
TECHNICAL ADVANCE Open Access

Secure and scalable deduplication of
horizontally partitioned health data for
privacy-preserving distributed statistical
computation
Kassaye Yitbarek Yigzaw1,2* , Antonis Michalas3 and Johan Gustav Bellika2,4

Abstract

Background: Techniques have been developed to compute statistics on distributed datasets without revealing

private information except the statistical results. However, duplicate records in a distributed dataset may lead to

incorrect statistical results. Therefore, to increase the accuracy of the statistical analysis of a distributed dataset,

secure deduplication is an important preprocessing step.

Methods: We designed a secure protocol for the deduplication of horizontally partitioned datasets with

deterministic record linkage algorithms. We provided a formal security analysis of the protocol in the presence of

semi-honest adversaries. The protocol was implemented and deployed across three microbiology laboratories

located in Norway, and we ran experiments on the datasets in which the number of records for each laboratory

varied. Experiments were also performed on simulated microbiology datasets and data custodians connected

through a local area network.

Results: The security analysis demonstrated that the protocol protects the privacy of individuals and data custodians

under a semi-honest adversarial model. More precisely, the protocol remains secure with the collusion of up to N− 2

corrupt data custodians. The total runtime for the protocol scales linearly with the addition of data custodians and records.

One million simulated records distributed across 20 data custodians were deduplicated within 45 s. The experimental

results showed that the protocol is more efficient and scalable than previous protocols for the same problem.

Conclusions: The proposed deduplication protocol is efficient and scalable for practical uses while protecting the privacy

of patients and data custodians.

Keywords: Bloom Filter, Data Reuse, Deduplication, Distributed Statistical Computation, Data Linkage, Duplicate Record,

Electronic Health Record, Privacy, Record Linkage, Set Intersection

Background

Electronic health record (EHR) systems have been in ex-

istence for many years. The increased adoption of EHR

systems has led, and continues to lead, to the collection

of large amounts of health data [1]. Large amounts of

administrative, survey, and registry data are also being

collected. These data could aid in the development of

scientific evidence that helps improve the effectiveness,

efficiency, and quality of care of healthcare systems [2–4].

Introduction

The focus of this paper is the reuse of health data horizon-

tally partitioned between data custodians, such that each

data custodian provides the same attributes for a set of

patients. Reusing data from multiple data custodians

provides a sufficient number of patients who satisfy the

inclusion criteria of a particular study. The number of

patients at a single data custodian may provide insuffi-

cient statistical power, especially for studies on rare

* Correspondence: kassaye.y.yigzaw@uit.no
1Department of Computer Science, UiT The Arctic University of Norway, 9037

Tromsø, Norway
2Norwegian Centre for E-health Research, University Hospital of North

Norway, 9019 Tromsø, Norway

Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1

DOI 10.1186/s12911-016-0389-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-016-0389-x&domain=pdf
http://orcid.org/0000-0001-7068-117X
mailto:kassaye.y.yigzaw@uit.no
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

exposures or outcomes. When data are collected across

multiple data custodians, the data of a heterogeneous

mix of patients can be reused.

There has been substantial interest in the reuse of EHR

data for public health surveillance, which also requires

data from multiple data custodians covering the geo-

graphic area of interest [5–7]. One of the EHR meaningful

use criteria in the United States is the ability to release

health data for public health surveillance [8].

The horizontally partitioned datasets required for a

health study or disease surveillance are often queried by

distributing the query to data custodians, who execute the

query and store a copy of the data extracts locally [9]. We

refer to the data extracts distributed across data custodians

as a virtual dataset (VD). Consider the execution of the

query “select the records of patients tested for influenza

A viruses in January 2016” across three data custodians

D ¼ D1; ;D2; ;D3f g . Figure 1 illustrates a VD that con-

sists of the query results for the data custodians.

A VD may contain duplicate records from data custo-

dians that cover overlapping areas and areas in close prox-

imity [10–12]. The duplicate records can be exact or

approximate. A set of records are exact duplicates if the re-

cords are compared using exact comparison functions, and

the records have the same value for all attributes used for

comparison. In contrast, approximate duplicate records are

compared using comparison functions that allow approxi-

mate similarities, and the records have different values for

one or more attributes.

Privacy-preserving distributed statistical computation

Access to and the use of patient data for research raise

significant privacy concerns for the various stakeholders

(i.e., patients and data custodians) [7, 13, 14]. A recent

Fig. 1 A simplified virtual dataset of influenza A test results distributed across three data custodians

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 2 of 19

approach that addresses privacy concerns is secure multi-

party computation (SMC), which deals with the problem

of computing a function f on distributed data without

revealing any information except the results. SMC pro-

tocols have been developed for the statistical computa-

tion of distributed data that do not reveal anything

except the results [15–21].

Statistical analysis of a virtual dataset that contains

duplicate records may lead to incorrect results. Let us

consider a query of the number of patients in a VD that

satisfy a set of criteria. When there are duplicate records

in the VD, a simple summation of the data custodians’

local counts will not return the same result if the query is

run against the combined datasets of all data custodians

stored in a central database.

For example, the distributed statistical computation of

the number of women who tested positive for influenza

A against the VD shown in Fig. 1 would return an incor-

rect result. Patient P3 would be counted twice, as she has a

positive test result stored in D1 and D2. Therefore, to im-

prove the accuracy of the statistical results, deduplication

of the VD is a necessary preprocessing step before statis-

tical analysis is conducted.

Privacy-preserving deduplication

Deduplication (also known as record linkage) is the process

of linking records at the same or different data custodians

that refer to the same individual. In contrast to record link-

age, the final goal of deduplication is to remove duplicate

records while maintaining a single occurrence of each rec-

ord. Privacy-preserving record linkage (PPRL; also known

as private set intersection and private record linkage) pro-

tocols have been developed to link records across multiple

data custodians without revealing any information other

than the linkage result [22, 23]. The main challenges of

these protocols for practical use include the quality of the

linkage, privacy, efficiency, and scalability [22].

The objective of this paper is to develop an efficient

and scalable protocol for the deduplication of a VD while

protecting the privacy of the patients and the data custo-

dians. The proposed protocol supports various determin-

istic record linkage algorithms.

Our main contributions can be summarized as follows:

We propose a novel efficient and scalable protocol based

on Bloom filters for the privacy-preserving deduplication

of a horizontally partitioned dataset. We provide proof

of the security of the protocol against a semi-honest ad-

versarial model in which the participating entities are as-

sumed to follow the protocol steps, but the entities may

try to learn private information from the messages ex-

changed during the protocol execution. We conducted a

theoretical analysis of the protocol’s efficiency and scal-

ability. We implemented a prototype of the protocol and

ran experiments among three microbiology laboratories

located in Norway. We also ran experiments using simu-

lated microbiology laboratory datasets with up to 20 data

custodians and one million records.

The remainder of this section presents a review of re-

lated work and provides a use case for the deduplication

problem and formally presents it. The Methods section

outlines the requirements of the proposed protocol, as

well as the threat model and assumptions, Bloom filter,

notations, basic set operations, and secure sum protocol

used in the protocol. Then, the proposed protocol is de-

scribed. The Results section presents the security analysis,

implementation, and evaluations of the protocol. Finally,

the Discussion and Conclusions are presented.

Related work

Several PPRL protocols have been developed based on

either deterministic or probabilistic matching of a set of

identifiers. Interested readers are referred to [22, 23] for

an extensive review of the PPRL protocols. The protocols

can be broadly classified as protocols with or without a

third party. In this section, we review privacy-preserving

protocols for deterministic record linkage. These proto-

cols are secure against the semi-honest adversarial model,

which is the adversarial model considered in this paper.

