
Secure and Practical Defense Against Code-injection 
Attacks using Software Dynamic Translation

Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David Evans,
John C. Knight, Anh Nguyen-Tuong, Jonathan Rowanhill

Department of Computer Science
University of Virginia

{wh5a,jdh8d,dww4s,atf3r,jwd,evans,jck,an7s,jch8f}@cs.virginia.edu
Abstract
One of the most common forms of security attacks involves
exploiting a vulnerability to inject malicious code into an
executing application and then cause the injected code to be
executed. A theoretically strong approach to defending
against any type of code-injection attack is to create and use
a process-specific instruction set that is created by a random-
ization algorithm. Code injected by an attacker who does not
know the randomization key will be invalid for the random-
ized processor effectively thwarting the attack. This paper
describes a secure and efficient implementation of instruc-
tion-set randomization (ISR) using software dynamic transla-
tion. The paper makes three contributions beyond previous
work on ISR. First, we describe an implementation that uses
a strong cipher algorithm—the Advanced Encryption Stan-
dard (AES), to perform randomization. AES is generally
believed to be impervious to known attack methodologies.
Second, we demonstrate that ISR using AES can be imple-
mented practically and efficiently (considering both execu-
tion time and code size overheads) without requiring special
hardware support. The third contribution is that our
approach detects malicious code before it is executed. Previ-
ous approaches relied on probabilistic arguments that execu-
tion of non-randomized foreign code would eventually cause a
fault or runtime exception.

Categories and Subject Descriptors
D.3.4 [Programming Languages]:Processors—Interpret-
ers, runtime environments; D.4.6 [Operating Systems]: 
Security and Protection—Invasive Software

General Terms: Security

Keywords: Virtual Execution, Software Dynamic Transla-
tion

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to redis-
tribute lists, requires prior specific permission and/or a fee.

VEE '06, June 10–13, 2006, Ottawa, Canada
Copyright 2006 ACM X-XXXXX-XXXX ...$5.00

1. Introduction
Despite heightened awareness of security concerns, security
incidents continue to occur at alarming rates. In 2004, the
Department of Homeland Security reported 323 buffer over-
flow vulnerabilities—an average of 27 new instances per
month [13]. The most common attack to exploit a buffer
overflow vulnerability is a code-injection attack. In a code-
injection attack, an attacker exploits a vulnerability, e.g. a
buffer overflow, to inject malicious code into a running appli-
cation and then cause the injected code to be executed. The
execution of the malicious code allows the attacker to gain
the privileges of the executing program. In the case of pro-
grams that communicate over the network, such attacks can
be used to break into host systems.

A theoretically strong approach to defending against any
type of code-injection attack (irrespective of the vulnerabil-
ity) is to create and use a process-specific instruction set that
is created by a randomization algorithm. Code injected by an
attacker who does not know the randomization key will be
invalid for the randomized processor thereby thwarting the
attack. Such an approach is known as randomized instruc-
tion-set emulation (RISE) or instruction-set randomization
(ISR) [2, 9]. In this paper, we will use the term ISR exclu-
sively.

The basic operation of an ISR system is as follows. An
encryption algorithm (typically XOR’ing the instruction with
a key) is applied to an application binary to encrypt the
instructions. The encrypted application is executed by an
augmented emulator (e.g., Valgrind [17] or Bochs [14]). The
emulator is augmented to decrypt the application’s instruc-
tions before they are executed.

When an attacker exploits a vulnerability to inject code, the
injected code is also decrypted before emulation. Unless the
attacker knows the encryption key/process, the resulting
code will be transformed into, in essence, a random stream of
bytes that, when executed, will raise an exception (e.g.,
invalid opcode, illegal address, etc.).

The security of ISR depends on several factors: the strength
of the encryption process, protection of the encryption key,
the security of the underlying execution process, and that the
decrypted code will, when executed, raise an exception. The
practicality of the approach is affected by the overheads in



execution time and space introduced by the encryption and
decryption process. This paper describes an implementation
of ISR that addresses both the security and practicality
issues.

The implementation is secure. It uses the Advanced Encryp-
tion Standard (AES) to perform the encryption process. AES
has been approved by the United States government to pro-
tect classified information at the SECRET level with a 128-
bit key and at the TOP SECRET level with either a 192- or
256-bit key [18]. Furthermore, the approach does not require
storage of the encryption key on the disk. The key is gener-
ated dynamically when the program is loaded. A further ben-
efit is that each execution of an application uses a different
key. The underlying execution process is provided by a small,
robust virtual execution environment. Finally, the approach
does not rely on the generation of an exception or fault by
the execution of randomized code. Injected code is detected
as it is readied for execution.

To test our implementation, we seeded several published vul-
nerabilities into several popular server applications and
attempted to exploit these vulnerabilities. In all cases, our
implementation blocked the vulnerability from being success-
fully exploited.

The implementation is practical. Rather than use emulation
or postulating hardware extensions, we use a robust, efficient
software dynamic translation (SDT) system [23]. Perfor-
mance measurements using a variety of benchmarks includ-
ing the SPEC CPU2000 suite1, a domain name server, and a
web server, showed the runtime overhead of SDT-based ISR
to be modest—17% for SPEC CPU2000, 5–10% for the
domain name server, and 2–15% for the web server. Space
overhead of SDT-based ISR is also reasonable—the image file
of a protected web server was 77% larger than an unpro-
tected web server. However, the working set size of the ISR
implementation was significantly larger than the natively
executing application due to the allocation of a 4MB cache
for the translated application. More detailed measurements
of the overheads of ISR are reported in Section 5.2.

