
IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 8, AUGUST 2010 1

Secure and Efficient Broadcast Authentication in
Wireless Sensor Networks

Taekyoung Kwon, Member, IEEE, and Jin Hong, Non-member, IEEE,

Abstract—Authenticated broadcast, enabling a base station to send commands and requests to low-powered sensor nodes in an
authentic manner, is one of the core challenges for securing wireless sensor networks. µTESLA and its multi-level variants based on
delayed exposure of one-way chains are well known valuable broadcast authentication schemes, but concerns still remain for their
practical application. To use these schemes on resource-limited sensor nodes, a 64-bit key chain is desirable for efficiency, but care
must be taken. We will first show, by both theoretical analysis and rigorous experiments on real sensor nodes, that if µTESLA is
implemented in a raw form with 64-bit key chains, some of the future keys can be discovered through time memory data tradeoff
techniques. We will then present an extendable broadcast authentication scheme called X-TESLA, as a new member of the TESLA
family, to remedy the fact that previous schemes do not consider problems arising from sleep modes, network failures, idle sessions,
as well as the time memory data tradeoff risk, and to reduce their high cost of countering DoS attacks. In X-TESLA, two levels of
chains that have distinct intervals and cross-authenticate each other are used. This allows the short key chains to continue indefinitely
and makes new interesting strategies and management methods possible, significantly reducing unnecessary computation and buffer
occupation, and leads to efficient solutions to the raised problems.

Index Terms—Security, broadcast authentication, time-memory-data tradeoff, wireless sensor networks.

F

1 INTRODUCTION

T ECHNOLOGICAL advancement in large scale dis-
tributed networking and small sensor devices has

led to the development of wireless sensor networks with
numerous applications [1]. Sensor nodes are usually con-
strained in their computation, communication, storage,
and energy resources for economical reasons, but need
security functions since they are deployed in unattended
or even hostile environments. The high risk of physical
attacks and the limited capabilities of sensor nodes make
it difficult to apply traditional security techniques to
wireless sensor networks, posing new challenges [29].

Authenticated broadcast, enabling a base station to
send authentic messages to multiple sensor nodes, is
one of the core challenges [20], while even the broadcast
by nodes is an important topic in wireless sensor net-
works [7], [21], [25]. For the purpose, digital signatures
(public-key) are not very useful in a resource limited
environment, while naı̈ve use of HMAC (secret-key)
does not work either, as node capture can lead to a key
compromise. µTESLA and its multi-level variants [18],
[19] based on TESLA [26], [27], use a one-way chain
practically [13] under a loose time synchronization as-
sumption. The sender attaches a MAC (Message Authen-
tication Code) to each packet, computed using a key
from the chain in reverse order. The keys are exposed
after a certain time delay. The receiver buffers the re-
ceived packet until the corresponding key is disclosed

• T. Kwon is with the Department of Computer Engineering, Sejong
University, Seoul, 143-747, Korea. E-mail: tkwon@sejong.ac.kr.

• J. Hong is with the Department of Mathematical Sciences and ISaC, Seoul
National University, Seoul, 151-747, Korea. E-mail: jinhong@snu.ac.kr.

and verifies the MAC, after authenticity of the key itself
has been verified by following through the chain.

1.1 Motivation (and Problems)
µTESLA and its variants are designed to be practical, but
significant concerns still remain.

1.1.1 64-bit key chain
A short 64-bit key chain is desirable for efficiency in
resource-limited sensor nodes, but care must be taken,
even with short time intervals. As we show, if the chain
is generated in a straightforward manner, TMD (Time
Memory Data) tradeoff techniques can be applicable,
leading to discovery of future keys.

1.1.2 Sleep mode or network failure
If sensor nodes go into a sleep mode or key disclosure
messages are lost frequently, µTESLA may force heavy
key computation to be done at once on sensor nodes for
chain verification, during which incoming packets get
dropped. If CDMs (Commitment Distribution Messages)
are missing, multi-level µTESLA makes nodes wait and
buffer for the long interval of upper levels, during which
incoming packets are dropped due to the buffer limit.

1.1.3 Idle sessions
Even for idle sessions with no broadcasts, µTESLA forces
chain computation for sensor nodes. Key disclosure mes-
sages should be broadcast constantly or heavy compu-
tation needs to be done later. Multi-level µTESLA needs
CDMs to be broadcast for higher levels, with the number
of CDMs increasing with the number of levels.

T
h
i
s

i
s

t
h
e

a
c
c
e
p
t
e
d

v
e
r
s
i
o
n

o
f

I
E
E
E

T
r
a
n
s
.

C
o
m
p
u
t
e
r
s

5
9
(
8
)

p
p
.
1
1
2
0
-
1
1
3
3

(
2
0
1
0
)
.

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
1
1
0
9
/
T
C
.
2
0
0
9
.
1
7
1

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. ?, NO. ?, ? 2009

1.1.4 Extended lifetime
With node malfunctions and premature power exhaus-
tion, there are needs for node additions [1] or recharge-
able sensor nodes [15]. Thus, the lifetime of a network
may extend beyond that of each node. As noted in [18],
[19], lifetime extension was not clearly considered in
µTESLA. Multi-level µTESLA should also fix the lifetime.

1.1.5 DoS attacks
To resist DoS attacks, multi-level µTESLA requires many
CDMs to be distributed for longer intervals. Its DoS
tolerant version needs sufficiently large buffers on sensor
nodes for random selection of received CDMs. The DoS
resistant version requires CDMs to be received stably
along with a larger packet and additional hash function.

1.2 Our Contribution (and Results)
The contribution of this paper is two-fold.

(i) We first show, both by theoretical analysis and rig-
orous experiment on real sensor nodes, that if µTESLA
is used with parameters that are currently widely con-
sidered to be appropriate, a non-negligible number of
future keys can be recovered with cryptanalytic tradeoff
techniques, utilizing realistic resources. One may have
tried applying tradeoff techniques to the 64-bit one-
way function of the µTESLA family and found it not
useful, as it does not recover the current key to be
used. However, with two non-trivial tricks, we turn this
around. We aim to invert 16-step iterations of the usual
one-way chain considered, within a 40-day period on
multiple targets. As a result, an adversary recovers a
key to be released in the 16th of 200ms intervals after-
ward, from knowledge of a key most recently disclosed,
and eventually generates the keys which allow him to
send many authenticated messages of his choice for the
duration of 14 intervals, or equivalently, 2.8 seconds. To
demonstrate the effectiveness of this attack, we construct
the Hellman table on a modern PC, and launch the attack
in our test-bed environment using real sensor nodes
such as Berkeley Mica-Z and Tmote Sky (Telos rev. B)
motes. Note that we are not insisting on the insecurity
of µTESLA, as a simple fix is available, but want to
emphasize that care must be taken when implementing
µTESLA from the literature alone.

(ii) We then present an eXtendable broadcast authen-
tication scheme called X-TESLA as a new variant in
which the aforementioned concerns are all considered.
(a) Two-level1 chains that have distinct intervals and
cross-authenticate each other are used with four types of
packets. This allows the chains to continue indefinitely
and shorter chains to be used, leading to reduced mem-
ory and pre-computation requirements. (b) Promising

1. For those confusing X-TESLA and two-level µTESLA, we compare
them briefly. In X-TESLA two level chains work in parallel for the
same duration whereas the lower level chains are derived from the
next upper level chains, repeatedly. In two-level µTESLA each key of
the fixed upper level chain yields distinct lower chains.

variations are also considered. (c) The TMD-tradeoff
attack problem is resolved without increasing the key
size and staying within the bounds set by default 29-byte
data payload size of TinyOS. (d) A specific design of one-
way chains using a blockcipher is given for efficiency,
i.e., without additional encryption. (e) The commitment
hopping strategy and sleep mode management are pro-
posed as well. Sensor nodes then can skip unnecessary
chain computation for a future key later and go into a
long sleep mode stably. With these methods, X-TESLA
can cope with the problems coming from sleep modes,
network failures, and idle sessions. (f) DoS attacks are
resisted without requiring large buffers or strict commit-
ment delivery guarantee, both of which were required
for multi-level µTESLA. (g) We also conduct prototype
implementation and performance analysis.

1.3 Organization
The remainder of this article is organized as follows. In
Section 2, we review related work on broadcast authen-
tication for wireless sensor networks, and discuss their
problems and shortcomings. In Section 3, we show how
TMD-tradeoff can be applied to µTESLA with a detailed
attack algorithm and also a concrete implementation
result. In Section 4, we introduce an extendable broad-
cast authentication scheme called X-TESLA. Security and
performance of X-TESLA are analyzed in Section 5. We
conclude this paper in Section 6. The Appendices contain
additional technical details.

2 BACKGROUND

Implementation of public-key cryptosystems is becom-
ing possible, but still expensive [14], [22]. Energy-
efficient sensor nodes are also great concerns [5]. More
practically in this section, we briefly review µTESLA and
its multi-level variant for moderate sensor nodes [18],
[19], [28]. All these schemes are constructed without
using public-key cryptography.

2.1 µTESLA
We give a short description of µTESLA, referring readers
to [28] for more detail. µTESLA is a broadcast authentica-
tion mechanism for distributed sensor networks, which
was adapted from TESLA [26]. In short, a delayed expo-
sure of one-way chain is used for authentication. For this,
it is required that the base station and sensor nodes be
loosely time synchronized with a known maximum syn-
chronization discrepancy bound. Unlike TESLA, which
authenticates the initial packet with a digital signature,
µTESLA uses only symmetric key techniques. The sender
first fixes a public one-way function F and chooses a
random value Kn. The one-way chain Ki = F (Ki+1)
is iteratively calculated for all n > i ≥ 0 and the last
element K0 is pre-installed in each receiver, the sensor
node, as an initial commitment. µTESLA also provides
a method for bootstrapping a new receiver through

T. KWON and J. HONG: SECURE AND EFFICIENT BROADCAST AUTHENTICATION IN WIRELESS SENSOR NETWORKS 3

unicasting. Time is divided into short intervals. During
the i-th interval Ii, the messages broadcast are sent with
a MAC keyed with Ki. After a suitable delay, the key
Ki itself is broadcast. Given a key Ki, calculating Kj

for j > i is expected to be infeasible, but anybody can
calculate Kj for j < i, so it is easy to check the validity
of any newly received Ki with the commitment K0, or
any other Kj satisfying j < i.

2.2 Multi-level µTESLA

One drawback of the single chain used in µTESLA is that
there is a practical limit to its length, leading to a usage
time limit. Also, the bootstrapping of a new receiver in
µTESLA utilizes unicasting and hence is not scalable.
Multi-level µTESLA [18], [19] solves this problem by
using multiple chains in multiple levels.

Several levels of chains are used with each (except for
the top) level consisting of multiple chains. The lowest
level is a normal chain used for message broadcasts and
usually lasts for a relatively short period. Upper levels
exist to authenticate their very next lower level chains.
When the lowest level chain draws to an end, the second
level chain is used to authenticate the commitment for
the next lowest level chain to be used. The second level
broadcasts the CDM, with clear expression of i in the
MAC only,

CDMi = i‖Ki+2,0‖ ⊥ ‖MACKi(i‖Ki+2,0‖ ⊥)‖Ki−1,

in its i-th interval, where ‖ denotes concatenation. Note
that ⊥ means a null value which is ignored in a basic
version but will be replaced by a hash value in a DoS
resistant version. The new commitment Ki+2,0 for the
lowest level is authenticated with the key2 Ki. Note that
Ki+2,0, the lowest level commitment corresponding to
the (i + 2)-th second level interval, can only be verified
by the sensor nodes after receiving CDMj with j > i. To
authenticate a new 2nd level chain commitment, the 3rd
level is used, and so on. The top level is a single chain
that has to last as long as the sensor network lifetime. So
even though the use of multiple levels allows shortening
of each chain, the total lifetime still has to be predefined.

Since CDMs are distributed within a longer time inter-
val, DoS attacks must be considered. Multi-level µTESLA
provides two variants for this. One is the DoS tolerant
version with a random selection method, requiring large
node buffers to store multiple CDMs for each level. The
other is the DoS resistant version, and uses a hashing
technique adapted from TESLA’s immediate authentica-
tion method. This demands large base station storages
for additional pre-computed chains, and larger payload
CDMs, with hash value h(CDMi+1) replacing ⊥.

2. The MAC key is derived from Ki through some pseudo-random
function, but we shall ignore this throughout this paper for simplicity.

3 TIME MEMORY DATA TRADEOFF ATTACK ON
µTESLA
We shall show that if µTESLA is used with parameters
that are currently widely considered to be appropriate,
say 64-bit keys, TMD-tradeoff techniques [3], [4], [10],
[11], [12] can disclose future keys, only relying on real-
istic resources. Since a simple fix is possible we do not
insist on the insecurity of µTESLA, but this shows that
a simpleminded implementation can be broken not only
theoretically but also in a real-world sense.