A record contains a set of identifiers that consists of

direct and indirect (quasi-identifier) identifiers and other

health information. Direct identifiers are attributes that

can uniquely identify an individual across data custodians,

such as a national identification number (ID). In contrast,

quasi-identifiers are attributes that in combination with

other attributes can identify an individual, such as name,

sex, date of birth, and address. In this paper, the terms

identifier and quasi-identifier are used interchangeably.

Weber [12] and Quantin et al. [24] proposed protocols

that use keyed hash functions. These protocols require

data custodians send a hash of their records’ identifiers

to a third party that performs exact matching and

returns the results. The data custodians use a keyed hash

function with a common secret key to prevent dictionary

attacks by the third party. These protocols are secure as

long as the third party does not collude with a data cus-

todian. Quantin et al.’s protocol [24] performs phonetic

encoding of the identifiers (i.e., last name, first name,

date of birth, and sex) before hashing, in order to reduce

the impact of typing errors in the identifiers on the qual-

ity of the linkage.

Several protocols were proposed based on commutative

encryption schemes1 [25–27]. In these protocols, each

data custodian, in turn, encrypts the unique identifiers for

all records across the data custodians using its private key,

and consequently, each unique identifier is encrypted

with the private keys of all the data custodians. Then, the

encrypted unique identifiers are compared with each other,

as the encrypted values of two unique identifiers match if

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 3 of 19

the two unique identifiers match. The protocols proposed

in [25, 26] are two-party computation protocols, whereas

Adam et al.’s [27] protocol is a multi-party computation

protocol.

The protocols reviewed thus far require the exchange of

a long list of hash or encrypted identifiers, which can limit

the scalability of the protocols as the number of data custo-

dians and records increases. In addition, protocols based on

commutative encryption require communication rounds

quadratic with the number of data custodians.

Multi-party private set intersection protocols were de-

signed based on Bloom filters2 [28, 29]. In general, each

data custodian encodes the unique identifier values of its

records as a Bloom filter (see the description of a Bloom

filter in the Methods section). The protocols use differ-

ent privacy-preserving techniques, as discussed below, to

intersect the Bloom filters and then create a Bloom filter

that encodes the unique identifiers of the records that

have exact matches at all data custodians. Then, the data

custodian queries the unique identifiers of its records in

the intersection Bloom filter to identify the records that

match.

In Lai et al.’s [28] protocol, each data custodian splits

its Bloom filter into multiple segments and distributes

them to the other participating data custodians while

keeping one segment for itself. Then, each data custodian

locally intersects its share of the Bloom filter segments

and distributes it to the other data custodians. Finally, the

data custodians combine the results of the intersection of

the Bloom filter segments to create a Bloom filter that is

an intersection between all the data custodians’ Bloom fil-

ters. The protocol requires communication rounds quad-

ratic with the number of data custodians, and the protocol

is susceptible to a dictionary attack of the unique identi-

fiers that have all the array positions in the same segment

of the Bloom filter.

In Many et al.’s [29] protocol, each data custodian uses

secret sharing schemes3 [30] to split each counter position

of the data custodian’s Bloom filter and then distributes

them to three semi-trusted third parties. The third parties

use secure multiplication and comparison protocols to

intersect the data custodians’ Bloom filters, which adds

overhead to the protocol.

Dong et al. [31] proposed a two-party protocol for pri-

vate set intersection. The protocol introduced a new vari-

ant of a Bloom filter, called a garbled Bloom filter, using a

secret sharing scheme. The first data custodian encodes

the unique identifiers of the data custodian’s records as a

Bloom filter, whereas the second data custodian encodes

the unique identifiers of its records as a garbled Bloom fil-

ter. Then, the data custodians intersect their Bloom filters

using an oblivious transfer technique (OT)4 [32], which

adds significant overhead to the overall performance of

the protocol.

Karapiperis et al. [33] proposed multi-party protocols

for a secure intersection based on the Count-Min sketch.5

Each data custodian locally encodes the unique identifiers

of its records based on the Count-Min sketch, denoted as

the local synopsis, and then, the data custodians jointly

compute the intersections of the local synopses using a se-

cure sum protocol. The authors proposed two protocols

that use secure sum protocols based on additive homo-

morphic encryption [34] and obscure the secret value with

a random number [19, 35]. The protocols protect only the

data custodians’ privacy, whereas our protocol protects

individuals’ and data custodians’ privacy. The additive

homomorphic encryption adds computation and commu-

nication overhead as the number of records and data cus-

todians increases.

The results of the protocols in [28, 29, 31, 33] contain the

probability of a false positive. Although the protocols can

choose a small false positive probability, for some applica-

tions, a false positive probability may not be acceptable.

Use case

The need for comprehensive and timely infectious disease

surveillance is fundamental for public health monitoring

that makes early prevention and control of disease out-

breaks possible. EHRs have been used as a data source for

routine syndromic and laboratory-based public health sur-

veillance [5–7].

The use case considered in this paper is distributed dis-

ease surveillance [6]. In particular, we consider the Snow

system that is used for experimental evaluations of the

protocol proposed in this paper [36]. The Snow system uses

microbiology laboratory test results from multiple micro-

biology laboratories in Norway. The laboratories collect

and analyze samples from patients in primary care settings,

such as general practitioner offices and nursing homes.

Every day, the Snow system extracts anonymized test

results and maintains the datasets within local databases

at each laboratory according to a predefined data model.

The data extracts contain attributes, such as infectious

agent, age, sex, geographic area, and time. The Snow sys-

tem broadcasts a query across the laboratories and reveals

only the number of matching patients at each laboratory.

We extend the Snow system with a secure sum protocol

to hide the local count of a single laboratory [20].

Consider the statistical query of the count of positive

or negative test results for a disease in a particular

stratum of individuals (e.g., male or female) within a VD.

A simple summation of the laboratories’ local counts

gives an overestimated count when the test results are

duplicated across the laboratories. A laboratory may trans-

fer test samples to another laboratory when the first labora-

tory does not have the appropriate laboratory equipment.

Then, when the test results are sent to the first laboratory,

the same test result appears in both laboratories’ datasets.

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 4 of 19

In the context of infectious disease surveillance, two

or more separate tests for an individual that have a posi-

tive result can also be considered duplicates depending

on the required aggregate query for the dataset, such as

the number of patients who have had a particular dis-

ease and the number of disease episodes.

Individuals may be infected with the same disease multiple

times within a given time period, which may lead to being

tested for the same disease at multiple laboratories. Individ-

uals can also be tested at multiple laboratories for the same

infection; this practice is more common in chronic infec-

tions. Testing at multiple laboratories may occur when pa-

tients switch healthcare providers, receive emergency care,

or visit different providers during an episode of infection

[37]. In Norway, primary care institutions may send samples

collected from a patient to different laboratories, and pa-

tients can change general practitioners up to twice a year.

Consider a statistical query of the number of individuals

infected with influenza A viruses within the VD shown in

Fig. 1. The query requires that patient P1 is counted once,

even if the patient has two positive test results at data cus-

todians D1 and D3. For this query, the objective of the

deduplication is to link the positive test results for each in-

dividual in the VD and to maintain the test result at only

one of the laboratories.

