurs in the Middle Turonian low-C. woollgari

Zone, mid-way between the Round Down Marl and
New Pit Marls at Dover, with a change from gradually
to more steeply falling δ

13C values. This inflection
point is here called the Low-woollgari Isotope Event,
and provides a valuable correlation line between
Banterwick, Culver and Dover (Fig. 7). A minor
carbon-isotope peak in the underlying succession (e1)
also occurs at Banterwick and Culver, a short distance
below Datum 24 (Table 1) at the latter locality.

The condensed nature of the Lower Turonian at the
Trunch and inadequate sampling mean that the Round
Down and Low-woollgari events cannot be clearly
differentiated in the borehole succession; only a single
inflection point is seen in the carbon-isotope profile.
This point is correlated with the Round Down Event
in Figure 7, based on the overall shape of the isotope
curve, which defines a clear δ

13C maximum at this
level.

3.b.5. Glynde Event

A δ
13C minimum of 1.9 ‰ occurs above Glynde Marl 3

at Dover. This Glynde Isotope Event (new name)
marks a prominent inflection point on the long-
term isotope profile from falling to rising values. A
similar isotope trend (but with higher absolute values)
occurs at the level of the Barton Marls at Trunch
(Fig. 7), confirming the lateral equivalence of these
deposits to the Glynde Marls of southern England. The
geochemical signatures of Barton Marl 1 and Glynde
Marl 1, and the stratigraphically equivalent TC tuff
of northern Germany (Wray, 1999), indicate that they
represent the first in a series of Turonian–Coniacian
bentonites (B1 in Fig. 7, Table 2) that provide a
framework for international correlation in NW Europe.

The Glynde Marls and their isotope event are cut out
by an erosion surface associated with the Ogbourne
Hardground at Culver (Fig. 7), and only the basal
marl remains at Banterwick, below the Fognam Farm
Hardground of the Chalk Rock. A minor δ

13C peak (f1)

occurs between the New Pit and Glynde marls at Dover
and Banterwick, the maximum occurring immediately
above Datum 25 at Dover. This isotopic feature is also
present at Trunch, but has been cut out by an erosion
surface at Culver.

3.b.6. ‘Pewsey’ Event

The + 0.4 ‰ positive δ
13C excursion with a maximum

value of 2.3 ‰ occurring at the summit of the Middle
Turonian C. woollgari Zone at Dover (Fig. 7) was
termed the ‘Pewsey Event’ by Gale (1996), who
suggested that this correlates with the phosphatized
Pewsey Hardground in the Chalk Rock. The ‘Pewsey’
Isotope Event is a valuable marker that has been cor-
related with intervals in Germany and Spain (Fig. 8),
where it has been referred to as ‘Peak -4’ (Wiese, 1999;
Wiese & Kaplan, 2001).

At Culver, where the ‘Southern Chalk Rock’ (SCR;
incorporating the Ogbourne and Pewsey Hardgrounds,
Fig. 7) is well developed, the Pewsey Hardground
is associated with a low δ

13C value of 1.9 ‰, and
a similar value of 2.0 ‰ occurs in the underlying
Ogbourne Hardground. Correlation with Dover (Fig. 7)
shows that sediments characteristic of the ‘Pewsey’
positive carbon-isotope event are absent at Culver,
having been cut out by an erosion surface associated
with the development of the Ogbourne Hardground
(see also Gale, 1996). High δ

13C values do not occur at
the Pewsey Hardground, but the term ‘Pewsey’ Event
is retained for the positive isotope excursion to ensure
consistency with previous work. The isotope event is
also unrepresented at Banterwick, presumably due to
erosion associated with the formation of the Chalk
Rock, but is clearly seen above the Barton Marls at
Trunch.

3.b.7. Lower and Upper Southerham events

Carbon-isotope values fall sharply immediately above
the level of the ‘Pewsey’ Event at Dover and Trunch
(Fig. 7), and form a relative plateau through the lower
Upper Turonian S. neptuni Zone. Three small positive
carbon-isotope excursions of + 0.1 to + 0.2 ‰ occur
within the plateau region: one 1 m above and one 2 m
below the Southerham Marls, and a third at the level
of the Caburn Flints. The first two of these are called
the Lower and Upper Southerham Isotope events (new
names). Macrofossil Datum 26 occurs immediately
above the level of the Lower Southerham Isotope Event
at Dover (Fig. 7).

The individual Southerham events cannot be re-
solved at Culver (Fig. 7) due to inadequate sampling
resolution and the relatively condensed nature of this
part of the succession, and the entire sediment package
is either absent or only partly represented in the
highly condensed Chalk Rock at Banterwick. The
Melton Ross Marl of northern England is equivalent
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Figure 8. Correlation of Upper Turonian δ
13C events between England, Germany and Spain. Salzgitter-Salder in northern Germany

is a candidate GSSP for the Turonian/Coniacian boundary (Kauffman, Kennedy & Wood, 1996). The positions of stage, macrofossil

zonal boundaries, key fossil-occurrence datum levels, and key marker beds are shown for comparison. Numbers in parentheses after

Didymotis events 1–3 at Salzgitter-Salder are the original designations of Wiese (1999). Isotope data sources: Salzgitter-Salder – Voigt &

Hilbrecht (1997); Liencres Wiese (1999); Trunch – this study; Dover – Jenkyns, Gale & Corfield (1994). Stratigraphic data sources:

Salzgitter-Salder – Ernst, Schmid & Siebertz (1983), Wood, Ernst & Rasemann (1984), Wiese & Kröger (1998); Liencres – Wiese
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Inoceramus striatoconcentricus–Mytiloides labiatoidiformis; Sn – Subprionocyclus neptuni.

to the Southerham Marl 1 in the southern province
(Wray, 1999), the two marls equating to Bentonite
B2 (Table 2). The isotope profile at Trunch (Fig. 7)
is more consistent with the ‘Riby Marl’ identified
in the borehole representing this level, although it
is acknowledged that the sampling resolution is not
high.

Despite patchy development in England caused by
regional erosion surfaces, the Southerham events are
prominent features of isotope profiles from Germany
and Spain (Fig. 8), correlating with Turonian carbon-
isotope ‘Peak -3’ and ‘Peak -2’ (Wiese, 1999, fig. 4;
Wiese & Kaplan, 2001, fig. 6).

3.b.8. Caburn Event

The third δ
13C peak in the mid-Turonian plateau inter-

val at Dover occurs between the Caburn Flints, 2 m be-
low the Caburn Marl. The Caburn Marl is equivalent to
the Deepdale Lower Marl of northern England and the
TD1 Tuff of northern Germany, representing Bentonite
B3 (Figs 7, 8, Table 2; Wray et al. 1996; Wray, 1999).

The isotope peak, here called the Caburn Event, is well
developed at Culver and Trunch (Fig. 7); it correlates
to ‘Peak -1’ in Spain and Germany (Fig. 8).

3.b.9. Bridgewick Event

One of the most prominent features of Turonian
carbon-isotope curves (Figs 7, 8) is the δ

13C minimum
occurring low in the Upper Turonian S. neptuni Zone,
which marks the end of the plateau interval, and a
change to rising δ

13C values above. This minimum,
which defines the Bridgewick Isotope Event (new
name), has a value of 1.5 ‰ at Dover and occurs
immediately below the Bantam Hole Hardgrounds
constituting the bottom of the ‘Dover Chalk Rock’,
and < 1 m below the Bridgewick Flint and Bridgewick
Marls. At Culver, an identical 1.5 ‰ δ

13C minimum
occurs in the beds containing abundant cyclostome
bryozoans, Bicavea rotaformis Gregory, below the
Bridgewick Marl. Macrofossil Datum 27 occurs
between Bridgewick Marls 1 and 2 at Dover. The
equivalent interval at Trunch lies between the Deepdale
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and Ravendale flints, but with a higher δ
13C value of

2.0 ‰. The lowest δ
13C value at Banterwick, 1.0 ‰ in

the middle of the Chalk Rock, occurs at the surface of
the Fognam Farm Hardground.

The Bridgewick Event is equivalent to ‘Datum 0’
(Fig. 8), the key level used for δ

13C correlation of the
Middle–Upper Turonian in Germany and Spain (Wiese,
1999, fig. 4; Wiese & Kaplan, 2001, fig. 6), where
minima of around 2.0 ‰ are also typical of pelagic
sections, although values of < 1 ‰ are recorded from
hemipelagic sediments in Spain. An equivalent level at
Gubbio, Italy, displays δ

13C values that are identical to
those in southern England (Stoll & Schrag, 2000; see
Section 4.a)

3.b.10. Hitch Wood Event

A positive carbon-isotope excursion with values of
2.1 ‰ in the upper S. neptuni Zone at Dover was called
the Hitch Wood Event by Gale (1996), who correlated
it with the phosphatized Hitch Wood Hardground of
the Chalk Rock. The δ

13C maximum (Fig. 7) occurs in
the middle of Lighthouse Down Hardground complex
(Robinson, 1986) that forms the top of the ‘Dover Chalk
Rock’, at the level of the lower Lewes Flints.

In the more expanded sections at Culver and Trunch
(Fig. 7) the Hitch Wood Event is seen to lie at
the summit of a much broader long-term δ

13C peak
that spans the entire S. plana Zone. At Culver, a
2.5 ‰ maximum occurs in flinty white chalks, mid-way
between the Bridgewick and Lewes marls. At Trunch, a
2.7 ‰ peak occurs between two hardground complexes
at 450–453 m, referred to as the ‘East Anglia Chalk
Rock’ by Wood, Morter & Gallois (1994). The Hitch
Wood Hardground is well developed at Banterwick
(Fig. 7). Here, δ

13C values rise steadily from 1.0 ‰ at
the surface of the Fognam Farm Hardground to a peak
of 1.8 ‰ in the glauconitic chalks above the Hitch
Wood Hardground, falling back to 1.5 ‰ in the Top
Rock hardground, above. The δ

13C maximum thus post-
dates the Hitch Wood Hardground.

The Hitch Wood Isotope Event is the most prominent
Turonian positive δ

13C excursion. Although only
characterized by a modest short-term excursion of
+ 0.2 ‰ δ

13C (Fig. 7), it also represents both the
maximum and the inflection point on a larger long-
term Upper Turonian peak of up to 1.0 ‰ that rises
from the minimum of the Bridgewick Event below, and
falls to the minimum of the Navigation Event above.

