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Abstract—Non-contact biometrics such as face and iris have
additional benefits over contact based biometrics such as fin-
gerprint and hand geometry. However, three important chal-
lenges need to be addressed in a non-contact biometrics-based
authentication system: ability to handle unconstrained acquisi-
tion, robust and accurate matching and privacy enhancement
without compromising security. In this paper, we propose a
unified framework based on random projections and sparse
representations, that can simultaneously address all the three
issues mentioned above in relation to iris biometrics. Our
proposed quality measure can handle segmentation errors and
a wide variety of possible artifacts during iris acquisition. We
demonstrate how the proposed approach can be easily extended
to handle alignment variations and recognition from iris videos,
resulting in a robust and accurate system. The proposed approach
includes enhancements to privacy and security by providing ways
to create cancelable iris templates. Results on public datasets
show significant benefits of the proposed approach.

Index Terms—Iris Recognition, Cancelability, Secure Biomet-
rics, Random Projections, Sparse Representations.

I. INTRODUCTION

Iris recognition is one of the most promising approaches

for biometric authentication [1]. Existing algorithms based

on extracting and matching features from iris have reported

very high recognition rates on clean datasets [2]. However,

since these methods rely on the fine texture features extracted

from the iris, their performances degrade significantly when

the image quality is poor [1], [3]. This seriously limits the

application of the iris recognition system in practical scenarios,

where the acquired image could be of low quality due to

motion, partial co-operation or the distance of the user from

the scanner.

When the acquisition conditions are not constrained, many

of the acquired iris images suffer from defocus blur, motion

blur, occlusion due to the eyelids, specular reflections and

segmentation errors. Fig. 1 shows some of these distortions on

images from the ICE2005 dataset [3]. Hence, it is essential to

first select the “recognizable” iris images before employing the

recognition algorithm. Recently, Wright et al. [4] introduced a

sparse representation-based face recognition algorithm, which

outperforms many state of the art algorithms when sufficient
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number of training images are available. In this paper, we

analyze the use of sparse representations for selection and

recognition of iris images. We extend the original method [4]

through a Bayesian fusion framework, where different sectors

of the iris images are recognized separately using the above

mentioned technique and the results of different sectors are

combined based on their quality. This is significantly faster

than the original method as it facilitates parallelization and

reduces the size of the dictionary size, as will become appar-

ent.

(a) (b) (c) (d)

Fig. 1. Some poorly acquired iris images from the ICE dataset [3]. Note that
image (a) has specular reflections on the iris and is difficult to be segmented
correctly due to the tilt and non circular shape. Images (b) and (d) suffer from
blurring, whereas image (c) is occluded by the shadow of the eyelids.

The performance of most existing iris recognition algo-

rithms depends strongly on the effectiveness of the segmen-

tation algorithm. Iris image segmentation normally involves

identifying the ellipses corresponding to pupil and iris, and de-

tecting the region inside these ellipses that is not occluded by

the eyelids, eyelashes and specular reflections. Unfortunately,

in unconstrained scenarios, correctly segmenting the iris im-

ages is extremely challenging [5]. The proposed selection

algorithm removes input images with poorly segmented iris

and pupil ellipses. Furthermore, since the introduced recogni-

tion scheme is robust to small levels of occlusions, accurate

segmentation of eyelids, eyelashes and specular reflections are

no longer critical for achieving good recognition performance.

Another important aspect in iris biometrics is security and

privacy of the users. When the texture features of one’s iris are

stored in a template dictionary, a hacker could possibly break

into the dictionary and steal these patterns. Unlike credit cards,

which can be revoked and reissued, biometric patterns of an

individual cannot be modified. So, directly using iris features

for recognition is extremely vulnerable to attacks. To deal with

this, the idea of cancelable iris biometrics has been introduced

in [6], [7], [8], which can protect the original iris patterns as

well as revoke and reissue new patterns when the old ones

are lost or stolen. In this paper, we introduce two methods

for incorporating security into the proposed iris recognition

system, namely, random projections and random permutations.
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Our methods can issue a different template for each application

based on the original iris patterns of the person, generate a

new template if the existing one is stolen while retaining the

original recognition performance. The representation prevents

extraction of significant information about the original iris

patterns from cancelable templates.

A. Organization of the Paper

The paper is organized as follows. In section II, we discuss

some of the existing algorithms for iris image selection, recog-

nition and cancelability. The theory of sparse representation is

summarized in section III. The Bayesian fusion framework for

selecting and recognizing iris images is described in IV. We

extend our method to video-based iris recognition in section V

and discuss how to handle alignment in section VI. Two

schemes for introducing cancelability into our framework are

proposed in VII. Experiments and results are presented on

simulated and real iris images in section VIII. We briefly

outline future work and conclude in section IX.

II. PREVIOUS WORK

In this section, we briefly describe some of the existing

methods for iris recognition, image quality estimation and

cancelability.

A. Iris recognition

The first operational automatic iris recognition system was

developed by Daugman [9] in 1993, in which Gabor fea-

tures were extracted from scale normalized iris regions and

quantized to form a 2K bit iris code. The Hamming distance

between the iris code of the test and the training iris images

was used for recognition. Wildes [10] used Laplacian of a

Gaussian filter at multiple scales to produce a template and

used the normalized correlation as the similarity measure. In

recent years, researchers have analyzed aspects like utilizing

real valued features for recognition, developing alternate ways

of obtaining the binary codes and combining multiple features.

See [1] for an excellent survey of recent efforts on iris

recognition.

Several studies have shown that accurate quality estimation

can improve the performance either by rejecting the poor

quality images or by fusing the quality information during

matching [1], [11], [12]. Rejection of poor quality images is

useful in numerous practical settings, as explained below -:

1) A human assisted recognition system in which a small

fraction of the samples where the system has lower

confidence is sent to a human expert or a more accurate

recognition system.

2) An active acquisition system in which a new sample

from the user is acquired if the originally captured one

is of poor quality.

3) High security applications requiring very low false pos-

itives, where it is acceptable to reject a small number

of poor quality samples and deny access to individuals

rather than obtain wrong results and provide access to

unauthorized individuals.

We review some of the existing iris image quality estimation

schemes in iris literature below. Daugman used the energy

of the high frequency components as a measure of blur [9].

Proenca and Alexandre trained a neural network to identify

common noise degradations in iris images [13]. Zhu et al.

used the wavelet coefficients to evaluate the quality of iris

images [14]. The Fourier spectra of local iris regions was used

by Ma et al. to characterize blur and occlusion [15]. Rakshit

and Monro used the quality and position of specular reflections

for selecting good quality images [16]. With the exception of

Daugman’s method, these algorithms are specialized for image

selection, which requires a separate method for recognizing

iris images. Also, these algorithms utilize some property of

the iris image to measure image quality and cannot handle the

wide variety of common artifacts such as specular reflections

and occlusion. In contrast to these methods, the image quality

measure introduced in this paper can handle segmentation

errors, occlusion, specular reflections, and blurred images. The

proposed method also performs both selection and recognition

in a single step.

B. Iris Recognition from Videos

Though research in iris recognition has been extremely

active in the past decade, most of the existing results are based

on recognition from still iris images [17]. Multiple iris images

have been used in the past to improve performance. Du et

al. [18] demonstrated higher rank one recognition rates by

using three gallery images instead of one. Ma et al. [19] also

enrolled three iris images and averaged the three Hamming

distances to obtain the final score. Krischen et al. [20] used

the minimum of the three Hamming distance as the final

score. Schmid et al. [21] demonstrated that fusing the scores

using log likelihood ratio gave superior performance when

compared to average Hamming distance. Liu et al. [22], Roy

and Bhattacharya [23] used multiple iris images for training

classifiers.