Target System: To keep our discussion simple, we shall
fix various parameters, but no small tweaking of these
parameters will make the system immune to our attack.
We assume a multi-level µTESLA with 64-bit key chains
created by a one-way function F . Adjusting our attack to
single-level µTESLA will be straightforward. Our target
system will disclose a key every 200ms with a delay of
two time intervals at the lowest level and start a new
chain every 1 hour. Appropriateness of this choice is
explained in Appendix A.

Attack Objective: Readers with experience in the trade-
off technique will see that applying it to the one-way
function F is useless, as the current key is not retrieved.
So we take the non-trivial approach of having our at-
tacker recover the key to be released in the 16th future
200ms interval (3.2 seconds later), from the key most
recently disclosed. If such an undisclosed key is dis-
covered within 200ms of obtaining the current disclosed
key, from it, an attacker can generate the keys which
will allow sending of authenticated messages for the
duration of approximately 14 intervals (2.8 seconds).
Loss of control for even a short amount of time can
be devastating to the sensor network security, as the
attacker may force nodes to replace all their current level
keys with commitments of his choice. Once this has
been done, commands from the real base station will
no longer be authenticated and the attacker gains full
control over the sensor network.

3.1 Attack Overview

Our attacker will work over a 40-day period. Throughout
this period, on each of the 200ms intervals, he will
repeatedly try to see if he can recover the key that is to
be disclosed 16 steps later from the current disclosed key.
The choice of 16 was taken to give the attacker enough
time for commitment replacement and may be adjusted
to meet theattacker’s needs.

Let us write H = F 16 to denote 16-iterated applica-
tions of the one-way function F used in constructing the
(bottom-level) chain. Notice that if y is the current 64-bit
disclosed key and x is the key to be disclosed 16 steps
later, then y = H(x). So, the attacker wishes to find x,
given y = H(x). As H is not injective, not all such x will
be the correct future key, but we shall ignore this for now.
Consider the set of all keys disclosed during the 40-day
period. These would consist of multiple shorter chains,

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. ?, NO. ?, ? 2009

each lasting one hour. After removing 15 starting3 keys
from each of these shorter chains, we name the resulting
set that contains

D :=
(1

0.2
·60·60−15

)
· (24·40) ∼ 224.04 (1)

keys as D̂.
We shall give an algorithm which processes each of the

keys from D̂, over a 40-day period, and finds a pre-image
under H for some of these. The 15 keys were removed as
there are no 16-step future keys for these one-way chain
beginnings. The algorithm is expected to find the correct
future key with 64.3% probability, and can process each
key within 200ms of receiving it, when run on a PC.

Our choice of 40 days, which is equivalent to the
choice of D ∼ 224, and the choice of parameters m = 227

and t = 213, to appear below, may seem arbitrary.
At this stage, we can only state that any choice with
their product mtD approximately equal to the key space
size 264, will work. Our specific choices were made so
that the storage size m, pre-computation effort mt, and
target count D are all within available resources. While
their true meaning can only be understood after the
algorithm and its analysis are understood, one may keep
in mind that the succes of the attack basically relies on
the birthday paradox to produce a collision between the
pre-processed mt keys and the D online keys.

3.2 The Algorithm
The attack will proceed in two stages. The first will be
a pre-computation phase, that produces a 2GB Hellman
table. This will be used in the online phase to invert H .
Section 3.4 explains why our algorithm works.

3.2.1 Table Creation
We fix the chain length to t = 217 and the number of
chains to m = 227. We take a nontrivial permutation P
acting on 64-bit values and define H̃ = P ◦ H . Here,
P may be as simple as the reordering of the two 32-bit
words constituting a 64-bit value. Its obscure purpose is
explained in Appendix C.3.

Algorithm 1 Create Hellman table T
1: Open an empty table T .
2: for 0 ≤ i < m do
3: Choose random 64-bit value x.
4: y ← x
5: for 0 ≤ j < t do
6: y ← H̃(y)
7: end for
8: Add ordered pair (x, y) to T .
9: end for

10: Sort T according to the second components.

The attacker goes through Algorithm 1 to create a table
containing m entries. With each entry taking 16 bytes,

3. These are the ones that would be disclosed last.

the created table is 2GB in size. Table creation requires
t ·m = 240 applications of H̃ and a one-time sorting of
m elements. The H̃ part dominates the time, which is
(almost) equal to 240 · 16 = 244 applications of F . This is
within reach of current computational power.4 Once this
table is created, it may be used multiple times to attack
multiple deployments of the system that uses the same
F to create key chains.

3.2.2 Online Phase
In the second phase, the attacker attempts to invert H .
Armed with the 2GB table T , he runs Algorithm 2,
processing every disclosed key y ∈ D̂.

Algorithm 2 Invert H = F 16

Require: Hellman table T created by Algorithm 1
1: InvCtr ← 0
2: for every y ∈ D̂ do
3: y′ ← P (y)
4: for 0 ≤ i < t do
5: if (x′, y′) ∈ T for some x′ then
6: x← x′

7: for 0 ≤ j < t− i− 1 do
8: x← H̃(x)
9: end for

10: if H̃(x) = P (y) then
11: print “x maps to y under H.”
12: InvCtr ← InvCtr + 1
13: else
14: print “False alarm.” (optional)
15: end if
16: end if
17: y′ ← H̃(y′)
18: end for
19: end for
20: print “InvCtr keys inverted.” (optional)

Each outer y-loop of Algorithm 2 requires t = 213 ap-
plications of H̃ , disregarding false alarms. This amounts
to approximately 16 · t = 217 applications of F and
computing this within 200ms is equivalent to requiring
5 ·217 applications of F per second. If a key to ciphertext
mapping of a 64-bit blockcipher is used to implement
F , this corresponds to encryption speed of 5 MB/sec,
which can easily be done on modern PCs.5

3.2.3 Sensor Network Control Takeover
Deferring careful explanation to Section 3.4, we state
that the above algorithms are expected to return x
satisfying H(x) = y about 17.5 times and that there is
a 64.3% chance that one of these is the correct future

4. In our experiments, a Linux system with four AMD Opteron 875
processors (dual-core, 2.2GHz) and 32GB RAM was used, and Algo-
rithm 1 took 6 days to complete.

5. If a very slow F is used, the attacker could set up multiple
machines. For example, if 600ms is required to run a single y-loop of
Algorithm 2 on a specific system, three machines would be prepared,
and these would take turns processing the sequentially disclosed keys.

T. KWON and J. HONG: SECURE AND EFFICIENT BROADCAST AUTHENTICATION IN WIRELESS SENSOR NETWORKS 5

key. Although the attacker has no means of knowing
beforehand which of the 17.5 instances is the correct
key, commands can still be sent out to the sensor nodes,
authenticated with his key guess. A small number of
tries will go unnoticed. Explicitly, the attacker may send
out the following set of commands to the sensor nodes:

(a) Repeated reconfiguration for battery
consumption: reroute, change_cluster, wakeup.

(b) Enticing malfunction: change_nodes,
detach_region, disabled_list, change_param.

(c) Network domination: change_keys,
change_commitment, change_bs, add_nodes.

The SimpleCmdMsg format of TinyOS could be utilized.
As its size is only 13 bytes, a single command fits into
one packet easily. The usual 36-byte TinyOS packet takes
less than 30ms to send on a 10kbps radio network, while
the 39-byte ZigBee packet takes less than 10ms on a
50kbps radio network. So the above sets of commands
should work even if we had a window of a single second.

3.3 Attack Implementation

We run both simulation and real world test of attacks.

3.3.1 Function Choice
Following the most commonly cited example in the
related literature, our one-way function F was created
from RC5 [31]. We need to be more explicit, as RC5 is
a parameterized family of blockciphers, among which
the most commonly used version utilizes 32-bit words,
12 rounds, and 128-bit keys. The 32-bit word implies
64-bit blocks and is suitable for us, but as the chain
needs the key size to be of 64 bits, we took the 32-
bit word, 12 round, 64-bit key version. The one-way
function maps a 64-bit key to the 64-bit ciphertext which
is an encryption of the all-zero plaintext under the given
key. The swapping of two 32-bit words constituting a 64-
bit value was used as permutation P .

3.3.2 Hellman Table Creation
Instead of starting each Hellman chain with a random
64-bit value, we used the numbers 0 through 227 − 1 as
these initial points. As these can be written down in a
32-bit space, the total Hellman table size became 1.5GB
instead of the 2GB, referred to in our discussion. This
allows for the Hellman table to be loaded onto a PC’s
2GB memory with ample room left for the OS. In fact,
we use a Cygwin Unix emulation environment on a PC
in which only 1.5GB memory is allowed, and the 1.5GB
table must fit into that memory without a large loss.

3.3.3 Online Phase Simulation
Random chains corresponding to 40 days were gener-
ated, with each hour starting a new chain from a new
random starting point, for a total of 960 = 24 · 40
independent chains. We simulated the online phase on
our Opteron system, with the target chains distributed

over the 8 cores. It took 40 hours to complete, meaning
13.3 days on a single core. As our requirement of 200ms
per key processing allows this to be done over a 40-day
period, this is three times faster than what we would
need.

Using the same Hellman table, we did ten simulations
with ten independently generated target data sets. Many
correct 16-step future keys were obtained and we ob-
served 80% probability of success. Details are given in
Appendix B.

3.3.4 Sensor Network Application

To check the online phase in real time and to demon-
strate the effectiveness of this attack, we took one of
the many 1-hour chains that resulted in a correct 16-step
future key and performed a test using real sensor nodes.

We first construct our µTESLA base station by plac-
ing the chosen 1-hour chain on a PC with dual AMD
Opteron 244 (1.8GHz) processors and 4GB of memory. A
Tmote Sky (Telos rev.B) is connected to the PC through a
USB port, and is forwarded µTESLA messages through
a Serial Forwarder (SF) using UART, which is then
sent over a IEEE 802.15.4 radio channel. µTESLA is
implemented in C with 200ms time intervals. A Berkeley
Mica-Z sensor node in which the chain commitment is
installed, can verify the µTESLA messages containing
data and keys. We have the sensor node blink its yellow
LED for verified data messages and its green LED for
key disclosure messages. The Hellman table is placed on
another PC to act as the attacker. Two Tmote Skys are
connected to the attack PC through USB ports, so as to
listen to the base station and send out forged messages.
An attack program implemented in C communicates
with the Listener and the Sender through UARTs, and
sends out forged commands making the sensor node
blink its red LED. Through our attack experiment, we
were able to visually check the red LED flashing. This
is the result of the attacker’s forged messages, created
using 14 valid keys, each corresponding to one interval.
Details of the experiment are discussed in Appendix B.

3.4 Tradeoff Attack Analysis

In this section, we shall give a brief analysis of our
attack algorithm. This section is somewhat technical and
may be skipped by anyone that can believe that our
attack succeeds with a reasonable probability and that
it can be applied to most modifications of our explicit
attack target. The more subtle aspects of the algorithm
are discussed in Appendix C.

3.4.1 Attack Success Probability

Let us see what probability of success we can expect from
our attack. We start with a small lemma, whose proof
is elementary. Consider a set N of size N . Randomly
choose and fix D distinct elements from N and name
the set D. Next, randomly choose H elements from N ,

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. ?, NO. ?, ? 2009

one at a time, with replacements, and call the collection
H. The family H may contain overlapping elements.

Lemma 1: Assuming D ≪ N and DH ∼ N , the
probability of D and H containing at least one element
in common can be approximated by

p ∼ 1− exp
(
− DH

N

)
. (2)

Let us apply Lemma 1 to our attack setting. The base
space N will be the set of all possible 64-bit keys, so
that N = 264. Next, consider the set of all online keys
disclosed during the 40-day period. These would consist
of multiple shorter chains, each lasting one hour. We
remove 15 ending keys6 from each of these shorter chains
and take the resulting set as Ď.7 The number of elements
D in Ď is given by equation (1), as before. These D
elements may be assumed to be distinct, for, if otherwise,
the key chain would repeat itself and the authentication
system would fall under a more trivial attack.

Take Ȟ to be the family of keys appearing as input
points to mapping H̃ applied during creation of T . This
excludes the ending points of each Hellman chain, and
refers to H = t·m = 240, possibly overlapping, elements.8

Now, a careful review of Algorithm 2 will reveal that
should there be any element common to Ď and Ȟ, it
will be returned by Algorithm 2. This common element
x ∈ Ď maps to the disclosed key H(x) ∈ D̂ and implies
success of attack. The success probability of our attack
can be calculated as

p ∼ 1− exp(−1.029) ∼ 0.643, (3)

by substituting various numbers into Lemma 1.

3.4.2 Parameter Tweaks
In this subsection, we consider application of our trade-
off attack to other sensor network configurations.