The remainder of this paper is organized as follows. Section 2
describes the class of attacks that ISR handles. Previous
work on ISR is described in Section 3. Section 4 describes our
SDT-based implementation of ISR. An evaluation of the
security and performance of our approach is given in
Section 5. Section 6 gives an overview of related work, and
Section 7 concludes the paper.

2. Threat Model
The threat model addressed by our infrastructure is applica-
tion-level binary code injection into an executing program.
Attackers exploit some vulnerability in the target program,
inject malicious code, and alter program control to execute

the malicious code. The model handles all currently identified
mechanisms for injecting foreign code into an application
(e.g., buffer overflow [20, 13], format string attacks [6], and
malloc/free errors [7]). Collectively, these attacks account for
over 50% of the CERT advisories issued in the years 1999–
2002. Because the approach is independent of the mechanism
used to inject code, it can protect against nascent injection
mechanisms.

While the threat model covers a wide range of known
attacks, those that do not involve code injection are not cov-
ered. The model does not cover arc-injection attacks (also
known as return-to-libc) [19], or attacks that modify data
locations (e.g., a critical data value) [5]. Furthermore, the
model assumes that the operating system is secure and that
the application image on disk cannot be modified by the
attacker.

3. Previous Work
Using randomization to create an instruction set that is
unique to the running process so that an attacker cannot cre-
ate a payload which can be injected into the application and
execute properly was first suggested by Thimbleby [27] and
later independently developed by groups at the University of
New Mexico [3] and Columbia University [9]. Both groups
implemented ISR prototypes for the IA-32 instruction set
using emulation (Valgrind in the case of New Mexico and
Bochs at Columbia).

One of the major differences in the two approaches is how
the application code is randomized. Both groups used the
XOR operation to produce the randomized binary. The
Columbia implementation used a 32-bit key applied to 32-bit
blocks containing the instruction or instruction fragment
(many x86 instructions are longer than four bytes). The New
Mexico implementation used a one-time pad that is the
length of the program. The bytes of the one-time pad are
XORed with individual bytes of the original application pro-
gram to create the randomized program. Unfortunately,
encryption techniques that use XOR are susceptible to
attack. Indeed, it was demonstrated that the New Mexico
approach, in some limited situations, can be cracked with
modest effort [25].

Because both techniques used emulation, the overhead of
decryption and execution was quite high. On CPU-bound
benchmarks, the Columbia group reported runtime overhead
as high as 25 times native execution speed. On I/O-intensive
programs such as ftp, the overhead was 1.34x. Based on their
results, the Columbia group concluded that ISR would only
be feasible with special hardware support.

The New Mexico group carefully benchmarked a single pro-
gram, Apache, and the trend of their results were similar to
Columbia’s results—I/O-bound programs incur less overhead
[2]. When serving many small pages (less than 1KB in size),
the runtime overhead was high—2.88x. When serving larger
pages (100 KB in size), the runtime overhead was 1.05x. The
New Mexico group noted that a software dynamic translator
might make ISR practical.

1. We only measured the subset written in C due to the limita-
tion that Diablo, the binary rewriter we use, is language 
dependent. However, the described technique works at the 
binary level and is independent of any specific language.



Both techniques assumed that the execution of decrypted
payloads would eventually cause an exception to occur. Bar-
rantes et al. performed a theoretical analysis of the probabil-
ity that execution of a sequence of random code will escape
(i.e., branch into the application code and not terminate with
an error) [2]. The analysis showed that independent of the
exploit or process size, there will always be a nonzero proba-
bility that the code will escape.

4. Secure and Practical ISR

4.1 Overview
To address the security and performance overheads of the
preliminary implementations of ISR, we employ a combina-
tion of binary rewriting and software dynamic translation.
Binary rewriting is used to prepare the binary for strong
encryption and introduce the information necessary to detect
foreign code before it is executed. We use an efficient soft-
ware dynamic translation system to provide the necessary
virtual execution environment for safe execution. The SDT
system loads and encrypts the application, decrypts the
application instructions in preparation for execution, and
checks that the decrypted instructions are valid application
instructions prior to execution. The current implementation
protects IA-32 ELF executables on GNU/Linux. The tech-
niques described should generalize to other systems.

The following subsections describe these two components in
more detail. We begin with the virtual execution environ-
ment because its operation motivates the necessary transfor-
mations performed by the binary rewriter.

4.2 Virtual Execution Environment
We use Strata to provide the virtual execution environment
for support of ISR [21, 23]. Strata is a retargetable software
dynamic translation infrastructure designed to support
experimentation with novel applications of SDT. Strata has
been used for a variety of applications including system call
monitoring [22], profiling [12], and code compression [24].
The following paragraphs provide a brief introduction
Strata’s operation.

Strata dynamically loads an application and mediates appli-
cation execution by examining and translating an applica-
tion’s instructions before they execute on the host CPU (see
Figure 1). Strata essentially operates as a co-routine with the
application that it is protecting. Translated application
instructions are held in a Strata-managed cache called the
fragment cache. The Strata virtual machine (VM) is first
entered by capturing and saving the application context (e.g.,
program counter (PC), condition codes, registers, etc.). Fol-
lowing context capture, Strata processes the next application
instruction. If a translation for this instruction has been
cached, Strata transfers control to the cached translated
instructions. The logical switching between execution of
Strata code and application code is called a context switch. 

Figure 1: Strata virtual machine virtualizing an application.

Fragment Cache

inst1
inst2
…
instx
inst3
inst4
cmpl %eax,%ecx
trampoline

Code Fragment1

inst7
inst8
…
trampoline

Code Fragment2

Context 
Switch

Fetch

Decode

Translate

New 
PC

Finished?