Four small positive δ
13C excursions of around

+ 0.2 ‰ occur between the Bridgewick and Hitch
Wood events which are most clearly developed in the
most expanded Trunch section (h1–h4), but h2 and
h4 can also be recognized at Culver and Dover. Event
h1 occurs at the level of the Ravensdale Flint at Trunch
(Fig. 7); this event probably correlates with an unnamed
low Upper Turonian peak in profiles from Germany
and Spain (Fig. 8). Event h2 represents a small peak

occurring below Bridgewick Marl 1 and Datum 27 at
Culver and Dover, and is situated in nodular chalks
2 m below the North Ormsby Marl at Trunch. Peak h3

occurs in nodular chalks above the North Ormsby Marl
at Trunch, and h4 occurs 4 m higher. The h4 maximum
is situated 1 m above Bridgewick Marl 2 at Dover
and 2 m above the Bridgewick Marl at Culver. The
h3 and h4 events are well represented in profiles from
Germany and Spain, and the isotope correlation (Fig. 8)
is consistent with equivalence between the North
Ormsby Marl, Bridgewick Marl 1 and the TE Tuff in
Germany (Table 2), which represent bentonite B4.

The δ
13C peak and inflection point defining the

Hitch Wood Event are very well developed in Germany
and Spain (Voigt & Hilbrecht, 1997; Wiese, 1999,
fig. 4; Wiese & Kaplan, 2001, fig. 6). This event
corresponds to the upper part of ‘Peak + 1’ (Fig. 8),
a broad maximum which at most localities has a doublet
structure, the lower peak of which corresponds to
our event h4. The Hitch Wood Event is also clearly
distinguishable in Turonian carbon-isotope profiles
from Italy (Jenkyns, Gale & Corfield, 1994; Stoll &
Schrag, 2000).

3.b.11. Navigation Event: the Turonian/Coniacian boundary

The uppermost Turonian is marked by the disappear-
ance of common Mytiloides group inoceramids, closely
followed by the first occurrence of Cremnoceramus

(Walaszczyk & Wood, 1998; Walaszczyk & Cobban,
2000). The base of the Coniacian stage is currently
defined (Kauffman, Kennedy & Wood, 1996) by the
first occurrence of Cremnoceramus deformis erectus

(Meek) (previously referred to its junior synonym,

C. rotundatus (sensu Tröger non Fiege)). This datum
level lies slightly below the first occurrence of
the ammonite Forresteria (Harleites) petrocoriensis

(Coquand), the previously favoured basal Coniacian
index (Birkelund et al. 1984; Kennedy, 1984a, b).

At Dover and on the Isle of Wight, the change
in the inoceramid fauna occurs at the Navigation
Hardgrounds (‘Dover Top Rock’ of Stokes 1975, 1977),
with the disappearance of a Mytiloides-dominated
assemblage immediately below, and the appearance
of Cremnoceramus (including C. waltersdorfensis

hannovrensis Collom, Datum 30) within the Navigation
Marls (Fig. 7), immediately above the hardground
complex. A sole record of the Turonian/Coniacian
boundary marker inoceramid Didymotis (Lee in

Mortimore, 1997) also originates from within this
hardground complex at Dover, and a fragment of F.(H.)

petrocoriensis was recorded from within Navigation
Hardground 3 by Gale & Woodroof (1981). Definitive
C. deformis erectus (Datum 31) first occur above the
Navigation Marls in the Cliffe Hardground at Downley,
West Sussex (Wood et al. 2004), so the base of the
Coniacian is now placed (Fig. 7) at the base of the
cemented chalk forming this hardground.
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The Turonian/Coniacian boundary interval is char-
acterized by a prominent δ

13C minimum at the
end of a long-term fall within the Upper Turonian
S. neptuni Zone, above the Hitch Wood Event (Figs 7,
8). At both Dover and Culver, a small + 0.2 ‰ positive
δ

13C excursion, with values around 2 ‰, peaks in the
uppermost Turonian Navigation Hardground complex,
and is followed by a sharp fall of around − 0.4 ‰ to a
minimum of 1.6 ‰. The δ

13C minimum is here termed
the Navigation Isotope Event. At Dover, the minimum
spans Navigation Hardground 3, the Navigation Marls
and the Cliffe Hardground, 2 m above. The base of the
Coniacian thus falls towards the top of the negative
δ

13C excursion. At Culver, however, the fall in δ
13C

values occurs at ‘Navigation Hardground 2’, indicating
some diachroneity in hardground development between
Dover and Culver. A similar lateral variation in hard-
ground development at this level is seen locally in the
Dover area between Langdon Stairs and St Margaret’s
Bay.

At Trunch, only a single hardground is developed
and the isotope step is less well expressed, with a
peak of 2.2 ‰ situated around 1 m lower than a mini-
mum of 2.0 ‰ spanning the Navigation Hardground
and overlying Cremnoceramus–Didymotis marls to
Kiplingcote Marl 3 (Fig. 7). The isotope strati-
graphy confirms the equivalence of the Navigation
Hardgrounds and Navigation Marls with these beds
(Wood, 1992; Mortimore, Wood & Gallois, 2001).
The δ

13C minimum (1.5 ‰) occurs in the ‘Top Rock’
hardground at Banterwick.

Three small δ
13C excursions (i1–i3) of + 0.1 to

+ 0.2 ‰ are developed in the interval between the
Hitch Wood and Navigation events in the expanded
Trunch section. These are less well defined in the
thinner successions at Dover and Culver, although
the most prominent peak (i2) is correlated with small
peaks occurring above the Lewes Marl and Datum 29
at Culver and in the Ulceby Oyster Bed above the
Ulceby Marl at Trunch (Fig. 7). These marls represent
bentonite B5 (Table 2) and are the lateral equivalent
of German Tuff TF (Fig. 8). The bentonite is absent
at Dover and Banterwick, being represent by hiatuses
at the surfaces of Lighthouse Down Hardground 5 at
Dover and the Hitch Wood Hardground at Banterwick
(cf. Gale, 1996, fig. 7).

The δ
13C minimum defining the Navigation Event is

well developed at Salzgitter-Salder, northern Germany
(Fig. 8). Here, the minimum also occurs in the
uppermost Turonian (Wiese, 1999, fig. 4; Wiese &
Kaplan, 2001, fig. 6), based on the first appearance
of C. deformis erectus (Datum 31), in flood abundance,
a short distance above Didymotis event 3 (=Didymotis

Event II of Wiese, 1999; Wood et al. 2004). An identical
isotope minimum in the profile at Liencres (Fig. 8),
northern Spain, has previously been assigned to the
Lower Coniacian (Wiese, 1997), with the base of the
Coniacian being placed at Didymotis event 2 in that

section. However, C. deformis erectus is absent in
material collected from Liencres (Wiese, 1999), and the
isotope correlation (Fig. 8) places the stage boundary
significantly higher.

Events i1–i3 can be correlated with isotope profiles
from Germany and Spain (Fig. 8): peak i1 broadly
corresponds to Peak + 2 and i3 to Peak + 3, although
none of these are developed as simple peaks and the
correlation remains equivocal. Three acme occurrences
of Didymotis cf. costatus Fritsch provide poten-
tial correlation points between Salzgitter–Salder and
Liencres that support the carbon-isotope correlation
(Fig. 8), although interpretation of these events remains
controversial (Wiese, 1999).

3.c. Coniacian

The Coniacian (89.3–85.8 Ma) in southern England
typically comprises soft fine white chalks with incon-
spicuous omission surfaces and numerous horizons of
nodular flints (Fig. 9). Nodular chalks and hardgrounds
occur everywhere in the Lower Coniacian (top St
Margaret’s Chalk), but nodularity decreases upwards
and is uncommon above East Cliff Marl 2. The disap-
pearance of nodular chalks, which marks the base of
the Broadstairs Chalk (Whitaker, 1865a; Whitaker,
Bristow & Hughes, 1872; Robinson, 1986), is dia-
chronous (Fig. 9), occurring earlier in basinal sections
like Culver, than in more marginal areas, like Dover.
Nodularity is less developed in northern England. Here,
the flinty Burnham Chalk continues up to the middle
Coniacian where common marls appear, marking the
base of the Flamborough Chalk Formation (Wood &
Smith, 1978). The succession at Trunch (Fig. 9)
displays a transitional facies with nodularity in the
lower Coniacian and only weakly developed marls.

The first occurrence of the inoceramid genus
Volviceramus, specifically V. koeneni (G. Müller), is
used to define the base of the Middle Coniacian
(Kauffman, Kennedy & Wood, 1996). Volviceramus

koeneni first appears immediately above East Cliff Marl
2 (Fig. 9), coincident with the base of the Micraster

coranguinum Zone, and an acme occurs in the overlying
beds (Datum 34). Above this, the inoceramid fauna
is abundant, and dominated by V. cf. involutus (J.
de C. Sowerby) and Platyceramus (Datum 35) up to
a few metres above the East Cliff Semitabular Flint
(Fig. 9).

The base of the Upper Coniacian is defined
(Kauffman, Kennedy & Wood, 1996) by the first oc-
currence of Megadiceramus subquadratus (Schlüter).
Megadiceramus is rarely found in chalk facies and
M. subquadratus is unrecorded from the study sections.
However, Volviceramus disappears in the middle
Kingsdown Beds (Fig. 9) of Kent. The genus last
occurs in the lowest Upper Coniacian, suggesting that
the base of the Upper Coniacian lies within the lower
Kingsdown Beds.
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Figure 9. For legend see facing page.

There has been little previous work on the carbon-
isotope stratigraphy of the Coniacian. The summary
curves of Scholle & Arthur (1980) show no structure
in the Coniacian. Jenkyns, Gale & Corfield (1994)
plotted data for Dover against a skeleton stratigraphy
but did not attempt a detailed stratigraphic analysis.
However, correlation of their data with new results for
Culver and Trunch, plus limited published data from
Banterwick (Murphy, Jarvis & Edmunds, 1997), enable
the recognition of six prominent Coniacian isotope
events, including the negative δ

13C excursion of the
Navigation Event (see Section 3.b.11) at the base. Four
other numbered events (j1–k2) may also be signif-
icant.

3.c.1. Beeding Event

Carbon-isotope values rise sharply everywhere above
the minimum defining the Navigation Event. A positive
δ

13C excursion of + 0.5 ‰ to maximum values
of 2.1 ‰ occurs around the level of the Beeding

Hardground at Dover (Fig. 9). Less prominent peaks
are developed in the thinner successions elsewhere,
probably because of insufficient sampling resolution
or the presence of hiatuses. Isotope values fall back
to around 1.6 ‰ in the nodular chalks above Light
Point Hardgrounds 1–3 at Dover, in the lower Top
Rock at Culver, and in the youngest nodular chalks
at Banterwick.