The distortions common in iris image acquisition like occlu-

sion due to eyelids, eye lashes, blur, and specular reflections

will differ in various frames of the video. So by efficiently

combining the different frames in the video, the performance

could be improved. Temporal continuity in iris videos was

used for improving the performance by Hollingsworth et

al. [17]. The authors introduced a feature level fusion by

averaging the corresponding iris pixels and a score level fusion

algorithm combining all the pairwise matching scores. Though

averaging reduces the noise and improves the performance, it

required images to be well segmented and aligned, which may

often not be possible in a practical iris recognition system. We

will introduce a quality based matching score that gives higher

weight to the evidence from good quality frames, yielding

superior performance even when some video frames are poorly

acquired.

C. Cancelable iris biometrics

The concept of cancelable biometrics was first introduced

by Ratha et al. in [7], [8]. A cancelable biometric scheme

intentionally distorts the original biometric pattern through a
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revocable and non-invertible transformation. The objectives of

a cancelable biometric system are as follows [6]:

• Different templates should be used in different applica-

tions to prevent cross matching.

• Template computation must be non-invertible to prevent

unauthorized recovery of biometric data.

• Revocation and reissue should be possible in the event of

compromise, and

• Recognition performance should not degrade when a

cancelable biometric template is used.

In [24], Hash functions were used to minimize the compromise

of the private biometric data of the users. Cryptographic

techniques were applied in [25] to increase the security of

iris systems. In [26], error correcting codes were used for

cancelable iris biometrics. A fuzzy commitment method was

introduced in [27]. Other schemes have also been introduced

to improve the security of iris biometric. See [6], [24], [25],

[26], [27], [28] and the references therein for more details.

The pioneering work in the field of cancelable iris bio-

metric was done by Zuo et al. [29]. They introduced four

non-invertible and revocable transformations for cancelability.

While the first two methods utilized random circular shifting

and addition, the other two methods added random noise

patterns to the iris features to transform them. As noted

by the authors, the first two methods gradually reduce the

amount of information available for recognition. Since they

are essentially linear transformations on the feature vectors,

they are sensitive to outliers in the feature vector that arise

due to eyelids, eye lashes and specular reflections. They also

combine the good and bad quality regions in the iris image

leading to lower performance. The proposed random projec-

tions based cancelability algorithm works on each sector of the

iris separately, so outliers can only affect the corresponding

sectors and not the entire iris vector. Hence, it is more robust

to common outliers in iris data when compared to [29].

III. IRIS IMAGE SELECTION AND RECOGNITION

Following [4], in this section, we briefly describe the use

of sparse representations for the selection of good quality iris

images and their subsequent recognition.

A. Sparse Representations

Suppose that we are given L distinct classes and a set of

n training iris images per class. We extract an N -dimensional

vector of Gabor features from the iris region of each of these

images. Let Dk = [xk1, . . . ,xkj , . . . ,xkn] be an N×n matrix

of features from the kth class, where xkj denote the Gabor

feature from the jth training image of the kth class. Define a

new matrix or dictionary D, as the concatenation of training

samples from all the classes as

D = [D1, ...,DL] ∈ R
N×(n.L)

= [x11, ...,x1n|x21, ...,x2n|......|xL1, ...,xLn].

We consider an observation vector y ∈ R
N of unknown class

as a linear combination of the training vectors as

y =

L
∑

i=1

n
∑

j=1

αijxij (1)

with coefficients αij ∈ R. The above equation can be written

more compactly as

y = Dα, (2)

where

α = [α11, ..., α1n|α21, ..., α2n|......|αL1, ..., αLn]T (3)

and .T denotes the transposition operation. We assume that

given sufficient training samples of the kth class, Dk, any

new test image y ∈ R
N that belongs to the same class will

lie approximately in the linear span of the training samples

from the class k. This implies that most of the coefficients not

associated with class k in (3) will be close to zero. Hence, α
is be a sparse vector.

B. Sparse Recovery

In order to represent an observed vector y ∈ R
N as a sparse

vector α, one needs to solve the system of linear equations (2).

Typically L.n À N and hence the system of linear equations

(2) is under-determined and has no unique solution. It has

been shown that if α is sparse enough and D satisfies certain

properties, then the sparsest α can be recovered by solving the

following optimization problem [30] [31] [32] [33]

α̂ = arg min
α′

‖ α′ ‖1 subject to y = Dα′, (4)

where ‖ x ‖1=
∑

i |(xi)|. This problem is often known as

Basis Pursuit (BP) and can be solved in polynomial time [34]1.

When noisy observations are given, Basis Pursuit DeNoising

(BPDN) can be used to approximate α

α̂ = arg min
α′

‖ α′ ‖1 subject to ‖y − Dα′‖2 ≤ ε, (5)

where we have assumed that the observations are of the

following form

y = Dα + η (6)

with ‖ η ‖2≤ ε.

Finally, in certain cases, greedy algorithms such as or-

thogonal matching pursuit [35] can also be used to recover

sparse images. Such an algorithm for face recognition has been

proposed in [36].

C. Sparse Recognition

Given an observation vector y from one of the L classes in

the training set, we compute its coefficients α̂ by solving either

(4) or (5). We perform classification based on the fact that high

values of the coefficients α̂ will be associated with the columns

of D from a single class. We do this by comparing how well

the different parts of the estimated coefficients, α̂, represent y.

The minimum of the representation error or the residual error

is then used to identify the correct class. The residual error of

class k is calculated by keeping the coefficients associated

with that class and setting the coefficients not associated

with class k to zero. This can be done by introducing a

1Note that the ℓ1 norm is an approximation of the the ℓ0 norm. The
approximation is necessary because the optimization problem in (4) with the
ℓ0 norm (which seeks the sparsest α) is NP-hard and computationally difficult
to solve.
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characteristic function, Πk : R
n → R

n, that selects the

coefficients associated with the kth class as follows

rk(y) = ‖y − DΠk(α̂)‖2. (7)

Here the vector Πk has value one at locations corresponding

to the class k and zero for other entries. The class, d, which

is associated with an observed vector, is then declared as the

one that produces the smallest approximation error

d = arg min
k

rk(y). (8)

We now summarize the sparse recognition algorithm as fol-

lows:

Given a matrix of training samples D ∈ R
N×(n.L) for L

classes and a test sample y ∈ R
N :

1) Solve the BP (4) or BPDN (5) problem.

2) Compute the residual using (7).

3) Identify y using (8).

D. Image quality measure

For classification, it is important to be able to detect and

then reject the test samples of poor quality. To decide whether

a given test sample has good quality, we use the notion of

Sparsity Concentration Index (SCI) proposed in [4]. The SCI

of a coefficient vector α ∈ R
(L.n) is defined as

SCI(α) =

L. max ‖Πi(α)‖1

‖α‖1
− 1

L − 1
. (9)

SCI takes values between 0 and 1. SCI values close to 1 cor-

respond to the case where the test image can be approximately

represented by using only images from a single class. The test

vector has enough discriminating features of its class, so has

high quality. If SCI = 0 then the coefficients are spread evenly

across all classes. So the test vector is not similar to any of

the classes and has of poor quality. A threshold can be chosen

to reject the iris images with poor quality. For instance, a test

image can be rejected if SCI(α̂) < λ and otherwise accepted

as valid, where λ is some chosen threshold between 0 and 1.

IV. BAYESIAN FUSION BASED IMAGE SELECTION AND

RECOGNITION

Different regions of the iris have different qualities [11].

So instead of recognizing the entire iris image directly, we

recognize the different regions separately and combine the

results depending on the quality of the region. This reduces

the computational complexity of the above method as the

size of the dictionary is greatly reduced, and the recognition

of the different regions can be done in parallel. Also, since

occlusions affect only local regions on the iris which can

only lower the quality of certain regions, the robustness of

the recognition algorithm to occlusion due to eyelids and eye

lashes is improved. A direct way of doing this would be to

recognize the sectors separately and combine the results by

voting [37]. This, however, does not account for the fact that

different regions are recognized with different confidences.