(i) Shorter Disclosure Interval: Suppose the sensor net-
work uses key disclosure interval shorter than the 200ms
we have considered. This would result in a larger online
target set being available to the attacker for the same (40-
day) period of attack. This allows the success probability
of attack to be maintained with a shorter Hellman chain.
Hence the attacker can cope with the shorter time inter-
val allotted to processing of each key. There may still
seem to be one problem, as the attacker recovers the 16-
interval future key and this is closer in real time than
before. But a faster disclosure interval would usually
mean a faster radio network, and hence the attacker
would be satisfied with the shorter time available for
trying out of the recovered key. Another approach the
attacker may take is to attempt to recover keys further

6. These are the ones that would be disclosed the earliest, and
includes, in particular, the commitment.

7. The set Ď (D-check) is different from D̂ (D-hat) introduced earlier
in Section 3.1.

8. For those familiar with time memory tradeoff techniques, we add
the remark that our Hellman table is far from reaching the matrix
stopping rule, and hence is free from problems due to elements being
taken in chain groups and not totally independently of each other.

steps into the future. This would require longer pre-
computation time for the same length Hellman chains
and a more powerful system during the online phase.
By a more powerful system, we mean that one could
either use a faster processor, or let multiple processors
take turns processing the target data, each for a time
span longer than the disclosure interval.

(ii) Longer Disclosure Interval: If the opposite approach
of using longer disclosure interval is used, the attacker
has less online target data available than before. But
this gives him more time to process each target data,
so longer Hellman chains can be used. This will result
in the pre-processing time increasing, but an increase
by a small factor is well within current computational
power. The attacker can also take the approach of trying
to recover keys smaller steps into the future. Then the
longer Hellman chains will not take longer to create.

3.4.3 Discussion
The tradeoff attack technique has been known for a long
time, and this raises the question as to why delayed
exposure of 64-bit one-way key chains had widely been
accepted as a plausible authentication method.

Note that for a straightforward application of the
original Hellman method [11] or the more widely known
rainbow table method [24], a pre-computation phase
consisting of about 264 calculations of the one-way
function is required. While no one can say for sure
that this is currently impossible, it does seem to be
out of reach for most organizations. Coupled with the
resource constrained environment, these 64-bit one-way
chain methods seem acceptable at first sight. But the
Hellman method and rainbow table method deal with
only a single target data. Our approach of trying multiple
times over an extended period and being content with
succeeding just once seems to have been overlooked.

The multiple target version of tradeoff attack tech-
nique we have used in this paper, applicable to any
one-way function, is not new and has been developed
in [3], [4], [10]. But until it was made explicit by the
recent work [12], many took this to be applicable to only
streamciphers in a particular way.

The main contribution of this paper concerning the
weakness of current µTESLA is of pointing out that mul-
tiple target version of pre-computation attack is naturally
applicable to the one-way chains. In doing this, the idea
of looking into a 16-step composition of what would usu-
ally have been taken as the one-way function of interest
was crucial. As long as succeeding even once within an
extended time period is a realistic threat, there seems to
be no way of using 64-bit one-way chains without salting
them, that is, even on low-security applications.

4 X-TESLA: SECURE AND EFFICIENT
BROADCAST AUTHENTICATION PROTOCOL
4.1 Overview of X-TESLA
Our basic idea starts from the extendable management
of short key chains. In essence, we make two levels of

T. KWON and J. HONG: SECURE AND EFFICIENT BROADCAST AUTHENTICATION IN WIRELESS SENSOR NETWORKS 7

!""#$%&#'#(
)#*%+,-./0

&12#$%&#'#(
)#*%+,-./0

3%3%3

333

3%3%3

333 333 333 333

4-5%678,#/8.9-8#%:787$#%7""#$%
%%%%%(#'#(%;#*%9,-./

4<5%678,#/8.9-8#%91==.8=#/8%1:%
%%%%%:787$#%(12#$%(#'#(%;#*%9,-./

(a)

S2,1
J2,1

F1!!!

!!!

!!!

S1,1 S1,2 S1,n

S1
1,1 S2

1,1 Sm
1,1 S1

1,2 S2
1,2 S1

2,1 S1
3,1

!!!

K0
1,1

!!!

K0
2,1

K1
1,1 Km

1,1 K1
1,2 K1

2,1

J1,1 J1,2 J1,n

K0
3,1

K1
3,1

F1

F0

F1 F1 F1

F1 F1

F1
K2

1,2
!!!

!!!

!!!

!!!

K2
1,1

Sm
1,n

Km
1,n

F1

F1

Km
2,n

Sm
2,n

S3,1
J3,1J2,n

S2,n

!!!

(b)

Fig. 1: Basic Concept of X-TESLA. (a) Cross authentication. (b) Basic flows. (An upper level chain and a lower
level chain run for the same duration in parallel but with different time intervals, so that the upper level chain
is composed of much smaller number of keys than the lower level chain. The last key of the lower level chain is
derived from the first key of the next upper level chain.)

chains having distinct time intervals cross-authenticate
each other (Fig. 1a) to provide permanently extendable
chains. Our protocol X-TESLA, read either as eks TESLA
or cross TESLA, stands for eXtendable TESLA. As with
other TESLA variants, X-TESLA provides broadcast au-
thentication, under the assumption that the base station
and sensor nodes are loosely time synchronized with a
known maximum synchronization discrepancy.

The crossing of Fig. 1a illustrates the followings.
(a) The lower level chain naturally authenticates the

next upper level chain, as they are connected in a
single chain by construction.

(b) Multiple distinct keys in the upper level chain au-
thenticate the initial commitment of the next lower
level chain repeatedly.

The repeated authentication will help in resolving prob-
lems from DoS attacks, sleeping nodes, and idle sessions.

4.2 Basic Framework of X-TESLA

4.2.1 X-TESLA chains
Two functions F0(· , ·) and F1(· , ·), mapping K×S to
K will be used. Here, K denotes the key space, and
S is the salt space. For each fixed s ∈ S , we expect
the operator Fi(· , s) on K to be one-way, even when
s is known. In practice, we design the two functions
with 64-bit blockciphers taking 64-bit keys and salt as
plaintext in Section 4.4. The two functions may even
be instantiated with the same blockcipher. Let us divide
time into intervals with indices 〈u, v〉 and 〈u, v, w〉 used
for the upper and lower levels, respectively. Let u index
both level chains having the same durations for u > 0, v
do intervals of each upper level chain for 0 < v ≤ n, and
w divide those intervals minutely for a corresponding
lower level chain for 0 < w ≤ m. Intervals themselves
will be denoted as Iu,v and Iwu,v . We let Ju,v and Kw

u,v

denote the corresponding upper and lower level keys.
When v = 0 or w = 0, an indexed key is a commitment.

One of distinctive features of X-TESLA is the use of
salt values denoted by Su,v and Swu,v , whose choice we
defer to Section 4.4. These will remove TMD-tradeoff
concerns by making pre-computation infeasible. After

fixing each salt value, we define the upper level chain for
each positive integer u > 0, by starting from a random
seed key Ju,n ∈ K and recursively setting

Ju,v = F0(Ju,v+1, Su,v+1) (0 < v < n).

The resulting chain is J1,1 ← J1,2 ← · · · ← J1,n 8 J2,1 ←
J2,2 ← · · · , where 8 signifies a disconnection.

For each u > 0 and n ≥ v > 0, the lower level chains
are constructed by recursively setting

Kw
u,v =

{
F1(Kw+1

u,v , Sw+1
u,v) (0 < w < m)

F1(K1
u,v+1, S

1
u,v+1) (w = m),

starting from the seed key Km
u,n = F1(Ju+1,1, Su+1,1) and

ends with the commitment K0
u,1 = F1(K1

u,1, S
1
u,1). The

resulting chain is K0
1,1 ← K1

1,1 ← K2
1,1 ← · · · ← Km

1,1 ←
K1

1,2 ← · · · ← Km
1,n(← J2,1) 8 K0

2,1 ← K1
2,1 ← · · · , with

each K0
u,1 becoming the commitment for the u-chain.

Note that the commitment of an upper level chain is
implicitly set as Ju,0 = Km

u−1,n.
In short, we are using salted functions to generate

chains, and the lower level chain is a descendant of the
next upper level chain. Index u may increase indefinitely
while indices v and w are confined to n and m, respec-
tively. See Fig. 1b for a diagram.

4.2.2 Communication Packets
For the framework of TinyOS, we design communication
packets to fit within its 29-byte default payload size. It is
trivial to allow larger packets if necessary. As depicted
in Fig. 2, we define four types of packets that use
the first byte of data payload for type distinction and
the following four bytes for an index. Type 1 is an
authenticated data packet of which 16 bytes are used for
data transmission and the remaining 8 bytes are used for
MAC generated by a lower level key. Type 2 is another
form of authenticated data packet of which only 8 bytes
are used for data transmission with an 8-byte MAC,
while the remaining 8 bytes are used for key disclosure
of a previous lower level interval. Type 3 is designed
to handle sleeping nodes and idle sessions. It is the
same with Type 2 except that the 8-byte data is a future
lower level key masked with a future upper level key.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. ?, NO. ?, ? 2009

!"#" $%& '()*!+

,----.---------/-0----------/------------/

!"#" $%&*!+

,----.----------------,1-0----------------/

234-5"6'(#-7)8(-9:;:.2"4-5"6'(#-7)8(-,

#

Fig. 2: Data payload in packets of X-TESLA.

The masked key is authenticated soon but unmasked
much later. Of course, Type 2 and Type 3 can trivially
be merged up to a single type of slightly larger packet.
Type 4 packets hold a future lower level commitment at
the data portion with a MAC calculated from an upper
level key. Notice that the same lower level commitment
is sent throughout a whole upper level chain. The AUX
header field and the structure of CCM encryption mode
of ZigBee [36] packets may be of some use in making
more efficient variants of the packet types.

4.3 X-TESLA Details
4.3.1 Initialization
We assume a base station broadcasts authenticated mes-
sages to sensor nodes. A method to choose salt val-
ues is fixed at system design phase. The base station
generates the first upper level chain by choosing seed
key J1,n ∈ K at random and also generates the first
lower level chain together with the second upper level
chain by choosing another seed key J2,n ∈ K randomly.
The values J1,0 = F1(J1,1, S1,1) and K0

1,1 are stored
in each sensor node as initial upper and lower level
commitments, respectively. Depending on the way salt
is chosen, some extra information may also need to be
stored. It would be advisable to keep these values secret
until just before deployment. Generation of the second
lower level chain together with the third upper level
key chain should soon follow, so as to be ready for
commitment distribution. When the initialized nodes are
deployed, they are to be loosely time synchronized with
the base station, as assumed in µTESLA.

4.3.2 Broadcast Authentication
During an Iwu,v , the base station uses Kw

u,v as the MAC
key for Types 1, 2, and 3 packets being sent out, and
reveals Kw

u,v after a wait of time δ from the end of Iwu,v ,
in Type 2 or 3 packets. We shall abuse interval indices,
setting Iu,n+1 = Iu+1,1, Im+1

u,v = I1
u,v+1, Iu,0 = Iu−1,n,

and I0
u,v = Imu,v−1. The following is a Type 2 packet

for use with “δ = one time interval.” Here, | denotes
concatenation and ∗ signifies the index and data portion.

T2Pwu,v = 〈u, v, w〉‖data‖MACKw
u,v

(∗)‖Kw−2
u,v

This corresponds to what is usually stated as key dis-
closure delay of two time intervals. A sensor node may
verify the MAC with Kw

u,v if F1(Kw
u,v, S

w
u,v) = Kw−1

u,v is
true, after some delay. Whenever a valid Kw

u,v is received,
it may replace the current commitment.

If the key disclosure message is lost, the sensor
node buffers all messages it receives until a key dis-
closure message is successfully received, and computes

F j1 (Kw+j
u,v , Sw+···

u,v) to obtain Kw
u,v , where F j1 is the j-times

iterated application of F1 (with appropriate salt values).

4.3.3 Commitment Hopping

With TESLA variants, there are at least two situations in
which verification of a newly disclosed key places heavy
computational load on a sensor node, resulting in many
message drops, for the duration of this computation.
First, if a sensor node falls into sleep mode or turns off
its radio power to save energy, it may not be able to
listen to the key disclosure messages during that period.
Second, if there are long idle periods with no broadcast,
it would be wasteful to disclose keys on schedule and
a base station might minimize the key disclosures for
those periods. As a result, there could be a large gap
between the current commitment and the key to be
verified. Type 3 packets can resolve this problem, by
providing commitment hopping. Let Iu′,v′ be an interval
appearing after Iu,v . The distance9 between the two
intervals depends on the application needs. We set

T3Pwu,v = 〈u, v, w〉‖Km
u′,v′ ⊕ Ju′,v′‖MACKw

u,v
(∗)‖Kw−2

u,v .

The future lower level key Km
u′,v′ is masked by the future

upper level key Ju′,v′ and distributed in Iwu,v . A node can
authenticate it quickly within a few lower intervals, but
unmask it afterwards only when Ju′,v′ is obtained. After
unmasking, it may replace the current lower level com-
mitment, should it be older. In the opposite direction,
Km
u′,v′ can be used to reveal Ju′,v′ . If v′ is close to n,

Km
u′,v′ can be used as the next upper level commitment.

4.3.4 Cross Authentication

With X-TESLA, keys of the upper level chain can be
authenticated by the previous lower level chain since
they are connected in a single chain by construction and
since the latest commitment key of the previous lower
level is available to sensor nodes. Type 3 packets further
help in making this available. After any verification, the
commitment for the upper level can be updated.

