
International Scholarly Research Network
ISRN Software Engineering
Volume 2012, Article ID 424230, 7 pages
doi:10.5402/2012/424230

Research Article

Secure and Customizable Data Management for
Automotive Systems: A Feasibility Study

Thomas Thüm,1 Sandro Schulze,1 Mario Pukall,1 Gunter Saake,1 and Sebastian Günther2

1 School of Computer Science, University of Magdeburg, P.O. Box 4120, 39016 Magdeburg, Germany
2 Faculty of Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Correspondence should be addressed to Thomas Thüm, tthuem@ovgu.de

Received 11 November 2011; Accepted 7 December 2011

Academic Editors: O. Greevy and Y. K. Malaiya

Copyright © 2012 Thomas Thüm et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Custom tailor-made database management systems (DBMS) are an essential asset, especially for embedded systems. The
continuously increasing amount of data in automotive systems and the growing network of embedded devices can profit from
DBMS. Restrictions in terms of processors, memory, and storage require customizable DBMS that contain only the needed
functionality. We present AutoDaMa, a customizable DBMS designed for automotive systems. With AutoDaMa, it is possible to
generate tailor-made DBMS for different scenarios, for example, by restricting the storage size of the DBMS or adding security-
related features such as asymmetric and symmetric encryption. We demonstrate the feasibility of our approach through applying
different tailor-made DBMS versions derived from AutoDaMa in an automotive testing environment. Our experience is that
AutoDaMa can dramatically reduce the development effort and can increase reliability using efficient reuse mechanisms.

1. Introduction

About 90 percent of all innovations in modern cars rely
on electronic data processing systems [1]. Current estimates
assume that more than one gigabyte of software is installed in
one automotive system and is expected to increase in future
[2]. Thus, there is a huge potential to keep development cost
for automotive software as low as possible. Current cars have
dozens of sensors and actors that gather huge amount of data.
This data is used by Electronic Control Units (ECU) to provide
intelligent, safety-related, and comfort functions. The ECUs
are connected using a bus system based on the protocols
CAN, FlexRay, MOST, or LIN [3]. Unfortunately, every ECU
has an own implementation to locally store the data, which
hinders the efficient development of new functions, since
new functions usually require to adapt the implementation
of different ECUs.

We need data management components in automotive
systems that guarantee certain properties based on the actual
data and application scenario. While standard DBMS can
ensure transactions, recovery, persistence, and integrity, they
are not suitable for embedded systems with limited resources.
Thus, customized DBMS are needed providing only the

required functionality and desired properties. While provid-
ing tailor-made data management is discussed elsewhere [4],
we focus on security aspects of tailor-made data management
necessary in automotive systems [1, 5]. The large amount
of sensors and new technologies such as Car-2-Car (C2C)
or Car-2-Infrastructure (C2I) increase the overall complexity
and enable attackers to assess the system [6].

We argue that the use of DBMS in automotive systems
provides substantial support to tackle both mentioned prob-
lems, unstructured and inefficient data management, and
ensuring data security. Others sketched an approach for
automotive database management systems (DBMS) to store
data from ECUs and to provide access to other ECUs [7].
For example, depending on the required accuracy, the speed
could be measured at the wheels or using a GPS unit and
continuously stored at a database. Other devices can read
the current speed from the database for further usage, for
example, to decide whether to lock the doors automatically
or just to display the current speed.

In this work, we present a prototypical implementation
of a tailor-made automotive DBMS, called AutoDaMa.
We ported an existing highly customizable DBMS [4] to
an industrial prototyping system, designed for developing

2 ISRN Software Engineering

and testing software in automotive systems. Based on the
AutoDaMa implementation, we make the following contri-
butions. First, we demonstrate that it is feasible to provide
a tailor-made DBMS for automotive systems by means
of a prototypical implementation. Second, we show that
security mechanisms integrated in a DBMS can prevent from
unauthorized manipulations and thus increase the reliability
and safety of the system. Third, we outline the benefits of a
customizable DBMS for efficient and flexible data manage-
ment in automotive systems.