In what follows, we propose a score level fusion approach

for recognition where we combine the recognition results of

different sectors based on the recognition confidence using the

corresponding SCI values. Fig. 2 illustrates the different steps

involved in the proposed approach.

Alignment
Estimation

Possible

Extraction

SegmentationIris Images
/ Video Gabor features

Rotated
Sparse

of Sectors
Representation

Image Selection

Bayesian Fusion

Iris Images
/ Video

Segmentation
and Unwrapping

Gabor Features
of Sectors

& Gabor Feature

Recognition

DictionaryVerification / Identification

Enrollment

Fig. 2. A block diagram illustrating the Bayesian Fusion based image
selection and recognition.

Consider the iris recognition problem with L distinct

classes. Let C = {c1, c2, . . . , cL} be the class labels. Let y be

the test vector whose identity is to be determined. Let us divide

the vector y into M̂ non-overlapping regions, each called a

sector. Each of the sectors is individually solved using the

sparse representation-based recognition algorithm discussed in

section III. The sectors with SCI values below the threshold

are rejected. Let M be the number of sectors retained, where

M ≤ M̂ . Let d1, d2, . . . , dM be the class labels of the retained

sectors. Ideally, if the data is noise free, all the returned labels

will be equal to the true label c. That is,

d1 = d2 = . . . = dM = c.

However, in the presence of noise in the training and test iris

images, the returned labels will not necessarily be the same.

Let P(di|c) be the probability of the ith sector returns a label

di when the true class is c. It is reasonable to assume that

the probability of the recognition system returning the true

label c is high. But given the noise in the iris images, all the

classes other than c will still have a low probability of being

identified as the true class. SCI is a measure of the confidence

in recognition, so the higher the SCI value, the higher the

probability that the true class will be the same as the class

suggested by the recognition system. So a reasonable model

for the likelihood is

P(di|c) =











t
SCI(di)
1

t
SCI(di)
1 +(L−1).t

SCI(di)
2

if di = c,

t
SCI(di)
2

t
SCI(di)
1 +(L−1).t

SCI(di)
2

if di 6= c
(10)
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where t1 and t2 are positive constants such that

t1 > t2 > 1

The numerator gives a higher probability value to the correct

class, and the denominator is a normalizing constant. The

condition (IV) ensures that the probability of the true class

increases monotonically with the SCI value of the sector. Thus,

this likelihood function satisfies the two constraints mentioned

above.

The maximum aposteriori estimate (MAP) of the class label

given the noisy individual sector labels is given by

c̃ = arg max
c∈C

P(c|d1, d2, . . . , dM ) (11)

Assuming the prior probabilities of the classes are uniform,

we obtain

c̃ = arg max
c∈C

P(d1, d2, . . . , dM |c)

Conditioned on the true class, the uncertainty in the class

labels is only due to the noise in the different sectors, which

are assumed to be independent of each other. So

c̃ = arg max
c∈C

M
∏

j=1

P(dj |c)

= arg max
c∈C

t
PM

j=1 SCI(dj).δ(dj=c)

1 .t
PM

j=1 SCI(dj).δ(dj 6=c)

2

(12)

where δ(.) is the Kronecker delta function. Since t1 > t2, the

solution to (12) is same as

c̃ = arg max
c∈C

M
∑

j=1

SCI(dj).δ(dj = c) (13)

Let us define the Cumulative SCI (CSCI) of a class cl as

CSCI(cl) =

∑M
j=1 SCI(dj).δ(dj = cl)

∑M

j=1 SCI(dj)
(14)

So

c̃ = arg max
c∈C

CSCI(c) (15)

CSCI of a class is the sum of the SCI values of all the

sectors identified by the classifier as belonging to that class.

Therefore, the optimal estimate is the class having the highest

CSCI.

V. IRIS RECOGNITION FROM VIDEO

In this section, we illustrate how our method can be

extended to perform recognition from iris videos. Let Y =
{y1,y2, . . . ,yJ} be the J vectorized frames in the test video.

As before, each frame is divided into M̂ sectors and recog-

nized separately by the sparse recognition algorithm. Let Mi

be the number of sectors retained by the selection scheme in

the ith frame. Let yi
j be the jth retained sector in the ith frame.

Using a derivation similar to the one given in Section IV, we

can derive the MAP estimate as

c̃ = arg max
c∈C

J
∑

i=1

Mi
∑

j=1

SCI(di
j).δ(c = di

j) (16)

where di
j is the class label assigned by the classifier to yi

j .

(16) can be alternatively written as

c̃ = arg max
c∈C

CSCI(c) (17)

where CSCI of a class cl is given by

CSCI(cl) =

∑J
i=1

∑Mi

j=1 SCI(di
j).δ(d

i
j = cl)

∑J

i=1

∑Mi

j=1 SCI(di
j)

. (18)

As before, the MAP estimate consists of selecting the class

having the highest cumulative SCI value, with the difference

that the sectors of all the frames in the test video will be used

while computing the CSCI of each class. Note that unlike

existing feature level and score level fusion methods available

for iris recognition, the CSCI incorporates the quality of the

frames into the matching score. Hence, when the frames in

the video suffer from acquisition artifacts like blurring, oc-

clusion and segmentation errors, the proposed matching score

gives higher weights to the good frames, at the same time,

suppressing the evidence from the poorly acquired regions in

the video.

The different modes of operation of the proposed algorithm

are illustrated in Fig. 3. Both the probe and the gallery can

be separate iris images or iris videos. The iris images are

segmented and unwrapped to form rectangular images. The

Gabor features of the different sectors are computed, and

sparse representation-based recognition algorithm described in

section III-C is used to select the good iris images. The good

sectors are separately recognized and combined to obtain the

class of probe image or video as described above.

VI. HANDLING ALIGNMENT

Due to rotation of the head with respect to the camera, the

captured test iris image may be rotated with respect to the

training images. To obtain a good recognition performance,

it is important to align the test images before recognition. In

this section, we propose a two stage approach for iris feature

alignment. In the first stage, we estimate the best K alignments

for each test vector using matched filters and then obtain

an alignment invariant score function, based on the Bayesian

fusion framework introduced above.

A. Matched Filter Based Alignment Estimation

Let y be the test vector to be recognized. Let Â be the

number of possible alignments of the test vector. A matched

filter is designed for each alignment, whose impulse response

is equal to the corresponding shifted version of y. Let hi be

the impulse response of the ith matched filter, and H be the

set of all possible impulse responses.

H = {h1,h2, . . . ,hÂ} (19)

Let eijk be the sum of squared error between ith matched filter

impulse response and jth training image of the kth class.

eijk = ‖hi − xkj‖2
2 (20)
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Image
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Fig. 3. A block diagram illustrating the different modes of operation of the proposed algorithm. Both the probe and the gallery can be individual iris images
or iris video. Here, S.R. stands for Sparse Representation.

The alignment error associated with the ith alignment is

computed as

ei = min
k=1,2,...L,j=1,2,...n

eijk (21)

The top K alignments are selected as the ones producing

the least alignment error ei.

B. Score Estimation Robust to Alignment Errors

From each test vector y, we can generate K new test vec-

tors by shifting it according to the corresponding alignments

obtained from the method described above. So instead of the J
original frames in the video, we now have JK frames. Using

arguments similar to the ones in the previous section, we can

obtain the CSCI of the lth class cl as

CSCI(cl) =

∑JK

i=1

∑Mi

j=1 SCI(di
j).δ(d

i
j = cl)

∑JK
i=1

∑Mi

j=1 SCI(di
j)

. (22)

where Mi are the number of sectors retained in the ith

frame. The MAP estimate of the output class is the one with

the highest CSCI value. Note that this score estimation handles

the global alignment errors and not the local deformations

in the iris pattern. Since our method weighs different sectors

based on their quality, sectors having significant local defor-

mations will not have high influence on the final CSCI value

due to their lower quality.

VII. SECURE IRIS BIOMETRIC

For a biometric system to be deployed successfully in a

practical application, ensuring security and privacy of the

users is essential. In this section, we propose two cancelable

methods to improve security of our recognition system.