For authentication of a new lower level chain, the
upper level chain is used. The following is a Type 4
packet. It distributes the commitment of the next lower
level chain while disclosing a previous upper level key.

T4Pu,v = 〈u, v〉‖K0
u+1,1‖MACJu,v (∗)‖Ju,v−1

The next lower level commitment K0
u+1,1 is distributed at

random instances within Iu,v , authenticated with Ju,v . In
fact, many (different) Type 4 packets are constructed and
broadcast to deliver the same next lower level commit-
ment K0

u+1,1 during Iu. Therefore, a sensor node would
have numerous chances to receive a correct K0

u+1,1 dur-
ing Iu, and resist DoS attacks without the huge buffers of
multi-level µTESLA. A node buffers a single or slightly

9. The offset should be reasonably set. Multiple offsets may be used
by assigning different message types to handle distinct offsets.

T. KWON and J. HONG: SECURE AND EFFICIENT BROADCAST AUTHENTICATION IN WIRELESS SENSOR NETWORKS 9

!""#$
%#&#'

%()#$
%#&#'

*+, *-,

!""#$
%#&#'

%()#$
%#&#'

*., */,

u u + 1 u + 2 u + 3 u u + 1 u + 2 u + 3

u u + 1 u + 2 u + 3 u u + 1 u + 2 u + 3

Fig. 3: Flexible constructions of X-TESLA. (a) Basic flow.
(b) Extended flow. (c) Reversed flow. (d) Hybrid flow.

more10 Type 4 packet appearing in the current interval
Iu,v , and waits for a future Type 4 packet disclosing Ju,v
to verify it. If it is legitimate, the node takes the received
K0
u+1,1 to be the next lower level commitment and drops

the data and MAC portions of all future Type 4 packets
received during Iu. Otherwise, the sensor node replaces
the buffered data with that of the new Type 4 packet
hoping to verify it in a future interval. Thus, the required
buffer size can be minimized. Even in the extreme case
that a node fails to obtain correct commitments during
Iu, the next upper chain authenticated by the current
lower chain is still usable. More durable constructions
are possible as discussed in Section 4.3.5.

As Ju,v−1 is disclosed by T4Pu,v , the first Type 4
packet of Iu,v is broadcast after a delay of time γ ≥ δ
from the end of the interval Iu,v−1. The condition on
γ is set because Ju,v−1 unmasks Km

u,v−1, contained in a
past Type 3 packet, and also because Ju,1 was used as a
random seed for the previous lower level key chain via
Km
u−1,n := F1(Ju,1, Su,1). A Type 4 packet, in conjunction

with a past Type 3 packet, allows for the commitment
hopping, when u′ used in T3Pwu,v is u or u+ 1.

4.3.5 Flexible Constructions

We now place more flexibility, in addition to the choice
of chain lengths, into the X-TESLA construction. This
will resolve even the most extreme situation that could
occur with Type 4 packets. Starting from the basic flow of
Fig. 3-(a), we extend the upper level chain over a number
of lower level chains for better survivability against high
communication faults and long idle sessions, as depicted
in Fig. 3-(b). Even a short extension of the upper level
chain with only small bits allows many lower level
chains to be attached, and these may be generated on the
fly. The extension increases stability of chain verification
in both levels. The change also provides longer periods
in which to distribute the next chain commitments for
both levels through Type 3 and Type 4 packet variants.

The reverse flow depicted in Fig. 3-(c) allows reduction
of Type 4 packets for environments in which authenti-
cated messages are broadcast very frequently. Since an
upper level chain serves as commitments for the next
lower level chain, Type 4 packets distribute Ju+1,0 :=

10. Within each Iu,v , a random selection process (which might come
naturally from the environment) can also be employed. Unlike DoS
tolerant µTESLA, even buffer sizes of 2 or 3 are extremely effective.

θTu Tu+1 Tu+2

!"#$%&''($&)#*
!"#$%&''($&)#*

!"#$%&''(

Φ

A
B
C

θ

wake up
wake up
wake up

!"#$%&''($&)#*

!"#$%&''($&)#*

!"#$%&''(

Fig. 4: Sleep mode in X-TESLA.

F0(Ju+1,1, Su+1,1) instead of K0
u+1,1 in this version. But

the dependance on Type 4 packets is smaller, because
the upper level keys can be recovered stably from Type 3
packets if the authenticated broadcasts of the lower level
are very frequent. The hybrid flow of Fig. 3-(d), offers
extreme durability. For every u ≡ 1 (mod 3), a lower
chain of Iu+3 is generated from a random seed with
upper chains of Iu+2, Iu+1, and Iu, together with lower
chains of Iu+1 and Iu−1 descending from this. The dotted
line signifies that the starting lower chain of I1 is an
exception, having been generated from the upper level.

4.3.6 Sleep Mode Management
Energy efficiency is mandatory for sensor networks since
tiny nodes are operated on batteries. Various types of
sleep modes11 that stop CPUs or radio functions are com-
monly used but care must be taken [16], as nodes that
have been inactive for a long time may need to do much
computation for key verification or lose commitment.

Let Tu denote the starting time of interval Iu, and set
Φ = Tu+1−Tu to the length of one upper level chain. As
depicted in Fig. 4, a sensor node shall not be allowed to
go into a long term sleep or, at the least, not be allowed to
stop radio functions for a long term period unless it has
obtained the next lower level commitment, while short
term sleeps are always allowed. More specifically, we fix
some threshold value θ that takes the clock discrepancy
of nodes into account, and for a node that has verified a
Type 4 packet at time T , we allow it to set the maximum
sleep length timer() to the duration of up to Φ only if
T < Tu + θ (as in node A of Fig. 4), and to the duration
of up to Tu+1 + θ − T if otherwise (as in nodes B and
C of Fig. 4). These values are meant to be the maximum
sleeping length, and a sensor node may repeat going
to sleep and waking up freely (or stopping and awak-
ing radio components) within the given duration. The
value θ should be fixed so that the security parameter
ε = P [Φ] − P [Φ− θ] is kept appropriately small, where
P [Φ] and P [Φ− θ] denote the probabilities for a node
to receive and verify a Type 4 packet within respective
time lengths. Note that Φ is quite long, amounting to 3.6

11. Atmel’s ATmega 128L CPU used in Berkeley Mica-Z provides
six types of sleep modes named idle, ADC noise reduction, power-
down, power-save, standby, and extended standby modes [6]. Among
them, two standby modes reawake a mote in only six clock cycles (less
than 1µs) and put it to sleep for a very short period. Thus it is quite
unlikely that the node will sleep through a long term duration. The
power-down mode stops the timer oscillator and all clocks, and the
node eventually has to be reset for wake-up. As the power-save mode
stops all components except for timer oscillator, timer/counter clock,
and SRAM, and may last quite long, it should be most effective.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. ?, NO. ?, ? 2009

! ! ! !Kn

Kn−1 Kn−2 K1 K0

Sn Sn−1 S2 S1

Fig. 5: Basic one-way chain using a blockcipher. (Salt
does not require additional encryption for chains.)

hours if, for example, 216-key chains of 200ms intervals
are used for the lower level. As depicted in Fig. 4, when
a sensor node finally awakes, it should be allowed to
go back to sleep for a long period only if it receives
and verifies the next lower level commitment. If a node
fails to verify any Type 4 packet in some Iu, it should be
made to try harder in the next interval Iu+1, for example,
by sleeping less, but often Type 3 packets could already
have provided the lower level commitment of Iu+1. The
sleep mode management system explained here should
make the extendable property of X-TESLA work stably.

Still, the upper level length in X-TESLA needs to be
chosen carefully, so that unexpected length of commu-
nication failure does not completely disrupt the system.
Though this makes parameter selection challenging, the
lengthening of the upper level is relatively cheap, and
the use of flexible construction of Fig. 3 is also possible.

4.4 Implementation of X-TESLA
4.4.1 A Practical Construction
We use 28-key chains for the upper level and 216-key
chains for the lower level with 200ms intervals but vari-
ous other combinations are also possible. The broadcast
module is implemented by connecting Tmote Sky to
a PC, and the receiving module is ported into Mica-
Z, with 17KB of program memory of which 9KB are
occupied by system. We set 28-byte12 payloads. As we
designed in Fig. 5, we utilize the 64-bit key version
of RC5 for generating chains. The salt values, used as
plaintext, should be known to the verifying node as well,
and can be defined in various ways. Taking a practical
approach, we use Su,v = 〈u, v〉 and Swu,v = 〈u, v, w〉 in the
implementation, where the indices are zero-extended to
fill the 64-bit block size, with the exception of the most
significant bit, which is used to differentiate F0 from F1.

We caution that this is not a complete solution against
TMD-tradeoff attacks. If the indices are short, so that
index repetition is common, an attacker may decide to
focus on (multiple) target points corresponding to one
fixed index. Even if index is long enough not to repeat
itself within the lifetime of the network, a tradeoff attack
on a single target would still be possible. This is not an
immediate threat with average-powered attackers, but

12. Since the Tmote Sky has a 16-bit CPU manipulating 2-byte words,
we use 28-byte payloads, so as not to exceed the 29-byte default setting
of TinyOS and borrow 2-bits from the index field for type definition.

probably not so for long with 64-bit chains. Rather we
propose a more robust solution to combine old (dis-
closed) key with the index to produce salt. For example,
we set Su,v = 〈u, v〉⊕Ju−1,0 and Swu,v = 〈u, v, w〉⊕Km

u−2,0,
where nodes keep Ju−1,0(= Km

u−2,0) until finishing Iu,v
and the initial salt is specifically given. Thus, a sort of
randomness, unpredictable until near the time of use,
could be employed, so as to prevent pre-computation.

4.4.2 Running X-TESLA
To start with, we need a 28-key chain for the upper level
and a (216 + 28)-key chain for the lower level with its
source, which is the next upper level. For commitments
soon to be distributed, one additional future chain must
be prepared. As a result, the base station maintains three
upper level and two lower level chains at run time. It
takes only 797ms to compute these chains on a PC with
dual AMD Opteron 244 (1.8GHz) CPU and only 1MB to
store them. In our test implementation, for simplicity, we
preset the starting time and had the base station send
out a synchronization command. This is acceptable, as
the initial deployment phase is usually assumed to be
secure in the literature. More sophisticated synchroniza-
tion methods can be found from [9], [17] and [33].

The number of unauthenticated packets buffered by
a sensor node depends on the period and reliability of
key disclosure messages. Concerning the key disclosure
interval, note that a 36-byte TinyOS packet, consisting
of 5-byte header, 29-byte data payload, and 2-byte CRC
tailer, takes 28.8ms to send on a 10kbps radio network,
with round-trip taking less than 60ms. Similarly, a 39-
byte ZigBee packet in which 29 bytes are data payload,
takes 5.1ms on average to send on a 60kbps13 radio
network, with round-trip taking less than 15ms. So any
key disclosure interval larger than 50ms is possible. In
case the shorter 50ms intervals are used, it might be
preferable to use slightly longer chains, to preserve the
duration covered by a single lower level chain.

5 ANALYSIS OF X-TESLA
5.1 Security
5.1.1 General Issues
As was stated in Section 4.2.1, X-TESLA protects against
TMD-tradeoff attacks through the explicit use of salt, so
that even the 64-bit key chains can be practically secure.
The extendable management of short chains leads to
security advantages as well as efficiency advantages. In
(multi-level) µTESLA, the lifetime of the sensor network
is pre-determined and a chain (or at least one chain) that
spans throughout this very long period is used. This
means that the seed key (and far future keys) should
be protected very securely, for were it to be compro-
mised without the base station being aware, it could

13. We have checked that the transmission rate of a single Mica-
Z (with a CC2420 chip) is slightly greater than 60kbps for 39-byte
packets and 120kbps for the maximum size 126-byte packets, while
the maximum for ZigBee radio is around 250kbps.

T. KWON and J. HONG: SECURE AND EFFICIENT BROADCAST AUTHENTICATION IN WIRELESS SENSOR NETWORKS 11

0 0.2 0.4 0.6 0.8 1
10!300

10!250

10!200

10!150

10!100

10!50

100
Pr

ob
ab

ilit
y

of
 a

 s
uc

ce
ss

fu
l D

oS
 a

tta
ck

 o
n

l u

Fraction of dominated intervals (k/m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 2, pl = 0.8

r = 2, pl = 0.5

r = 2, pl = 0.3

r = 4, pl = 0.8

r = 4, pl = 0.5

r = 4, pl = 0.3

Fig. 6: The success probability of a DoS attack on Iu, uti-
lizing k-interval domination per each Iu,v . (Parameters
m = 28 and n = 26 are assumed with r Type 4 packets
broadcast in each Iu,v with pl packet losses rate. Two
y-axes are used for detailed visuality: the left one in a
logarithmic scale and the right one in a normal scale.)

be troublesome for a very long period. So, depending
on the adversary model, X-TESLA, which uses short-
lived chains, will have security advantages. In any case,
using long chains is less than ideal, as function iteration
continually reduces the entropy of key space.