When the number of disease episodes is counted, the

number of positive test results for different disease epi-

sodes for an individual across the laboratories is counted

separately. However, the positive test results for an indi-

vidual in the same disease episode should be counted

once. For example, Lazarus et al. [38] grouped two

healthcare service encounters for a patient for a lower

respiratory infection into one episode if the subsequent

visit occurred within six weeks of the preceding visit.

The researchers assumed that the second visit likely rep-

resented a follow-up visit for the same infection. In this

context, the objective of deduplication is to link an indi-

vidual’s positive test results for the same disease episode

and keep the test result at only one of the laboratories.

We describe the protocol proposed in this paper in

the context of deduplicating a VD to be able to accur-

ately compute the statistical count of the number of in-

dividuals infected with the disease in question. However,

the protocol can be easily extended to other types of

statistical count queries.

Problem statement and definitions

In this section, we define the context for the deduplica-

tion problem and the problem statement.

Data custodian (Di)

We assume three or more data custodians (e.g., hospitals,

general practitioner offices, or medical laboratories) are

willing to share their data for a secondary use in a health

study but are concerned about privacy risks. The data cus-

todians form a distributed health research network denoted

by D ¼ D1; ;D2;…; ;DNf g, where Di is a data custodian.

Data schema

The heterogeneity of data models is a challenge in reusing

data from multiple data custodians [39]. Therefore, the dis-

tributed data must be harmonized through standardization.

For example, several distributed health research networks,

such as Mini-Sentinel [40] and the Shared Health Research

Information Network (SHRINE) [41], create a common

data model by transforming the data at each data custodian

into a predefined common data model and data represen-

tations [9].

In this paper, for simplicity, we assume a common data

model exists across the data custodians that enforces uni-

form attribute naming conventions, definitions, and data

storage formats. We also assume the data distributed

across the data custodians are horizontally partitioned in

that each data custodian Di collects the same attributes

for a set of patients.

Virtual dataset (VD)

We assume the data query for a particular study can be

broadcast to all data custodians D. Then, each data custo-

dian executes the query and stores a copy of the query re-

sult locally. The data extracts across the data custodians

form a virtual dataset. We make the same assumption as

above that the VD adheres to a common data model.

Record linkage

We consider deterministic record linkage algorithms in

which a set of records belongs to the same person if they

exactly or partially match on a predefined combination

of identifiers. First, we describe the protocol proposed in

this paper by assuming the existence of a common

unique identifier j for a patient denoted by pj. Second,

we extend the protocol for deterministic record linkage

using quasi-identifiers, when the available unique identi-

fier is low quality or does not exist.

Problem statement

Assume a subset of data custodians Ds⊆D . Each data

custodian Di∈Ds has a record rj of patient pj in a virtual

dataset. The problem addressed in this paper is to find a

privacy-preserving protocol through which the patient’s

duplicate records are identified and removed from the

virtual dataset while one occurrence of the record is

maintained at one of the data custodians.

Methods

Overview

Figure 2 shows an overview of the methods we used to de-

velop and evaluate the secure deduplication protocol

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 5 of 19

proposed in this paper. First, we defined the requirements

for the protocol and the threat model and assumptions with

which the protocol would be secure. We presented the

building blocks used in the protocol, such as a Bloom filter,

functions for the basic operations of Bloom filters, and se-

cure sum protocol, and described the proposed protocol.

We then performed a security analysis of the proposed

protocol. We also conducted theoretical and experimental

evaluations of the protocol’s efficiency and scalability. We

implemented a prototype of the protocol and ran the ex-

periments on the virtual datasets distributed across three

Norwegian microbiology laboratories. We also ran experi-

ments on simulated datasets with up to 20 data custodians

and one million records.

Requirements for secure deduplication protocol

Data custodians’ privacy concerns about disclosing pa-

tient data continue, even in the context of a pandemic

[42]. Therefore, a deduplication protocol should protect

the privacy of patients who have records in a VD.

However, even when patients’ privacy is protected, data

custodians (e.g., clinicians and health institutions) have

expressed concerns about their own privacy risks [7]. For ex-

ample, deduplication may reveal the total number of patients

in a data custodian who satisfy certain criteria. Although this

information does not directly reveal any information about

the patients, data custodians might consider this information

sensitive, and in many scenarios, it needs to be hidden.

For example, a general practitioner may fear that the

number of laboratory test requests and results she sent

to laboratories could be used to evaluate her testing be-

havior. A microbiology laboratory may fear that other

laboratories and investors may use the number of tests

the laboratory performs during a time period to gain

competitive advantage. Therefore, the protocol should

be designed in such a way that the total number of pa-

tients remains private.

The protocol should allow only a data custodian to learn

which of its records have duplicates in the VD, which does

not reveal any new sensitive information to the data custo-

dian. However, the identity of the data custodians that con-

tributed the duplicate records should remain unknown.

For example, in Fig. 1, the influenza A–positive test

results for patient P1 are stored at D1 and D3. Data cus-

todian D2 cannot learn any information about P1. D1

and D3 learn only that P1 tested positive for influenza

A at another anonymous laboratory, which is not sensi-

tive information.

Often, public health studies require a large number of

patients’ data from several data custodians. Therefore,

the deduplication protocol should be computationally ef-

ficient and scale with the number of records and partici-

pating data custodians.

Threat model and assumptions

We considered a semi-honest (honest-but-curious) adver-

sarial model in which the data custodians correctly follow

the protocol specifications using the data custodians’ cor-

rect data. However, the data custodians might use the

messages exchanged during the protocol execution to

Fig. 2 An overview of the methods for developing and evaluating the proposed protocol

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 6 of 19

learn information that otherwise should remain private.

The adversarial model allows efficient and scalable proto-

cols, whereas the malicious adversarial model provides

stronger security at the expense of significant computation

and communication costs [43–46].

We also assumed that a semi-trusted third party (STTP),

denoted as the coordinator, who participates in the proto-

col without any input. In addition, we assumed that the co-

ordinator follows the protocol specification and does not

collude with a data custodian. An efficient and scalable

protocol can be constructed using an STTP [7, 47].

We assumed that the communications between two en-

tities that participate in the protocol are secure. Therefore,

an adversary cannot read the messages sent between

two honest entities, and the integrity of the messages is

verified.

Bloom filter

A Bloom filter (BF) is a space-efficient probabilistic data

structure that encodes a set X of n elements [48]. A BF

is an array of size m, and each array position has one bit

initially set to 0. The Bloom filter allows insertion and

membership queries of an element x∈X .

Bloom filter operations are performed using k inde-

pendent hash functions Hh(.), where 1 ≤ h ≤ k. First, the

hash of an element x is computed using each hash func-

tion Hh(x). Second, the modulo m of each hash value is

computed to get k array positions of BF, bh(x) =Hh(x)

mod m, where bh(x) ∈ [0,m − 1]. Then, x is inserted into

the BF by setting all the positions bh(x) of BF to 1. The

element x is concluded to be a non-member of the BF if

at least one of the positions bh(x) of the BF is 0.

A membership query result can be a false positive due

to the hash collisions that occur when all the positions

bh(x) of the BF have been set to 1 as a result of the inser-

tion of other elements. After elements equal to the ex-

pected number of elements n are inserted into the BF

the false positive probability of a membership query is

equal to P(false positve) ≈ (1 − e− kn/m)k [49]. Figure 3 pre-

sents an example of a Bloom filter through inserting and

querying elements.

A counting Bloom filter (CBF) is an extension of a

Bloom filter [49, 50] that supports the deletion of ele-

ments, as well as insertion and membership queries. Each

array position of a CBF has a counter size c greater than

one bit that is large enough to avoid counter overflow.