A. Cancelability Through Random Projections

The idea of using Random Projections (RP) for can-

celability in biometrics has been previously introduced in

[28], [38], [39]. In [28] and [38], RPs of discriminative

features were used for cancelability in face biometrics. RPs

on different regions of the iris were applied for cancelability

in [39]. In what follows, we show how RPs can be extended

into the sparse representation-based approach for ensuring

cancelability.

Let Φ be an m×N random matrix with m ≤ N such that

each entry φi,j of Φ is an independent realization of q, where

q is a random variable on a probability measure space (Ω, ρ).
Consider the following observations:

a
.
= Φy = ΦDα + η′, (23)

where η′ = Φη with ‖ η′ ‖2≤ ε′. a can be thought of as

a transformed version of the biometric y. One must recover

the coefficients α to apply the sparse recognition method

explained in section III. As m is smaller than N , the system of

equations (23) is underdetermined and a unique solution of α
is not available. Given the sparsity of α, one can approximate

α by solving the BPDN problem. It has been shown that

for sufficiently sparse α and under certain conditions on

ΦD, the solution to the following optimization problem will

approximate the sparsest near-solution of (23) [40]

α̂ = arg min
α′

‖ α′ ‖1 s. t. ‖a − ΦDα′‖2 ≤ ε′. (24)

One sufficient condition for (24) to stably approximate the

sparsest solution of (23), is the Restricted Isometry Property

(RIP)[41], [32], [33]. A matrix ΦD satisfies the RIP of order

K with constants δK ∈ (0, 1) if

(1 − δK) ‖ v ‖2
2≤‖ ΦDv ‖2

2≤ (1 + δK) ‖ v ‖2
2 (25)
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for any v such that ‖ v ‖0≤ K. When RIP holds, ΦD

approximately preserves the Euclidean length of K-sparse

vectors. When D is a deterministic dictionary and Φ is a

random matrix, the following theorem on the RIP of ΦD can

be stated.

Theorem 1. ([40]) Let D ∈ R
N×(n.L) be a deterministic

dictionary with restricted isometry constant δK(D),K ∈ N.
Let Φ ∈ R

m×N be a random matrix satisfying

P
(

|‖Φv‖2 − ‖v‖2| ≥ ς‖v‖2
)

≤ 2e−c n
2 ς2

, ς ∈ (0,
1

3
) (26)

for all v ∈ R
N and some constant c > 0 and assume

m ≥ Cδ−2 (K log((n.L)/K) + log(2e(1 + 12/δ)) + t)
(27)

for some δ ∈ (0, 1) and t > 0. Then, with probability at least

1 − e−t, the matrix ΦD has restricted isometry constant

δK(ΦD) ≤ δK(D) + δ(1 + δK(D)). (28)

The constant satisfies C ≤ 9/c.

The above theorem establishes how the isometry constants

of D are affected by multiplication with a random matrix Φ.

Note that one still needs to check the isometry constants for the

dictionary D to use this result. However, for a given dictionary,

D, it is difficult to prove that D satisfies a RIP. One can

alleviate this problem by using the phase transition diagrams

[42], [43]. See section VII-A for more details.

The following are some matrices that satisfy (26) and hence

can be used as random projections for cancelability.

• m × N random matrices Φ whose entries φi,j are

independent realizations of Gaussian random variables

φi,j ∼ N
(

0, 1
m

)

.
• Independent realizations of ±1 Bernoulli random vari-

ables

φi,j
.
=

{

+1/
√

m, with probability 1
2

−1/
√

m, with probability 1
2 .

• Independent realizations of related distributions such as

φi,j
.
=







+
√

3/m, with probability 1
6

0, with probability 2
3

−
√

3/m, with probability 1
6 .

• Multiplication of any m × N random matrix Φ with a

deterministic orthogonal N × N matrix D̃, i.e. ΦD̃.

Note that RPs meet the various constraints required for

cancelability, mentioned in Section I. By using different RP

matrices, we can issue different templates for different ap-

plications. If a transformed pattern is compromised, we can

reissue a new pattern by applying a new random projection to

the iris vector. The RIP properties together with the sparsity

of α ensure that the recognition performance is preserved.

In the application database, only the transformed dictionary

ΦD is stored. If a hacker illegally obtains the transformed

dictionary ΦD and the transformed iris patterns of the user,

a, he or she will have access to the person’s identity. However,

it is extremely difficult to obtain the matrix D from ΦD,

and without D one cannot obtain the original iris patterns

Iris Image

Random Matrix

Transformed Features

Application Database
Transfer to

Gabor Features

Enrollment

Add to Dictionary

Input Iris Image

Gabor Features

Transformed Features

Verify Claim

Verification

Matrix
User Specific

Sparsity Based Recognition

Image Selection

(a) (b)

Fig. 4. Block Diagram of the Random Projections based cancelable system.

y. Hence, our cancelable scheme is non-invertible as it is

not possible to obtain the original iris patterns from the

transformed patterns. Furthermore, since our method is based

on pseudo-random number generation, we only consider the

state space corresponding to the value taken by the seed of the

random number generator. Hence, instead of storing the entire

matrix, one only needs to store the seed used to generate the

RP matrix.

B. Cancelability through Random Permutations of dictionary

columns

As explained in section III, when the iris image has good

quality, only the training images corresponding to the correct

class will have high coefficients. If the training images of

different classes are randomly arranged as columns of the

dictionary, both the dictionary and the order of the training

images are required for correct recognition. In this section,

we explain how this idea can enhance the security of our iris

recognition system.

When a new user is enrolled, his training images are divided

into sectors and placed at random locations in the dictionary.

In Fig. 5, we show the dictionary for a trivial example of four

users. Note that the different sectors of each training image of

the user are kept at different random locations in the dictionary.

Without prior knowledge of these locations, it is impossible

to perform recognition.

An array indicating the column numbers of the training

images of the correct class is generated for each user. This

array is stored in a hash table, and the corresponding hash code

is given to the user during enrollment. During verification,

the system acquires the iris image of the person and extracts

the features. For each sector of the iris vector, the sparse

coefficients are obtained using this shuffled dictionary, as

explained in section III. The user also has to present the

hash code to the system. Using the hash code, the indices

of training images are obtained from the hash table and the

coefficients belonging to different classes are grouped. Then,

SCI is computed and used to retain or reject the images.

If the image is retained, the CSCI values of the different

classes are computed and the class having the lowest CSCI

value is assigned as the class label of the user, as explained
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Fig. 5. Sample Dictionary and hash table for a four user example. The
four users A, B, C and D are indicated by colors green, blue, black and red,
respectively. A1 and A2 are the two training images corresponding to the first
user. Sij denote that the jth location and the ith sector. D1 at S14 means
that the first sector of the user D is at location S14.

in section IV. A block diagram of the security scheme is

presented in Fig. 6

Hash Code
Dictionary Index

Obtain Generate
Dictionary

Representation
Sparse

& Recognition
Image Selection

Extraction
Feature

User

Fig. 6. Block Diagram of the proposed cancelability scheme using random
permutations.

If the hash code presented is incorrect, then the obtained

indices of the training images for each class will be wrong.

So the coefficients will be grouped in a wrong way, and all the

classes will have similar energy leading to a low SCI value

and the subsequent rejection of the image. Even if by chance,

one of the classes happened to have high energy and the image

is retained, the probability of that class being the correct class

is very low ( 1
N

). Thus, with high probability, the user will

not be verified. Hence, if a hacker illegally acquires the iris

patterns of a legitimate user, without having the hash code,

he or she will not be able to access the system. Also, even if

the hacker obtains the iris dictionary stored in the application

database, the iris patterns of the user cannot be accessed

without knowing the correct hash codes, because different

sectors of an iris patterns reside at different random locations.