In X-TESLA, time is divided into minute intervals with
Kw
u,v set as the authentication key for the 〈u, v, w〉-th

lower level interval Iwu,v starting at time Twu,v , and also
into larger intervals with Ju,v set as the key for the
〈u, v〉-th upper level interval Iu,v starting at time Tu,v .
Packets authenticated with a certain correct key, but
received after the key was disclosed, taking the possible
clock discrepancy into account, should be dropped by a
receiver. Explicitly, for a message authenticated with Ju,v
and received at time T , its acceptance would be based
on whether the security condition T − Tu,v+1 + ε < γ
is satisfied14, where ε is the allowed clock discrepancy
between the sender and receivers. Similarly, for a mes-
sage authenticated with Kw

u,v and received at time T , we
would check T − Tw+1

u,v + ε < δ. This stops a bogus mes-
sage injected by an adversary from being authenticated.

5.1.2 DoS Attack Resistance

Communication faults and DoS attacks may result in
packet loss or forged packets. To overcome these problems,
a base station could repeat a packet for a reasonable
number of times. For example, if a packet loss rate is
30%, the probability of receiving can be increased to
99.2% by repeating the packet just four times. Since
the time interval of lower level chains is tiny and the
verification key is disclosed shortly, forged messages can
be deterred by an affordable buffering in the lower level.

14. For intervals whose upper level key was used in Type 3 masking,
δ should be used in place of γ.

Compared to the other types, Type 4 packets could
be less resistant to DoS attacks because they have to be
buffered until verification for the duration of the longer
upper interval. By jamming a whole interval15 Iu,v , a DoS
attacker can drop all Type 4 packets from that interval,
but fortunately the impact diminishes rapidly as the
attacker loses domination, especially when considered
over all of Iu. Let pl be the packet loss rate of sensor
nodes due to communication faults and sleep modes
and set p̄l = 1 − pl. Suppose that the base station
randomly chooses r of the m intervals within each Iu,v to
broadcast Type 4 packets and that the attacker dominates
k intervals within each Iu,v . The probability pd that a DoS
attacker is successful in Iu can be calculated as

pd =
[(

k

dp̄lre

)
/

(
m

dp̄lre

)]n−1

,

where the numerator is set to be zero when k < dp̄lre.
Fig. 6 depicts it and shows pd to be extremely low unless
the attacker dominates most of the nm channels. The
curves leaning on the right y-axis shows how large k is
necessary in each Iu,v to increase pd, while the curves fill-
ing the top left corner represent it in a logarithmic scale.
When 26-key chains and 214-key chains are employed
for respective levels with 200ms lower level interval,
and two Type 4 packets are distributed in each Iu,v over
ZigBee channels for a 0.9 hour period, which amounts
to only 0.000095% communication overhead, we can see
that pd is lower than 0.0015 for very high packet loss rate
of pl = 0.8 until the attacker has control over 90% of each
Iu,v interval and it grows only to 0.022 for 95%. When
28-key upper chains and 216-key lower chains are con-
sidered, the DoS success probability pd drops to 0.0003
even when all but 3% of the intervals is dominated. Thus
the more durable constructions of Fig. 3 that use longer
upper chains strengthen our scheme further.

Since the time interval of upper chains is relatively
long, the attacker could try to overflow sensor node
buffers with forged Type 4 packets after listening to the
correct key Ju,v−1 disclosed in that interval. However, it
is sufficient with X-TESLA that each node buffers only
a single (or slightly more) Type 4 packet received in
each interval Iu,v for verifying K0

u+1,1 within Iu. Among
the four constructions of X-TESLA (Fig. 3), the basic
method delivers the next lower level chain commitment
through Type 4 packets, but repeats it within Iu, so
that a node can receive a valid one with very high
probability. The other three constructions allow even
better probability. Consequently, X-TESLA resists DoS
attacks of forged packets intrinsically, whereas multi-
level µTESLA necessitates a large buffer and much pre-
computation with storage for its CDM packets. We could
observe at least such a big difference between them.

15. The same Type 4 packet may be repeated at random instances
within an Iu,v , while the same key is authenticated in distinct Type 4
packets during an Iu. From the perspective of a DoS attacker, each
Type 4 packet of Iu,v shall be distributed at randomly chosen lower
level interval Iw

u,v by the base station.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. ?, NO. ?, ? 2009

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

pl = 0.1

Px
P2T
P4T
P4R
P4Ri

(a)

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

pl = 0.2

Px
P2T
P4T
P4R
P4Ri

(b)

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

pl = 0.1

Px
P2T
P4T
P4R
P4Ri

(c)
Fig. 7: Probability of proper Type 4/CDM handling with a B-size buffer. (B: 24-byte unit for DoS resistant µTESLA
and 16-byte units for the others.) (a) f = 100, r = 3, pl = 0.1. (b) f = 100, r = 3, pl = 0.2. (c) f = 100, r = 2, pl = 0.1.

5.2 Efficiency Comparison

While multi-level µTESLA and X-TESLA provide com-
parable resistance against DoS attacks, in this section, we
show that the required resources are different.

5.2.1 Computation and Storage for Base Stations
With X-TESLA, only a small number of short chains need
to be stored in the base station, with the rest computed
on the fly, and the chains are extendable indefinitely.
In µTESLA and DoS resistant multi-level µTESLA, full
chains covering all of the expected lifetime (and their
CDMs in multi-level µTESLA) have to be pre-computed
and stored. By storing the pre-computed chain only in
part, storage can be reduced, but at the cost of online
recomputation. Details are discussed in Appendix E.

5.2.2 Storage for Sensor Nodes
To verify a message, a sensor node has to buffer the
index, data, and MAC fields until the delayed exposure
of the corresponding key. This is a shared property of
all µTESLA variants. X-TESLA shares another property
with multi-level µTESLA in that new commitments for
future chains need to be buffered and verified, but X-
TESLA requires less storage in the nodes than multi-
level µTESLA for three reasons. First, only two levels are
used in X-TESLA, while more levels (or longer chains)
are necessary in multi-level µTESLA. Second, X-TESLA
verifies an upper level commitment, which is masked for
later use, almost immediately after reception, following
the shorter lower level schedule, but with multi-level
µTESLA, verification of an level-` commitment must
wait through level-(`+1)’s longer interval, and this situa-
tion worsens as we go up the levels. Third, verification of
lower level commitment in X-TESLA follows the upper
level interval schedule, but without large buffering.

With X-TESLA, a sensor node stores one most recently
authenticated key as the current commitment for each
level, along with the next lower level commitment, and
possibly the masked key from a recent Type 3 packet,
adding up to a total of four keys (taking 32 bytes) at

runtime. In comparison, an M -level µTESLA node stores
3M −2 keys (taking more bytes), along with the buffered
CDMs for each level except the highest level. Let us
now look at the node storage required to handle Type 4
or CDM packets reliably, by comparing an X-TESLA of
28/216-key upper/lower chains with a 2-level µTESLA
of 212/216-key chains and a 4-level of 24/28/28/28-key
chains within the 228-key lifetime. Let r and f denote
the number of real and forged Type 4/CDM packets
appearing in a single Iu,v or lowest level 28-key interval.
To be fair, these are set to the same value for all schemes.
Assuming a node buffer of size B assigned to the
processing of Type 4/CDM packets, the probability that
a node fails to buffer any real packets within a 28-key
interval is

ρ =
(
f ′

B

)
/

(
f ′ + r′

B

)
,

where f ′ = p̄lf and r′ = p̄lr. Then, the success prob-
ability of an X-TESLA node obtaining a proper Type 4
packet during a 216-key period can be written as

PX = 1− ρ28
,

and the same can be written as

P2T = 1−
(

28f ′

B

)
/

(
28(f ′ + r′)

B

)
,

for a 2-level DoS tolerant µTESLA. A parallel figure for
a 4-level DoS tolerant µTESLA would be

P4T = (1− ρ)2
8

the probability of obtaining a CDM from each 28-key
interval. This is depicted in Fig. 7 and it can be seen
that X-TESLA performs exceptionally well regardless
of buffer size, whereas large buffers are necessary to
achieve reasonable probability in the other types.

Let us also consider the DoS resistant version of multi-
level µTESLA. In this case, assuming possession of the
current CDM, the probability 1 − prl of obtaining CDM
for the next interval is quite large. But the probability
of consecutive proper receptions decreases very quickly,

T. KWON and J. HONG: SECURE AND EFFICIENT BROADCAST AUTHENTICATION IN WIRELESS SENSOR NETWORKS 13

10!5 10!4 10!3 10!2 10!1
0

2

4

6

8

10

12

14
x 107

!

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

uTESLA
2L!uTESLA
3L!uTESLA
4L!uTESLA
X!TESLA

(a)

10!5 10!4 10!3 10!2 10!1
0

1

2

3

4

5

6

7
x 106

!

En
er

gy
 C

on
su

m
pt

io
n

(m
J)

F=40, B=20

2L!uTESLA, DoS Tolerant
2L!uTESLA, DoS Resist
3L!uTESLA, DoS Tolerant
3L!uTESLA, DoS Resist
4L!uTESLA, DoS Tolerant
4L!uTESLA, DoS Resist
X!TESLA

(b)
Fig. 8: Energy consumption of a sensor node with regard to computation and communication. (In Mica-Z,
ATmega128 CPU needs 33mW active power and 75µW sleep power, and the CC2420 radio needs 38mW receive
power [30]. In our experiment, it took 14.5ms (0.477mJ) to compute a single key following the basic chain, 15.4ms
(0.508mJ) to compute CBC-MAC of two input blocks, and 16.3ms (0.539mJ) for CBC-MAC of three blocks, using
RC5. It cost 0.106mJ to receive a 39-byte ZigBee packet and 0.114mJ for a 47-byte packet.) (a) Without forged CDMs;
F = 0. (b) With forged CDMs; F = 40, buffer B = 20 for multi-level µTESLA and B = 1 for X-TESLA.

and when a CMD is lost, one must fall back to the
DoS tolerant mode. To maintain high CDM reception
probability even in this situation both 2-level and 4-
level DoS resistant µTESLA need to be equipped with
buffer size comparable to those of DoS tolerant versions.
To make a more direct comparison, let us relax our
condition and compute the probability of a DoS resistant
4-level µTESLA obtaining CDMs from all intervals, with
the exception of one. If immediate authentication of
CDMs is conducted without buffering, this is given by

P4Ri = (1− prl)2
8

+ prl

28−1∑
i=0

(1− prl)i(1− ρ)2
8−i−1,

and, when otherwise, by

P4R = (1− ρ)2
8

+ ρ
28−1∑
i=0

(1− ρ)i(1− ρ)2
8−i−1.

These are all depicted in Fig. 7, where the exceptional
performance of X-TESLA is evident. Comparison of
buffer needed for fair performance under nice conditions
(Fig 7a) and when either pl is slightly larger (Fig 7b) or
r/f is slightly smaller (Fig 7c) shows that buffer size is
critical for µTESLA variants other than X-TESLA.

Note that the above estimations are valid only when
r′ is not too small, as they assume at least one proper
Type 4 or CDM packet arriving at the sensor nodes. This
interesting exception is treated in Appendix F.

5.2.3 Computation and Communication for Sensor
Nodes
In sensor networks, power consumption of sensor nodes
is one of the most significant issues since sensor nodes

are usually operated on batteries. With µTESLA variants,
sensor nodes may consume energy while computing
chains (for verification), computing MAC, and receiving
broadcast packets. We analyze computation and commu-
nication costs of sensor nodes from this perspective.

Let a random process X(t) have an exponential dis-
tribution and let E[X] be the expected value that is
the average distance between two packet arrivals, with
regard to a message rate. We take a slot to be the time
interval for which a single lowest level key is valid. For
example, with X-TESLA above, one upper level interval
covering 28-key lower level chain is said to have 28

slots. Let α be the number of slots within an upper level
interval, and let T be the total number of slots within
the whole duration of the key chains, or usage lifetime.
Then we define

Ci,α =

{
E[X] when σi mod α ≥ E[X],
σi mod α otherwise,

the number of slots requiring computation for verifi-
cation of the i-th packet that has just arrived, where,
σi = i · E[X]. We assume that r legitimate CDMs
and F forged CMDs are received in each interval for
simplicity. Packet losses are also disregarded for the
same reason but can be added trivially. Using these
notions, we can write the energy consumption E of each
µTESLA variant as the sum of costs from the following
operations: (1) key computation whose number is given
in terms of Ci,α, (2) MAC computation and message
radio reception, both of which counts to

⌊
T

E[X]

⌋
, and

(3) buffering and verifying of both real and adversarial
CDM or Type 3/Type 4 packets. Complete equations are
described in Appendix G. By substituting explicit values

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. ?, NO. ?, ? 2009

obtained through experiments into these equations, we
arrive at the comparisons of Fig. 8. In terms of energy
consumption, as can be seen in Fig. 8-(a), both X-TESLA
and 4-level µTESLA are superior to others unless there
are forged packets (coming from DoS attacks). If there
are forged packets, X-TESLA consumes less energy than
4-level µTESLA, as in Fig. 8-(b). With X-TESLA, a sensor
node can skip unnecessary key computation and com-
mitment verification to save energy.