3.c.2. Light Point Event

A sharp increase in δ
13C values by up to + 0.3 ‰ occurs

immediately above the top of the Lower Coniacian
nodular chalk and hardgrounds at all localities (Fig. 9).
The prominence of the isotope shift may be due partly
to sediment omission associated with the top of the
hardground sequences. However, a small excursion
terminating the positive shift is well developed at
Culver. The sharp increase and subsequent excursion
are here termed the Light Point Isotope Event.
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Figure 9. Correlation of English Coniacian δ
13C curves. See Figure 3 for plotting details; data sources as Figure 7. Abbreviations:

M. cortest. – Micraster cortestudinarium; Co – Coniacian; Sa – Santonian.

3.c.3. East Cliff Event

Carbon-isotope values rise steadily above the Light
Point Event, up to a small trough and large positive step
of + 0.3 ‰ from 2.0 to 2.3 ‰ δ

13C, 1–2 m above East
Cliff Marl 2 (Shoreham Marl 2 of Mortimore, 1986) at
Dover (Fig. 9); this feature occurs immediately above
the level yielding abundant Middle Turonian index
species V. koeneni (Datum 34) and Platyceramus, with
the former being essentially restricted to these beds.
East Cliff Marl 2 has been identified as a bentonite
(Wray, 1999) that correlates to Little Weighton Marl 2
of northern England (bentonite B6, Table 2). The small
δ

13C trough and large positive step defines the East
Cliff Isotope Event (new name). A similar shift occurs
1 m above a marly interval and a bed with V. koeneni at
Trunch (Fig. 9).

The main shift in the more expanded Culver section
occurs 5 m above East Cliff Marl 2, 1 m above the
limonitic Nostrils Hardground (new name derived from
‘The Nostrils’, a pair of caves at the southern end of
Whitecliff; the hardground crops out between these

two caves; Fig. 9). The isotope trend is more erratic
at Banterwick, but a marked shift above a pair of marls
may be an equivalent event.

3.c.4. White Fall Event

The carbon-isotope curve continues to rise above the
East Cliff Event, and displays a + 0.3 ‰ positive
excursion with values of 2.6 ‰ in the lower Middle
Coniacian (Fig. 9), mid-way between the White Fall
and Hope Point marls (Belle Tout Marls 1 and 2 of
Mortimore, 1986) at Dover, within beds containing
Platyceramus and Volviceramus debris. This is the
White Fall Isotope Event (new name). A similar but
broader peak with an identical δ

13C value occurs in
the thicker Culver section, 1–3 m above a marl, at the
base of a thick succession of beds containing very
abundant Platyceramus and Volviceramus involutus

(J. de C. Sowerby). The first appearance of V. cf.
involutus (Datum 35) consistently occurs around the
White Fall Event (Fig. 9).
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A similar + 0.3 ‰ rise but a higher δ
13C maximum

of 2.8 ‰ is developed at Trunch within an interval
containing several marls, and 2 m above a bed
yielding V. cf. involutus. A semitabular flint at 400.0 m
has previously been correlated with the East Cliff
Semitabular (Wood, Morter & Gallois, 1994), which
the isotope correlation places higher, at 391.5 m (Fig. 9;
see below). A broad δ

13C peak towards the top of the
Banterwick core (Fig. 9) probably equates with the
White Fall Event.

3.c.5. Kingsdown Event

Above the White Fall Event at Dover, δ
13C values

continue a long-term rise through the Middle Co-
niacian, reaching a maximum around the Middle/Upper
Coniacian boundary, before beginning a long-term fall
through the Upper Coniacian into the Lower Santonian.
A double peak of + 0.1 ‰ with a δ

13C maximum of
2.5 ‰ occurs around the inflection point on the long-
term isotope curve, in the lower Kingsdown Beds of
Robinson (1986). The peak is situated 5 m above the
East Cliff Semitabular Flint (Seven Sisters Flint of
Mortimore, 1986), a distinctive marker bed containing
abundant Platyceramus and Volviceramus. We term this
δ

13C maximum the Kingsdown Isotope Event (Fig. 9).
A similar maximum occurs 6 m above the East Cliff
Semitabular at Culver, and the same distance above
a semitabular flint associated with V. cf. involutus at
Trunch, correlated here with the East Cliff Semitabular.

The Middle/Upper Coniacian boundary δ
13C max-

imum corresponds to a facies change from chalks
containing abundant macrofossil remains, particularly
inoceramid bivalves, to the relatively unfossiliferous
beds of the Upper Coniacian (‘Barren Beds’ of
Mortimore, Wood & Gallois, 2001). Carbon-isotope
profiles in the Middle Coniacian between the White
Fall and Kingsdown events show considerable structure
on overall flat to rising trends (Fig. 9). Two broad
+ 0.3 ‰ δ

13C peaks are seen in the Culver curve, the
lower (j1) with a maximum above the limonitic Anvil
Hardgrounds 1–3 (Fig. 9; new name derived from ‘The
Anvil’, a local name for White Horse Headland at
Whitecliff, where the hardgrounds are well displayed
on the southern side), and the second (j2) occurring
in a series of paramoudra flint beds. These peaks are
less well defined on the Dover and Trunch profiles but
appear to be represented in the sections.

3.d. Santonian

The Santonian (85.8–83.5 Ma) in southern England
(Figs 10, 11) consists of soft fine white chalks with in-
conspicuous omission surfaces and numerous horizons
of nodular flints in the lower and middle parts (upper
Broadstairs Chalk). In basinal areas like Sussex and
the Isle of Wight, marls become common in the flinty
white chalks of the Upper Santonian (Fig. 11), reflected
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Figure 10. Coniacian/Santonian boundary succession, Culver

Cliff, Isle of Wight. The grass at the base of the photo is the top

of White Horse Headland. The photograph is reoriented from a

succession dipping at around 60◦ to the north. Circled numerals

indicate the bases of Cladoceramus beds 1 (Datum 36, base

Santonian) and 2 (Datum 37). The black bars indicate the extent

of positive δ
13C excursions defining the k1, k2, Michel Dean and

Bedwell Isotope events. The distance between the Michel Dean

and Bedwell Columnar flints is 4 m.

in the passage to the Newhaven Chalk (Mortimore,
1983) at Buckle Marl 1. In Kent, the facies changes
in the Upper Santonian to very soft white chalks with
few flints above the Barrois Sponge Bed (Fig. 11), the
Margate Chalk of Whitaker (1865a; Whitaker, Bristow
& Hughes, 1872). In northern England, the flinty
Flamborough Chalk continues up into the Campanian,
although marls become less common upwards. At
Trunch, the Upper Santonian is characterized by a
reduction in the abundance of both flint and marl
(Fig. 11).

As currently defined (Lamolda & Hancock, 1996),
the base of the Santonian is marked by the first oc-
currence of Cladoceramus undulatoplicatus (Roemer).
This species is an excellent marker that first appears
in the lower Cladoceramus band, associated with the
Michel Dean Flint (Datum 36; Figs 10, 11) throughout
southern England. No substages have been formally
agreed for the Santonian, but the base of the Middle
Santonian is currently placed at the last appearance
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of C. undulatoplicatus, and the base of the Upper
Santonian at the first occurrence of Uintacrinus so-

cialis Grinnell. Cladoceramus undulatoplicatus ranges
several metres above the upper Cladoceramus band, a
second flood of inoceramids at the level of the Bedwell
Columnar Flint (Datum 37; Figs 10, 11). Uintacrinus

socialis first occurs in the lower beds of the Margate
Chalk in Kent, and in the basal Newhaven Chalk in
Sussex and on the Isle of Wight.

As is the case with the Coniacian, there has been
little previous work on the carbon-isotope stratigraphy
of the Santonian stage. Jenkyns, Gale & Corfield (1994)
plotted data from Dover and Seaford Head (Sussex),
but did not attempt detailed stratigraphic analysis or
correlation. Their data will be compared here with
new results from Culver and Trunch to develop a
carbon-isotope stratigraphy for the Santonian. Seven
named isotope events are defined in addition to the
positive carbon-isotope excursion associated with the
Santonian/Campanian Boundary Event (Jarvis et al.

2002). Eleven other events (l1–q1 in Fig. 11) provide
potential additional correlation points.

3.d.1. Michel Dean Event

A clearly resolved positive δ
13C excursion of

+ 0.1 ‰ occurs immediately above the Michel Dean
Flint at the base of the Santonian (Figs 10, 11), with
values approaching 2.5 ‰ at Dover and Culver, and
a bigger peak occurs in the same position at Trunch.
This excursion is here named the Michel Dean Isotope
Event. Two small positive excursions occurring in the
Upper Coniacian between the Kingsdown and Michel
Dean events, which are less consistently developed in
the study sections, are informally numbered events k1

and k2 (Fig. 10).

3.d.2. Bedwell Event

A second and larger excursion of + 0.3 ‰ δ
13C occurs

in the Lower Santonian immediately above the Bedwell
Columnar Flint (Figs 10, 11), with values rising to
around 2.5 ‰ at Dover and Culver; a smaller peak
occurs in the same position at Trunch. This Bedwell
Isotope Event (new name) is the last of four equally
spaced positive δ

13C excursions (k1, k2, Michel Dean
and Bedwell events) superimposed on the long-term
falling isotope trend above the Kingsdown Event
maximum.

The identical asymmetric shapes of the δ
13C peaks

of the Bedwell Event at Culver and Dover suggest
that a significant hiatus occurs above the Bedwell
Columnar Flint in both sections. A smaller peak occurs
above a flint at 366.5 m in the Trunch borehole asso-
ciated with C. undulatoplicatus, identified by Wood,
Morter & Gallois (1994) as being the equivalent of the
Bedwell Columnar Flint. This places the base of the
Santonian somewhat lower, at 372.4 m, a short distance
above the Middleton Sponge Bed (Fig. 11).

3.d.3. Haven Brow Event

The carbon-isotope profile continues its long-term fall
following the Bedwell Event (Fig. 11). A δ

13C long-
term minimum of 2.2 ‰ at Culver occurs in the upper
Lower Santonian, with a second trough of 2.3 ‰ in
the lower Middle Santonian. Based on the marker-
bed correlation, the second trough correlates with
the long-term minimum of 2.0 ‰ δ

13C and inflection
point in the Dover δ

13C curve. The lower Middle
Santonian minimum, which lies within the lower Haven
Brow Beds of Mortimore (1986), is here termed the
Haven Brow Isotope Event. A well-defined minimum
of 2.3 ‰ and inflection point at 353.9 m in the Trunch
borehole correlates with this event.

Two minor peaks (l1, l2) between the Bedwell and
Haven Brow events can be correlated between the three
sections (Fig. 11).

3.d.4. Horseshoe Bay Event

The long-term δ
13C profile through the Middle

Santonian at Culver displays a broad symmetrical
peak reaching a maximum of 2.7 ‰ in the middle
Middle Santonian (Fig. 11). The maximum occurs
in a succession of flinty chalks, 3 m above the
Barrois Sponge Bed, in the middle of Horseshoe
Bay. The carbon-isotope maximum is here called
the Horseshoe Bay Event. An identical symmetrical
peak of 2.7 ‰ occurs at 345.2 m at Trunch, and a
2.5 ‰ maximum occurs at Seaford, both associated
with a succession of sponge beds. The Event represents
a + 0.4 ‰ positive excursion above the underlying and
overlying minima.