If the hash code is compromised, the dictionary indices of the

user can then be stored at a new location, and a new hash code

can be issued to the user. Also, different applications can have

different dictionaries. Thus, the user will have a different hash

code for each application, preventing cross matching.

It should be noted that the additional security and privacy

introduced by these techniques come at the expense of storing

additional seed values. In applications requiring higher secu-

rity, this can be stored with the user, so that a hacker will not

get the original templates even if he gets hold of the cancelable

patterns in the template database. For applications with greater

emphasis on usability, the seed can be stored securely in the

template database, so that the user will not have to carry it.

VIII. RESULTS AND DISCUSSION

In the following subsections, we present iris image selec-

tion, recognition and cancelability results on the ICE2005

dataset [3], ND-IRIS-0405 (ND) dataset [44] and the MBGC

videos [45]. The ND dataset is a superset of the ICE2005 and

ICE2006 iris datasets. It contains about sixty five thousand

iris images belonging to three hundred and fifty six persons,

with a wide variety of distortions, facilitating the testing

and performance evaluation of our algorithm. In all of our

experiments, we employed a highly efficient algorithm suitable

for large scale applications, known as the Spectral Projected

Gradient (SPGL1) algorithm [46], to solve the BP and BPDN

problems.

A. Empirical verification of ℓ0/ℓ1 equivalence

Our sparse recognition algorithm’s performance depends on

certain conditions on the dictionary such as incoherence and

RIP. However, as stated earlier, it is very difficult to prove any

general claim that D, GD, ΦD, or ΦGD satisfies a RIP or an

incoherence property. To address this, one can use the phase

transition diagrams [42]. A phase transition diagram provides

a way of checking ℓ0/ℓ1 equivalence, indicating how sparsity

and indeterminacy affect the success of ℓ1 minimization [42],

[43].

Phase Transition Diagram
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Fig. 7. Phase transition diagrams corresponding to the case when the
dictionary is (a) GD and (b) ΦGD, where G is the Gabor transformation
matrix and Φ is the random projection matrix for cancelability. In both figures,
we observe a phase transition from lower region where the ℓ0/ℓ1 equivalence
holds, to the upper region, where one must use combinatorial search to recover
the sparsest solution.

Let δ = M
N

be a measure of undersampling factor, and

ρ = K
M

be a measure of sparsity. A plot of the pairing of the

variables δ and ρ describes a two-dimensional phase space

(δ, ρ) ∈ [0, 1]2. The values of δ and ρ ranged through 40

equispaced points in the interval [0, 1] and N = 800. At each

point on the grid, we recorded the mean number of coordinates

at which original and reconstruction differed by more than

10−3, averaged over 20 independent realizations (see [42],

[43] for more details).

In Fig. 7 (a) and (b), we show the phase transition diagrams

corresponding to the case when the dictionary is GD and
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ΦGD, respectively. Here, G is the Gabor transformation

matrix and Φ is an m × N matrix whose entries φi,j are

independent realizations of Gaussian random variables φi,j ∼
N

(

0, 1
m

)

. For each value of δ, the values of ρ below the

curve, are the ones where the ℓ0/ℓ1 equivalence holds. As

can be observed, for most values of δ, there is atleast one

value of ρ below the curve, satisfying the equivalence. So the

vector α can be recovered if it is sparse enough and enough

measurements are taken.

B. Image Selection and Recognition

In this section, we evaluate our selection and recognition

algorithms on ND and ICE2005 datasets. To illustrate the

robustness of our algorithm to occlusion due to eyelids and

eyelashes, we perform only a simple iris segmentation scheme,

detecting just the pupil and iris boundaries and not the eyelids

and eye lashes. We use the publicly available code of Masek

et al. [47] for detecting these boundaries.

1) Variation of SCI with common distortions during image

acquisition: To study the variation of SCI in the presence of

common distortions during image acquisition like occlusion

and blur, we simulate them on the clean iris images from the

ND dataset.

Description of the Experiment: We selected fifteen clean

iris images of the left eye of eighty persons. Twelve such

images per person formed the gallery and distortions were

simulated on the remaining images to form the probes. We

consider seven different levels of distortion for each case,

with level one indicating no distortion and level seven indicat-

ing maximum distortion. We obtain the dictionary using the

gallery images, and evaluate the SCI of the various sectors of

the test images.

Fig. 8 shows some of the simulated images from the ND

dataset. The first column includes images with distortion

level one (no distortion). The middle column contains images

with distortion level three (moderate distortions). The right

most column contain images with distortion level five (high

distortion). The first row contains images with blur while the

second contains images with occlusion. Images with simulated

segmentation error and specular reflections are shown in the

third and fourth rows respectively.

Fig. 9 (a) illustrates the variation of SCI with the common

acquisition distortions. It can be observed that good images

have high SCI values whereas the ones with distortion have

lower SCI values. So by suitably thresholding the SCI value

of the test image, we can remove the bad images before the

recognition stage. The relative stability in SCI values with

occlusion and specular reflection demonstrates the increased

robustness attained by our algorithm, by separately recog-

nizing the individual sectors and combining the results, as

mentioned in section IV.

2) Image Selection results on the ND dataset: In this

section, we illustrate the performance of our image selection

algorithm on images from the ND dataset.

Description of the Experiment: We selected the left iris

images of eighty subjects that had sufficiently large number

of iris images with different distortions like blur, occlusion

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8. Simulated Distortions on the images from the ND dataset. The
detected pupil and iris boundaries are indicated as red circles.

and segmentation errors. Fifteen clean images per person were

hand chosen to form the gallery. Up to fifteen images with

blur, occlusion and segmentation errors were also selected. As

mentioned before, we perform a simple segmentation scheme,

retaining possible occlusion due to eyelids and eyelashes in

the iris vector. The Gabor features of the iris vector form the

input. Our algorithm creates the dictionary, finds the sparse

representation for each test vector, evaluates the SCI of the

sectors, and rejects the images for which all the sectors have

SCI value below a threshold of 0.6.

Measure the selection performance : The quality of the input

iris feature vector should be a function of the performance

of the recognition algorithm on that sample [1]. An ideal

image selection algorithm should retain images, which can be

correctly recognized by the recognition algorithm, and reject

the ones on which the subsequent recognition algorithm will

perform poorly. To measure it, we define the Modified False

Positive Rate (MFR) and a Modified Verification Rate (MVR)

as follows. Modified False Positive rate is the fraction of

the test vectors retained by the image selection algorithm,

which are wrongly classified by the subsequent recognition

algorithm. Modified Verification Rate is defined as the fraction

of the images correctly classified by the recognition algorithm,

which are retained by the selection scheme. To obtain these

values, we find the CSCI for each test sample and also the

class assigned to the samples by our algorithm. We obtain

the Receiver Operating Characteristics (ROC) of the image

selection algorithm by plotting MVR versus MFR for different

values of threshold. Note that this measures the performance

of the quality estimation stage and is different from the ROC

curve of the recognition algorithm.

MFR =
No of Images selected and wrongly classified

No of images selected
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Fig. 9. (a) Plot of the variation in SCI values with common distortions in iris image acquisition. Note that the SCI falls monotonically with increasing levels
of blur and segmentation errors in the iris images. It is also robust to occlusions and specular reflections. (b) Plot of the recognition rate versus the number
of sectors. Observe the significant improvement in the results as the number of sectors is improved from one to eight. (c) Plot of the recognition rate versus
the number of training images. Note that the recognition rate increases monotonically with the number of training images. Also, sectoring achieves the same
recognition rate as the case without sectoring using far fewer training images.

MV R =
No of Images selected and correctly classified

No of images correctly classified

Fig. 10(a) shows the ROC of our image selection algorithm

(black), compared to that using directly the Hamming distance

based on the publicly available iris recognition system of

Masek et al. [47] (red), when the probe images are blurred.