No

Strata Virtual Machine

Yes

Context 
Capture

Cached?

Yes

New 
Fragment

Next PC

inst1
inst2
…
instx
jmp L2
insty
…

L2: inst3
inst4
cmpl %eax,%ecx
bne L4
inst5
inst6
…
jmp L8

L4: inst7
inst8
…

Application Text

CFn

CFn+1

CFn+2

CFn+3

CFn+4

CFn+5

CFn+x

inst5
inst6
…
trampoline

Code Fragment3



If there is no cached translation for the next application
instruction, the Strata VM allocates storage in the fragment
cache for a new fragment of translated instructions. The
Strata VM then populates the fragment by fetching, decod-
ing, and translating application instructions one-by-one until
an end-of-fragment condition is met. The end-of-fragment
condition is dependent on the particular software dynamic
translation client being implemented. As the application exe-
cutes under Strata control, more and more of the applica-
tion’s working set of instructions materialize in the fragment
cache. 

The implementation of ISR required two simple extensions to
Strata. First, we introduced an encryption feature that
applies AES to the application text before Strata begins exe-
cution of the application. AES is used in electronic codebook
(ECB) mode, so each block is encrypted independently. Sec-
ond, we overrode Strata’s default fetch mechanism. The new
fetch method decrypts and verifies an instruction before call-
ing the default target-machine fetch method.

Figure 2 gives the basic steps Strata carries out to implement
ISR. In Step 1, Strata’s security API is enabled to intercept
all system calls to mprotect. This step prevents an applica-
tion from inadvertently disabling write protection of the text
segment or the fragment cache. In particular, we are con-
cerned with preventing attacks that are intended to corrupt
Strata’s code since it runs in the same address space as the
application.

Step 2 encrypts the binary. To avoid encrypting data or
Strata’s code, the rewriting process creates and embeds a
table in the application text, called the encrypttable, that

specifies the blocks of the application text that should be
encrypted. The binary rewriter also modifies the application
text so that the start of each block is aligned on a 128-bit
address boundary. Strata uses the mprotect system call to
enable modification of the text segment. Using the informa-
tion in the encrypttable and a 128-bit key obtained from
the pseudo-device /dev/urandom, Strata encrypts the appli-
cation text. The text segment permissions are then set to
read only. The impact on demand paging caused by walking
the full text segment is amortized over the execution of the
application.

Step 3 describes the modification necessary to decrypt and
verify application instructions. The new fetch method loads
two 128-bit blocks into a decoding buffer. It fetches the block
that contains the first byte of the instruction pointed to by
the PC and the following 128-bit block. Both blocks are then
decrypted. Fetching two consecutive 128-bit blocks guaran-
tees that the complete instruction is fetched and decrypted
even if the instruction starts on the last byte of the first 128-
bit block (the maximum length of an IA-32 instruction is 15
bytes).

To illustrate the process, suppose the PC points to a ten-byte
instruction that begins at memory location 0x1017B3D. The
decryption engine fetches and decrypts the 128-bit blocks at
addresses 0x1017B30 and 0x107B40. The following is a sche-
matic of the decoding buffer after the fetches. 

The shaded portion indicates the bytes of the buffer that
contain the ten-byte instruction.

As part of the binary rewriting process (see Section 4.3), our
ISR implementation tags each instruction with a simple
eight-bit code (called an instruction tag). These tags permit
Strata to identify injected code during its translation step.
After decrypting the two blocks, Strata checks the instruc-
tion tag to ensure that the fetched bytes represent a valid
application instruction. If the instruction tag is valid, Strata
simply invokes the default fetch method with the PC point-
ing at the first byte of the instruction.

While an attacker could guess the instruction tag code, they
cannot know the encryption key and therefore they cannot
construct a payload that will be correctly tagged after
decryption. Thus, if an instruction tag is invalid, the first
stage of a code injection attack is underway—a vulnerability
has been exploited to inject code and control flow has been
diverted in an attempt to execute the malicious code. When
Strata detects an invalid instruction tag, it reports the viola-
tion, and dumps the current program counter and the unde-
crypted code pointed to by the program counter (i.e., the
malicious payload). This information can be used for offline
forensic analysis.

The use of an eight-bit tag means that there is a 1 in 256
chance that a tag is coincidentally correct. However, for

1. Initialize the system call watch table.
2. Encrypt the application.

a. Obtain a 128-bit encryption key from the 
pseudo-device /dev/urandom.

b. Use the mprotect system call to set write per-
mission for the text segment.

c. Use the table of address ranges created by the 
binary rewriter and the key to encrypt the 
application’s text.

d. Set the text segment permissions to read only.
3. Fetch the next instruction.

a. Fetch the 128-bit aligned block that contains 
instruction pointed to by current application 
PC. Also fetch the next 128-bit aligned block

b. Decrypt the two 128-bit blocks.
c. Check that the instruction tag is correct. If the 

tag is incorrect, report an error and dump the 
current PC and the plain-text instructions 
located there.

d. If the tag is correct, call the default target-
machine fetch function to retrieve the next 
instruction.

e. The decoding and translation steps proceed as 
normal.

Figure 2: Runtime decryption and verification.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

128-bit block 128-bit block

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PC



Strata to execute the fragment containing the injected code,
the tag for each instruction in the fragment must be correct.
Thus for a fragment containing four instructions, the proba-
bility that four tags would be coincidently correct is 2-32. 