At Dover, a lesser maximum of 2.3 ‰ lies 3 m above
the Barrois Sponge Bed but the upper half of the
Middle Santonian long-term peak is not seen (Fig. 11),
indicating substantial condensation or a major hiatus in
the basal Margate Chalk. It is likely that this condens-
ation is related to the development of the Barrois
Sponge Bed and the associated sponge beds imme-
diately above this, around the Rowe Echinoid Band.
This degree of condensation implies that the Horseshoe
Bay Event may be unrepresented, and that sediments
yielding the highest carbon-isotope values are high
Middle Santonian.

Two small isotope peaks, one immediately below
and one above the Whitaker 3-inch Flint (m1, m2), are
clearly developed in the Dover profile (Fig. 11), the
latter coincident with the Echinocorys aff. elevata Bed
(Datum 39). Possible correlative peaks occur at Trunch,
and the higher peak may also be seen around the Short
Brow Flint in the Culver and Seaford profiles.

3.d.5. Buckle Event

The broad δ
13C maximum characterizing the Middle

Santonian (Fig. 11) declines up-section to a minimum
of around 2.2 ‰ in the basal Upper Santonian, lower
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Figure 11. For legend see facing page.

U. socialis Zone at Culver, Seaford and Trunch, at the
level of the Buckle Marls. A similar minimum occurs
in the basal U. socialis Zone at Dover. This isotope
minimum is here called the Buckle Event (new name).

Two small peaks (n1, n2) between the Horseshoe
Bay and Buckle events, the second at the Exceat Flint
(Fig. 11), have potential correlation value. These peaks
are not resolved in the more attenuated succession at
Dover.

3.d.6. Hawks Brow Event

A broad positive δ
13C excursion of + 0.3 ‰ with a

maximum value of 2.7 ‰ occurs at the top of the
U. socialis Zone at Culver, at the level of the Hawks
Brow Flint (Fig. 11). Similar peaks occur around the
first appearance of Marsupites laevigatus (Datum 41)
at Seaford, Dover and Trunch; the associated carbon-
isotope excursion defines the Hawks Brow Isotope
Event. The carbon-isotope trends between the Buckle
and Hawks Brow events are remarkably similar at all

four localities, displaying upwards-stepping profiles
with three discrete δ

13C peaks (o1–o3).

3.d.7. Foreness Event

A δ
13C minimum and inflection point is developed

in the Upper Santonian mid-Marsupites Zone at
Seaford, Dover and Trunch (Fig. 11). A minimum
of 2.2 ‰ is particularly well developed above the
Foreness Flint at Foreness Point Kent, and the negative
isotope excursion is here named the Foreness Isotope
Event. The minimum lies within the Kempton Marls
at Seaford. A small positive isotope excursion (p1)
occurs between the Hawks Brow and Foreness events
at Seaford, Dover and Trunch, which approximates
to the level of the first appearance of Marsupites

testudinarius (Schlotheim), Datum 42. At Culver, a
prominent δ

13C minimum occurs above the Hawks
Brow Event, immediately below a pair of glauconitized
hardgrounds at the top of the Marsupites Zone. The
p1 excursion is not represented, despite the presence
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Figure 11. Correlation of English Santonian δ
13C curves. See Figure 3 for plotting details; Seaford Head isotope data from Jenkyns,

Gale & Corfield (1994), see Figure 7 for other data sources. Abbreviations: Us – Uintacrinus socialis; M – Marsupites; Op – Offaster

pilula; Co – Coniacian; Sa – Santonian; SCBE – Santonian/Campanian Boundary Event.

of a considerably thicker section, suggesting that the
Foreness Event is absent at Culver and that the observed
minimum at the top of the Upper Santonian correlates
to the sub-p1 trough elsewhere.

3.d.8. Santonian/Campanian Boundary Event

The Santonian/Campanian boundary interval is char-
acterized everywhere by a positive δ

13C excursion of
around + 0.3 ‰ with maximum values up to 2.9 ‰.
The base of the Campanian is best defined by the
disappearance of M. testudinarius, macrofossil Datum
43 (Grossouvre, 1901; Gale et al. 1995; Hancock &
Gale, 1996). It is likely that the extinction of Marsupites

is nearly coincident with the first appearances of
Placenticeras bidorsatum (Roemer) and Gonioteuthis

granulataquadrata (Stolley), and lies close to the ex-
tinction level of the Dicarinella asymetrica–concavata

group of planktonic foraminifera (but see Section 4.b
for an alternative correlation). Uintacrinus anglicus

Rasmussen (Rasmussen, 1961) is a widespread and
short-ranging basal Campanian marker species (Han-
cock & Gale, 1996; Datum levels 44, 45) that extends
to Texas in the USA, Kazakhstan and Australia, and
Offaster pilula (Lamarck) typically first appears a few
metres above the base of the stage.

The boundary successions display considerable
differences between the four study sections (Fig. 11).
At Culver, the basal Campanian consists of a distinctive
17 m thick interval of marly chalks containing few
flints, several nodular chalks, glauconitized chalk
pebble beds, and beds of granular phosphate and
glauconite, which is restricted to the eastern Isle of
Wight (I. Jarvis, unpub. D.Phil. thesis, Univ. Oxford,
1980; Gale, Wood & Bromley, 1987; Prince, Jarvis &
Tocher, 1999). This unit is referred to as the Whitecliff
Ledge Beds (Gale, Wood & Bromley, 1987). The
last occurrence of M. testudinarius lies in the second
of a pair of nodular hardgrounds with glauconitized
surfaces at the base of this succession.
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At Seaford, the boundary interval consists of flinty
chalks with numerous marl seams (Fig. 11). Inoceramid
and oyster shell debris is abundant through the upper-
most Santonian and lowest Campanian, particularly in
the beds immediately underlying the Friars Bay Marls.
The last occurrence of M. testudinarius (Datum 43)
occurs in Friars Bay Marl 1. Above this, U. anglicus

Rasmussen occurs between Friars Bay Marls 2 and 3
(Datum levels 44, 45), and the first O. pilula appears
5 m higher (Mortimore, Wood & Gallois, 2001), at the
Black Rock Marl.

At Trunch, the boundary succession is largely free
of flints and consists of calcarenitic chalks containing
abundant inoceramid and oyster shells from 309 m
(Fig. 11), around the last occurrence of Marsupites at
307.4 m, up to 300 m depth. Gonioteuthis belemnites
are common in the basal Campanian section, and
O. pilula first appears at 297 m. The calcarenitic
chalk facies developed at Trunch and to some extent
at Seaford is characteristic of Santonian/Campanian
boundary successions in northern Germany, the so-
called ‘Grobkreide’ facies, which is typical of the
Gonioteuthus granulataquadrata Zone (Schulz et al.

1984).
In Kent, the soft white chalks of the uppermost

Margate Chalk contain widely spaced, weakly de-
veloped burrow flints and scattered discontinuous
sponge horizons (Fig. 11). Marsupites testudinarius

disappears 4 m below the top of the preserved Chalk
section, and U. anglicus occurs in the basal Campanian
chalk. Offaster pilula is unrecorded from the coastal
outcrops.

The base of the Santonian/Campanian posit-
ive carbon-isotope excursion (Santonian/Campanian
boundary event) lies in the uppermost Upper Santonian
at the top of the Marsupites Zone at Seaford, Dover
and Trunch (Fig. 11), and its top lies in the basal
Campanian below the first occurrence of O. pilula in
all three sections. The thickest Santonian/Campanian
Boundary Event interval occurs at Trunch (11 m),
closely followed by Seaford (7 m), sections that contain
calcarenitic chalk facies. At Culver and Dover, the
isotope event is limited to < 2 m of chalk, emphasizing
the attenuated nature of the successions in the eastern
Isle of Wight and Kent.

The Santonian/Campanian Boundary Event isotope
profiles at Seaford and Trunch are very erratic (Fig. 11),
suggesting that substantial structure exists within the
overall positive excursion, which is poorly resolved by
the relatively coarse 1 m sampling used in this study.
Three possible maxima within the overall Santonian/
Campanian Boundary Event at Seaford and Trunch
are labelled a–c in Figure 11. The narrow symmetrical
peak at Dover is indicative of reduced sedimentation.
At Culver, the sharp step in δ

13C values at the surface
of the lower glauconitized hardground and the gradual
decline above, demonstrate the presence of a significant
hiatus at the hardground surface. Based on the absence

of the Foreness Event below (Fig. 11, see above)
and faunal records, this hiatus must be equivalent to
the upper half of the Marsupites Zone and the basal
O. pilula Zone, including all of the lower beds
containing U. anglicus.

A marked δ
13C peak (q1) immediately overlies

the isotope minimum defining the Foreness Event at
Seaford, Dover and Trunch, and provides a useful
subsidiary correlation point (Fig. 11).

3.e. A Cenomanian–Santonian δ
13C reference curve

The detailed correlations described above demonstrate
that substantial variation in thickness and facies occurs
in the English Chalk, and no single section contains
a complete Cenomanian–Santonian succession. How-
ever, carbon-isotope trends and values in the various
successions are remarkably consistent. To construct
a high-resolution carbon-isotope reference curve, the
Cenomanian–Santonian succession was subdivided
into nine intervals, and δ

13C data were taken from
the most complete sections to produce a stacked
composite profile (Fig. 12). Isotope data were plotted
against the time scale of Ogg, Agterberg & Gradstein
(2004), supplemented by data in Hardenbol et al.

(1998); ages were assigned to samples, assuming a
constant accumulation rate between age datum levels
(Table 3).

In two cases, small offsets in the absolute δ
13C

values were apparent between adjacent data sets on the
composite profile. Similar offsets between sections are
apparent on the Cenomanian–Turonian composite δ

13C
plot of Voigt (2000, fig. 4). Such offsets might be caused
by primary differences in the isotopic composition of
regional water masses, they might be due to minor
differential diagenetic overprinting associated with
different burial and uplift histories of the study areas, or
they might result from analytical bias between different
stable-isotope laboratories. In this study, 0.2 ‰ offsets
in the Albian–Lower Cenomanian and Middle–Upper
Turonian data were corrected by applying constant
correction factors to these data sets (see below).

3.e.1. Cenomanian

Correlation of the English Cenomanian carbon-isotope
curves (Figs 3, 4, 6) demonstrates that the thickest and
most complete Lower Cenomanian (M. mantelli and
M. dixoni Zones) is developed at Speeton, the thick-
est Middle Cenomanian (C. inerme–A. jukesbrownei

Zones) at Dover, the thickest lower Upper Cenomanian
(C. guerangeri Zone) at Culver, and the thickest and
most complete Cenomanian/Turonian boundary suc-
cession (M. geslinianum–F. catinus Zones) is developed
at Eastbourne. The composite δ

13C curve (Fig. 12) was
constructed using data from these intervals in these
sections.