Since the data has occlusion, direct application of Masek’s

algorithm performed poorly. For a fair comparison, we modi-

fied the algorithm, recognizing the different sectors of the iris

separately and fusing the results through voting. Note that our

ROC curve is significantly sharper than that of the Masek’s

recognition system indicating superior performance.

The effects of occlusion in iris images due to eyelids, eye

lashes and specular reflections are illustrated in Fig. 10(b).

Images with occlusion were obtained for each of the eighty

classes under consideration and used as probes. The ROC

curve of our algorithm is shown in black and that of Masek’s

system appears in red. Note that for the same MFR, the

proposed image selection scheme has a higher MVR. This

indicates that the proposed selection method retains more

images that will be correctly classified by the subsequent

recognition algorithm and rejects more images that will be

wrongly classified by the recognition algorithm.

To study the effects of segmentation error, the gallery

images were verified to be well segmented. Up to fifteen

images with segmentation errors were chosen for each person

under consideration, which formed the probes. Fig. 10(c)

shows the ROC curves of our method (black) and the Masek’s

one (red) in case of wrongly segmented images. Again, using

our image selection algorithm improves the performance of

the system even with wrongly segmented images, a feature

lacking in many existing quality estimation methods.
3) Recognition Results on images from the ND dataset: In

this section, we illustrate the performance of our recognition

algorithm on images from the ND dataset.

Performance on clean images - Description of the Ex-

periment: Eighty subjects were selected from the dataset.

Fifteen clean images of the left iris were hand selected for

each person. Of these fifteen images per person, twelve were

randomly selected to form the gallery and the remaining three

images per person were used as probes. No image selection

is performed because we want to evaluate the performance of

the recognition algorithm separately.

We compare our algorithm to a nearest neighbor based

recognition algorithm (NN) that uses the Gabor features and

the Masek’s implementation. Since we use tough segmentation

conditions retaining the eyelids and eye lashes in the iris

vector, direct application of NN and Masek’s method produced

poor results. For a fair comparison, we divided the iris images

into different sectors, obtained the results using these methods

separately on each sectors and combined the results by voting.

We obtained a recognition rate of 99.15% when compared to

98.33% for the NN and 97.5% for the Masek’s method.

Performance on poorly acquired images - Description of the

Experiment - To evaluate the recognition performance of our

algorithm on poorly acquired images, we hand picked images

with blur, occlusion and segmentation errors as explained in

the previous section. Fifteen clean images per person were

used to form the gallery. Probes containing each type of dis-

tortion were applied separately to the algorithm. We perform

image selection followed by recognition. The recognition rates

are reported in Table. II.

TABLE I
RECOGNITION RATE ON ND DATASET

Image Quality NN Masek’s Implementation Proposed Method

Good 98.33 97.5 99.15

Blurred 95.42 96.01 98.18

Occluded 85.03 89.54 90.44

Seg. Error 78.57 82.09 87.63

In Fig. 11, we display the iris images having the least

SCI value for the blur, occlusion and segmentation error

experiments performed on the real iris images in the ND

dataset as mentioned above. As can be observed, images with

low SCI values suffer from high amounts of distortion.

4) Recognition Performance on the ICE 2005 Dataset:

In this section, we compare the performance of our algorithm

with the existing results on the ICE 2005 dataset corresponding

to Experiment 1. Experiment 1 has 1425 iris images corre-

sponding to 120 different classes.
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Fig. 10. Comparison of the ROC curves of the proposed image selection algorithm (CSCI Based) and one using Hamming distance as the quality
measure(Hamming Distance Based) using clean iris images in the gallery and probe images containing (a) Blurring (b) Occlusions and (c) Segmentation
Errors. Note that CSCI based image selection performs significantly better than Hamming distance based selection when the image quality is poor.

(a) (b) (c)

Fig. 11. Iris images with low SCI values in the ND dataset. Note that the
images in (a), (b) and (c) suffer from high amounts of blur, occlusion and
segmentation errors respectively .

Description of the Experiment : We have used ten images

per class in the gallery and remaining iris images as the test

vectors. We perform segmentation using Masek’s code and

apply the Gabor features of the segmented iris images to our

recognition algorithm. No image selection was performed. We

compare our performance with existing results in Table II,

where the verification rates are indicated at a false acceptance

rate of 0.001. The results of the existing methods are obtained

from [48].

TABLE II
VERIFICATION RATE AT AN FAR OF 0.001 ON THE ICE 2005 DATASET

Method Verification Rate (%)

Pelco 96.8

WVU 97.9

CAS 3 97

CAS 1 97.8

CMU 99.5

SAGEM 99.8

Proposed Method 98.13

5) Dependence of recognition rate on the number of sec-

tors: Fig. 9 (b) plots the variation of the recognition rates for

the proposed method with changes in the number of sectors.

As can be observed, the performance of the recognition system

improves significantly as the number of sectors is increased

from one to eight. Beyond eight, the recognition rate does not

increase significantly.

6) Effect of the number of training images on performance:

In this section, we study the effect of the number of training

images on recognition rate of our algorithm. We vary the

number of training images from one per class to eleven per

class on the ND dataset. The test images consisting of three

iris images per person are used to test each of these cases. The

variation of recognition rate is plotted in Fig. 9 (c) for the case

of no sectoring and sectoring with eight sectors respectively.

As can be observed, recognition performance increases with

the number of training images. This is hardly surprising as our

assumption that the training images span the space of testing

images becomes more valid as the number of training images

increases. In unconstrained iris recognition systems which we

are interested in, this is not a bottle neck because we can

obtain a significant number of iris images from the incoming

iris video. Also, sectoring achieves the same recognition rate as

the non-sectoring case with a much lower number of training

images.

7) CSCI as a measure of confidence in recognition: We

have empirically observed that the higher the CSCI value for

the test image, the higher the probability that it is correctly

classified. This is illustrated in Fig. 12 (a). This observation

is expected as high CSCI means that the reconstructed vector

in most of the sectors will be sparse. If the training images

span the space of possible testing images, the training images

of the correct class will have high coefficients. So the only

possible sparse vector is the one in which the correct class

has high coefficients and others have zero coefficients, which

will be correctly classified by our algorithm.

C. Cancelability Results using Random Projections

We present cancelability results on the clean images from

the ND dataset obtained as explained in Section VIII-B3. The

iris region obtained after segmentation was unwrapped into

a rectangular image of size 10 × 80. The real parts of the

Gabor features were obtained and concatenated to form an iris

vector of length 800. We used the random Gaussian matrix in

our experiments, though other random matrices mentioned in

Section VII-A also gave similar results. In [39], it was shown

that separate application of the random projections performed

better when compared to the application of a single random

projection on the entire iris vector. So we vectorized the real
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Fig. 12. (a) Plot of the CSCI values of test images for a random trial on the ND dataset. Red dots indicate the wrongly classified images. Observe that the
wrongly classified images have low CSCI values and hence the corresponding vectors are not sparse. (b) ROC characteristics for the ND dataset. The Same
Matrix performance is close to the performance without cancelability . Using different matrices for each class gives better performance. (c) Comparison of
the distribution of the Genuine and Impostor normalized Hamming distances for the original and transformed patterns.

part of the Gabor features of each sector of the iris image,

applied the random projections, and then concatenated the ran-

dom projected vectors to obtain our cancelable iris biometric.

We applied either the same random Gaussian matrix for all

the users or different random matrices for different users to

obtain the RP “Same Matrix” and “Different Matrix” vectors,

respectively. Having obtained the random vectors from the

Gabor features of the iris image, we performed the sparsity-

based recognition algorithm described in Section III. We

present the Receiver Operating Characteristic (ROC) curves

and the Hamming distance distributions in the subsections

below.