6 CONCLUSION

Through the application of TMD-tradeoff techniques we
observed that care should be taken with the short-
key chain based broadcast authentication schemes. We
have proposed X-TESLA, an efficient scheme which may
continue indefinitely and securely, that addresses this
and many other issues of the previous schemes. With
the advent of more powerful sensor node commodities
such as iMote2 [14], the future of public-key technique
application to broadcast authentication looks bright, but
X-TESLA can efficiently be combined with public-key
techniques also. For example, we could modify X-TESLA
to use digital signatures on Type 4 packets, keeping
everything else the same.

ACKNOWLEDGMENT

Authors thank deeply Virgil Gligor, Adrian Perrig, Jung
Hee Cheon, JongHyup Lee, and anonymous reviewers
for their most helpful comments to improve this paper.

REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A

Survey on Sensor Networks,” IEEE Comm. Magazine, Vol. 40, No.
8, pp. 102–114, Aug. 2002.

[2] G. Avoine, P. Junod, and P. Oechslin, “Time-Memory Trade-offs:
False Alarm Detection Using Checkpoints,” Indocrypt 2005, LNCS
3797, pp. 183–196, Springer-Verlag, 2005.

[3] S. Babbage, “Improved Exhaustive Search Attacks on Stream
Ciphers,” European Convention on Security and Detection, IEE
Conference Publication No. 408, pp. 161–166, IEE, 1995.

[4] A. Biryukov and A. Shamir, “Cryptanalytic Time/Memory/Data
Tradeoffs for Stream Ciphers,” Asiacrypt 2000, LNCS 1976, pp. 1–
13, Springer-Verlag, 2000.

[5] B. Calhoun, D. Daly, N. Verma, D. Finchelstein, D. Wentzloff,
A. Wang, S. Cho, and A. Chandrakasan, “Design Considerations
for Ultra-Low Energy Wireless Microsensor Nodes,” IEEE Trans.
Computers, vol. 54, no. 6, pp. 727–740, Jun. 2005.

[6] Crossbow Technology, Inc. http://www.xbow.com.
[7] A. Durresi, V. Paruchuri, S. Iyengar, and R. Kannan, “Optimized

Broadcast Protocol for Sensor Networks,” IEEE Trans. Computers,
vol. 54, no. 8, pp. 1013–1024, Aug. 2005.

[8] P. Flajolet and A. M. Odlyzko, “Random Mapping Statistics,”
Eurocrypt 1989, LNCS 434, pp. 329–354, Springer-Verlag, 1990.

[9] S. Ganeriwal, S. Capkun, C. Han, and M. Srivastava, “Secure
Time Synchronization Service for Sensor Networks,” Proc. ACM
Workshop on Wireless Security (WiSe), pp. 97–106, 2005.

[10] J. Dj. Golić, “Cryptanalysis of Alleged A5 Stream Cipher,” Euro-
crypt 1997, LNCS 1233, pp. 239–255, Springer-Verlag, 1997.

[11] M. Hellman, “A Cryptanalytic Time-Memory Trade-off,” IEEE
Trans. on Infor. Theory, 26, pp. 401–406, 1980.

[12] J. Hong and P. Sarkar, “New Applications of Time Memory Data
Tradeoffs,” Asiacrypt 2005, pp. 353–372, Springer-Verlag, 2005.

[13] Y. Hu, M. Jakobson, and A. Perrig, “Efficient Constructions for
One-way Hash Chains,” Proc. ACNS 05, LNCS 3531, pp. 423–441,
Springer-Verlag,2005

[14] Intel IMote2 Overview, http://www.intel.com/research/
downloads/imote_overview.pdf, 2005. Commercialized by
Crossbow, INC. http://www.xbow.com/.

[15] K. Kar, A. Krishnamurthy, and N. Jaggi, “Dynamic Node Acti-
vation in Networks of Rechargeable Sensors,” IEEE/ACM Trans.
Networking, Vol. 14, No. 1, pp. 15–25, Feb. 2006.

[16] M. Karaata and M. Gouda, “A Stabilizing Deactiva-
tion/Reactivation Protocol,” IEEE Trans. Computers, vol.
56, no. 7, pp. 881–888, Jul. 2007.

[17] Q. Li and D. Rus, “Global Clock Synchronization in Sensor
Networks,” IEEE Trans. Computers, vol. 55, no. 2, pp. 214–226,
Feb. 2006.

[18] D. Liu, P. Ning, “Efficient Distribution of Key Chain Commit-
ments for Broadcast Authentication in Distributed Sensor Net-
works,” Proc. ISOC Network and Distributed System Security
Symposium (NDSS), pp. 263–276, Feb. 2003.

[19] D. Liu and P. Ning, “Multi-Level µTESLA: Broadcast Authenti-
cation for Distributed Sensor Networks,” ACM Trans. Embedded
Computing Systems, Vol. 3, No. 4, pp. 800–836, Nov. 2004.

[20] M. Luk, A. Perrig, and B. Willock, “Seven Cardinal Proper-
ties of Sensor Network Broadcast Authentication,” Proc. ACM
Workshop on Security of Ad Hoc and Sensor Networks (SASN),
October 2006.

[21] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “MiniSec: A Secure
Sensor Network Communication Architecture,” Proc. ACM/IEEE
Conf. Information Processing in Sensor Networks (IPSN), April
2007.

[22] D. J. Malan, M. Welsh, and M. D. Smith, “A Public-key Infras-
tructure for Key Distribution in TinyOS Based on Elliptic Curve
Cryptography,” Proc. IEEE International Conf. on Sensor and Ad
Hoc Comm. and Network, Oct. 2004.

[23] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography. CRC Press, 1997.

[24] Oechslin, “Making a Faster Cryptanalytic Time-Memory Trade-
off,” Crypto 2003, LNCS 2729, pp. 617–630, Springer-Verlag, 2003.

[25] J. Park and S. Sahni, “Maximum Lifetime Broadcasting in Wireless
Networks,” IEEE Trans. Computers, vol. 54, no. 9, pp. 1081–1090,
Sep. 2005.

[26] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient Authen-
tication and Signing of Multicast Streams over Lossy Channels,”
Proc. IEEE Security and Privacy Symposium, May 2000.

[27] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient and Secure
Source Authentication for Multicast,” Proc. ISOC Network and
Distributed System Security Symposium (NDSS), Feb. 2001.

[28] A. Perrig, R. Szewczyk, V. Wen, D. Cullar, and J. D. Tygar, “SPINS:
Security Protocols for Sensor Networks,” Proc. ACM/IEEE Inter-
national Conf. on Mobile Computing and Networking, pp. 189–
199, July 2001.

[29] A. Perrig, J. Stankovic, and D. Wagner, “Security in Wireless
Sensor Networks,” Comm. ACM, vol. 47, no. 6, pp. 53–57, June
2004.

[30] J. Polastre, R. Szewczyk and D. Culler, “Telos: Enabling Ultra-
Low Power Wireless Research,” Proc. International Conf. on
Information Processing in Sensor Networks, 2005.

[31] R. Rivest, “The RC5 Encryption Algorithm,” FSE 1994, LNCS
1008, pages 86–96, Springer-Verlag, 1995.

[32] P. Rogaway, M. Bellare, and J. Black, “OCB: A Block-Cipher
Mode of Operation for Efficient Authenticated Encryption,” ACM
TISSEC, Nov. 2001.

[33] K. Sun, P. Ning, C. Wang, A. Liu, and Y. Zhou, “TinySeRSync:
Secure and Resilient Time Synchronization in Wireless Sensor
Networks,” Proc. ACM Conf. on Comp. and Comm. Security
(CCS), 2006.

[34] W. Ye, J. Heidemann, and D. Estrin, “Medium Access Control with
Coordinated Adaptive Sleeping for Wireless Sensor Networks,”
IEEE/ACM Trans. Networking, vol. 12, no. 3, pp. 493–506, June
2004.

[35] S. Zhu, S. Setia, and S. Jajodia, “LEAP: Efficient Security Mecha-
nisms for Large-scale Distributed Sensor Networks.” Proc. ACM
Conf. on Comp. and Comm. Security (CCS), pp. 62–72, ACM
Press, 2003.

[36] ZigBee Specification Ver. 1.0, http://www.zigbee.org, 2005.

T. KWON and J. HONG: SECURE AND EFFICIENT BROADCAST AUTHENTICATION IN WIRELESS SENSOR NETWORKS 15

APPENDIX A
ATTACK TARGET ENVIRONMENT ADVOCATION

The target system of TMD-tradeoff attack presented in
this paper was a 64-bit key chain system with a 200ms
disclosure interval. Let us explain that this is (or was) a
practical choice of parameters for sensor networks.

The main objection would be that the 64-bit key size is
too small. Most cryptographic systems today use 128-bit
keys, or at least 80-bit keys. But in the sensor network
world, communication and storage is extremely costly
and the size of communication packets is limited. Con-
sequently, shorter keys are required. For example, the
paper [19] gives a performance evaluation of their multi-
level µTESLA protocol, using 8-byte keys. In the LEAP
paper [35], 8-byte keys are mentioned in the course
of discussing storage requirements. Finally, the SPINS
paper [28] mentions the use of RC5 for chain creation,
which is normally taken to be a 64-bit blockcipher. So
there is enough evidence that 64-bit keys are consid-
ered appropriate in the sensor network environment.
In practice, both TinyOS and ZigBee standard within
the TinyOS framework use 29-byte payloads in their
36-byte and 45-byte packets, respectively, showing how
restrictive the sensor network environment is.

While the use of 64-bit keys may seem strange to
cryptographers, this has been considered acceptable be-
cause of the way it is used. The key needs to remain
secret for only a very short period. For example, in our
setting, the attacker would need to recover the 64-bit
key from a MAC value in much less than 200ms for the
recovered key to be of any use. This is infeasible with a
straightforward approach for the moment.

Concerning the key disclosure interval, we have taken
the reasonable 200ms value as an example, but as was
explained in Section 3.4.2, with a full understanding of
our analysis it becomes clear that no small tweaking
of this parameter makes the system immune to TMD-
tradeoff attacks.

Another line of objection dismisses tradeoff attacks,
saying that the use of key indices as auxiliary input to
chain computation renders any pre-computation attacks
ineffective. Indeed, our protocol X-TESLA follows this
line of thought by incorporating salt values. Well-formed
indices could serve as salt, but as there is a practical limit
to the index length, this cannot be a complete solution.
Some other unpredictability, such as part of previously
disclosed keys have to be employed to be more robust.
In any case, we were unable to find any mentioning
of one-way chain salting in the µTESLA related litera-
ture. This is not too surprising, because straightforward
application of tradeoff attack to the obvious one-way
function, namely, the one used for chain creation, does
not bring about anything useful to the attacker. At
least two tricks were involved in our application of the
tradeoff technique.

!"##$%&'
(%)#"

*"+'
,-%.&

/, /,

0.12&"3

4"&5"3
($62"

($62"

748

748

79:(

8%1"'42%2.6&
($62"

748

79:(

;65"
<.=%>?

@AAA'BCDEFGEH

4I

4I

4I

9
22
%
=
J
"
3

(
A
4
0
9

µ

Fig. 9: Our Attack Experiment of µTESLA.

APPENDIX B
EXPERIMENT DETAIL

As was explained in Section 3.3, we did multiple tests
with independent sets of target data, but utilizing the
same Hellman table. From each of the tests, multiple
inverses were found, most of which were useless in-
verses, as explained in Section C. Of the ten independent
tests we did, eight returned (sometimes multiple) correct
inverses, so we had an 80% attack success rate. Relevant
counts are given in Table 1. The table also lists number of
false alarms obtained during each test. These amount to
less than 0.4% of 224.04, the total number of target points
we used, and caused only a negligible amount of added
online time in our tests.

As was explained in Section 3.3.4, we also conducted
the experiment of utilizing the acquired correct future
keys, to check if the online phase of our attack could
really be done in real time, in our test-bed environment
using real sensor nodes. Fig. 9 depicts the attack exper-
iment model.

The experiment result is depicted in Fig. 10. It takes
the attack program 5.2 minutes to load Hellman table16

onto its memory (part 1©). It then listens on the radio
channel through the Listener and starts the online data
processing. We can see the base station disclosing key
36b...e2 at point 0©. It took 31.1 minutes to reach
this point. At almost the same time, this disclosed key
is found by the attack program to be covered by the
Hellman table, and its 16-step pre-image key c4f...b9

16. The Cygwin Unix environment we used came with a 1.5GB
memory bound, so only 1.3GB of the 1.5GB Hellman table was loaded.

total correct false
inverse inverses alarms

test0 19 0 67151
test1 21 1 67609
test2 21 1 67850
test3 19 1 68075
test4 11 0 67655
test5 15 3 67921
test6 24 3 67291
test7 19 1 67619
test8 14 1 67816
test9 19 1 67252

average 18.2 - 67623.9

TABLE 1: Various counts for each test

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. ?, NO. ?, ? 2009

!