It is important to note that the process of decrypting the
application text, checking the instruction tag, and building a
specific fragment generally only occurs once. Thus, the per-
formance overhead of SDT-based implementation of ISR is
closely related to the basic overhead of software dynamic
translation. Section 5.2 provides detailed measurements of
the overheads of our SDT-based implementation of ISR.

There are a few other details that deserve discussion. Strata
controls access to the fragment cache using the mprotect sys-
tem call. During application execution, the fragment cache is
write protected. The decryption key is also maintained in a
memory region not accessible to the application. On a con-
text switch from the application to Strata, Strata makes the
fragment cache writeable so that it may create new fragments
or perform updates of existing fragments. It also makes the
location containing the decryption key readable. Before the
context switch back to the application occurs, Strata repro-
tects the fragment cache and the encryption key.

A problem worth mentioning as we implemented ISR is the
shared library problem. Strata, which is written in C and
some assembly language, uses a few libc routines which may
also be used by an application program. This sharing of code
creates a problem. When Strata translates these routines as
part of the virtualization process of the application, it
expects these routines to be encrypted. However, when
Strata uses these routines, they should be plain text.

To address this problem, we used objcopy, an ELF manipula-
tion tool, to produce a separate copy of all the libc functions
used by Strata. For example, a printf call in Strata will be
linked to strata_libc_printf. In contrast, a printf call in
the application's code is linked to the normal libc, which is
encrypted at run time. This space overhead from this dupli-
cation is minimal because Strata uses very few libc routines.
In the future, we plan to eliminate code sharing by making
Strata independent of any standard library.

Our current implementation of Strata does not support
applications that employ legitimate uses of self-modifying
code. We do not view this as a serious limitation. None of the
critical applications that we have examined employ self-mod-
ifying code. Nonetheless, we plan to investigate techniques
for safely handling legitimate uses of self-modifying code in
the future.

4.3 Binary Preprocessing

To prepare the binary for encryption using AES and to intro-
duce the necessary instruction tags, we modified Diablo 0.3,
an existing binary rewriting tool [4]. 

Figure 3 illustrates the basic workflow of Diablo. Diablo reads
all object files and libraries constituting an application, the
linked application, and the map file generated by the normal
linker. In phase 1, Diablo uses this information to replay the
linking process of the normal linker. and translate the object
files and libraries into an internal representation. The linker
map file provides the information Diablo needs to generate
the same code and data layout as the original binary. 

Figure 3: Work flow of the binary rewriter Diablo (Version 0.3).

1. Link Emulator

m1.o

m2.o

application object files

linker map

libc.a

crt0.o

run time libraries

2. Disassembler 3. Control graph
Builder

executable

6. Optimizer

5. Flattener4. Assembler

rewritten
executable

7. Writer

Diablo



Phase 2 disassembles the instructions and phase 3 builds a
control flow graph (CFG). Phase 4 then applies various anal-
ysis and optimization techniques to the CFG (e.g., useless
code elimination, architecture-dependent peephole optimiza-
tions, etc.). After completion of phase 4, phase 5 flattens the
CFG into a linear representation and phase 6 produces tar-
get-machine instructions. In the final step, the binary writer
emits the modified executable.

The shaded blocks in Figure 3 are the Diablo modules that
required extension to produce a binary with the transforma-
tions and informations needed to support ISR. The exten-
sions to each phase are outlined in Figure 4.

Phase 5, the Flattener, assigns a linear order to the CFG and
updates the offsets in control transfer instructions according
to that order. We added a function AlignBlock that is
invoked after the linear order is assigned, but before offsets
are updated. This function processes each basic block. If the
block is application code, AlignBlock reserves space for a
instruction tag before each instruction. It then aligns the
block appropriately by padding the beginning of the block
with NOPs.

Not every basic block needs alignment. If the previous block
was aligned and the following basic block is part of the appli-
cation text, it can be grouped with the previous basic block.
Padding only happens on the boundary between Strata and
application code. After all blocks are processed, the Flattener
recalculates branch offsets and updates all instructions
affected. The starting and ending address of each block that

should be encrypted is collected so this information can
included in the modified binary emitted by the Writer.

Phase 6, the Assembler, is modified to fill the placeholder
preceding each instruction with a tag if instruction tagging is
enabled. 

Diablo’s final phase emits the modified binary to disk. This
phase was extended to create a new section, .encrypttable,
that contains the starting and ending address of each block
that should be encrypted.

5. Evaluation
With any system designed to protect software against mali-
cious exploitation of vulnerabilities, there are tradeoffs in
terms of performance and the level of security provided. In
this section, we evaluate the security and performance of
SDT-based ISR.

5.1 Security Evaluation
As previously described, our implementation uses AES to
encrypt the application text using a key that is generated at
runtime. It is generally believed that AES is secure [18]. 

When encryption is used to protect a system, an important
issue is management of the encryption key. Where is the key
stored? How is the key protected? How long is the key valid?
Our approach addresses these issues. The encryption key is
never stored on disk, the key is maintained in a protected
region of memory only accessible by Strata, and a new key is
generated for each execution of the application.

To evaluate the security of SDT-based ISR, we seeded pub-
lished vulnerabilities and synthetic vulnerabilities into several
real applications and then exploited the vulnerability to
effect a code-injection attack. Table 1 lists the applications,
the type of vulnerability, and the target memory region of
the injected code. The column labeled BID gives the Bugtraq
ID for the vulnerability. An N/A in this column indicates a
synthetic vulnerability. For each vulnerability, we demon-
strated that exploitation of the vulnerability could be used to
compromise an unprotected system. In all cases, ISR
detected the attempt to execute injected code and prevented
the attack from proceeding.