An element x is inserted into the CBF by incrementing

all the counters at the array positions bh(x) of the CBF

by 1. Similarly, an element x is deleted from the CBF by

decrementing all the counters at positions bh(x) by 1.

Fig. 3 Insertion and membership query for a Bloom filter (BF) (m = 16, k = 3). bi(xj) denotes an array position for xj with a hash function denoted as Hi(.)

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 7 of 19

The element x is concluded to be a non-member of the

CBF if at least one of the positions bh(x) is 0. A member-

ship query has the same false positive probability as a

Bloom filter.

Notations

In this section, we describe the notations that are used

in the remainder of the paper. Ii denotes a set of the

unique identifiers (IDs) of the records of a data custodian

Di∈D in a particular deduplication query. The union of all

the IDs of the records across all data custodians is denoted

as S = I1 ∪ I2 ∪… ∪ IN. We write S ∩ Ii and S ∪ Ii to denote

the intersection and the union between sets S and Ii,

respectively.

We use CBFs to denote a counting Bloom filter that en-

codes set S and use CBFI
i and BFI

i to denote a counting

Bloom filter and a Bloom filter that encode set Ii, respect-

ively. CBFS ∩ I
i and CBFS ∪ I

i encode sets S ∩ Ii and S ∪ Ii,

respectively.

We use CBFr
i to denote the random counting Bloom fil-

ter of data custodian Di and use CBFR to denote the sum

of all the random counting Bloom filters,
XN

i¼1
CBF i

r .

However, CBFR
i denotes the partial sum of the random

counting Bloom filters,
Xi

j¼1
CBF j

r þ CBF 0
r , where CBFr

0

denotes the initial random counting Bloom filter of the

leader data custodian DL.

The union of CBFI
i and CBFr

i is denoted as CBFr ∪ I
i ,

and the Bloom filter representation of CBFr ∪ I
i is denoted

as BFr ∪ I
i . CBFR ∪ S denotes the union of CBFR and CBFS.

Set operations on Bloom filters

Table 1 describes the main functions for the set operations

on Bloom filters that are required for the construction of

our protocol. Interested readers are referred to Additional

file 1 for detailed descriptions and the algorithms of the

functions.

Secure sum protocol

Several secure sum protocols are constructed using dif-

ferent building blocks [7, 17, 51, 52]. Secure sum proto-

cols compute s ¼
XN

i¼1
vi , where vi ∈ [0,m) is the secret

value of data custodian Di. The protocols compute with-

out disclosing vi to any entity that participates in the

protocol. We extend the secure sum protocol proposed

in [19, 35] to compute the union of random counting

Bloom filters, CBFR ¼
XN

i¼1
CBF i

r , where CBFr
i is the

random counting Bloom filter of Di. Assume that D1 is

selected as the leader data custodian, denoted as DL.

The protocol steps are shown in Algorithm 1.

In steps 1–3, the leader data custodian DL computes

CBFR
1 = add(CBFr

1,CBFr
0) and sends the result CBFR

1 to

data custodian D2. In steps 4–11, each data custodian

Di, in turn, computes CBFR
i = add(CBFr

i,CBFR
i − 1) where

2 ≤ i ≤N and CBFR
i − 1 is the value received from the pre-

vious data custodian Di − 1. Then, DN sends its result

CBFR
N to DL. In step 12, DL computes CBFR = sub(CBFr

N,

CBFr
0) and gets the actual sum CBFR ¼

XN

i¼1
CBF i

r . In

steps 13–15, DL broadcasts CBFR to all data custodians.

In this protocol, collusion between data custodians Di − 1

and Di + 1 reveals the secret value of Di. Extensions to the

protocol are proposed in [21, 53] to make collusion be-

tween data custodians difficult.

A secure deduplication protocol

In this section, we describe the secure deduplication

protocol proposed in this paper. The protocol includes

the setup and computation phases.

Setup phase

In this phase, the coordinator broadcasts a start message

that contains the user query criteria and the P(false positive)

value to each Di in D. Then, the data custodians jointly se-

lect the leader data custodian, denoted as DL. For simpli-

city, let us assume that D1 is selected as the leader. Then,

they form a ring topology, DL→D2→D3→…→Di→

Di + 1→…→DN, as shown in Fig. 4.

The data custodians jointly select the required param-

eters, such as the expected number of records n, Bloom

filter size m, number of hash functions k, counter size c,

and P(false positive). The data custodians also agree on a

cryptographic hash function H0(.) and the k hash func-

tions Hk with two secret keys k0 and k1.

Computation phase

The computation phase contains two subprotocols, such

as the secure duplicate identifier and the distributed

Table 1 Functions for basic operations of Bloom filters

Functions Description

add(CBFr
i, CBFI

i) Returns counting Bloom filter CBFr ∪ I
i that represents the summation of CBFr

i and CBFI
i

sub(CBFR ∪ S, CBFR) Returns counting Bloom filter CBFS that represents the subtraction of CBFR from CBFR ∪ S

intersect(CBFS, BFI
i) Returns counting Bloom filter CBFS ∩ I

i that represents the intersection between CBFS and BFI
i

count(CBFS ∩ I
i , {b1(x), b2(x),…, bk(x)}) Returns f that is equal to the number of occurrences of x in CBFS ∩ I

i

toBloomFilter(CBFI
i) Returns Bloom filter BFI

i that represents CBFI
i

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 8 of 19

sorted neighborhood. The secure duplicate identifier

subprotocol allows each data custodian to learn which of

its records have duplicate records in the VD with false

positive probability P(false positive). Then, the distrib-

uted sorted neighborhood subprotocol is executed on

the results of the secure duplicate identifier subprotocol

to identify the real duplicate records and remove the du-

plicate records while maintaining a single occurrence of

the records.

A secure duplicate identifier subprotocol

The objective of this subprotocol is to allow each data cus-

todian Di to identify which of its records has a duplicate in

the VD with a small false positive probability P(false posi-

tive). The protocol consists of the following steps:

1. Each Di in D performs the following steps:

a. Extract from its local dataset a set of unique IDs,

denoted as Ii, of the patients who satisfy the user

query criteria.

b. Encode Ii as the counting Bloom filter CBFr
i using

the keyed hash functions Hk with the secret key k1.

c. Create the random counting Bloom filter CBFr
i

(the algorithm used to create the random counting

Bloom filter is described in Additional file 1).

2. DL creates the initial random counting Bloom filter

CBFr
0.

3. The data custodians D jointly run Algorithm 1 to

compute the sum CBFR ¼
XN

i¼1
CBF i

r .

4. Each Di sums CBFr
i and CBFI

i and sends the result

CBFr∪ I
i to the coordinator.

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 9 of 19

5. The coordinator computes the sum

CBFR∪S ¼
XN

i¼1
CBFr∪ I

i .

6. For each Di in D, the coordinator performs the

following steps:

a. Convert CBFr∪ I
i into the Bloom filter BFr∪ I

i .

b. Intersect CBFR∪ S and BFr∪ I
i and send the result

CBFR∪ S∩ BFr∪ I
i to Di.

7. Each Di in D performs the following steps:

a. Create the Bloom filters BFI
i and BFr∪ I

i from the

counting Bloom filters CBFI
i and CBFr∪ I

i ,

respectively.

b. Intersect CBFR and BFr∪ I
i and create the

counting Bloom filter CBFR∩ BFr∪ I
i .

c. Subtract CBFR∩ BFr∪ I
i from CBFR∪ S∩ BFr∪ I

i .