2. Tailor-Made Software

We propose the use of tailor-made DBMS in automotive
systems. But, it is not obvious how to develop tailor-made
software systems. While there are several implementation
techniques to build tailor-made software systems, we focus
on feature-oriented programming, since we used this tech-
nique for our prototype.

A feature is a software engineering term that is meant to
represent concrete requirements of a stakeholder [8]. More
specifically, a feature provides the essential or additional
functionality of a software system [9]. When we consider
a DBMS, a feature for example is the supported operating
system, for example, Unix or Windows. Another feature can
be the storage, which is, for example, based on pages or a list
index. Optionally, we can add data types using features. As
these small examples show, features have different relation-
ships to each other: features can be optional (pure addition
of behavior), mandatory (strictly required to provide core
requirements), and exclusive (features are alternative to each
other).

Feature-oriented programming (FOP) puts a new dimen-
sion to the object-oriented paradigm and supports the
modularization of features [10]. As a feature represents
a requirement of a certain stakeholder, it usually cross-
cuts the modularization into classes, that is, a transaction
feature needs to change a number of methods in several
classes. Therefore, feature-oriented programming provides
the ability to split classes into features, that is, the user can
define several class fragments consisting of certain fields and
methods. Thus, a feature consists of a set of class fragments.

Tailor-made software can be build using feature com-
position. Based on a selection of features, class fragments
are composed to tailor-made classes that only contain the
desired functionality. A software system built using feature
composition is called a variant. The set of all variants that
can be built from a set of features is called a software product
line.

We use FeatureC++ to implement a software product
line of DBMS for automotive systems called AutoDaMa.
FeatureC++ is a language extension of C++ with support for
features and their composition based on a feature selection
[11]. By using FeatureC++, we gain the ability to provide
different variants of AutoDaMa, which are tailor made for
respective automotive systems.

Utilizing feature-oriented programming and software
product lines to build tailor-made DBMS comes with
advantages. First, new variants can be easily developed by

implementing a new feature or just by combining already
existing ones. Good reuse opportunities allow faster and
less expensive development [12]. Second, efficient algorithms
exist to test or verify all variants at the same time, instead
of redundantly checking each similar variant from scratch
[13, 14]. Hence, building reliable and tailor-made DBMS
seems worth, and we study the feasibility for automotive
systems.

3. Automotive Data Management

In this section, we give an overview of automotive systems
and how they work. Subsequently, we figure out current
problems of data management in such systems and how a
customizable DBMS can help to overcome these problems.

3.1. Automotive Systems in a Nutshell. Automotive systems
are complex, software-intensive systems, where up to 80
ECUs (including corresponding sensors and actors) are
connected via bus systems. The data exchanged in such a
system can be used by the ECUs to fulfill a certain function
(in isolation or interaction with other ECUs) or to derive new
data that are needed for certain functionality. For instance,
given the information on wheel rotation in relation to the
time needed for one rotation and the wheel size, an ECU
can compute the speed, the revolution per minute, or the
distance for a certain range of time.

In Figure 1, we show an exemplary and simplified
part of such an automotive system. Besides the physical
connection of the several components via different bus
systems (CAN, MOST, etc.), we divided the system in logical
subsystems. According to the function an ECU contributes
to, it is assigned to the power train, infotainment, or comfort
subsystem. All subsystems are connected to each other by
a central device called Gateway. Furthermore, the different
sensors (Si) and actors (Ai) are directly connected with the
ECUs where the sensors collect data, and the actors act on
data in a predefined way.

As one can imagine, the data used in the different
subsystems have different influence on the overall behavior
of the system and thus different requirements. For instance,
the power train subsystem has hard real-time constraints
(<10 ms), which requires high transmission rates for data.
Furthermore, manipulation of data that is used within the
power train subsystem can have devastating consequences
for the safety of the system and its occupants due to high
accident risks. By contrast, manipulation of infotainment
data may be annoying but not critical for life and limb.

Additionally, the particular devices (ECUs) have a local
view on data, that is, each ECU is responsible only for the
data used by itself. As a result, data handling is highly decen-
tralized, heterogeneous, and unstructured in automotive
systems. In fact, the logic for handling data is implemented
as hardware solution and thus very inflexible with respect to
changing requirements.