1. Flattener
For each basic block do:
a. Determine the source of the basic block. If the 

basic block is application code, mark the basic 
block for encryption. Otherwise do not mark 
the block for encryption.

b. If the block is marked for encryption and 
instruction tagging is enabled, reserve one byte 
before each instruction for the instruction tag.

c. Recalculate the offsets among basic blocks and 
update all instructions affected.

d. Maintain a record of each block that should be 
encrypted.

2. Assembler
For each instruction do:
a. Determine the source of the instruction.
b. If the instruction is application code and 

instruction tagging is enabled, insert the tag 
before it.

3. Writer
a. Create a new section, encrypttable, to contain 

the information about the text blocks to 
encrypt at load time.

b. Set up the ELF executable and output the 
binary (the text section, the data section, the 
encrypttable section, and any other sections).

Figure 4: Diablo extensions to support ISR.

Table 1: Tested applications.

Application Vulnerability Location BID

Apache Buffer overflow Heap 5363

Apache Format string Heap/Stack N/A

Samba Buffer overflow Stack 7106

BIND Format string Heap/Stack 788

rpc.statd Format string Global off-
set table

1480

cvs server Double free Stack 6650



5.2 Performance Evaluation
A major concern raised by initial implementations of ISR was
the high runtime overheads incurred. To evaluate the runtime
overhead of SDT-based ISR, we measured the performance of
a variety of benchmarks. In all measurements, the perfor-
mance measures are normalized to native execution—the
application running directly on the hardware.

All measurements were performed on a dual processor 1GHz
P3 system with 1GB of RAM. When an application required
both a client and a server, the server executed on the P3,
while all clients executed on 2.8GHz P4 systems with 512MB
of RAM. The server used two 100 Base-T Ethernet ports and
each client used a single 100 Base-T NIC. All systems ran
Red Hat 7.3 with the P3 and the P4 systems running 2.4.13
and 2.6.11 Linux kernels, respectively. Hyperthreading was
enabled on the P4’s, whereas the P3 system was booted with
a uniprocessor kernel to prevent the second CPU from being
used during the measurements. For all performance experi-
ments, the size of Strata’s fragment cache was fixed at 4MB.

The asymmetry between the server and client configurations
was motivated by our desire to measure the processor over-
head imposed by the Strata VM. Providing the server twice

as much network and about a sixth as much processing power
relative to the clients allowed us to drive the server to near
full CPU utilization under most testing conditions. During
these tests the network was not saturated from the server’s
perspective, and therefore did not obscure the CPU costs
behind the network.

Figure 5 shows the performance results for SPEC CPU2000.
We measured the overheads of the baseline SDT system (no
ISR) and the SDT-based ISR system. The performance met-
ric used to compute the overhead was the reportable SPEC
ratio produced by the SPEC measurement infrastructure.

The average overhead for SDT-based ISR is 1.17 while the
overhead of the baseline SDT system is 1.16. This basic trend
is seen for all the benchmarks—ISR incurs little or no addi-
tional overhead over a baseline SDT system.  

It is interesting to note that the high average is due to a few
outliers—perlbmk, gap, and gcc. These benchmarks execute a
high percentage of indirect control transfers which are prob-
lematic for SDT systems [15, 23].

Figure 5: SDT overhead and SDT-ISR overhead normalized to native execution. Metric: SPEC ratio.

0

0.5

1

1.5

2

2.5

3

17
7.m

es
a

17
9.a

rt

18
3.e

qu
ak

e

18
8.a

mmp

16
4.g

zip

17
5.v

pr

17
6.g

cc

18
1.m

cf

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erl
bm

k

25
4.g

ap

25
5.v

ort
ex

25
6.b

zip
2

30
0.t

wolf

av
era

ge

int
 ave

flo
at 

ave

Benchmark

O
ve

rh
ea

d

SDT-only SDT-based ISR



We also measured the overhead of two applications that are
representative of the types of programs that might be desir-
able to protect with ISR. One is Apache, the widely-used
Web server. The other is BIND, a widely used domain name
server.

To measure Apache performance, we used httperf, a web
server performance measurement tool. Httperf collects and
reports a large number of performance related metrics. In our
case we chose to use the elapsed time for completing a fixed
amount of work. 

The native version of Apache was processed by Diablo so that
comparisons across all binaries were consistent in this
respect. Technically, only the ISR enabled versions of Strata
require this step.

Approximately 400MB of traffic was generated by each client
during each test. Each test was run three times. To deter-
mine if performance was sensitive to the size of the page
served, we measured performance using a variety of page
sizes. Four clients were run with two accessing the server on
each of its network interfaces to balance the network load.
Apache was configured to pre-fork one server for each test cli-
ent.

Since we wanted to minimize the interference of the network
overhead, each client used a single connection per run and
pipelined all requests using the keep-alive request option.
This eliminated the latency and network traffic from estab-
lishing and tearing down many TCP connections. This net-
work overhead would cause the server to become idle while
saturating the network and thereby hide nearly all of the
Strata processor overhead. Figure 6 contains the results.

As the chart shows, the overhead of running either the base-
line SDT system or the SDT-based ISR system varies from a
few percent to 15 percent. The error bars show that there

was considerable variability in performance across the three
runs even for the natively executing server. We believe the
variability is due to the inherently inevitable fluctuations
when measuring client and server processes communicating
over a network.

To measure the performance of the Berkeley Internet Name
Domain server, BIND, we created three representative zone
files. Briefly, a zone file contains resource records for mapping
names such as www.apache.org to an IP address, and for
mapping an IP address to a name (a reverse lookup). We cre-
ated zone files containing 1000 records, 10,000 records, and
100,000 records to represent a small organization, a mid-size
organization, and a large organization, respectively. Using
queryperf, a DNS server performance testing tool, we mea-
sured the number of queries processed per second of BIND
running under our SDT system with and without ISR
enabled. 