1) Recognition Performance: Fig. 12(b) plots the ROC

characteristics for the iris images in the ND dataset for the

original and transformed iris patterns. As demonstrated, using

different matrices for each class performs better than using

the same matrix for all classes. In the “Different Matrix”

case, we assumed that the user provided the correct matrix

assigned to him. So the performance exceeds even the original

performance as class specific random projections increases

the interclass distance, still retaining the original intra-class

distance. In Fig. 12 (c), we compare the distribution of the

genuine and impostor normalized Hamming distance for the

original and transformed iris patterns. We can observe that the

distribution of the genuine Hamming distance remains almost

the same after applying the random projections. The original

and Same Matrix cases have similar impostor Hamming dis-

tance distributions. However the Different Matrix case has an

impostor distribution that is more peaked and farther from the

genuine distribution, indicating superior performance.

2) Normalized Hamming distance comparison between the

original and the transformed patterns: In this section, we

quantify the similarity between the original and the random

projected iris vectors. From the original and transformed iris

vectors, iris codes are computed by allocating two bits for

each Gabor value. The first bit is assigned one if the real

part of the Gabor feature is positive and zero otherwise. The

second bit is assigned a value of one or zero in a similar

manner based on the imaginary part of the Gabor feature.

The normalized Hamming distance between the iris codes

is used as the measure of similarity. In Fig. 13(a), we plot

the normalized Hamming distance between the iris codes of

the original and the transformed iris vectors for the “Same

Matrix” and “Different Matrix” cases, respectively. Ideally

we want the two iris codes to be independent, hence the

normalized Hamming distance should be 0.5. The figure shows

that the histogram of the Hamming distance peaks at 0.5,

empirically verifying that the random projected iris vectors are

significantly different from the originals ones. Hence it is not

possible to extract the original iris codes from the transformed

version, thereby proving the non-invertibility property of our

transformation.

Table V provides the statistics of the normalized Hamming

distance between the original and the transformed iris vectors.

As can be seen, the mean of the normalized Hamming distance

is very close to 0.5 with a very low standard deviation.

TABLE III
STATISTICS OF THE NORMALIZED HAMMING DISTANCE.

Methods Mean Standard Deviation

Without RP 0 0

Same Matrix 0.5002 0.0123

Different Matrix 0.4999 0.013

Dictionary Permutations 0.4913 0.0254
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Fig. 14. (a) Gabor features of the original iris image. (b) Gabor features of
the recovered iris image from the cancelable patterns in the dictionary and a
randomly generated projection matrix.

3) Non-Invertibility Analysis of Cancelable Templates using

Random Projections: In this section, we consider the recovery

of original iris patterns from the cancelable templates, using

varying levels of information about the dictionary and the

projection matrix Φ. We consider two methods, one based

on minimizing the squared error and the other based on

compressive sensing techniques. As before, we consider eighty



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE , VOL. X, NO. X, MONTH 20XX 13

0.4 0.45 0.5 0.55 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Histograms

Normalized Hamming Distance

N
o

rm
al

iz
ed

 C
o

u
n

t

 

 

Same Matrix
Different Matrix
Permutations

0 0.2 0.4 0.6 0.8 1
30

40

50

60

70

80

90

100

110
Dimension Reduction

Dimension Fraction

R
ec

og
ni

tio
n 

R
at

e 
(%

)

 

 

Baseline
Same Matrix
Different Matrix

0 0.1 0.2 0.3 0.4
0.7

0.75

0.8

0.85

0.9

0.95

1
ROC Curve

FAR

V
er

ifi
ca

tio
n 

R
at

e 

 

 

Method1
Method2
Method3
Method4
Proposed Method

(a) (b) (c)
Fig. 13. (a) Plot of the histograms of the Normalized Hamming Distance between the original and transformed vectors. Note that the histogram peaks around
0.5 indicating that the original and transformed iris codes are significantly different. (b) Plot of the recognition rate with dimension reductions for the ND
dataset. Note that the performance remains the same up to 30% of the original dimension. (c) ROC plots for video based iris recognition. Method 1 treats
each frame in the video as a different probe. Method 2 averages all the frames in the probe video. Methods 3 and 4 use the average and minimum of all the
pair wise Haming distance between the frames of the probe and gallery videos respectively. The Proposed Method uses CSCI as the matching score. Note
that the introduced quality based matching score outperforms the existing fusion schemes, which do not incorporate the quality of the individual frames in
the video.

classes from the ND-IRIS-0405 dataset with fifteen images per

class. Twelve images per person for the training set and the

remaining for the test vectors. We apply the same random

projections Φ for each class with a dimension reduction

of 40% to form the cancelable patterns. Hence, we have

the a = ΦDy, where a is the cancelable template and y

is the original iris pattern. We consider two methods for

reconstructing the original patterns from cancelable patterns.

They are explained below.

1) Least Square solution - From equation (23) in the

presence of additive noise, the original template can be

recovered by minimizing the following squared error.

ŷ = arg min
y

‖a − Φy‖2
2

2) Compressive Sensing based solution - Since Φ is a

random Gaussian matrix having good RIP, one possible

way of reconstructing the iris patterns is by solving the

following L1 minimization problem.

ŷ = arg min
y

‖ y ‖1 s. t. ‖a − Φy‖2 ≤ ε′. (29)

We computed the error in reconstruction of the original

patterns and the recognition rate on the reconstructed patterns

for different levels of information known about the cancelable

template dictionary and the random projection matrix Φ.

The results are shown in Table V. As can be observed,

the recognition performance is close to chance when either

the random matrix or the dictionary entries are not known.

Even when the random matrix and the dictionary entries are

fully known, the recognition performance on the reconstructed

template is significantly lower than that on the original iris

templates. This result empirically verifies that it is difficult to

extract significant information about the original iris templates

from the cancelable ones.

In Fig. 14, we display the Gabor features of one of the

iris images in the dictionary and the corresponding recovered

pattern. As can be observed, the recovered pattern appears as

random noise and does not contain any of the information in

the original iris pattern.

TABLE IV
RECONSTRUCTION ERROR AND RECOGNITION RATE KNOWING THE

EXACT CANCELABLE TEMPLATE AND FRACTION OF ENTRIES IN THE

PROJECTION MATRIX

Method Metric %
Fraction Of Correct Values

0 .2 .4 .6 .8 1

LS
Recon. Error 50 49 49 49 49 49
Recog. Rate 2.9 2.08 2.08 .42 .83 .83

CS
Recon. Error 49 46 42 38 32 22
Recog. Rate 1.67 2.08 3.33 7.92 24.58 59.17

TABLE V
RECONSTRUCTION ERROR AND RECOGNITION RATE KNOWING THE

EXACT PROJECTION MATRIX AND FRACTION OF ENTRIES IN THE

CANCELABLE TEMPLATE

Method Metric (%)
Fraction Of Correct Values

0 .2 .4 .6 .8 1

LS
Recon. Error 49 49 49 49 49 49
Recog. Rate 1.25 2.08 1.25 .83 1.25 2.5

CS
Recon. Error 49 48 46 43 38 22
Recog. Rate 1.25 1.67 1.25 1.67 9.17 57.50

4) Effect of dimension reduction: In Fig. 13(b), we demon-

strate the robustness of random projections to reduction in

the original dimension of the feature vector. The random

projected vectors retain their original performance for up

to 30% reduction in the original dimension for both the

same and different matrix cases. Dimension reduction further

strengthens the non-invertibility of our transformation as there

will be infinite possible iris vectors corresponding the reduced

dimension random vectors obtained by RP.

5) Comparison with Salting: In Table. VI, we present

the recognition rates and the corresponding mean Hamming

distance for the salting method proposed in [29] for various

noise levels. The best recognition rate and the best Hamming

distance for the Salting method are 96.6% and 0.494 respec-

tively. For RP Same Matrix case, we obtained a recognition

rate of 97% at a Hamming distance of .497. Thus both the

recognition performance and security (non-invertibility) are

higher for RP when compared to the Salting method.
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TABLE VI
COMPARISON WITH SALTING METHOD. THE RECOGNITION RATE(RR)

AND MEAN HAMMING DISTANCE (HD) ARE PROVIDED FOR THE SALTING

AND SRP METHODS. THE RECOGNITION RATE OBTAINED USING SRP IS

HIGHER THAN THAT OF THE SALTING METHOD. ALSO SRP GIVES MEAN

HAMMING DISTANCE CLOSER TO .5 WHEN COMPARED TO THE SALTING

METHOD.