3.2. Problem Statement. Automotive systems are expected
to become even more complex in near future due to new
technologies such as Car-2-Car, Car-2-Infrastructure, and

ISRN Software Engineering 3

Automotive system

Infotainment

Power train

Comfort

Powe train

Co rt

ECU

ECU

ECU ECU

ECU

ECU ECU

ECU

ECU ECU

ECU
..

..

....

..

..

..

..

..

..

..

..

..

..

....

..

..

..

Gateway

Ai

Si

Si

Figure 1: Exemplary part of an automotive system.

X-by-Wire [6]. This, in turn, comes along with an increase of
the data that has to be managed within the system. We argue
that the current solution for data “management” has reached
its limit and will lead to severe problems in future. Firstly, the
missing (uniform) data structure, as provided by a DBMS,
increases the complexity and hinders a consistent view on
the handled data. Second, the decentralized data handling
leads to increased I/O operations and thus to an inefficient
data access. In both cases, a data management system can
mitigate the problems and even provide new capabilities
such as consistent data validation and verification. Third,
current solutions do not address data security aspects such as
integrity, authenticity, and privacy though recent approaches
show the vulnerability of automotive systems to malicious
attacks [5, 15, 16]. Additionally, new technologies such as
C2C or C2I even increase the risk of such attacks [17].
With a DBMS and its access management capabilities, these
problems can be addressed efficiently.

However, common database implementations that pro-
vide the needed capabilities are not applicable due to the
restrictive resource constraints of automotive systems. More-
over, the monolithic architecture of traditional implemen-
tations does not meet the different requirements of the
different subsystems and its devices. Hence, we argue that
we need a highly configurable data management that can be
tailored to the specific requirements. We propose to use a
software product line to address the demand for customiza-
tion and present an exemplary implementation to achieve the
following goals: First, improved flexibility and extensibility
of data management in automotive systems by introduc-
ing tailor-made data management; second, integration of
security aspects that can be customized to several levels;
third, demonstration of the feasibility of automotive data
management by means of an example.

4. Prototype AutoDaMa

We implemented the customizable DBMS AutoDaMa

that runs on the MicroAutoBox [18]. MicroAutoBox is

an embedded system provided by the company dSPACE
designed for but not restricted to automotive scenarios. It
can be connected to a CAN bus to communicate with other
automotive devices and directly to a PC via serial port. The
connection to a PC is used to program the MicroAutoBox
and for debugging purposes.

AutoDaMa is a DBMS that can be customized to the
needs of the application, for example, whether security
features are needed, but also database management-specific
options such as Indexes. Hence, it is possible to optimize
the DBMS regarding several nonfunctional properties such
as binary size, performance, or security issues.

Fortunately, we did not need to implement the DBMS
from scratch. We based our implementation on FAME-
DBMS [4], a feature-oriented DBMS for embedded scenarios
which is highly customizable. In FAME-DBMS, several fea-
tures can be deactivated to save resources strongly limited on
embedded systems.

FAME-DBMS is written in FeatureC++ [11], a language
to write feature-oriented C++ programs. The DBMS imple-
mentation is split over several feature modules each imple-
menting a certain feature, for example, whether the DBMS
is in-memory or a page replacement strategy or whether the
DBMS supports the removal of tuples.

While FAME-DBMS is already intended to run on
embedded systems, porting it to the MicroAutoBox was
concerned with high effort due to hard restrictions for
applications running on it. Hence, we only ported a subset of
features of FAME-DBMS to the MicroAutoBox. In total, we
ported 32 variants of FAME-DBMS, that is, DBMS variants
that can be generated with the ported feature modules. For
example, we omitted FAME-DBMS’s support for SQL, and
data can only be accessed using an API.

In Figure 2, we present all the features of AutoDaMa and
their valid combinations in a feature model. AutoDaMa is
decomposed into the features of FAME-DBMS such as the
operating system, buffer management, storage management,
and the data access operators.