The performance measurement results are presented in Fig-
ure 7. The overhead of querying the small and mid-size data-
bases is about 10%, while the overhead for the larger
database was 5%. Again, there was no statistically significant
difference between the SDT-only system and the SDT-based
ISR system.

We also measured the size overhead of BIND and Apache.
First, we measured the size of the SDT-only and SDT-based
ISR disk images. The results for the disk image overhead is
presented in Table 2. For BIND and Apache, the image file of
the SDT-based ISR binary was 51 and 77 percent larger,
respectively, than the text size of the corresponding native
binaries. As the table shows, most of the size overhead is due
to the growth of the text segments due to instruction tag-
ging. We also examined the size of encrypttable and found
it to be negligible.

We also observed the resident set size of the running applica-
tions. These measurements are presented in Table 3. As can
be seen by comparing the resident set size of the native exe-

Figure 6: Apache overhead normalized to native execution. 
Metric: client requests served per second.

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

10KB 100KB 200KB 500KB 1000KB

Request Size

O
ve

rh
ea

d

native SDT-only SDT based ISR

Figure 7: BIND overhead normalized to native execution. 
Metric: queries per second.

1.00

1.05

1.10

1.15

1K 10K 100K

Zone Database Size

O
ve

rh
ea

d

SDT-only SDT-based ISR



cution to SDT-only execution for both BIND and Apache,
the growth is consistent with the addition of a 4 MB frag-
ment cache. The difference between the resident set size of
the SDT-only execution and SDT-based ISR execution is due
to the instruction tags and duplication of library functions
(see Section 4.2).

For BIND, the larger zone files greatly affected the resident
set size. This is not surprising since BIND builds a red/black
tree of the zone information in memory for quick lookups.

While we believe that the size overheads are reasonable for
critical server applications, for some environments reducing
space overhead may be desirable or necessary. The size of the
text segment could be substantially reduced by adding an
instruction tag for a block of instructions rather than a one-
byte instruction tag for every instruction. Furthermore,
rather than fixing the size of the fragment cache, its size
could be adjusted for the particular application.

6. Related Work
Code injection attacks represent a major threat to computer
security, and as a result there is a large body of work describ-
ing various techniques for stopping attackers from running
injected code. Many of these techniques focus on particular
areas of memory that are often attacked, most often the
stack. StackGuard [8] and PaX [26] are two popular example
of such methods.

Previous work involving software-base implementations of
ISR is described in Section 3. Milenkovic et al. propose a
method of basic block signing, similar to ISR, but partially
implemented in hardware [16]. This system uses AES, which

a hardware key to create a signature of each basic block to
ensure that it has not been modified. Similarly Kirovski et al.
created the "Secure Program Execution Framework" for the
ARM instruction-set architecture [11]. This framework also
creates hashes of groups of instructions, which are checked in
hardware before the instructions are allowed to execute.
However, the system constructs the hashes in such a way
that instruction rescheduling and basic block reordering, and
register permutations could still be performed. 

Software dynamic translators have also been used for other
security systems, mainly in policy enforcement. Strata has
been used to enforce security policies [22]. Here Strata pro-
vides an API to watch sensitive system calls and function
calls, and alter them or prevent them if they behave outside
the implemented policy.

Because of the large number of code injection attacks, there
has been much research focused on defending against such
attacks. Some early work focused solely on preventing stack-
smashing attacks [8, 13, 22]. As other types of attacks were
developed, other approaches for preventing exploitation of
code vulnerabilities were proposed.

Abadi et al. propose restrictions on control flow using static
binary rewriting [1]. This system uses labels to ensure that
return instructions match valid return sites. DynamoRIO is
used as the base for program shepherding [10]. Program
shepherding restricts program execution based on a number
of policies like disallowing modified code and restricting tar-
gets of branch instructions.

Both program shepherding and ISR prevent code injection
attacks by enforcing policies about what code can be exe-

Table 2: Disk image overhead (Kilobytes).

BIND Apache

Native
SDT-
only

SDT-
based 
ISR

SDT-
based ISR 
Expansion

Native
SDT-
only

SDT-
based 
ISR

SDT-
based ISR 
Expansion

Disk image 1811 1872 2731 1.51x 916 987 1617 1.77x

text 1786 1838 2690 1.51x 875 939 1566 1.79x

data 23 28 32 1.39x 34 39 43 1.26x

bss 13 32 41 3.15x 166 186 194 1.17x

Table 3: Resident set size overhead (Megabytes).

Zone File 
Size (BIND) 
or Web Page 
Size (Apache)

BIND Apache

Native
SDT-
only

SDT-
based 
ISR

Expansion Native
SDT-
only

SDT-
based 
ISR

Expansion

1K 1.6 5.7 7.0 4.38x N/A N/A N/A  N/A

10K 3.5 7.5 8.9 2.54x 0.7 3.0 3.6 5.14x

100K 22.0 26.0 27.4 1.24x 0.7 3.0 3.6 5.14x

1000K N/A N/A N/A N/A 0.7 3.0 3.6 5.14x



cuted. The mechanism used in ISR is simple and comprehen-
sive—only code from the original application can be
executed.

Recently, hardware vendors and operating system designers
have begun to provide memory protection primitives that
disallow execution from writeable memory. This mechanism
provides similar protection to ISR via hardware and the
operating system. Clearly, if such mechanisms exist, they
should be used.