The δ
13C values from Speeton are consistently

+ 0.2 ‰ higher throughout the Cenomanian than are
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Figure 12. A carbon-isotope reference curve for the Cenomanian–Santonian ages based on the English Chalk. The curve is a stacked
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Table 3. Ages determined for biostratigraphic datum levels (stage and zone bases unless stated)

Age (Ma)

Datum level This study
Ogg, Agterberg &
Gradstein (2004) Voigt (2000)

Hardenbol
et al. (1998)

Lower Campanian (top Marsupites) 83.53 83.53 nd 83.46
Marsupites Zone 84.14 nd nd nd

Upper Santonian (U. socialis) 84.71 nd nd nd
Middle Santonian (upper M. coranguinum) 85.57 nd nd nd
Lower Santonian (C. undulatoplicatus) 85.85 85.85 nd 85.79
Upper Coniacian (M. subquadratus) 86.56 nd nd 87.49
Middle Coniacian (V. koeneni) 88.55 nd nd 88.55
Lower Coniacian (C. deformis erectus) 89.27 89.27 89.0 88.96
Upper Turonian (S. neptuni) 90.36 nd 90.4 90.36
Middle Turonian (C. woollgari) 92.13 92.13 92.2 91.88

M. nodosoides Zone 92.70 92.70 92.8 92.43
F. catinus Zone 93.20 nd nd nd

Lower Turonian (W. devonense) 93.55 93.55 93.5 93.49
N. juddii Zone 93.64 93.64 93.7 93.73
M. geslinianum Zone 93.99 nd 93.95 93.99

Upper Cenomanian (C. guerangeri) 94.71 nd 94.7 94.71
A. jukes-brownei Zone 94.93 nd 94.9 94.86
A. rhotomagense Zone (ex C. inerme) 95.72 nd nd nd

Middle Cenomanian (C. inerme) 95.84 nd 95.8 95.84
M. dixoni Zone 97.74 nd 97.5 97.39

Lower Cenomanian (M. mantelli) 99.60 99.60 98.9 98.94

nd – no data; values in bold are age calibration values used in this study.

equivalent values at Dover and elsewhere. Lower
Cenomanian values plotted on the composite profile
(Fig. 12) were hence corrected by −0.2 ‰. Age datum
levels used to calibrate the isotope curve are listed
in Table 3. The calculated age of the base of the M.

dixoni Zone of 97.74 Ma is slightly older than previous
estimates (Hardenbol et al. 1998; Voigt, 2000) due to
the greater age assigned to the base of the Cenomanian
by Ogg, Agterberg & Gradstein (2004). The calculated
age of the base of the A. jukesbrownei Zone at 94.93 Ma
agrees closely with previous estimates.

3.e.2. Turonian

The Turonian composite δ
13C curve (Fig. 12) was

constructed using data from Eastbourne up to the base
of the M. nodosoides Zone at the Compton Pebble Marl
(base couplet E28), then data from Culver up to the
Round Down Marl (base couplet F20), data from Dover
up to the top of the Bridgewick Event δ

13C minimum
at the base of the S. plana echinoid Zone, and data
from the Trunch borehole for the uppermost Turonian.
Correlation between the sections was achieved using
the detailed biostratigraphic, marker-bed, couplet and
carbon-isotope correlations summarized in Figure 7.

An age of 93.20 Ma was calculated for the base of
the F. catinus Zone at Holywell Marl 2 (couplet E23)
at Eastbourne (Table 3). The Eastbourne and Culver
δ

13C profiles were stacked at the Compton Pebble
Marl with an age of 92.70 Ma for the base of the
M. nodosoides Zone (Ogg, Agterberg & Gradstein,
2004). Stacking of the Culver and Dover profiles
in the low C. woollgari Zone employed an age of
91.748 Ma for the Round Down Marl, calculated from
Culver using an accumulation rate determined for the

M. nodosoides Zone applied to the low C. woollgari

Zone. This figure is only an approximation because the
sedimentological differences between the calcarenitic
weakly nodular Holywell Chalk and the marly New Pit
Chalk indicate a change in depositional regime in the
upper M. nodosoides Zone, although these differences
are less pronounced in the expanded section at Culver
than elsewhere in southern England. The Dover and
Trunch profiles were stacked in the mid-S. neptuni Zone
using an age of 89.835 Ma for the top of the Bridgewick
Event, calculated from Dover using a sedimentation
rate based on the C. woollgari Zone applied to the lower
S. neptuni Zone. This part of the succession displays
relatively uniform lithological characteristics.

The stacked δ
13C profiles (Fig. 12) displayed

excellent continuity except for the Dover data that
showed an offset of − 0.2 ‰. Turonian values from
Dover were corrected for this offset by adding 0.2 ‰.

3.e.3. Coniacian

Data from the Trunch borehole were used to represent
the upper Upper Turonian and Lower Coniacian
intervals because this section is least affected by the
condensation, omission and erosion accompanying
the formation of the Chalk Rock facies of southern
England. Culver was chosen to represent the Middle
and Upper Coniacian because the biostratigraphic and
marker-bed stratigraphy are far better constrained in
the outcrop section. The two δ

13C profiles were stacked
at East Cliff Marl 2 (Fig. 12) with an age of 88.55 Ma
assigned to the base of the Middle Coniacian V. koeneni

Zone (Hardenbol et al. 1998).
The estimated age for the base of the Late Coniacian

at 86.56 Ma (Table 3) is significantly younger than
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a previous estimate of 87.49 Ma (Hardenbol et al.

1998; base of the M. subquadratus Zone). However,
as noted previously, the Upper Coniacian index
species Megadiceramus subquadratus is unrecorded in
southern England, and the base of the substage is placed
at the last appearance of Volviceramus, below part of
the succession that contains few macrofossils. Large
potential errors exist therefore in the placement of the
Upper Coniacian substage boundary in England.

3.e.4. Santonian

The Culver data were chosen to represent the Lower
Santonian to middle Upper Santonian portion of
the composite δ

13C curve (Fig. 12). However, the
uppermost Upper Santonian is absent at Culver due to
erosion associated with the glauconitized hardgrounds
at the base of the Whitecliff Ledge Beds (base
Campanian), and reliable ages for the bases of the
Early and Middle Santonian are currently unavailable.
To calculate the amount of missing Santonian section
at Culver, the sediment thicknesses between two key
marker beds, the Exceat Flint and the Hawks Brow
Flint, were measured at Culver (25.1 m) and Seaford
(10.4 m), and the amount of expansion in the former
section (Fig. 11) calculated (× 2.41). This factor was
then applied to the thickness of sediment between the
Hawks Brow Flint and base Campanian (Friars Bay
Marl 1) at Seaford (10.5 m) to calculate the projected
position of the base Campanian at Culver, relative
to the Hawks Brow flint (+ 25.3 m). The projected
position (315.9 m) was used to calculate the average
accumulation rate for the Santonian at Culver, prior
to Campanian erosion. This accumulation rate was
applied to generate an age model for the Culver
Santonian δ

13C curve.
Calculated ages for the bases of the Middle (top

C. undulatoplicatus inoceramid Zone) and Late (base
U. socialis Zone) Santonian were 85.57 and 84.71 Ma
(Table 3). The uppermost Upper Santonian to lowest
Campanian portion of the composite δ

13C curve uses
data from the expanded Trunch borehole succession.
These data were stacked on the Culver profile at the
Hawks Brow Event in the uppermost U. socialis Zone,
using an age of 84.179 Ma for the Hawks Brow Flint
calculated at Culver. An age estimate of 84.14 Ma for
the base of the Marsupites Zone (Table 3) calculated
from Culver, compares favourably to an age of
84.11 Ma derived from the Trunch borehole.

4. International correlation

Filtered and smoothed low-resolution carbon- and
oxygen-isotope curves for the Albian–Palaeocene at
Gubbio, Italy, were published by Scholle & Arthur
(1980, fig. 2). A higher resolution stable-isotope study
was undertaken by Corfield et al. (1991), and this work
was enhanced further for the Cenomanian–Campanian

by 1 m sampling and re-logging of the Bottaccione
Gorge section by Jenkyns, Gale & Corfield (1994,
fig. 10). The isotope stratigraphy at Gubbio was con-
strained by a published foraminiferal biostratigraphy
(Cresta, Monechi & Parisi, 1989), that was later revised
by Premoli Silva & Sliter (1995), with the addition
of a previously unpublished nannofossil zonation.
Comparable carbon-isotope data were subsequently
presented for equivalent levels in the Piobbico area
of the same region (Erbacher, Thurow & Littke, 1996;
Erbacher & Thurow, 1997; Coccioni & Galeotti, 2003).

Much higher resolution carbon- and oxygen-isotope
curves for the Albian–Santonian (10–20 cm sampling),
were published by Stoll & Schrag (2000, figs 2, 3),
based on sampling at Contessa Quarry around 4 km
from the Bottaccione Gorge. The biostratigraphy of
Premoli Silva & Sliter (1995) from Bottaccione was
applied to the Contessa section (cf. Stoll & Schrag,
2000) by translating the depths of biostratigraphic
boundaries using the base of the Livello Bonarelli
black shales (uppermost Cenomanian) as a reference
level. Most recently, Tsikos et al. (2004) published δ

13C
data at 10 cm resolution for the Middle Cenomanian–
Lower Turonian from the Gubbio S2 core taken from
Vispi Quarry, Contessa Gorge, together with new
biostratigraphic data for the Cenomanian/Turonian
boundary interval.

4.a. Boreal–Tethyan carbon-isotope correlation

Carbon-isotope curves from Gubbio are correlated
to the English Chalk age-calibrated reference δ

13C
curve in Figures 13 and 14. It is notable that the two
high-resolution Gubbio curves for the Cenomanian–
Turonian are in excellent agreement (Fig. 13), with
a slightly thicker Cenomanian section represented in
the S2 core. A small + 0.1 ‰ δ

13C offset in the core
data might reflect weathering of outcrop samples or
analytical bias. This offset has no significant effect on
the shapes of the curves which record identical fine
detail.

The carbon-isotope events defined in the Ceno-
manian–Turonian of the English Chalk are readily
identified at Gubbio. Key tie points are provided by the
Albian/Cenomanian Boundary Event, Mid-Ceno-
manian Event I, the Cenomanian/Turonian Boundary
Event, and the Bridgewick, Hitch Wood and Nav-
igation events of Late Turonian age. The fidelity of
the Middle–Upper Cenomanian and Middle–Upper
Turonian records in the two areas is remarkable, with
identical profiles and absolute δ

13C values (Fig. 13).
Correlation of the Albian–Lower Cenomanian interval
is less certain, although the main features of the two
records are comparable.