4 ISRN Software Engineering

AutoDaMa

FAME-DBMS

OS

PCC Win

Buffer

Replace

LRU LFU

Hash find

Storage

Page Data types List index Put Get Update Remove

Security

Symmetric

BF DES

RSA

Mandatory

Optional

Alternative

And

AccessAPI

In memory

Figure 2: A feature model describing the valid feature combinations of AutoDaMa. AutoDaMa consists of the FAME-DBMS product
line and some security-related features. Filled circles indicate mandatory features and empty circles optional features. An arc indicates that
exactly one of the subfeatures is required, that is, the features are alternative to each other.

In automotive scenarios, security requirements play an
important role. But not all data in the car should be secured
as security usually comes with worse performance. Thus, an
automotive security engineer should decide which data to
secure and be able to generate a DBMS with an appropriate
level of security. As FAME-DBMS has no support for
security, we implemented some encryption mechanisms as
features such that the DBMS can be customized to the
intended level of security.

As shown in Figure 2, we implemented Blowfish and
3DES as symmetric encryption algorithms and RSA for
asymmetric encryption. In our prototype, an asymmetric
algorithm is always combined with a symmetric algorithm
to gain the performance of symmetric encryption together
with the security of asymmetric encryption. A total number
of 96 DBMS can be generated from AutoDaMa.

Using a DBMS in an automotive context seems worth to
manage the data produced by several sensors, while DBMS
for desktop computers or servers have a very large footprint
and have lots of unused functionality. AutoDaMa gives us
the opportunity to build customized DBMS that contain only
the functionality needed, and all customized DBMS have a
common code base. Both help to build reliable and secure
DBMS.

With AutoDaMa, DBMS can be generated fulfilling
certain level of security to optimize the performance for
given security requirements, that is, without encryption or
a certain encryption with known performance and security
properties. Furthermore, the source code is reliable because
of the high reuse of software artifacts using feature-oriented
programming.

5. Results and Experiences

In this section, we present two application scenarios to
show the feasibility of AutoDaMa. Furthermore, we discuss
our implementation and figure out future challenges that

have to be addressed for establishing a fully fledged data
management solution in practice.

5.1. Exemplary Application Scenarios. To demonstrate the
feasibility of a (tailor-made) DBMS in automotive systems
and its benefits, we have chosen two scenarios: one where
data is only exchanged and stored and one where additionally
security mechanisms are integrated.

Scenario 1. For our scenarios, we use a simple automotive
system that measures and transmits the revolution per minute
(RPM) data of a car. We depict the general setup in Figure 3.

The central ECU is our prototyping system that serves
as gateway in our environment and contains a certain
configuration of our AutoDaMa product line. For the first
scenario, we configured the DBMS with the optional in-
memory feature but without the Security feature. Due to
the usage of in-memory storage, we are able to fulfill the
real-time requirements of the systems. These requirements
especially hold for data such as speed or revolution, which is
stored continuously but volatile.

Additionally, we have two ECUs that exchange data via
the gateway, namely, RPM Sensor and RPM Display. The first
ECU is connected to a sensor that continuously delivers the
RPM data to the ECU. Subsequently, this data is sent to
the AutoDaMa variant (i.e., the gateway) where it is stored
using an update operation. Hence, only the last data, sent
to the DBMS, is stored. The latter ECU (i.e., RPM Display)
requests the data from the DBMS to display it immediately to
the driver within the dashboard. In case that the automotive
system shuts down (e.g., switching off the car), the DBMS
writes back the current value to nonvolatile storage (here
flash disk).

Scenario 2. Although the first scenario provides data man-
agement capabilities to automotive systems, it does not solve
the second problem we mentioned: data or IT security. For
instance, with the previous scenario it is still possible to

ISRN Software Engineering 5

AUTODAMA

RPM
sensor

RPM
display

Gateway
M

ECU ECU

Sender Receiver
ay

Figure 3: Basic setup of our automotive system.

RPM
sensor

Engine
controlGatewayM

ECU ECU

Sender Receiver

EncryptionEncryption Decryption Decryption

AUTODAMA

Figure 4: Setup of automotive system with encrypted communication.

connect to the bus system with an external, nonauthorized
device and perform attacks such as man-in-the-middle in
order to tamper (safety related) data [5]. Hence, with our
second scenario, we aim at ensuring security aspects such as
integrity or authenticity of the data. Therefore, we selected
the optional Security feature together with its subsequent
features BF and RSA (cf. Figure 2) that implement concrete
encryption algorithms. As a result, we could generate a
variant of AutoDaMa that includes security mechanisms.