However, there is an important class of processors that do
not have memory management hardware or protection mech-
anisms—processors for embedded systems. Because embed-
ded processors are often used for critical services and they
are increasingly on the network (e.g., SCADA systems, some
medical devices, transportation control components, some
military systems etc.), protecting them from attack is becom-
ing increasingly important. For such systems, an efficient
software-based ISR system could be useful. However, it is
worth noting that many embedded systems have size con-
straints and an important research issue for using ISR in
embedded systems is reducing the size overhead of ISR.

7. Summary
This paper has described a software dynamic translation-
based implementation of instruction-set randomization.
Instruction-set randomization is a powerful technique that
defends against all application-level binary code injection
attacks independent of the vulnerability used to inject the
code. The implementation uses a strong encryption algo-
rithm, the Advanced Encryption Standard, to produce a ran-
dom instruction set each time the protected application is
loaded and executed. Without access to the encryption key,
an adversary cannot produce a payload that will successfully
execute on a protected system. We tested the security of our
system by seeding different types of vulnerabilities into appli-
cations and then exploiting the vulnerabilities to inject code.
In every case, our ISR-protected implementations detected
and prevented execution of the foreign code. 

The SDT-based implementation of ISR is sufficiently efficient
to be used to protect critical server applications that are
often the target of attack. Measurements of an ISR-protected
Apache web server showed performance loss of only 5 to 15
percent over a natively executing Apache web server. Simi-
larly, the performance of an ISR-protected domain name
server was evaluated. The performance loss over a natively
executing version was observed to be between 5 and 10 per-
cent. 

These performance results along with the security of the
approach make SDT-based ISR a viable protection mecha-
nism for critical server applications. While the approach only
protects against code-injection attacks, these represent a
large class of attacks. Encouraged by the performance
results, we are investigating the use of SDT to protect
against other types of attack including arc injection and data
corruption attacks.

8. Acknowledgements
This research was supported by DARPA under agreement
number FA8750-04-2-0246 and the National Science Founda-
tion under grants CNS–0305144 and CNS–0524432. The U.S.
Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon.

The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of DARPA or the U.S. Government.

9. References
[1] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI,

J. Control-flow integrity. In Microsoft Research Techni-
cal Report MSF-TR-05-18 (2005).

[2] BARRANTES, E. G., ACKLEY, D. H., FORREST, S., AND

STEFANOVIC, D. Randomized instruction set emula-
tion. ACM Transactions on Information System Secu-
rity. 8, 1 (2005), 3–40.

[3] BARRANTES, E. G., ACKLEY, D. H., PALMER, T. S.,
STEFANOVIC, D., AND ZOVI, D. D. Randomized
instruction set emulation to disrupt binary code injec-
tion attacks. In CCS ’03: Proceedings of the 10th ACM
Conference on Computer and Communications Security
(New York, NY, USA, 2003), ACM Press, pp. 281–289.

[4] BUS, B. D., SUTTER, B. D., PUT, L. V., CHANET, D.,
AND BOSSCHERE, K. D. Link-time optimization of
ARM binaries. ACM SIGPLAN Notices 39, 7 (July
2004), 211–220.

[5] CHEN, S., XU, J., SEZER, E., GAURIAR, P., AND IYER,
R. Non-control-data attacks are realistic threats. In
Proceedings of the 14th USENIX Security Symposium
(Berkeley, CA, USA, 2005), USENIX Association,
pp. 177–192.

[6] COWAN, C., BARRINGER, M., BEATTIE, S., AND

KROAH-HARTMAN, G. Formatguard: Automatic pro-
tection from printf format string vulnerabilities. In
Proceedings of the 10th USENIX Security Symposium
(August 2001).

[7] COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE,
P. PointGuard: Protecting pointers from buffer over-
flow vulnerabilities. In Proceedings of the 12th USENIX
Security Symposium (Aug. 2003), USENIX, pp. 91–
104.

[8] COWAN, C., PU, C., MAIER, D., HINTON, H., BAKKE,
P., BEATTIE, S., GRIER, A., WAGLE, P., AND ZHANG,
Q. Stackguard: Automatic adaptive detection and pre-
vention of buffer-overflow attacks. In Proceedings of the
1998 USENIX Security Symposium (January 1998).



[9] KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V.
Countering code-injection attacks with instruction-set
randomization. In CCS ’03: Proceedings of the 10th
ACM Conference on Computer and Communications
Security (New York, NY, USA, 2003), ACM Press,
pp. 272–280.

[10] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE,
S. P. Secure execution via program shepherding. In
Proceedings of the 11th USENIX Security Symposium
(Berkeley, CA, USA, 2002), USENIX Association,
pp. 191–206.

[11] KIROVSKI, D., DRINIC, M., AND POTKONJAK, M.
Enabling trusted software integrity. In ASPLOS-X:
Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and
Operating Systems (New York, NY, USA, 2002), ACM
Press, pp. 108–120.

[12] KUMAR, N., AND CHILDERS, B. Flexible instrumenta-
tion for software dynamic translation. In Workshop on
Exploring the Trace Space, International Conference on
Supercomputing (2003).

[13] KUPERMAN, B. A., BRODLEY, C. E., OZDOGANOGLU,
H., VIJAYKUMAR, T. N., AND JALOTE, A. Detection
and prevention of stack buffer overflow attacks. Com-
munications of the ACM 48, 11 (2005), 50–56.

[14] LAWTON, K. P. Bochs: A portable pc emulator for
Unix/X. Linux J. 1996, 29es (1996), 7.

[15] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND

HAZELWOOD, K. Pin: building customized program
analysis tools with dynamic instrumentation. In PLDI
’05: Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation (New York, NY, USA, 2005), ACM Press,
pp. 190–200.