The uppermost Cenomanian at Gubbio is char-
acterized by ∼ 1 m of black shale and radiolarian
sand, forming the Livello Bonarelli. This interval is
essentially carbonate free, and is represented by a gap
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in the δ
13C carbonate records (Fig. 13). In the Chalk,

δ
13C values at this level rise rapidly by + 2 ‰ to form

the base of the large positive excursion characterizing
the Cenomanian/Turonian Boundary Event. A positive
excursion of the same magnitude is recorded by organic
matter from the Livello Bonarelli (Tsikos et al. 2004,
fig. 6).

Carbonate δ
13C values immediately above the Liv-

ello Bonarelli are relatively low at around 3 ‰, and
they do not show the high and sharply falling values
seen in England (Fig. 13), possibly due to overprinting
associated with diagenesis of the underlying black
shales. Values remain relatively low through the Lower
Turonian at Gubbio but, despite this, the main carbon-
isotope events defined in England can be readily
identified.

The δ
13C minimum defining the Navigation Event

at the Turonian/Coniacian boundary provides a robust
correlation point between England and Italy (Fig. 13).
Above this, the carbon-isotope record displays less
variation with broader lower amplitude peaks and
troughs that make correlation less certain. Details of
a proposed Coniacian–Santonian correlation between
the Chalk reference curve and the medium-resolution
Gubbio curve of Jenkyns, Gale & Corfield (1994)
are shown in Figure 14. There is excellent agreement
between the Albian–Coniacian portion of the Jenkyns,
Gale & Corfield (1994) curve and the higher resolution
data of Stoll & Schrag (2000), confirming the validity
of the lower resolution data. The tops of the English
and Italian curves have been pinned on the δ

13C
maxima defining the Santonian/Campanian Event. The
latter is placed at the top of the Gubbio curve, not
at the base of the G. elevata Zone established by
Premoli Silva & Sliter (1995), because elsewhere in
Europe δ

13C values generally fall through the Lower
Campanian (Scholle & Arthur, 1980; Schönfeld &
Burnett, 1991; Pratt et al. 1993; Jenkyns, Gale &
Corfield, 1994; Jarvis et al. 2002) above a boundary-
event maximum.

The isotope correlation presented in Figure 14
offers good correspondence between the English and
Italian curves in both shape and absolute values,
while maintaining relatively constant sedimentation
rates through the Coniacian–Santonian at Gubbio. It

is notable that the correlation is consistent with the
position of the base of Chron 33r, the termination of
the long normal geomagnetic polarity interval of the
Aptian–Santonian (Chron 34n; the ‘Cretaceous Quiet
Zone’), at the top of the Buckle Event (Fig. 14). In
England, the Chron 34n/33r boundary occurs a short
distance above the base of the Upper Santonian in the
lower Uintacrinus Zone (Gale et al. 1995; Montgomery
et al. 1998), consistent with its position in Russia
(Pechersky, Naidin & Molotovsky, 1983). In Italy,
the reversal has generally been regarded as occurring
immediately above the base of the Campanian (Alvarez
et al. 1977; Lowrie & Alvarez, 1977; Alvarez &
Lowrie, 1978; Cresta, Monechi & Parisi, 1989; Premoli
Silva & Sliter, 1995).

4.b. Equivalence of Boreal and Tethyan biostratigraphy

The lack of integrated litho-, bio-, magneto- and chem-
ostratigraphic analysis of the Gubbio sections offers
the possibility of metre-scale errors in the placement
of zonal boundaries with respect to the carbon-isotope
stratigraphy. For example, the base of the R. brotzeni

Zone and the base of the Cenomanian Stage were placed
close to the bottom of the positive δ

13C excursion
defining the Albian/Cenomanian Boundary Event at
Bottaccione Gorge by Jenkyns, Gale & Corfield (1994,
fig. 10), and near the top of the excursion at Contessa
Quarry by Stoll & Schrag (2000, fig. 2). Correlation of
the δ

13C curve from the Cenomanian Global boundary
Stratotype Section and Point at Risou with that from
Gubbio (Fig. 4; Gale et al. 1996) indicates that the
base of the Cenomanian Stage lies above the δ

13C
maximum defining peak b of the Albian/Cenomanian
Boundary Event. Rotalipora globotruncanoides, the
base Cenomanian index species, has not been recorded
at Gubbio, but in Bottaccione Gorge the last occurrence
of Rotalipora ticinensis occurs around 1 m above the
base of the R. brotzeni Zone (Premoli Silva & Sliter,
1995), indicating that the base of the Cenomanian lies
immediately above this, at a level that is consistent with
our carbon-isotope correlation (Figs 4, 13).

The base of Mid-Cenomanian Event I, a short dis-
tance above the base of the Middle Cenomanian
Substage, provides a robust correlation point between

Figure 13. Correlation of Cenomanian–Coniacian δ
13C events between England and Italy. The English Chalk reference curve in black

is an unsmoothed composite plotted against age; see Figure 12, Table 3 and text for details. High-resolution profiles from Gubbio are

plotted against stratigraphic height for Contessa Quarry (Stoll & Schrag, 2000, medium grey curve, left) and the Gubbio S2 core from

Vispi Quarry, Contessa Gorge (Tsikos et al. 2004, dark grey curve, right). The S2 curve has been offset by + 0.25 ‰ δ
13C relative to

the Contessa data to facilitate comparison. Gubbio biostratigraphy after Premoli Silva & Sliter (1995), derived from the Bottaccione

section, transposed to Contessa Quarry using stratigraphic heights relative to the Livello Bonarelli, with additional data from Tsikos

et al. (2004). ‘Late Turonian Events’ represent the succession of isotope events defining the long-term positive δ
13C excursion in the

Upper Turonian, with the Bridgewick and Navigation negative excursions defining the bottom and top of the interval and the Hitch Wood

Event representing the carbon-isotope maximum. Abbreviations as in Figure 12, plus: LCE I–III – Lower Cenomanian Events I–III;

MCE I – Mid-Cenomanian Event I; R. appenn. – Rotalipora appenninica; Rr – Rotalipora reicheli; Rg – Rotalipora greenhornensis;

Wa – Whiteinella archaeocretacea; Helvetoglobotr. – Helvetoglobotruncana; Marginotr. – Marginotruncana; D. asym. – Dicarinella

asymetrica; Sa – Santonian.
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the Boreal and Tethyan sections (Fig. 13). This
apparently lies in the mid-R. cushmani Zone at Gubbio
(Premoli Silva & Sliter, 1995; Coccioni & Galeotti,
2003), the base of which is generally regarded as being
Middle Cenomanian (Ogg, Agterberg & Gradstein,
2004). This major discrepancy in the relative positions
of the R. cushmani and R. reicheli zones requires urgent
investigation. The isotope correlation (Fig. 13) offers
considerable potential for refining the poorly resolved
Cenomanian biostratigraphy at Gubbio.

The correspondence between Boreal and Tethyan
biozonations for the Cenomanian–Turonian boundary
interval is well established (e.g. Tsikos et al. 2004;
Ogg, Agterberg & Gradstein, 2004; Amédro, Accarie &
Robaszynski, 2005; Gale et al. 2005) and is consistent
with the carbon-isotope correlation (Figs 6, 13). In the
Middle and Upper Turonian the Round Down, Glynde,
‘Pewsey’, Bridgewick, Hitch Wood and Navigation
events provide excellent tie points (Figs 8, 13) that
confirm the placement of the M. sigali Zone in the
upper Middle Turonian and the base of the D. concavata

Zone high in the Upper Turonian (Ogg, Agterberg &
Gradstein, 2004). The positions of the ‘Pewsey’ Event
at the top of the H. helvetica Zone, the Hitch Wood
Event in the mid-M. sigali Zone, and the Navigation
Event of the basal D. concavata zones, all provide
potentially robust international markers.

The Coniacian–Santonian correlation is more prob-
lematic. The location of the East Cliff and White Fall
events in the Middle Coniacian, mid-D. concavata

Zone is consistent with the established biostratigraphy
(Ogg, Agterberg & Gradstein, 2004), but the isotopic
correlation (Figs 13, 14) places the base of the
D. asymetrica Zone at the summit of the Middle
Coniacian rather than at the base of the Santonian. The
basal Santonian Michel Dean Event lies in the mid-
D. asymetrica Zone, and the basal Upper Santonian
Buckle Event and the base of Chron 33r correlate
with the top of the Zone. If correct, this correlation
places the Santonian/Campanian boundary in the upper
G. elevata Zone and not at the base of the zone, as cur-
rently assumed (Ogg, Agterberg & Gradstein, 2004).

It is clear that significant anomalies exist in estab-
lished relationships between the Boreal and Tethyan
Cenomanian, Coniacian and Santonian biostratigraphic
schemes. Further work is required to confirm the
placement of the macrofossil-defined zones and stage
boundaries with respect to planktonic foraminiferal and
nannofossil biostratigraphies.

5. Carbon isotopes and sea-level change

Carbon-isotope stratigraphy based on the analysis of
bulk samples of hemipelagic and pelagic carbonates
provides a robust means of correlating Cenomanian–
Santonian strata on a global scale, with coeval suc-
cessions displaying remarkably similar trends and
δ

13C values. Major positive and negative excursions
together with significant inflection points on the isotope
curves have enabled the definition of a carbon-isotope
event stratigraphy that can be used for international
correlation.

The tight stratigraphic framework provided by the
combination of biostratigraphy and chemostratigraphy
allows carbon-isotope profiles to be compared with
regional and presumed global sea-level curves, and
other palaeoenvironmental proxies, to investigate the
forcing mechanisms and feedbacks involved.

5.a. Eustatic sea-level

There is considerable evidence for a relationship
between positive shifts in Cretaceous δ

13C records and
first-order rises in eustatic sea-level (e.g. Scholle &
Arthur, 1980; Berger & Vincent, 1986; Arthur,
Schlanger & Jenkyns, 1987; Weissert, 1989; Jenkyns,
Gale & Corfield, 1994; Mitchell, Paul & Gale, 1996;
Voigt & Hilbrecht, 1997; Weissert et al. 1998; Jarvis,
Murphy & Gale, 2001; Jarvis et al. 2002). This
association is generally attributed to changes in the
partitioning of carbon between organic and carbonate
carbon sinks caused by sea-level rise and consequent
transgression. However, the Exxon global Mesozoic–
Cenozoic sea-level curve (Haq, Hardenbol & Vail,
1987, 1988), which is commonly used to assess eustatic
influences on regional sequence stratigraphy and sea-
level change, has insufficient stratigraphic resolution
to test these relationships with any rigour (Miall, 1992;
Jarvis et al. 2002).