"

#

$

%

Fig. 10: Result of attack on µTESLA with 64-bit key chain

is printed (step 2©). The attack program suspends its
online data processing and computes 16 keys (step 3©)
by iteratively applying F , starting from the guessed key
c4f...b9. Key 0 and Key 1 are discarded, as these are al-
ready invalid due to the two-interval delayed disclosure
schedule. Finally, the attack program sends out forged
messages, one in each interval, using the remaining 14
keys (step 4©). We could visually check the red LED
flashing as commanded through the forged messages.
Note that more messages can be sent out in each interval,
for example, 39 packets in each interval and as many
as 551 packets in the 14 intervals, on the 60kbps radio
channel of our experiment.

APPENDIX C
TECHNICAL COMPLICATIONS OF ATTACK AL-
GORITHM

There are some technical detail that need to be discussed
for a full understanding of our attack algorithm.

C.1 Useless Inverses
The values x returned by Algorithm 2 are guaranteed to
satisfy H(x) = F ◦· · ·◦F (x) = y for some given disclosed
key y ∈ D̂, but due to the fact that F is not injective, this
does not necessarily imply that x is the correct key we
are looking for.

Let us explain with an example. One of the answers
returned by the online phase (Algorithm 2) of our first
test was

0xdb52a3dfd4257c4f maps to

0x41fda1a6e7439711 under H.

This implies, in particular, that the target point
0x41f · · ·11 appears in the target data set D̂. To be more
precise, it was the 316362-th key disclosed after the orig-
inal commitment. Since 316362 = 17 · (5 · 60 · 60) + 10362,
in the 18-th (lowest level) chain of the first day, we have

K10362 = 0x41fda1a6e7439711.

Below, we have listed 16 more keys that would be
released after K10362.

original
target chain

chain constructed
from H-inverse

K10362 = 0x41fda1a6e7439711 0x41fda1a6e7439711
K10363 = 0xeb8e4371692dd431 0xeb8e4371692dd431
K10364 = 0x514ad0208e26f978 0x514ad0208e26f978
K10365 = 0x942f489003b19b0d 0x942f489003b19b0d
K10366 = 0xefc2048fa4fa3896 0xefc2048fa4fa3896
K10367 = 0xda18dbf105d2b23b 0x22598a0bc31b468a
K10368 = 0x8ccfab7ff0afca67 0xa835104b88385f2a
K10369 = 0x55172839a159896d 0xe483c319004b291b
K10370 = 0x398faf4089a9db02 0xcc0f0138b485a586
K10371 = 0x577348385c0c1d21 0x30b7e35d353bf1a0
K10372 = 0x95b0a32a8083a620 0xe80bae538455dbdf
K10373 = 0x143c4ca1ba30c7d3 0x36398db6f148e058
K10374 = 0xaa7a5b344b4a096e 0xfa55bd23d0d64e47
K10375 = 0xdff2dc3cd876f034 0x4a931835045fcc02
K10376 = 0x25c66c83b3453a35 0xf727773d4acdff58
K10377 = 0x07aee857d191dc32 0xd095083ec0504952
K10378 = 0x381696484bbfc012 0xdb52a3dfd4257c4f

To the right of these keys that were to be used, we have
written down the keys obtained by iteratively applying
one-way function F , starting from the H-inverse value
0xdb5 · · ·4f. We can see that the left and right of the
first 5 lines are equal, but that the two differ from the
6-th line onward. So the true but useless H-inverse point
0xdb5 · · ·4f allows the attacker to obtain correct keys
up to the 4-th future time interval, but no further. An H-
inverse is a correct inverse only if it follows true through
the whole 16-steps. Occurrence of these unhelpful but
true H-inverses should not be confused with false alarms,
to be explained below. It is logically impossible to dis-
tinguish these unhelpful inverses from knowledge of the
H-image point y ∈ D̂ alone.

C.2 Inverse Counts
For a random function acting on a space of size N , it
is well-known [8], [23] that the number of k-th iterated
image points is expected to be (1 − τk)N , where τk is
recursively given by

τ0 = 0, τk+1 = exp(τk − 1), (4)

as long as k ≪ N . Hence, assuming F to be a random
function, given an output from Algorithm 2, i.e., an x
satisfying H(x) = y for some disclosed key y, we can
expect it to be a correct answer with probability

(1− τ16) ∼ 0.10654. (5)

Hence, were Algorithm 2 to return η pre-images under
H , the success rate would be

p = 1− (1− (1− τ16))η = 1− (τ16)η.

Equating this with (3), we get

η ∼ 9.14301 (6)

as the expected number of “x maps to y” printouts
from Algorithm 2. A more accurate lengthy in-depth

T. KWON and J. HONG: SECURE AND EFFICIENT BROADCAST AUTHENTICATION IN WIRELESS SENSOR NETWORKS 17

estimation of this value shows it to be closer to 17.5, and
is explained in Appendix D. Note that this is not related
to the success rate of our attack, but concerns how many
times the attacker needs to try out forged messages.

C.3 Relative Randomness of Sets

There is one tricky point that we should be careful about.
For our success probability discussion of Section 3.4.1
to be valid, the set Ď and family Ȟ have to be taken
randomly, or at least independently of each other.

While, as long as F is random, the chains in Ď and Ȟ
may both be thought of as providing random choice of
values in themselves, if the chains constituting the two
sets were created in the same manner, Ď and Ȟ would
not be random with respect to each other. Overlap of
one element would automatically bring about overlap of
multiple elements. On the other hand, the elements may
be seen as having been grouped together and overlap is
less likely to happen than is with two sets chosen truly
independently at random. This problem was taken into
account in our algorithms by adding the permutation
P to the Hellman table chain, so that the two types of
chains are created independently of each other.

C.4 False Alarms

False alarms occur because H̃ is not injective. These
happen when Algorithm 2 encounters a merge between
a Hellman chain and another H̃-chain that started from
some point other than the starting point of the Hellman
chain. As these require one to recreate the corresponding
chain from start before it can be dismissed, it brings
about extra work not accounted for during consideration
of the online complexity. It is known that in the rainbow
table method [24], false alarms take a considerable por-
tion of the online time. In fact, the recent paper [2] is an
effort at reducing this wasted time.

These false alarms are more rare in our case, because
we are not working with a complete table. It is reflected
in our experiment result, where only about 0.4% of the
target data we tried brought about false alarms, as in
Appendix B. If under some other setup of µTESLA,
should these false alarms cause any problem with our
online phase operating in realtime, then the check point
idea from [2] can be applied to our Hellman table.

APPENDIX D
INVERSE COUNTS

This section discusses the issue of how often useless
inverses, explained in Section C, are encountered. Our
first approximation, as given by (6), showed that, on av-
erage, 9.14 inverses are expected from Algorithm 2. But
this approximation disregards the fact that probability
distribution of image points is not uniform.

Consider the directed graph associated with a random
mapping F acting on a finite set N of size N . It is

known [8] that the ratio of i-node points, that is, the
number of points with i inverses, is expected to be

pi =
1
e
· 1
i!
, (7)

as long as the set size N is large compared to i. It
is instructive to note that the ratio of points with no
inverses, i.e., p0 = 1

e , agrees with τ1, as given by (4).
Denote by Fn = F ◦ · · · ◦ F , the mapping obtained

through doing n iterations of F and define

Ni,n = {x ∈ N | #
(
F−1
n (x)

)
= i}

to be the set of i-nodes for n iterations of F . We shall
denote the expectation for Fn i-node ratio by

pi,n = #(Ni,n)/N.

We have already stated the values pi,1 as pi above. Given
any n, since the ratios should add up to one, it is clear
that

∑∞
i=0 pi,n = 1, and since the sets F−1

n (Ni,n) (i =
0, . . . ,∞) are disjoint and cover the whole space N , it is
also clear that

∑∞
i=0 i · pi,n = 1.

To continue our discussion, we set

fn(x) =
∞∑
k=0

pk,nx
k

and employ the generating function technique. In this
language, the two relations concerning pi,n we have just
discussed can be written as fn(1) = 1 and f ′n(1) = 1,
respectively.

We are more interested in the following value, whose
calculation is somewhat tedious, but not difficult.

Lemma 2: The Fn i-node ratio values pi,n satisfy the
equation

∞∑
i=0

i2 · pi,n = n+ 1. (8)

Proof: We already know f ′n(1) = 1 for all n, and since

∞∑
i=0

i2 ·pi,n =
∞∑
i=0

i ·pi,n+
∞∑
i=0

i(i−1) ·pi,n = f ′n(1) +f ′′n (1),

proving the above statement is equivalent to showing
f ′′n (1) = n, for all n.

The n = 1 case can be explicitly calculated after
substitution of (7), providing for the starting point of
our induction on n.

Now, it should not be too hard to convince oneself
that

pi,n+1 =
∞∑
j=0

pj

(∑
k1+···+kj=i

pk1,npk2,n · · · pkj ,n

)
,

with appropriate interpretation taken for empty prod-
ucts and the i = 0 case. Next, notice that co-
efficient of xi in fn(x)j may be expressed as

18 IEEE TRANSACTIONS ON COMPUTERS, VOL. ?, NO. ?, ? 2009

∑
k1+···+kj=i

pk1,npk2,n · · · pkj ,n, so that

fn+1(x) =
∑
i

pi,n+1x
i

=
∑
i

∑
j

pj

(∑
k1+···+kj=i

pk1,npk2,n · · · pkj ,n

)
xi

=
∑
j

pj
∑
i

(∑
k1+···+kj=i

pk1,npk2,n · · · pkj ,n

)
xi

=
∑
j

pj · fn(x)j .

Using this, we can follow through the next set of equal-
ities to complete the induction step.

f ′′n+1(1) =
[d
dx

d

dx

(∑
j

pj · fn(x)j
)]

x=1

=
[d
dx

d

dx

(∞∑
j=0

1
e
· 1
j!
· fn(x)j

)]
x=1

=
1
e

[d
dx

d

dx
exp

(
fn(x)

)]
x=1

=
1
e

[d
dx

(
f ′n(x) · exp

(
fn(x)

))]
x=1

=
1
e

(
f ′′n (1) · exp(fn(1)) + (f ′n(1))2 · exp(fn(1))

)
=

1
e

(
n · e+ 1 · e

)
= n+ 1.

The induction hypothesis was used in the last equality,
and we have shown f ′′n (1) = n for all n, proving our
original statement.

We know from Lemma 1, the probability for two
sets to have at least one common element. Let us see
how many of these common points we would find on
average.

Lemma 3: Suppose a set D of D distinct points and
a family H of H (not necessarily distinct) points, both
chosen uniformly at random from N , a set of size N ,
are given. If D ≪ N , we can expect D and H to contain
DH
N elements in common.

Proof: The probability p(k) that D and H contain k
elements in common can be written as

p(k) =
(
H

k

)
·
(

1− D

N

)H−k
·
(D
N

)k
for k ≤ H . For k > H , we have p(k) = 0.

We can approximate this as

p(k) ∼
(
H

k

)
· exp

(
− D(H − k)

N

)
·
(D
N

)k
,

under the assumption that D ≪ N . Let us approximate
this once more as

p(k) ∼ Hk

k!
· exp

(
− DH

N

)
· exp

(D
N

)k
·
(D
N

)k
∼ exp

(
− DH

N

)
· 1
k!
·
(DH
N
· exp(

D

N
)
)k
,

which is valid in the k ≪ H range. Finally, using this,
the expectation for the number of common elements can
be calculated as∑

k

k · p(k)

∼ DH

N
· exp

(D
N

)
· exp

((DH
N

)
·
(

exp(
D

N
)− 1

))
∼ DH

N
, (9)

where the second approximation follows from D ≪ N .
Notice that even though our approximation is valid

only for k ≪ H , the 1
k! factor of p(k), which approaches

zero quite quickly, covers up this discrepancy, so the va-
lidity of the final outcome (9) should not be of question.

We next combine the above two lemmas.
Lemma 4: Suppose a set Ď of D points and a family

Ȟ of H points, both chosen uniformly at random from
N , a set of size N , is given. Assuming elements of D̂ :=
Fn(Ď) to be distinct and D ≪ N , we can expect D̂ and
Ĥ := Fn(Ȟ) to contain DH

N · (n+1) elements in common.
Proof: By choosing D and H elements Ď and Ȟ

uniformly at random from the domain space, for each
i ≥ 0, we have effectively chosen i ·pi,n ·D and i ·pi,n ·H
elements of D̂ ∩ Ni,n and Ĥ ∩ Ni,n at random from the
set Ni,n, a subset of the range space, of size pi,n ·N .

Through Lemma 3, the number of elements common
to D̂ ∩ Ni,n and Ĥ ∩ Ni,n can be approximated by

(i · pi,n ·D)(i · pi,n ·H)
pi,n ·N

= i2 · pi,n ·
DH

N
.