In Figure 4, we depict the resulting scenario. Due to the
security mechanisms in the DBMS that perform encryption
of the data, we had to extend the other ECUs as well,
in this case RPM Sensor and Engine Control. Despite this,
communication and storage of data takes place as described
in Scenario 1, using again the revolution data. Most notably,
the data handling at each ECU changed since the data had to
be encrypted after receiving and decrypted before sending.
As result, we can ensure the integrity and authenticity of the
data. For instance, imagine an attacker connects an external
device to the system and injects malicious data. Because
the attacker is not aware of the encryption key, he can
not encrypt his data. Consequently, the DBMS can detect
nonauthorized data and reject it. Additionally, we ensure
the privacy of data because the attacker can not read the
encrypted data without knowledge on the encryption key.

Results. We executed our scenarios in different time frames
(e.g., 10 minutes, 20 minutes) and with different, randomly
chosen values for the RPM data in the range of 0 and 4000.
In both scenarios, storing and providing (which corresponds
to write and read operation in common DBMS) data was
possible without any problems. Furthermore, we logged the
data initially sent to the DBMS and the data that arrived
at the receiver and observed that they were consistent (e.g.,
no information get lost or changed). Finally, we were able
to fulfill the time constraints of the CAN bus. Hence, the
data management systems had no negative effect on the
performance of the system.

5.2. Discussion. Establishing a DBMS for automotive systems
with its complex, heterogeneous devices, and highly restric-
tive resources is not a trivial task. We have shown by a proto-
typical implementation that tailor-made data management,
using new software engineering techniques, may overcome
some of these burdens. Nevertheless, this was just a first step,
and we observed different problems that have to be addressed
in future.

First of all, we demonstrated the applicability of auto-
motive DBMS with a small example that abstracts from the
complexity of common automotive systems. Considering an
entire system, more research and more studies have to be
performed especially to establish a system-wide DBMS. A
major point of interest is how we can address the different
requirements to a DBMS even within a single system. For
instance, a central DBMS with all features needed by any
ECU would lead to an oversized system. Furthermore, this
would definitively be a bottleneck with respect to the data
flow, and thus, the performance would be unacceptably low.
Alternatively, several instances of the AutoDaMa product
line could solve these problems but exhibit another problem
that has to be solved: how can different instances (of a
DBMS) interact efficiently in such a scenario? Some pioneer
work has been done in this field, but still many questions
remain [19]. Possibly, the answer can be given by adapting
distributed DBMS concepts and techniques to automotive
systems or even investigate new ones.

Second, the limited capacity of the CAN bus, especially
the restricted packet size for sending messages, could bare
problems for a DBMS solution. Especially in the case of
adding extra information for security or meta data, this could
hinder an efficient and practicable solution. However, with
new and more sophisticated solutions like the FlexRay bus,
these problems are mitigated or even vanish.

Finally, the introduced security mechanisms require a
corresponding infrastructure (e.g., public key infrastructure)
to unfold their full potential. Unfortunately, current ECUs do
not support such an infrastructure. Hence, car manufactures

6 ISRN Software Engineering

have to be aware of the security risks and provide technical
solutions, so that such mechanisms can be integrated by
default.

Nevertheless, we are convinced that tailor-made data
management is a sustainable solution to overcome the prob-
lems of managing the huge amount of data in automotive
systems. With the presented prototype, we provided first
insights on the feasibility of such a solution and a first step
towards its realization.

6. Related Work

Tailor-made database management, especially for embedded
systems, is not a new idea, and thus different work in this
field exists. First, the COMET DBMS for embedded real-
time systems is the most similar approach to our work
[20, 21]. The focus of this approach is on component-based
software development using aspect orientation. As a result,
COMET DBMS is also a flexible and customizable database
management system for automotive systems. However, due
to the component approach, tailoring can be done only on a
coarse-grained level compared to AutoDaMa. Furthermore,
the authors do not consider data security as part of the
DBMS.