A quantitative sea-level curve, interpreted as eu-
static, for the Middle Jurassic–Cretaceous was de-
veloped by Sahagian et al. (1996), based on sequences
on the supposedly tectonically stable Russian Platform,
supplemented by data from Siberia. These authors em-
ployed a combination of sediment geometry, lithology,
sediment structure, mineralogy, macrofossil palaeoe-
cology and taphonomy, and trace-fossil assemblages
(ichnofacies) to estimate water-depth changes on the
Platform, which were assumed to be predominantly
a response to accommodation space provided by

Figure 14. Correlation of Middle Turonian–Santonian δ
13C events between England and Italy. The age-calibrated English Chalk

unsmoothed reference curve in black (this study), is compared with a medium-resolution stratigraphic height profile for Gubbio from

Bottaccione Gorge (Jenkyns, Gale & Corfield, 1994, medium grey curve) and a higher resolution stratigraphic height curve from

Contessa Quarry (Stoll & Schrag, 2000, dark grey curve). Gubbio biostratigraphy after Premoli Silva & Sliter (1995), derived from

the Bottaccione section. The position of the base of Chron 33r (dashed horizontal line) is indicated (Alvarez et al. 1977; Montgomery

et al. 1998), marking the termination of the Cretaceous Long Normal (Chron 34n). The Bottaccione δ
13C data display a systematic

offset of around + 0.1 ‰ compared to the Contessa Quarry and English Chalk data. See Figure 13 for abbreviations.
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Figure 15. Relationship between carbon-isotope stratigraphy and sea level. A smoothed (5-point moving average) version of the

English Chalk δ
13C composite age-calibrated curve (this study) is compared with biostratigraphically well-constrained sea-level

curves, interpreted as eustatic, based on data from the Russian Platform and Siberia (Sahagian et al. 1996), India and NW Europe (Gale

et al. 2002). The sea-level curves have been recalibrated to the time scale of Ogg, Agterberg & Gradstein (2004) using macrofossil

zone, substage and stage data. Abbreviations as in Figure 12.

eustatic sea-level rise. The curve was constrained by
macrofossil biostratigraphy with episodes of major sea-
level fall being indicated by regional hiatuses in the
succession. Back-stripping techniques that accounted
for palaeodepth variations, sediment loading, com-
paction and basin subsidence were used to generate
relative sea-level curves for multiple sections, which
were then combined to produce a composite eustatic
curve (Sahagian et al. 1996, fig. 11). Subsequently,
a more detailed supposedly eustatic curve for the
Cenomanian, constrained by high-resolution ammonite
biostratigraphy, was presented by Gale et al. (2002,
fig. 4) based on sequence stratigraphic analysis of
sections in SE India and NW Europe, and Miller et al.

(2003, 2004) presented a sea-level curve for the entire
Upper Cretaceous based on an analysis of the New
Jersey Coastal Plain, USA.

The Sahagian et al. (1996) and Gale et al. (2002)
‘eustatic’ curves, rescaled against the time scale of
Ogg, Agterberg & Gradstein (2004) using stage and
ammonite zone data, are compared to the English
Chalk composite δ

13C profile in Figure 15. Detailed
comparison with the data of Miller et al. (2003, 2004)
is hampered by relatively poor stratigraphic control
on the Cenomanian–Santonian portion of their curve;
strontium isotopes were found to be diagenetically
altered in this interval, and ages were constrained by
limited nannofossil records supplemented by pollen
and some planktonic foraminiferal data (Sugarman
et al. 1999).

The composite δ
13C curve shows remarkable sim-

ilarities to the ‘eustatic’ curves (Fig. 15). The long-
term rise in δ

13C values, from around 1.5 ‰ in the
latest Albian to nearly 3 ‰ at the Santonian/Campanian
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boundary, is matched by a sea-level rise of around
40 m. Medium-term peaks and troughs on the isotope
curve correspond well with highstands and lowstands,
respectively. For example, the Cretaceous sea-level
maximum at the Cenomanian/Turonian boundary is
matched by a δ

13C maximum of 5 ‰. The latest
Albian sea-level highstand is equated with the Albian/
Cenomanian Boundary Event isotope maximum and
the latest Santonian highstand with the Santonian/
Campanian boundary Event, although stratigraphic
uncertainties exist around these intervals.

The similarity between the Cenomanian isotope
profile and the supposedly eustatic curve of Gale et

al. (2002) is particularly striking (Fig. 15), but both
the Sahagian et al. (1996) and the Gale et al. (2002)
sea-level curves independently demonstrate a rise of
50 m through the Cenomanian, corresponding to a
+ 3 ‰ positive shift in δ

13C values. Miller et al.

(2003, 2004), on the other hand, estimated a sea-
level rise of only 20 m through the stage but predicted
higher sea-levels in the middle Cenomanian. The rate
of long-term sea-level rise during the Cenomanian,
therefore, was 3–8 m Myr−1, which is well below the
30 m Myr−1 maximum imposed by tectonic as opposed
to glacio-eustatic forcing. However, the amplitude of
medium- to short-term sea-level change of 2–20 m
estimated by Gale et al. (2002), although less than
the 50 m calculated by Sahagian et al. (1996) and
> 25 m determined by Miller et al. (2003, 2004),
indicates rates of short-term sea-level change during
the Cenomanian of 10–100 m Myr−1. It is notable that
the lower amplitude sea-level variation documented by
Gale et al. (2002) correlates well with the amplitude of
variation displayed by the δ

13C curve (Fig. 15).
The calculated rates of short-term sea-level change

are difficult to explain without invoking glacio-eustasy,
yet new evidence for high Arctic Ocean palaeotemper-
atures appears to preclude any possibility of a northern
hemisphere ice sheet during the Late Cretaceous
(Jenkyns et al. 2004). Antarctic glaciation on high-
altitude sites remains possible (cf. DeConto & Pollard,
2003). It has been calculated that a 4 km thick icecap
on Antarctica would be required to lower sea level
by 100 m (Dewey & Pitman, 1998), but Miller et al.

(2003, 2004) have argued that a restricted ephemeral
inland Antarctic ice sheet of 5–10 × 106 km3 would be
sufficient to drive 25 m amplitude short-term changes.

A strong correspondence between the shape of
Cenomanian carbon-isotope profiles and the Exxon
(Haq, Hardenbol & Vail, 1988) and other supposedly
eustatic sea-level curves has been noted previously
(e.g. Mitchell, Paul & Gale, 1996). This relationship
has been attributed to the increased area of productive
shallow seas available after marine transgression, with
the consequent increased global burial flux of 12C-
enriched marine organic carbon and elevated δ

13C
values in ocean waters recorded in biogenic carbonates
(Jenkyns, Gale & Corfield, 1994). Lower rates of

organic carbon burial and the oxidation of previously
deposited organic matter accompanied sea-level fall,
producing falling δ

13C values during regressions.
By contrast, Voigt (2000) demonstrated poor agree-

ment between the Exxon sea-level curve for the Turo-
nian and a composite δ

13C profile derived from sections
in England and Germany. The observed differences
were explained by periods of enhanced inorganic
carbon burial increasing the ratio of global inorganic
to organic carbon fluxes and shifting the 13C/12C ratio to
more negative values. However, the Exxon curve differs
substantially from the better constrained Turonian sea-
level data of Sahagian (1996, fig. 13). For example,
the marked late Middle Turonian lowstand of Haq,
Hardenbol & Vail (1988) is much less pronounced and
is dated as early Middle Turonian by both Sahagian
et al. (1996) and Miller et al. (2003, 2004).

A relative sea-level rise around the Early/Middle
Turonian boundary (Fig. 15) corresponds to a broad
δ

13C maximum culminating in the Round Down Event.
This sea-level maximum, dated as low-woollgari Zone
by Hancock (2000), is particularly well developed in
the US Western Interior. A latest Middle Turonian
transgression (corresponding to the ‘Pewsey’ Event)
and the subsequent sea-level highstand correlate well
with the isotope profile (Fig. 14). The Late Turonian
sea-level fall and lowstand (Gale, 1996; Sahagian
et al. 1996; Miller et al. 2003, 2004) is matched by
a broad carbon-isotope minimum culminating in the
Bridgewick Event. There is corresponding evidence
of widespread regression at this time in NW Europe,
the North American Gulf Coast and Western Interior,
North and West Africa, eastern Brazil and Western
Australia (e.g. Matsumoto, 1980). The latest Turonian
δ

13C maximum of the Hitch Wood Event is coincident
with a transgressive pulse in many areas.

A marked early Middle Coniacian transgression
(Fig. 15) is correlated with the step towards more posit-
ive δ

13C values above the East Cliff Event, culminating
in the White Fall Event, above. A widespread Coniacian
transgressive maximum (Hancock & Kauffman, 1979;
Hancock, 2000) correlates with a broad δ

13C maximum
between the White Fall and Kingsdown events. Early
and Late Santonian transgressions (Sahagian et al.

1996; Miller et al. 2003, 2004) correspond to the
Horseshoe Bay and Santonian/Campanian boundary
positive carbon-isotope events (Fig. 15).

5.b. Feedbacks and forcing mechanisms

Similarities between the shape of the long-term
Cenomanian–Santonian δ

13C profile and sea-level
curves that are of at least regional significance (Fig. 15)
support the argument that δ

13C might be considered
as an independent method for estimating first-order
eustatic sea-level (Mitchell, Paul & Gale, 1996;
Voigt & Hilbrecht, 1997; Grant, Coe & Armstrong,
1999). However, it must be acknowledged that even
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using the stratigraphically better constrained sea-level
curves now available for different continents, the exact
temporal relationships between sea-level change and
variations in the carbon-isotope record remain uncer-
tain. Furthermore, the effects of sea-level change on
the global carbon cycle and the partitioning of carbon-
isotopes in organic versus inorganic reservoirs are
undoubtedly complex. For example, rates of sea-level
rise/transgression and fall rather than the magnitude
of sea-level change may affect the amplitude of car-
bon-isotope variation, so exact agreement is unlikely
(Jenkyns, Gale & Corfield, 1994).

Variations in the area of shallow seafloor provide a
simple mechanism for changing organic-carbon burial
fluxes and δ

13C values in response to sea-level rise
and fall. However, other factors may be significant
(Jarvis et al. 2002). Increased rates of formation
of isotopically light methane hydrate on continental
margins during transgressions, and reduced rates of
formation and/or their dissociation during periods of
sea-level fall, tectonic activity on continental margins,
or a rise in bottom-water temperatures, may also play a
role (Kvenvolden, 1998; Ripperdan, 2001; Jarvis et al.

2002; Jenkyns, 2003). At times of rapid sea-level rise,
reworking of sediments and soils on previous land areas
might promote increased nutrient fluxes to epicontin-
ental seas, which would have supported increased local
productivity and enhanced organic-carbon burial rates
(Jenkyns, Gale & Corfield, 1994; Hilbrecht et al. 1996).
Higher nutrient supply to surface waters would have
favoured organic and siliceous plankton production and
reduced rates of calcareous plankton rain. If sea-level
rise were rapid, carbonate platforms would have been
flooded and shallow-water carbonate factories closed
down, potentially (assuming a constant output of global
sedimentary carbon) increasing the relative proportion
of the organic-carbon flux; major carbonate platform
crises are documented (Skelton, 2003, fig. 5.1) in
the Middle Cenomanian, at the Cenomanian/Turonian
boundary, in the early Coniacian, and around the
Santonian/Campanian boundary, each coincident with
major eustatic transgressions and increased δ

13C
values (Fig. 15). Terrestrial environments would also
be affected by the transgression, with higher water
tables during sea-level rise leading to increased peat
accumulation and 12C removal in deltaic and other
coastal margin settings.