The result is denoted by (CBFR∪ S∩ BFr∪ I
i) −

(CBFR∩ BFr∪ I
i) = (CBFR∪ S −CBFR)∩ BFr∪ I

i .

However, we know that CBFR∪ S −CBFR =CBFS.

Therefore, the result can be expressed by CBFS∩

BFr∪ I
i .

d. Intersect CBFS∩ BFr∪ I
i and BFI

i and create the

counting Bloom filter denoted as CBFS∩ BFr∪ I
i
∩

BFI
i. The expression can be reduced to CBFS∩ I

i =

CBFS∩ BFI
i, as BFr∪ I

i
∩ BFI

i is equal to BFI
i.

e. Query the number of occurrences of the IDs Ii in

CBFS∩ I
i using the count() function, and create

the list Li that contains the IDs that have more

than one occurrence.

In steps 1–2, each data custodian Di (where 1 ≤ i ≤N)

encodes the unique IDs of its records as the counting

Bloom filter CBFI
i and creates the random counting

Bloom filter CBFr
i. The leader data custodian DL creates

the additional random counting Bloom filter CBFr
0. In

step 3, the data custodians jointly compute the sum of

their random counting Bloom filters, CBFR ¼
XN

i¼1
CBF i

r , using Algorithm 1. In step 4, Di computes

CBFr ∪ I
i = add(CBFr

i,CBFI
i) and sends the result CBFr ∪ I

i

to the coordinator. In step 5, the coordinator sums all

data custodians’ CBFr ∪ I
i , CBFR∪S ¼

XN

i¼1
CBFr ∪ I

i .

In step 6, the coordinator computes BFr ∪ I
i = toBloomFil-

ter(CBFr ∪ I
i) and CBFR ∪ S ∩ BF r ∪ I

i . The coordinator sends

CBFR ∪ S ∩ BFr ∪ I
i to Di. In step 7, each data custodian Di

creates the counting Bloom filter CBFS ∩ I
i =CBFS ∩ BFI

i that

encodes the intersection between the IDs of Di and all data

custodians. Finally, Di queries its IDs in CBFS ∩ I
i to create

the list Li that contains the IDs for the records that are

likely to be duplicates with the false positive probability

P(false positive). Although the P(false positive) is very

small, for some applications it may not be acceptable,

and the true duplicate records should be identified.

Fig. 4 Ring topology of the data custodians

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 10 of 19

The total number of likely duplicate records across the

data custodians,
XN

i¼1
Lij j is very small compared to the

total number of records, as the number of records that

have duplicate records is often a small proportion of the

total number of records. Therefore, we can run existing

deterministic PPRL protocols [12, 22, 24, 27] on the re-

sults of the secure duplicate identifier subprotocol with

minimal computation and communication complexity.

In the next section, we present an improved protocol

based on the keyed hash function that reduces the re-

quired number of comparisons.

Secure distributed sorted neighborhood subprotocol

In the conventional sorted neighborhood (SN) technique

[54, 55], sorting keys are generated for each record using a

single attribute or a concatenation of the attributes of the re-

cords, and the keys are sorted lexicographically. Then, a slid-

ing window of fixed size w is moved over the sorted records,

and only the records in the same window are compared.

After the secure duplicate identifier subprotocol is

run, each data custodian Di has the list Li that contains

the IDs of the likely duplicate records. Note that the size

of Li is much smaller than the total number of records

of Di. In a simple approach for finding the actual dupli-

cate records, Di hashes each ID in Li using a keyed hash

function and sends the result HLi to the coordinator,

who computes the union of the hash lists from all data

custodians, HL = ⊎i HLi. Then, the coordinator performs

exact matching between every ID with every ID in HL.

However, in practice, we know that most of the compar-

isons are unlikely to match.

Let us assume that a set of data custodians Ds⊆D and

each data custodian Di∈Ds has the record rj with the ID

j. As rj is a duplicate record, value j appears in the list of

IDs of the likely duplicate records, Li, of each Di∈Ds .

H0(j) denotes the hash of j with hash function H0(.). As

the hash of j with the same hash function multiple times

gives the same hash values, each Di∈Ds sends to the co-

ordinator the list HLi that contains H0(j) . Therefore, HL

contains multiple occurrences of H0(j), and sorting HL

brings hash values for the same ID next to each other.

Based on these observations, we present a distributed

sorted neighborhood (DSN) subprotocol that extends

the SN technique. The protocol parallelizes the sorting

by making each data custodian Di locally sort HLi, and

the coordinator merges only the sorted lists. The DSN

protocol has the following steps:

1. Each Di in D performs the following steps:

a. For every ID j in Li, Di performs the following

steps:

1. Hash j using the keyed hash function H0(.)

with the secret key k0.

2. Store the hash of j in the list SLi.

b. Lexicographically sort SLi.

c. Send SLi to the coordinator.

2. The coordinator performs the following steps:

a. Merge the SLi of each Di in D and create the list SL.

b. Slide a window of size w over the list SL and

compare each pair of hash IDs within the

window. If at least two hash IDs match, then the

records associated with the IDs are duplicates.

c. Send to Di the list DLi of the hash IDs of the

records that Di needs to remove from its local

dataset.

3. Each Di in D, for every ID j in DLi, removes its

record associated with j.

Extension of the secure deduplication protocol for

deterministic algorithms

Thus far, the proposed protocol has been described for

situations in which a common unique identifier exists,

which enables efficient and high-quality linkage. This

assumption is realistic in countries, such as Norway,

Sweden, and Denmark, where a high-quality unique

personal identifier is available [56, 57].

However, in many situations, the available unique

identifier is low quality or does not exist. We describe

how our protocol can be extended to support determin-

istic record linkage algorithms that define the criteria

about which identifiers need to match in order to accept

the linkage of a pair of records.

To increase the quality of the linkage, data cleaning

often precedes record linkage. We also assume appropri-

ate data cleaning occurs before the protocol is run. Vari-

ous data-cleaning techniques, such phonetic encoding

algorithms, have been proposed in the literature [58].

It has been shown that a linkage key can be created

based on a concatenation of quasi-identifiers, such as

name, sex, date of birth, and address. Studies have esti-

mated that up to 87% of the U.S. population [59], 98% of

the Canadian population [60], and 99% of the Dutch

population [61] are unique, with a combination of quasi-

identifiers, such as postal code, sex, and date of birth.

The National Cancer Institute in the United States

uses a deterministic record linkage algorithm to link

Surveillance, Epidemiology and End Results (SEER) data

collected from cancer registries and Medicare claims data.

The algorithm creates linkage keys using a set of criteria

based on a Social Security number (SSN), first name, last

name, date of birth, and sex [62, 63].

Let us consider a deterministic record linkage algorithm

that has p linkage keys where each linkage is generated

using a distinct match criterion defined by combinations

of quasi-identifiers. For each match criterion, each data

custodian creates a linkage key, and the deduplication

protocol is run with the linkage key the same way the

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 11 of 19

protocol is run with a unique identifier. However, in the

distributed sorted neighborhood subprotocol, each data

custodian sends the hash of the local identifiers of the

likely duplicate records with the hash of the linkage keys

to the coordinator. Finally, the coordinator identifies the

actual duplicate records from the results of the protocol

with all the linkage keys.

Let us consider, for simplicity of description, that each

data custodian has an equal number of records. The

computation time for a data custodian to create linkage

keys for its records based on a combination of quasi-

identifiers is denoted as tl. The runtime for the protocol

using a unique identifier is denoted as tu. Assuming that

the data custodians generate linkage keys for their re-

cords in parallel, deduplication using a linkage key has a

total runtime of tu + td.