Another approach is FAME-DBMS, which was the
starting point for our implementation [4]. Although this
leads to some commonalities between both systems, there are
significant differences. First, FAME-DBMS is designed and
implemented for sensor networks rather than automotive
systems, which implies differences in the real-time behavior
of the systems. Second, FAME-DBMS does not include any
mechanisms for ensuring security of the managed data.

In the same way, Leich et al. present a lightweight storage
manager for sensor networks using stepwise refinement
and feature-oriented programming [22]. Similar to us, they
argue that different nodes in the network have different
requirements to the DBMS. By contrast, they focus mainly
on the mechanisms used for implementation rather than the
applicability in real-world scenarios. Furthermore, security
issues are omitted as well, while they are included in our
approach.

Beyond the mentioned systems, different special-purpose
database systems exist. For instance, GnatDB [23] is a
DBMS for digital right management while PICO DBMS [24]
provides data management functionality for smart cards.
However, these systems are different to AutoDaMa due to
its specific application domain. Furthermore, these systems
do not focus on customizing a DBMS.

7. Conclusion

The continuously growing number of sensors in automotive
systems and the networked usage of the accrued data can
profit from DBMS. Clearly, not every DBMS such as Oracle
can and should be used in this context. The reason is that on
embedded systems resources are restricted, and the DBMS
should bring only the functionality that is actually needed.

We put an existing customizable DBMS, namely, FAME-
DBMS into an automotive context, that is, we ported it to the

MicroAutoBox which communicates with other automotive
devices using the CAN bus. Furthermore, we extended the
DBMS by new security features essential in the automotive
context.

Our experience showed that while there is some effort
needed to port an existing implementation to the embedded
device, and the effort is worth due to several reasons.
First, well-established concepts for DBMS can be reused in
embedded scenarios and do not need to be implemented
from scratch. Second, a customizable DBMS comes with
the advantage that different DBMS are generated from a
common source code, and thus the implementations are
validated and well tested. Third, even for one automotive,
systems different DBMS may be generated for different secu-
rity requirements or requirements to the data management,
for example, persistent or in-memory storage.

Future work should evaluate the benefit of DBMS in
automotive scenarios using larger case studies in an indus-
trial context. Furthermore, also other DBMS designed for
embedded systems could be appraised towards their utility
in automotive systems.

Acknowledgment

This work has been supported by the European Commission
through the EFRE programme COMO under Contract no.
C(2007)5254.

References

[1] M. Wolf, Security Engineering for Vehicular IT Systems, Vieweg
and Teubner, Berlin, Germany, 2009.

[2] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner, “Software
engineering for automotive systems: a roadmap,” in Proceed-
ings of Future of Software Engineering (FOSE ’07), pp. 55–71,
IEEE Computer Society, 2007.

[3] W. Zimmermann and R. Schmidgall, Bussysteme in der
Fahrzeugtechnik, Vieweg and Teubner, 3rd edition, 2007.

[4] M. Rosenmüller, N. Siegmund, H. Schirmeier et al., “FAME-
DBMS: tailor-made data management solutions for embedded
systems,” in Proceedings of the Workshop on Software Engi-
neering for Tailor-Made Data Management (SETMDM ’08), S.
Apel, M. Rosenmüller, G. Saake, and O. Spinczyk, Eds., pp. 1–
6, ACM, 2008.

[5] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to auto-
motive CAN Networks—practical examples and selected
short-term countermeasures,” in Proceedings of the Interna-
tional Conference on Computer Safety, Reliability, and Security
(SAFECOMP ’08), pp. 235–248, Springer, 2008.

[6] T. Ernst and A. De La Fortelle, “Car-to-car and car-to-
infrastructure communication system based on NEMO and
MANET in IPv6,” in Proceedings of the Intelligent Transporta-
tion System World Congress (ITSWC ’06), 2006.

[7] S. Schulze, M. Pukall, G. Saake, T. Hoppe, and J. Dittmann,
“On the need of automotive data management in automotive
systems,” in Proceedings of the GI-Fachtagung Datenbanksys-
teme für Business, Technologie und Web (BTW ’09), Lecture
Notes in Informatics, pp. 217–227, Gesellschaft für Informatik
(GI), March 2009.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson, “Feature-oriented domain analysis (FODA)

ISRN Software Engineering 7

feasibility study,” Technical Report CMU/SEI-90-TR-21, Soft-
ware Engineering Institute, Carnegie Mellon University, 1990.