As the rates of sea-level rise declined, and new
sediments covered the drowned land masses, the nutri-
ent flux would have decreased, reducing productivity.
An increased area of pelagic carbonate deposition, a
relative increase in calcareous plankton production,
and new carbonate platform development would have
changed the balance in favour of the inorganic carbon
flux and (once again, assuming a constant output
of global sedimentary carbon) shifted δ

13C to lower
values. During regressions, rates of organic-carbon
burial would have fallen, and lower base levels would

have led to reworking of previously deposited organic-
rich marine and terrestrial strata, returning isotopically
light carbon to the global reservoir. Accompanying
changes in oceanic circulation might also have had
an effect. Increased oceanic circulation due to more
efficient deep-water formation during times of low
sea level would enhance 12C recycling, which would
increase the residence time of 12C in the water
column. This phenomenon would increase the size of
the oceanic C reservoir, decrease the organic-carbon
flux into sediments, and further reduce seawater δ

13C
values.

6. A carbon-isotope reference curve for the

Cenomanian–Campanian ages

The work described in this paper complements that of
Jarvis et al. (2002), who studied the carbon-isotope
stratigraphy of the Campanian (83.5–70.6 Ma) based
on sections in England, France and Tunisia. As with the
current study, those authors demonstrated good agree-
ment between carbon-isotope curves from Tethyan
and Boreal areas, and argued for a close relationship
between δ

13C curves and eustatic sea level. Jarvis
et al. (2002) used the isotopic data of Jenkyns, Gale
& Corfield (1994) from the Trunch borehole to plot a
Campanian reference curve. It is straightforward, there-
fore, to take the Santonian/Campanian boundary inter-
val δ

13C data from Trunch (Jenkyns, Gale & Corfield,
1994), used in the construction of the present stacked
Cenomanian–Santonian reference curve (Fig. 12),
and to extend this up through the Campanian.
The resulting δ

13C composite curve for the entire
Cenomanian–Campanian ages is shown in Figure 16,
calibrated against the timescale of Ogg, Agterberg &
Gradstein (2004).

In addition to the positive δ
13C excursion defining

the Santonian/Campanian boundary event, a prominent
positive shift of + 0.2 ‰ occurs at the base of
the Upper Campanian Belemnitella mucronata Zone
(Fig. 16). This Mid-Campanian Event (Jarvis et al.

2002) coincides with the mucronata transgression
recognized in northern Germany (Niebuhr, 1995;
Niebuhr, Wood & Ernst, 2000) and elsewhere. The base
of the Mid-Campanian Event also presents a major
inflection point in the long-term Campanian stable-
isotope curve; relatively stable δ

13C values of around
2.4 ‰ in the Lower Campanian fall progressively
through the Upper Campanian to 2.0 ‰ at the top of the
stage. This drop corresponds to a phase of falling long-
term supposedly eustatic sea level through the Late
Campanian (Haq, Hardenbol & Vail, 1987, 1988).

A negative shift of −0.4 ‰ δ
13C, occurring in the

middle of the Upper Campanian (Fig. 16), represents a
major feature of the Cenomanian–Campanian isotope
curve. This Late Campanian Event (Jarvis et al. 2002)
correlates with the sea-level fall associated with the
polyplocum regression in Germany; the subsequent
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Figure 16. A carbon-isotope reference curve for the Cenomanian–Campanian ages based on the English Chalk. The curve is a 5-point

moving average based on a stacked composite for the Cenomanian–Santonian (Fig. 12), with additional Campanian–Maastrichtian

isotope data from the Trunch borehole (Jenkyns, Gale & Corfield, 1994). The curve has been calibrated using the age assignments of

Ogg, Agterberg & Gradstein (2004). Abbreviations as in Figure 12, plus: M – Maastrichtian; Bl – Belemnella lanceolata.

transgression is marked by a return to previous δ
13C

values but no positive excursion. An inflection point at
the base of the Maastrichtian, marking a shift to more
rapidly falling carbon-isotope values, offers a possible
criterion for recognizing the Campanian/Maastrichtian
boundary on the isotope curve, but the reliability of
this marker remains unproven. Seven further informally
defined inflection points (Fig. 16) on the Campanian

isotope curve were used by Jarvis et al. (2002) to refine
their Tethyan–Boreal correlation.

The 29 Myr long carbon-isotope record illustrated
in Figure 16 is the first stratigraphically well-cons-
trained high-resolution δ

13C curve and associated
isotope-event stratigraphy for the entire Cenomanian–
Campanian interval of the Cretaceous Period. It offers
potential for improved global correlation, and can be
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employed to test the synchroneity of biotic events
on a regional to global scale, and the equivalence of
biostratigraphic schemes in different floral and faunal
realms. Calibration of the δ

13C curve to the geological
timescale further provides a means of assigning absol-
ute ages to well-characterized chemostratigraphic
events, which can in turn be used to constrain rates of
sedimentation or biotic turnover in sections anywhere
in the world.

7. Conclusions

Carbon-isotope variation determined from bulk pelagic
and hemipelagic carbonate sediments collected through
the Cenomanian–Santonian stages shows consistent
stratigraphic trends and commonly identical δ

13C
values, which provide a sound basis for high-resolution
international correlation. Positive and negative δ

13C
excursions and inflection points on isotope profiles
enable the definition of a succession of carbon-
isotope events that are isochronous within a framework
provided by key macrofossil biostratigraphic datum
levels, bentonite horizons, and traditional macrofossil
zonal boundaries within the UK and elsewhere in NW
Europe.

Major chemostratigraphic datum levels are provided
by 100 kyr-scale positive δ

13C excursions: the Al-
bian/Cenomanian Boundary Event; Mid-Cenomanian
Event I; the Cenomanian/Turonian Boundary Event;
a maximum of Late Turonian age defined by the
Bridgewick, Hitch Wood and Navigation events;
and the Santonian/Campanian Boundary Event. The
detailed isotope stratigraphy based on the recognition
of 72 events has been successfully applied to published
isotope profiles from France, Germany, Italy and
Spain, and provides a sound basis for high-resolution
international correlation.

The diagenetically immature Chalk successions of
southern, northern and eastern England offer some of
the best-documented Cenomanian–Santonian pelagic-
carbonate sections in the world, but substantial regional
variation in thickness and stratigraphic completeness is
demonstrated by detailed carbon-isotope correlation of
seven English sections. None of the study localities
offers a complete stratigraphic record. However, a
composite δ

13C reference curve based on the English
Chalk has been successfully constructed using data
from Culver, Dover, Eastbourne, Speeton and Trunch,
calibrated against the 2004 geological timescale (Ogg,
Agterberg & Gradstein, 2004). The locations of stage
and substage boundaries are tightly constrained by
macrofossil biostratigraphy.

Based on the English Chalk composite reference
curve, carbon-isotope values in marine carbonates
generally rise from 1.5 ‰ δ

13C in the Upper Albian
to 2.9 ‰ in the uppermost Santonian, with a large
broad symmetrical peak between the base of the
Middle Cenomanian and the middle Upper Turonian

that attains a maximum of 5.4 ‰ δ
13C in the uppermost

Cenomanian (Cenomanian/Turonian Boundary Event)
and a minimum of 1.6 ‰ in the middle Upper
Turonian (Bridgewick Event). Positive and negative
carbon-isotope excursions and inflection points on
the longer-term curve that define the isotope events
have amplitudes ranging from 0.1 to 1 ‰ and occur
throughout the succession.

The carbon-isotope stratigraphy based on English
Boreal sections enables detailed correlation with
Tethyan sections in central Italy. The Cenomanian–
Turonian correlation is particularly well constrained
and generally agrees well with established relationships
between Tethyan planktonic foraminiferal and Boreal
macrofossil biozonations, although important anom-
alies exist with respect to the positions of Cenomanian
planktonic foraminiferal biozones. Correlation of the
Coniacian–Santonian is less clear-cut. Magnetostrati-
graphic evidence for placing the base of Chron 33r
near the base of the Upper Santonian is in good agree-
ment with the carbon-isotope correlation, but gen-
erates significant anomalies regarding the placement
of the Santonian and Campanian stage boundaries
with respect to Tethyan planktonic foraminiferal and
nannofossil zones. These discrepancies require further
investigation.

The Cenomanian–Santonian carbon-isotope refer-
ence curve is remarkably similar in shape to recently
published supposedly eustatic sea-level curves based
on quantitative data from biostratigraphically well-
constrained sections in Russia and India. Sea level
appears to represent a major control on Cretaceous
carbon-isotope variation with increasing δ

13C values
accompanying sea-level rise and transgression, and
decreasing δ

13C values characterizing sea-level fall and
regression.

The direct correlation between carbon isotopes and
sea level is most easily explained by variations in
epicontinental sea area affecting organic-matter burial
fluxes. Increasing shallow seafloor area and increased
accommodation space accompanying sea-level rise
allowed more efficient burial of marine organic
matter, with the preferential removal of 12C from the
marine carbon reservoir. Pelagic carbonates record the
resulting increase in seawater δ

13C values. During sea-
level fall, reduced seafloor area, marine erosion of
previously deposited sediments, and exposure of basin
margins led to reduced organic-carbon burial fluxes
and oxidation of previously deposited organic matter,
causing falling δ

13C values.
The carbonate carbon reservoir may also have played

a role. Assuming that the global output of sediment-
ary carbon remained constant, drowning of carbonate
platforms during periods of rapid sea-level rise
would have reduced the inorganic carbon flux, while
renewed platform growth during late transgressions and
highstands would have prompted a major increase in
carbonate deposition. Both processes would effectively
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amplify the positive and negative δ
13C shifts, respect-

ively, driven by flux changes to the organic carbon
reservoir. Other factors such as variations in nutrient
supply, rates of oceanic turnover, and the sequestration
or liberation of methane from gas hydrates in response
to sea-level change, are also likely to have contributed
to the observed carbon-isotope variation, but are harder
to quantify.

The Cenomanian–Santonian composite δ
13C curve

has been stacked with a previously published reference
curve for the Campanian (Jarvis et al. 2002) to present
a complete composite carbon-isotope curve for the
29 Myr interval of the Cenomanian–Campanian ages.
High-resolution carbon-isotope stratigraphy is a robust
method for the correlation of pelagic carbonates, and
the reference curve developed here provides valuable
calibration points for future chemostratigraphic stud-
ies. When combined with biostratigraphy, chemostrati-
graphy offers potential for significantly improving
global correlation and may provide a proxy for eustatic
sea-level variation.
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