The total number of elements common to D̂ and Ĥ can
now be calculated as∑

i

i2 · pi,n ·
DH

N
= (n+ 1) · DH

N
,

where we have applied Lemma 2 to bring about the
equality. We have shown DH

N · (n+ 1) to be the number
of intersection expectancy in the image space.

Finally, we can apply this lemma to the situation
considered in the main body of this paper. Substituting
D ∼ 224.04 from (1), H = t·m = 240, N = 264, and n = 16,
we conclude that 17.495 true alarms can be expected from
Algorithm 2.

This completes the purpose of this appendix section,
but since we have the tools ready, we provide the
following proposition as an interesting result.

Proposition 1: Suppose a set Ď of D points and a family
Ȟ of H points, both chosen uniformly at random from
N , a set of size N , is given. Assuming elements of
D̂ := Fn(Ď) to be distinct and D ≪ N , the probabil-
ity of D̂ intersecting with Ĥ := Fn(Ȟ) nontrivially is
approximately

1− exp
(
− DH

N

)n+1

.

T. KWON and J. HONG: SECURE AND EFFICIENT BROADCAST AUTHENTICATION IN WIRELESS SENSOR NETWORKS 19

Proof: By choosing D and H elements of Ď and Ȟ
uniformly at random, for each i ≥ 0, we have effectively
chosen i · pi,n ·D and i · pi,n ·H elements of D̂ ∩Ni,n and
Ĥ ∩ Ni,n at random from the set Ni,n of size pi,n ·N .

Through Lemma 1, the probability for D̂ ∩ Ni,n and
Ĥ ∩ Ni,n to contain no element in common can be
approximated by

p̄i,n = exp
(
− (i · pi,n ·D)(i · pi,n ·H)

pi,n ·N

)
= exp

(
− i2 · pi,n ·

DH

N

)
.

The probability of D̂ and Ĥ not intersecting can now be
calculated as

p̄n =
∞∏
i=0

p̄i,n = exp
(
− (

∞∑
i=0

i2 · pi,n) · DH
N

)
.

Lemma 2 can now be applied to bring about our con-
clusion.
This proposition may not be interesting for n > 1, due to
the lack of application, but the n = 1 case shows that the
success probability of the pre-computation techniques
have so far been underestimated. The usual approxi-
mation that does not take into account the non-uniform
distribution of image points would have stated this value
to be 1 − exp(−DHN) rather than 1 − exp(−DHN)2, which
is slightly larger.

APPENDIX E
COMPUTATION AND STORAGE OF BASE STA-
TIONS: COMPARISONS

The efficiency advantages of X-TESLA for base stations
may come from the extendable management of short
chains in two levels. Fig. 11 compares the number of keys
required for various µTESLAs, and shows that X-TESLA,
which is DoS resistant as well as extendable, is the
most flexible method for base station deployment when
efficiency is considered. For multi-level µTESLA, the DoS
resistant versions are compared since X-TESLA is also
DoS resistant in the same context. For X-TESLA, the pre-
computation of future chains required for commitment
distribution has been counted additionally. The total
computation of X-TESLA is 0.39% larger than that of
µTESLA, but the pre-computation and storage require-
ments are 99.95% smaller than µTESLA. Note that the
frequent regeneration of chains can also add to security.

To cover 1.7 years with 200ms intervals and 64-bit
keys, the original µTESLA requires pre-computation of
a single 228-key chain and 2.1GB of storage. Its recom-
putation version may pre-compute the whole chain but
store only a decimated fraction of the keys (2 · 28 + 220).
This allows a tradeoff between storage and online re-
computation load. The amount of pre-computation for
DoS resistant multi-level µTESLA, is slightly more than
that of µTESLA, with pre-computed CDMs demanding

0.5

1

1.5

2

2.5

x 108

Th
e

nu
m

be
r o

f k
ey

s

uTESLA uTESLA 2L! 3L! 4L! X!TESLA
0

2

4

6

8

10

12
x 105

(recomp.) TESLA TESLA TESLA

Fig. 11: Number of keys for covering 1.7 years with
200ms intervals. (The full bars, almost indistinguishable
from each other in height, give the total number of keys.
The number of pre-computed (black+gray) and stored
(black) keys are also given. The recomputation version
assumes keys recomputed (gray) in 28-key segments.)

additional storage17. We consider 2-level µTESLA with
214-key chains, 3-level µTESLA with a 28-key chain for
the highest level and 210-key chains for the rest, and
4-level µTESLA with 24-key chains for the highest and
28-key chains for the rest. With X-TESLA using 28-key
chains and 216-key chains, three upper level chains and
two lower level chains are necessary at runtime. So
the required amount of pre-computation (and storage)
with X-TESLA is only about 0.05% of those of µTESLA
and DoS-resistant multi-level µTESLA. The amount of
runtime storage is about 12.57% of that of even the
recomputation version of µTESLA. As for the amount of
real-time computation done at a base station, X-TESLA
needs to generate a single (28 + 216)-key chain every 3.6
hours. Similarly, the recomputation version of µTESLA
should recompute 216 keys within the same 3.6 hours.

APPENDIX F
BUFFER REQUIREMENTS UNDER HARSH CON-
DITIONS

Following the notation of Section 5.2.2, the various prob-
ability estimates given therein are valid only when r′ is
not too small, as they assume at least one proper Type 4
or CDM packet arriving at the sensor nodes. To treat
the r′ ≪ 1 situation more properly, we may treat r′ as
the probability of this arrival18, and a better estimate for
X-TESLA would be

PX = 1−
(

1−min
{ B

f ′ + 1
, 1
})28r′

.

Corresponding probability P2T = 1−
(
28f ′

B

)
/
(
28(f ′+r′)

B

)
for

2-level DoS tolerant µTESLA remains unchanged, where
the numerator is taken to be zero when 28f ′+1 ≤ B. For
the 4-level version, such an estimation does not seem to
be easy, but, in fact, because no CDM would be arriving

17. With DoS resistant M -level µTESLA, (NM+1−N)/(N−1) keys
and (NM−N)/(N−1) CDMs must be pre-computed when each chain
has N keys [19]. The extra storage required for pre-computed hash of
CDMs is already larger than the whole runtime storage of X-TESLA.

18. This is related to the classical occupancy problem, and is approx-
imately correct under the given assumption.

20 IEEE TRANSACTIONS ON COMPUTERS, VOL. ?, NO. ?, ? 2009

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B

pl = 0.9

Px
P2T
P4T
P4R
P4Ri

Fig. 12: Probability of proper Type 4/CDM handling
with buffer size B, under harsh conditions. f = 100,
r = 2, and pl = 0.9.

in most of the 28-key intervals, we can expect P4T to be
practically zero. The same argument holds true for the
DoS resistant version and we would have P4Ri ∼ 0 and
P4R ∼ 0. These are all depicted in Fig 12, from which it
is evident that X-TESLA excels other µTESLA variants
in this harsh environment also.

APPENDIX G
ENERGY CONSUMPTION FOR SENSOR NODES

Let a random process X(t) have an exponential distribu-
tion such that X(t) = λe−λt, and let E[X] be the expected
value of X(t), that is the average distance between two
packet arrivals, with regard to a message rate λ. We take
a slot to be the time interval for which a single lowest
level key is valid. For example, with X-TESLA above, one
upper level interval covering 28-key lower level chain is
said to have 28 slots. Let α be the number of slots within
an upper level interval, and let T be the total number
of slots within the whole duration of the key chains, or
usage lifetime. Then we define

Ci,α =

{
E[X] when σi mod α ≥ E[X],
σi mod α otherwise,

the number of slots requiring computation for verifi-
cation of the i-th packet that has just arrived, where,
σi = i ·E[X]. We assume that r legitimate CDMs and F
forged CMDs are received in each interval for simplicity.
Packet losses are also disregarded for the same reason.
Using these notions, we can write the energy consump-
tion E of each µTESLA variant as the sum of costs from
the following operations: (1) key computation whose
number is given in terms of Ci,α, (2) MAC computation
and message radio reception, both of which counts to⌊
T

E[X]

⌋
, and (3) buffering and verifying of both real and

adversarial CDM or Type 3/Type 4 packets. We can then
analyze the energy consumption E of each TESLA to be

as follows, for CK = 0.477, CM = 0.508, CM ′ = 0.539,
CH = 0.569, CR = 0.106, and CR′ = 0.114 (mJ).

Eµ =
⌊
T

E[X]

⌋
(CKE[X] + CM + CR).

E2µ = CK

⌊
T

E[X]

⌋∑
i=1

Ci,214 +
⌊
T

E[X]

⌋
(CM + CR)

+
⌊
T
214

⌋
{CK + CM ·min(

210F + 210r

210r + 1
, B)

+ CR · (210F + 210r)}.

E2µ′ = CK

⌊
T

E[X]

⌋∑
i=1

Ci,214 +
⌊
T

E[X]

⌋
(CM + CR)

+
⌊
T
214

⌋
{CK + (CM ′ + CH + CR′)

210F + 210r

210r + 1
}.

E3µ = CK

⌊
T

E[X]

⌋∑
i=1

Ci,210 +
⌊
T

E[X]

⌋
(CM + CR)

+
⌊
T
210

⌋
{CK + CM ·min(

26F + 26r

26r/2 + 1
, B)

+
⌊
T
220

⌋
{CK + CM ·min(

216F + 216r

216r/2 + 1
, B)

+ CR · (26F
2

+ 26 r

2
)}+ CR · (216F

2
+ 216 r

2
)}.

E3µ′ = CK

⌊
T

E[X]

⌋∑
i=1

Ci,210 +
⌊
T

E[X]

⌋
(CM + CR)

+
⌊
T
210

⌋
{CK + (CM ′ + CH + CR′)

(26F
2

+ 26 r

2
)/(26r/2 + 1)}

+
⌊
T
220

⌋
{CK + (CM ′ + CH + CR′)

(216F
2

+ 216 r

2
)/(216r/2 + 1)}.

E4µ = CK

⌊
T

E[X]

⌋∑
i=1

Ci,28 +
⌊
T

E[X]

⌋
(CM + CR)

+
⌊
T
28

⌋
{CK + CM ·min(

24F + 24r

24r/3 + 1
, B)

+ CR · (24F
3

+ 24 r

3
)}

+
⌊
T
216

⌋
{CK + CM ·min(

212F + 212r

212r/3 + 1
, B)

+
⌊
T
224

⌋
{CK + CM ·min(

220F + 220r

220r/3 + 1
, B)

+ CR · (212F
3

+ 212 r

3
)}+ CR · (220F

3
+ 220 r

3
)}.

E4µ′ = CK

⌊
T

E[X]

⌋∑
i=1

Ci,28 +
⌊
T

E[X]

⌋
(CM + CR)

T. KWON and J. HONG: SECURE AND EFFICIENT BROADCAST AUTHENTICATION IN WIRELESS SENSOR NETWORKS 21

+
⌊
T
28

⌋
{CK + (CM ′ + CH + CR′)

(24F
3

+ 24 r

3
)/(24r/3 + 1)}

+
⌊
T
216

⌋
{CK + (CM ′ + CH + CR′)

(212F
3

+ 212 r

3
)/(212r/3 + 1)}

+
⌊
T
224

⌋
{CK + (CM ′ + CH + CR′)

(220F
3

+ 220 r

3
)/(220r/3 + 1)}.

Ex = CK

⌊
T

E[X]

⌋∑
i=1

Ci,28 +
⌊
T

E[X]

⌋
(CM + CR)

+
⌊
T
216

⌋
{(CM + CK + CR)

+
28−1∑
i=1

(
F
F + 1

)i(1
F + 1

)
· i · (CM + CK + CR)}.

Here, CK , CM , CM ′ , CH , CR, and CR′ are the costs
for key computation, MAC computation for two blocks,
MAC computation for three blocks, hash computation
for five blocks, radio reception, and radio reception
by the DoS resistant multi-level µTESLA19, respectively.
From the estimation of Mica-Z power consumption [30]
and our experiments, these values were set as 0.477mJ,
0.508mJ, 0.539mJ, 0.569mJ20, 0.106mJ, and 0.114mJ, re-
spectively, and applied to our analysis. Fig. 8-(a) shows
that both X-TESLA and 4-level µTESLA are superior to
others unless there are forged packets (coming from DoS
attacks). If there are forged packets, X-TESLA consumes
less energy than 4-level µTESLA, as in Fig. 8-(b). With
X-TESLA, sensor nodes can skip unnecessary key com-
putation and commitment verification to save energy.

19. DoS resistant multi-level µTESLA requires 17.9% larger ZigBee
packets (due to the 24.1% larger 36-byte data) than X-TESLA to
support immediate authentication of each commitment distribution. In
our experiment, the CDMs of DoS resistant multi-level µTESLA cost
around 8% more transmission time (5.4ms) than Types 3 and 4 packets
of X-TESLA (5ms) over ZigBee channels, due to the additional 8-byte
hash value inserted into each CDM.

20. RC5 is used for obtaining 8-byte hash value from 5 input blocks.