Quantity Salting Same Different Permutations

RR(%) 94.2 96.6 94.0 97 100 100

HD 0 .491 .494 .497 .50 .483

D. Cancelability Results using Random Permutations

To evaluate the performance of the proposed cancelable

method using dictionary permutations, we consider the three

possible scenarios on the clean images from the ND dataset. In

the first case, the user provides the iris image and the correct

hash code. In this case, the recognition performance was the

same as that of the original method on the ND dataset, which

is 99.17%. In the second case, the user provides the iris image

but a wrong hash code. Here the recognition performance

dropped to 2%, which is only slightly better than chance. This

is equivalent to the case when a hacker illegally obtains the

iris image of a valid user and tries to gain access into the

system with a guess about the hash code. The low recognition

performance clearly reflects the additional security introduced

by the permutations, as a hacker needs to now have not only

the iris image but also the hash code of a valid user to

gain access. In the third experiment, we found the closeness

between the Gabor features of the original iris images and the

new feature vectors obtained by permutations of the Gabor

features in the dictionary. As before, the normalized Hamming

distance between the iris codes obtained from these vectors is

used as the measure of similarity. We plot the histogram of

the normalized Hamming distance between the original and

the randomly permuted iris vectors in Fig. 13(a). The mean

and standard deviation of the Hamming distance histogram are

indicated in the last row of the Table. V. Note that the mean is

close to .5, indicating that the permutations differ significantly

different from the original iris images. Even if a hacker can

use the dictionary from the application database, he or she will

be unable to extract information about the original iris images

without knowing the hash code of each user.

E. Results on Iris Videos

In this section, we present the results on the MBGC

videos [45]. Given the thirty classes, we used twenty eight

classes that contained atleast five good images in our ex-

periments. We hand picked five clean images from the iris

videos in the training set which formed the dictionary. In the

test videos, batches of five frames were given as a probe to

our algorithm. Using twenty eight available videos and sixty

frames from each test video, we could form three hundred and

thirty six probes. We did only a basic segmentation of the iris

and pupil using the Masek’s code, as before. Also, we did

not remove the poorly segmented iris images manually before

performing the recognition algorithm.

We compare the performance of our algorithm with four

other methods. The ROC plots for the different methods

are displayed in Fig. 13(c). In Method 1, we consider each

frame of the video as a different probe. It gave the worst

performance, indicating that using multiple frames available

in a video can improve the performance. Method 2 averages

the intensity of the different iris images. Though it performs

well when the images are clean, a single image which is

poorly segmented or blurred could affect the entire average.

In Methods 3 and 4, all possible pair wise Hamming distances

between the video frames of the probe videos and the gallery

videos belonging to the same class are computed. Method 3

uses the average of these Hamming distance as the score. In

Method 4, the minimum of the pairwise Hamming distance

was used as the score. In the proposed method, the CSCI

values were computed for each class for each probe video and

the probe video is assigned to the class having the highest

CSCI value. For a fair comparison of the proposed quality

measure in videos, we did not reject any of the frames.

Observe that our method performs better than other methods.

One of the reasons for the superior performance could be

the fact that we are incorporating the quality of the different

frames while computing the CSCI. Frames which are poorly

segmented or blurred will have a low SCI value and hence

will not affect the score significantly. In all the other methods,

the image quality was not effectively incorporated into the

matching score, so all frames are treated equally irrespective

of their quality.

F. Effect of Non-Linear Deformations

Thornton et. al. [49] have studied the in-plane nonlinear

deformations possible in iris images. They found that the

movement of the pupil is only approximately linear, which

leads to minor relative deformations to the normalized iris

patterns.

For BPDN in Section III.A to identify the correct class,

the fitting error of the true class should be much lower than

that due to the other classes. The non-linear deformations

could increase the fitting error for the true class and affect

the performance of our algorithm. To analyze this issue

empirically, we represent each sector of the test feature as

a linear combination of the training images of each class

separately. The median of the fitting error for the true class

and the other classes is plotted in Fig. 15 for the different

sectors. As can be observed, the fitting error for the true class

is significantly lower than that using the other classes. Also

the number of training images in the true class is far fewer

than the total number of images in the gallery, thereby making

the coefficient vector sparse. Empirically, we can thus verify

that the proposed method should be returning the correct class

even with small non-linear deformations.

Also, the non-linear deformations will differ for different

sectors of the iris. If some sectors have lower deformation and

others have higher deformation, the SCI values will be greater

for the lesser deformed sectors and lower for the rest. The

sectors with lower deformation will be correctly recognized

by the Sparse Representation based method. The introduced

Bayesian Fusion framework will give greater weight to the

evidence from the lesser deformed sectors, thereby obtaining
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Fig. 15. Plot of the fitting error for the true class and the wrong classes.
Note that the true class gives a much lower fitting error on the test iris images.
Also, the number of images in the true class is far fewer than the total number
of images in the gallery. So the sparsest solution, which gives the least fitting
error corresponds to non zero coefficients only for the true class, in most
cases.

the correct class label. So the performance of our method

will be affected only when all sectors of the iris have severe

non-linear deformations. We are currently investigating how

to handle such severe non-linear deformations within our

framework.

G. Computational Complexity

In this section, we analyze the complexity of our algorithm

and compare it with the Masek’s algorithm for iris recognition.

Let us assume that we have L classes, with n training images

per class. Let each feature vector be of length N . Let us

assume that the number of sectors is ns. In our experiments, it

is fixed as 8. So the length of each sector of the feature vector

is N
ns

. The size of the dictionary in each sparse representation

is N
ns

× nL.

Numerous methods have been proposed for solving the

ℓ1 minimization problem [50]. For instance, the complexity

of solving an ℓ1 minimization problem using a Homotopy

based method is an O( N
ns

2
+ N

ns
nL) operation. So the total

computational complexity of finding the sparse representation

of all the sectors is O(ns(
N
ns

2
+ N

ns
nL)). Let Â be the

number of different alignments used. So the total complexity

of our algorithm is O(nsÂ( N
ns

2
+ N

ns
nL). Since Â and sl

are constants in our algorithm, the total complexity of the

proposed method is O(N2 + NnL). Note that computing

CSCI given the SCI of the different sectors is an O(LÂ)
operation. So the complexity of our algorithm is linear in

the number of classes and quadratic in the length of the

feature vector. The computational complexity of the Masek’s

algorithm is O(NnL), which is linear in the number of classes

and the dimension of the feature vector. So our algorithm is

computationally more expensive than the Masek’s algorithm

and the difference in complexity increases with the feature di-

mension. However, since the most computationally expensive

component in our algorithm is the ℓ1 minimization step, it is

possible to make the proposed algorithm faster using greedy

pursuit algorithms such as CoSaMP [51].

IX. CONCLUSION

In this paper, we proposed a unified approach for iris

image selection and recognition, which has numerous ad-

vantages over existing techniques when sufficient number of

training samples are available. Our experiments indicate that

the selection algorithm can handle common distortions in

iris image acquisition like blur, occlusions and segmentation

errors. Unlike the existing feature based and score based fusion

algorithms for iris recognition from video, we introduced a

quality-based matching score and demonstrated its superior

performance on the MBGC iris video dataset. Furthermore,

we incorporated random projections and random permutations

into the proposed method to prevent the compromise of

sensitive biometric information of the users. Currently, we are

exploring ways to improve the quality of the poorly acquired

images, rather than rejecting them using compressed sensing

techniques [33], [41]. We are also investigating ways to

develop a minimal set of training images spanning the testing

image space, which can reduce the memory and computation

requirements of our algorithm. The possibility of adapting

algorithms such as elastic net [52] is also being explored.
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