[9] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in
software product lines,” in Proceedings of the 30th International
Conference on Software Engineering (ICSE ’08), pp. 311–320,
ACM, May 2008.

[10] C. Prehofer, “Feature-oriented programming: a fresh look at
objects,” in Proceedings of the European Conference on Object-
Oriented Programming (ECOOP ’97), vol. 1241 of Lecture
Notes in Computer Science, pp. 419–443, Springer, 1997.

[11] S. Apel, T. Leich, M. Rosenmüller, and G. Saake, “FeatureC++:
on the symbiosis of feature-oriented and aspect-oriented pro-
gramming,” in Proceedings of the International Conference on
Generative Programming and Component Engineering (GPCE
’05), R. Glueck and M. Lowry, Eds., vol. 3676 of Lecture Notes
on Computer Science, pp. 125–140, Springer, 2005.

[12] D. Beuche, Composition and construction of embedded software
families, Ph.D. thesis, University of Magdeburg, Magdeburg,
Germany, 2003.

[13] T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel, “Proof
composition for deductive verification of software product
lines,” in Proceedings of the 4th IEEE International Conference
on Software Testing, Verification, and Validation Workshops
(ICSTW ’11), pp. 270–277, IEEE Computer Society, 2011.

[14] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Type
safety for feature-oriented product lines,” Automated Software
Engineering, vol. 17, no. 3, pp. 251–300, 2010.

[15] T. Hoppe and J. Dittmann, “Sniffing/replay attacks on can
buses: a simulated attack on the electric window lift classified
using an adapted CERT taxonomy,” in Proceedings of the
Workshop on Embedded Systems Security (WESS ’07), 2007.

[16] A. Barisani and B. Daniele, “Unusual car navigation tricks:
injecting RDS-TMC traffic information signals,” in Proceed-
ings of the CanSecWest Conference, 2007.

[17] A. Lang, J. Dittmann, S. Kiltz, and T. Hoppe, “Future
perspectives: the car and its IP-address—a potential safety and
security risk assessment,” in Proceedings of the International
Conference on Computer Safety, Reliability and Security (SAFE-
COMP ’07), pp. 40–53, 2007.

[18] R. Krauße, Entwicklung und evaluierung eines sicheren daten-
bankmanagementsystems für automotive Systeme, M.S. thesis,
University of Magdeburg, Magdeburg, Germany, 2010.

[19] S. S. ur Rahman, V. Köppen, and G. Saake, “Cellular DBMS:
an atempt towards biologocally-inspired data management,”
Journal of Digital Information Management, vol. 8, no. 2, pp.
117–128, 2010.

[20] D. Nyström, A. Tesanovic, C. Norström, J. Hansson, and N.-E.
Bankestad, “Data management issues in vehicle control sys-
tems: a case study,” in Proceedings of the Euromicro Conference
on Real-Time Systems (ECRTS ’02), pp. 249–256, 2002.

[21] D. Nyström, A. Tesanovic, C. Norström, and J. Hansson,
“COMET: a component-based real-time database for auto-
motive systems,” in Proceedings of the Workshop on Software
Engineering for Automotive Systems, 2004.

[22] T. Leich, S. Apel, and G. Saake, “Using step-wise refinement
to build a flexible lightweight storage manager,” in Proceedings
of the East-European Conference on Advances in Databases and
Information Systems (ADBIS ’05), pp. 324–337, Springer, 2005.

[23] R. Vingralek, “GnatDb: a small-footprint, secure database sys-
tem,” in Proceedings of the International Conference on Very
Large Databases, pp. 884–893, 2002.

[24] L. Bobineau, C. Bouganim, P. Pucheral, and P. Valduriez,
“PicoDMBS: scaling down database techniques for the smart-
card,” in Proceedings of the International Conference on Very
Large Databases, pp. 11–20, 2000.

Submit your manuscripts at

http://www.hindawi.com

International Journal of
Computer Games
Technology
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in Software
Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence &
Neuroscience

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