For a deterministic record linkage algorithm that has p

linkage keys, the total runtime is p × (tu + td) + ta, where

ta is the sum of the additional time required to send

local unique identifiers to the coordinator and the com-

putation time for the coordinator to find the actual du-

plicate by combining the results of the protocol with

each linkage key. However, as a separate instance of the

protocol can run with each linkage key in parallel, the

runtime reduces to (tu + td) + ta.

Results

In this section, we describe the security analysis and the

implementation of the proposed deduplication protocol.

We also describe the theoretical and experimental evalu-

ations of the protocol’s efficiency and scalability.

Security analysis

We prove the security of the proposed protocol in the

presence of corrupt data custodians or a corrupt coord-

inator who tries to learn information as a result of the

protocol execution. We assume that a corrupt coordin-

ator does not collude with a corrupt data custodian.

For the security proof of the protocol, we follow the

standard security definition that is called privacy by

simulation. For an adversary that controls a set of data

custodians (or the coordinator), the adversary’s view (the

information learned during the protocol execution) is a

combination of the corrupt data custodians’ views. The

adversary also accesses the corrupt data custodians’ in-

puts and outputs. Thus, in the simulation paradigm, we

require to show the existence of an efficient simulator

that can generate the adversary’s view in the protocol

execution given only the corrupt data custodians’ inputs

and outputs.

Theorem 1 (compromised Di) The protocol is secure

against an honest-but-curious adversary ADV that cor-

rupts (or controls) at most N − 2 data custodians.

Proof We prove the robustness of the protocol by look-

ing at the exchanged messages and reducing the security

to the properties of the Bloom filter.

We denote the corrupt data custodians as DA⊂D ,

where DAj j≤N−2. The inputs to a simulator are the in-

puts and outputs of the corrupt data custodians DA. The

inputs and outputs of each corrupt data custodian Da∈

DA are the list of the IDs of its records Ia and the list of

the IDs for likely duplicate records La, respectively.

The view of each corrupt data custodian Da∈DA are

the counting Bloom filters, such as CBFI
a,CBFS ∩ I

a ,CBFr
a

and CBFR. CBFI
a and CBFS ∩ I

a can be generated from lists

Ia and La, respectively. CBFr
a and CBFR are randomly

generated. In general, the simulator can generate the

adversary’s view in the protocol execution from the cor-

rupt data custodians’ inputs and outputs. Thus, the proto-

col is secure against an honest-but-curious adversary so

that the protocol computes without revealing anything

except the outputs. Therefore, the adversary cannot ex-

tract any private information about patients who have

records at honest data custodians. In addition, the ad-

versary cannot learn the number of records at honest

data custodians.

Let us assume that the ID j for a duplicate record rj
is in the list La of corrupt data custodian Da∈DA . The

adversary learns the number of duplicates for rj from

CBFS ∩ I
a with a false-positive probability equal to

P(false positive), denoted as d. The adversary can look

into its inputs to learn the actual number of duplicates

of rj at DA , denoted as dA. Therefore, an adversary may

infer whether duplicate records for rj exist at honest

data custodians with the following probability:

p ¼
d−dAð Þ 1−P false positiveð Þð Þ

�

N− DAj jð Þ
:

Theorem 2 (compromised coordinator) An honest-

but-curious adversary ADV that corrupts the coordinator

cannot infer any information about the presence or ab-

sence of patients at data custodians and the number of

records contributed by a data custodian.

Proof We prove the security of the protocol by analyz-

ing the messages received by the coordinator during the

execution of the protocol and reduce its security to the

properties of the hash functions Hk and H0(.) used in the

protocol.

The coordinator’s view is the counting Bloom filter

CBFr ∪ I
i and the list of the hash IDs of the likely duplicate

records SLi of each data custodian Di. The coordinator

does not have inputs and outputs. The objective of the

security proof is to show that private information about

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 12 of 19

patients and data custodians cannot be learned based on

the coordinator’s view during the protocol execution.

The secret keys (k0, k1) used by the data custodians

are not available to the simulator. Therefore, the simu-

lator cannot learn the IDs of the records inserted in

CBFr ∪ I
i . In addition, as the hash function H0(.) is

cryptographically secure, the simulator cannot learn the

IDs based on SLi.

Each array position of CBFr ∪ I
i has a counter value

equal to the sum of the corresponding counter values of

CBFI
i and CBFr

i. Thus, the counter values of CBFr ∪ I
i are

random, as every counter position of CBFr
i has a random

value. The random noise CBFr
i inserted in CBFr ∪ I

i pre-

vents the simulator from learning the approximate total

number of records of Di encoded by CBFI
i.

Therefore, ADV cannot learn the IDs and the number of

records held at a data custodian, and consequently, the

protocol is secure in the face of a corrupt coordinator.

Implementation

A prototype of the proposed deduplication protocol is

implemented in Java. The prototype contains the local

and coordinator software components. The local soft-

ware component is deployed at each data custodian,

while the coordinator software component is deployed

at the coordinator. The parameters required for an in-

stance of the protocol are configured through the

configuration files.

The dataset at each data custodian was stored in a

MySQL relational database. We used the JavaScript Ob-

ject Notation (JSON) format for message communica-

tion. Each component used an Extensible Messaging and

Presence Protocol (XMPP) [64] client to connect to an

XMPP server. Then, a JSON message was sent through

the XMPP server between two entities that participate in

the protocol. All messages were compressed using the

Lz4 [65] lossless compression algorithm to reduce the

overall size. After transmission, each message was de-

compressed before actual use.

Analytical evaluation

The main concerns for the practical use of SMC proto-

cols are efficiency and scalability. Efficiency is the ability

to compute with a good performance, which is often

expressed by the communication and computation com-

plexity. Communication complexity is analyzed in terms

of the communication rounds and the size of the messages

exchanged between the parties involved in the protocol.

For N data custodians, each data custodian sends three

messages and receives three messages, except the leader

data custodian that sends N + 2 messages. The coordinator

sends 2N messages and receives 2N messages. The overall

communications of the protocol is 6N − 1, which is linear

with the number of data custodians O(N).

The size of a message that contains a counting Bloom

filter depends on the Bloom filter size m and counter

size c. The size of the message that contains the list of

likely duplicate hash IDs SLi is small compared to the

size of the message that contains the IDs Ii of all records,

but it depends on the false positive probability and the

proportion of the records of Di that have duplicates in

the virtual dataset.

Computation complexity is measured in terms of the

time it takes for each entity to complete local computa-

tions and the protocol runtime. Scalability is measured

in terms of the change in efficiency as the number of re-

cords and data custodians increases.

In general, the local computations of the protocol are

computationally very efficient, as it does not use a building

block that adds overhead to the performance. Bloom filter

operations require only O(1) time. The other computa-

tions are performed only on the list of the hash IDs of the

likely duplicate records, which are a small proportion of

the IDs of all the records. In addition, the data custodians

often compute in parallel. Detailed analysis of the total

computation time is provided in Additional file 1.

Experimental evaluation

We ran the experiments using actual and simulated

datasets to evaluate the efficiency and scalability of the

protocol. The experiments were run 100 times, and the

average total runtime for the protocol and the local

computation time for each entity were recorded. In this

section, we report only the total runtimes. Details re-

garding the parameters used for the experiments are

given in Additional file 1.