[16] MILENKOVIC, M., MILENKOVIC, A., AND JOVANOV, E.
Using instruction block signatures to counter code
injection attacks. SIGARCH Computer Architecture
News 33, 1 (2005), 108–117.

[17] NETHERCOTE, N. Dynamic binary analysis and instru-
mentation. Tech. Rep. UCAM-CL-TR-606, University
of Cambridge, Computer Laboratory, Nov. 2004.

[18] THE COMMITTEE ON NATIONAL SECURITY SYS-
TEMS, T. C. National policy on the use of the advanced
encryption standard (AES) to protect national security
systems and national security information. Tech. rep.,
National Security Agency, 2003.

[19] PINCUS, J., AND BAKER, B. Beyond stack smashing:
Recent advances in exploiting buffer overruns. IEEE
Security & Privacy 2, 4 (July/August 2004), 20–27.

[20] PRASAD, M., AND CHIUEH, T. A binary rewriting
defense against stack-based buffer overflow attacks. In
Proceedings of the 2003 USENIX Annual Technical
Conference (June 2003), pp. 211–224.

[21] SCOTT, K., AND DAVIDSON, J. Strata: A software
dynamic translation infrastructure. In IEEE Workshop
on Binary Translation (September 2001).

[22] SCOTT, K., AND DAVIDSON, J. W. Safe virtual execu-
tion using software dynamic translation. In Proceedings
of the 18th Annual Computer Security Applications
Conference (Las Vegas, NV, December 2002), pp. 209–
218.

[23] SCOTT, K., KUMAR, N., VELUSAMY, S., CHILDERS,
B. R., DAVIDSON, J. W., AND SOFFA, M. L. Retargeta-
ble and reconfigurable software dynamic translation. In
International Symposium on Code Generation and Opti-
mization (San Francisco, CA, Mar. 2003), IEEE Com-
puter Society, pp. 36–47.

[24] SHOGAN, S., AND CHILDERS, B. Compact binaries with
code compression in a software dynamic translator. In
Design Automation and Test in Europe (2004).

[25] SOVAREL, N., EVANS, D., AND PAUL, N. Where’s the
feeb? the effectiveness of instruction set randomization.
In Proceedings of the 14th USENIX Security Conference
(2005).

[26] THE PAX TEAM. http://pax.grsecurity.net.

[27] THIMBLEBY, H. Can viruses ever be useful? Computers
and Security 10, 2 (1991), 111–114.


	Secure and Practical Defense Against Code-injection Attacks using Software Dynamic Translation
	Wei Hu, Jason Hiser, Dan Williams, Adrian Filipi, Jack W. Davidson, David Evans, John C. Knight, Anh Nguyen-Tuong, Jonathan Rowanhill
	Department of Computer Science University of Virginia
	{wh5a,jdh8d,dww4s,atf3r,jwd,evans,jck,an7s,jch8f}@cs.virginia.edu
	Abstract
	1. Introduction
	2. Threat Model
	3. Previous Work
	4. Secure and Practical ISR
	4.1 Overview
	4.2 Virtual Execution Environment
	Figure 1: Strata virtual machine virtualizing an application.
	1. Initialize the system call watch table.
	2. Encrypt the application.
	a. Obtain a 128-bit encryption key from the pseudo-device /dev/urandom.
	b. Use the mprotect system call to set write permission for the text segment.
	c. Use the table of address ranges created by the binary rewriter and the key to encrypt the application’s text.
	d. Set the text segment permissions to read only.

	3. Fetch the next instruction.
	a. Fetch the 128-bit aligned block that contains instruction pointed to by current application PC. Also fetch the next 128-bit aligned block
	b. Decrypt the two 128-bit blocks.
	c. Check that the instruction tag is correct. If the tag is incorrect, report an error and dump the current PC and the plain-text instructions located there.
	d. If the tag is correct, call the default target- machine fetch function to retrieve the next instruction.
	e. The decoding and translation steps proceed as normal.


	Figure 2: Runtime decryption and verification.

	4.3 Binary Preprocessing
	Figure 3: Work flow of the binary rewriter Diablo (Version 0.3).
	1. Flattener For each basic block do:
	a. Determine the source of the basic block. If the basic block is application code, mark the basic block for encryption. Otherwise do not mark the block for encryption.
	b. If the block is marked for encryption and instruction tagging is enabled, reserve one byte before each instruction for the instruction tag.
	c. Recalculate the offsets among basic blocks and update all instructions affected.
	d. Maintain a record of each block that should be encrypted.

	2. Assembler For each instruction do:
	a. Determine the source of the instruction.
	b. If the instruction is application code and instruction tagging is enabled, insert the tag before it.

	3. Writer
	a. Create a new section, encrypttable, to contain the information about the text blocks to encrypt at load time.
	b. Set up the ELF executable and output the binary (the text section, the data section, the encrypttable section, and any other sections).


	Figure 4: Diablo extensions to support ISR.


	5. Evaluation
	5.1 Security Evaluation
	Table 1: Tested applications.

	5.2 Performance Evaluation
	Figure 5: SDT overhead and SDT-ISR overhead normalized to native execution. Metric: SPEC ratio.
	Figure 6: Apache overhead normalized to native execution. Metric: client requests served per second.
	Figure 7: BIND overhead normalized to native execution. Metric: queries per second.
	Table 2: Disk image overhead (Kilobytes).
	Table 3: Resident set size overhead (Megabytes).


	6. Related Work
	7. Summary
	8. Acknowledgements
	9. References