In situ experiments

We deployed the prototype at three microbiology la-

boratories located in Norway on top of the Snow disease

surveillance system [36]. Two laboratories are depart-

ments at the University Hospital of North Norway (UNN)

and Nordland Hospital (NLSH). The third laboratory is

Fürst Medical Laboratory, a private laboratory. UNN and

NLSH together cover a total population of more than 475

000 inhabitants. Based on the number of laboratory tests

conducted within a specific time period, we estimated that

the Fürst population coverage is approximately twice the

total population covered by UNN and NLSH.

At Fürst, the local software component was deployed

on an Intel i5-4590 3.3GHz quad core with 8GB RAM

and Ubuntu 14.04. At UNN and NLSH, the local software

component was deployed on an Intel Xeon E5-2698 v3

2.3GHz dual core with 4GB RAM and Red Hat Enter-

prise Linux 7. The coordinator software component

was deployed on an Intel Xeon X3220 2.4GHz quad

core with 8GB RAM and Ubuntu 14.04. The laborator-

ies and the coordinator were connected through the

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 13 of 19

Norwegian Health Network, a wide area network of

healthcare service providers. Details about the network

connections and the communication patterns are de-

scribed in Additional file 1.

We ran two experiments on the data distributed across

the three laboratories. The first experiment involved

answering a query about the number of individuals in-

fected with influenza A between January 2015 and April

2016. Each laboratory locally queried the IDs of the indi-

viduals who were tested positive for influenza A during

this time period, and a virtual dataset that contained

5329 records was created.

The second experiment involved answering a query

about the number of patients who were tested at mul-

tiple laboratories between January 2015 and April 2016.

Each laboratory locally queried the unique IDs of the pa-

tients who had been tested for any of the diseases included

in the Snow system during the time period, and a virtual

dataset that contained 85 353 unique IDs was created.

We divided each virtual dataset into segments by vary-

ing the time period in which the analyses were performed.

Then, we ran the protocol on each segment of the virtual

datasets.

Figures 5 and 6 show the runtimes for the protocol on

the two virtual datasets as the total number of records

increased. The deduplication of 5329 and 85 353 records

took around 0.8 and 7.5 s, respectively. The local com-

putation time for the laboratories and the coordinator is

presented in Additional file 1. For the deduplication of

85 353 records, the local computation time for the co-

ordinator and the data custodians did not exceed 0.6 s.

The experiment on the VD of the positive test results

for influenza A found one patient who was tested at

multiple laboratories between January 2015 and April

2016. The experiment on the VD that contained the test

results for various diseases found 449 patients who had

been tested at multiple laboratories for different in-

fectious diseases. The results showed that the samples

collected from each patient were tested at multiple la-

boratories at different times.

In vitro experiments

We deployed the prototype of the protocol on a cluster

computer. Each node had two Intel E8500 dual-core

1.17GHz CPUs, 4GB RAM, and CentOS 6.7. The nodes

were connected through fast Ethernet.

We ran experiments on simulated virtual datasets that

consisted of a large number of data custodians and re-

cords. The VDs consisted of a varying number of data

custodians (i.e., 5, 10, 15, and 20) and total number of

records (i.e., 200 000, 400 000, 600 000, 800 000, and 1

000 000). The total number of records of each VD was

distributed equally among all the data custodians, and

each data custodian contained around 5% duplicate

records. Details about the datasets are provided in

Additional files 1 and 2.

Figures 7 and 8 show the total runtime for the protocol

as the total number of records in the virtual dataset and

the number of participating data custodians increased,

respectively. The deduplication of one million records

distributed across five and 20 data custodians took

around 34 and 45 s, respectively. The local computa-

tion time for the laboratories and the coordinator is

presented in Additional file 1. In general, the local

computation time for the coordinator and the data

custodians did not exceed 34 and 7 s, respectively.

Fig. 5 The total runtime for the protocol on the influenza A datasets

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 14 of 19

Discussion

We proposed a privacy-preserving protocol for the dedu-

plication of data horizontally partitioned across multiple

data custodians. The protocol protects the privacy of pa-

tients and data custodians under the semi-honest adver-

sarial model. The protocol remains secure even when up

to N − 2 data custodians collude.

The protocol satisfies the security requirements that

were formulated in [26] for a secure record linkage

protocol. However, we assumed that the coordinator

has no means of getting the secret keys used in the

protocol, which improves the efficiency and scalability

of the protocol. The assumption can be ensured

through a data use agreement among the data

custodians that prohibits them from sharing the se-

cret keys with the coordinator.

The protocol was deployed and evaluated in situ for the

deduplication of test results distributed across three micro-

biology laboratories. The protocol was also evaluated in

vitro on simulated microbiology datasets of up to one

million records and 20 data custodians. The deduplica-

tion of the one million simulated records distributed

across 20 data custodians was completed within 45 s.

The experimental results showed that the proposed proto-

col is more efficient and scalable than previous protocols

[29, 31].

The local computation time for the entities and the

total runtime for the protocol scale linearly as the number

Fig. 6 The total runtime for the protocol on the datasets that contain the test results for various diseases

Fig. 7 The total runtime for the protocol on the simulated datasets as the total number of records increases

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 15 of 19

of participating data custodians and the total number of

records increase. The protocol scales because Bloom filter

operations are not expensive, and the coordinator and data

custodians perform most of the computations in parallel.

In addition, the number of communication rounds of a

data custodian is constant and does not increase with the

addition of new data custodians.

The protocol was not experimentally evaluated for sit-

uations in which there is no unique identifier. However,

we theoretically showed that the protocol remains scal-

able. The computation complexity of each party linearly

increases with the number of steps of the deterministic

record linkage algorithm.

There is a need for reuse health data at the regional,

national, and global levels to increase the number of re-

cords and participating data custodians for a given study

[66, 67]. The blocking technique [68] can be applied to

increase the scalability of the proposed deduplication

protocol to such a large scale. The intuition for the use

of the blocking technique is that running a separate in-

stance of the protocol on a subset of records that are likely

to match enables parallel computations. A very simple ex-

ample is running different instances of the protocol on the

records of female and male patients.

In practice, data custodians create blocking keys for

their records based on one or more attributes, and records

that have the same blocking key values are grouped into

the same block, which consequently divides the virtual

dataset into segments. Then, the data custodians jointly

execute a separate instance of the protocol for each seg-

ment of the virtual dataset in parallel. The data custodians

can execute the protocol instances on different CPU cores

or servers to increase the scalability of the protocol.

Conclusions
Deduplication is a necessary preprocessing step for

privacy-preserving distributed statistical computation of

horizontally partitioned data. However, deduplication

should not reveal any private information about individ-

uals and data custodians. We proposed a privacy-

preserving protocol for the deduplication of a horizontally

partitioned dataset.

Efficiency and scalability are the main challenges for

practical uses of SMC protocols. The experimental evalua-

tions of the proposed protocol demonstrated its feasibility

for a wide range of practical uses.

As discussed in the Discussion section, we plan to

parallelize the execution of the protocol using the block-

ing technique. Furthermore, we also plan to integrate the

protocol with the privacy-preserving distributed statistical

computation framework we developed [20].

Endnotes
1Commutative encryption is a form of encryption in

which the order of the consecutive encryption and decryp-

tion of a value with different cryptographic keys does not

affect the final result and no two values have the same

encrypted value [69].
2The protocols are different from the protocol proposed in

[70, 71] for probabilistic record linkage. In Schnell et al.’s

protocol [70], for each record, each identifier is encoded as a

separate Bloom filter, whereas in Durham et al.’s protocol

[71], to avoid frequency-based cryptanalysis, the set of identi-

fiers of each record is encoded as a Bloom filter.
3Secret sharing is a method by which a secret value is

split into shares and a predefined number of shares are

required to reconstruct the secret value [30].

Fig. 8 The total runtime for the protocol on the simulated datasets as the number of participating data custodians increases

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 16 of 19

4OT is a method for two parties to exchange one of

several values in which the sender is oblivious to which

value is selected, while the receiver learns only the selected

value [32].
5The Count-Min sketch [72] is, similar to the counting

Bloom filter (see the description of the counting Bloom

filter in the Methods section), a space-efficient probabil-

istic data structure for encoding a set of elements that

allows querying the frequencies of the occurrence of the

inserted elements with some error.

Additional files

Additional file 1: It contains a description of the Bloom filter set operations,

the computation complexity analysis of the protocol, the algorithm for

generating random Bloom filters, the parameters used in the experiments,

the datasets used in the experiments, the network connection for the in situ

experiments, and additional experiment results. (DOCX 6563 kb)

Additional file 2: It is a Bash script that implements the algorithm we

used to generate the simulated microbiology datasets. The script is discussed

in Additional file 1. (SH 9 kb)

Abbreviations

EHR: Electronic Health Record; JSON: JavaScript Object Notation;

PPRL: Privacy-Preserving Record Linkage; SMC: Secure Multi-Party Computation;

VD: Virtual Dataset; XMPP: Extensible Messaging and Presence Protocol

Acknowledgments

We would like to thank Gro Berntsen for discussions about the use case

section. We also would like to thank Gunnar Hartvigsen and Andrius

Budrionis for invaluable discussions. We must thank the system developers

of the Snow system, in particular Torje Henriksen, for their invaluable support

in the integration of the protocol into the Snow system and the execution

of the experiments across the microbiology laboratories.

We would like to thank the microbiology laboratories of University Hospital

of North Norway, Nordland Hospital, and Fürst Medical Laboratory for

permitting the in situ experiments to be performed on their datasets. We are

also indebted to Eyvind W. Axelsen and Haagen Berg at the microbiology

laboratories for their support in the preparation of the microbiology datasets

used for the in situ experiments.

Funding

This work was supported by the Center for Research-based Innovation,

Tromsø Telemedicine Laboratory (TTL), through The Research Council of

Norway, grant number 174934. The study was also partially supported by the

Research Council of Norway, grant number 248150/O70. The funding bodies

did not have any role in the design and evaluation of the protocol and in

writing the manuscript.

Availability of data and material

The laboratory datasets used for the in situ experiments of this study are

available from University Hospital of North Norway, Nordland Hospital, and

Fürst Medical Laboratory, but restrictions apply to make these data publicly

available. However, the algorithm that generated the datasets used for the in

vitro experiments is included in the supplementary files of this article. The

prototype software of the protocol is available from the corresponding author

upon request.

Authors’ contributions

KYY contributed to the conception and design of the manuscript, and was

the major contributor to the writing of the manuscript. KYY also

implemented the protocol, contributed to the design of the experiments, and

executed the experiments. AM contributed to the design of the manuscript

and participated in drafting the manuscript. JGB contributed to the conception

of the manuscript and the design of the experiments. JGB also extensively

reviewed the manuscript for important scientific content. All authors read and

approved the submission of the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

The privacy ombudsman of the University Hospital of North Norway approved

the in situ experiments, and all participating laboratories also agreed to the

experiments. Individuals’ consent was not required.

Author details
1Department of Computer Science, UiT The Arctic University of Norway, 9037

Tromsø, Norway. 2Norwegian Centre for E-health Research, University

Hospital of North Norway, 9019 Tromsø, Norway. 3Department of Computer

Science, University of Westminster, 115 New Cavendish Street, London W1W

6UW, UK. 4Department of Clinical Medicine, UiT The Arctic University of

Norway, 9037 Tromsø, Norway.

Received: 27 July 2016 Accepted: 10 November 2016

References

1. Ross MK, Wei W, Ohno-Machado L. “Big data” and the electronic health

record. IMIA Yearb. 2014;9:97–104.

2. Kohane IS, Drazen JM, Campion EW. A glimpse of the next 100 years in

medicine. N Engl J Med. 2012;367:2538–9.

3. Geissbuhler A, Safran C, Buchan I, Bellazzi R, Labkoff S, Eilenberg K, et al.

Trustworthy reuse of health data: a transnational perspective. Int J Med Inf.

2013;82:1–9.

4. Hripcsak G, Bloomrosen M, FlatelyBrennan P, Chute CG, Cimino J, Detmer

DE, et al. Health data use, stewardship, and governance: ongoing gaps and

challenges: a report from AMIA’s 2012 Health Policy Meeting. J Am Med

Inform Assoc. 2013;21:204–11.

5. Lober WB, Thomas Karras B, Wagner MM, Marc Overhage J, Davidson AJ,

Fraser H, et al. Roundtable on bioterrorism detection: information system–based

surveillance. J Am Med Inform Assoc. 2002;9:105–15.

6. Lazarus R, Yih K, Platt R. Distributed data processing for public health

surveillance. BMC Public Health. 2006;6:235.

7. El Emam K, Hu J, Mercer J, Peyton L, Kantarcioglu M, Malin B, et al. A secure

protocol for protecting the identity of providers when disclosing data for

disease surveillance. J Am Med Inform Assoc. 2011;18:212–7.

8. Lenert L, Sundwall DN. Public health surveillance and meaningful use

regulations: a crisis of opportunity. Am J Public Health. 2012;102:e1–7.

9. Holmes JH, Elliott TE, Brown JS, Raebel MA, Davidson A, Nelson AF, et al.

Clinical research data warehouse governance for distributed research

networks in the USA: a systematic review of the literature. J Am Med Inform

Assoc. 2014;21:730–6.

10. Finnell JT, Overhage JM, Grannis S. All health care is not local: an evaluation

of the distribution of emergency department care delivered in Indiana.

AMIA Annu Symp Proc. 2011;2011:409–16.

11. Gichoya J, Gamache RE, Vreeman DJ, Dixon BE, Finnell JT, Grannis S. An

evaluation of the rates of repeat notifiable disease reporting and patient

crossover using a health information exchange-based automated electronic

laboratory reporting system. AMIA Annu Symp Proc. 2012;2012:1229–36.

12. Weber GM. Federated queries of clinical data repositories: the sum of the

parts does not equal the whole. J Am Med Inform Assoc. 2013;20:e155–61.

13. Malin BA, El Emam K, O’Keefe CM. Biomedical data privacy: problems,

perspectives, and recent advances. J Am Med Inform Assoc. 2013;20:2–6.

14. Laurie G, Jones KH, Stevens L, Dobbs C. A review of evidence relating to

harm resulting from uses of health and biomedical data [Internet]. The

Nuffield Council on Bioethics (NCOB); 2014 Jun p. 210. Available from:

http://nuffieldbioethics.org/wp-content/uploads/FINAL-Report-on-Harms-

Arising-from-Use-of-Health-and-Biomedical-Data-30-JUNE-2014.pdf

15. Du W, Atallah MJ. Privacy-preserving cooperative statistical analysis. In:

Williams AD, editor. Comput. Secur. Appl. Conf. 2001 ACSAC 2001 Proc.

17th Annu. IEEE. 2001. p. 102–10.

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 17 of 19

dx.doi.org/10.1186/s12911-016-0389-x
dx.doi.org/10.1186/s12911-016-0389-x

16. Du W, Han YS, Chen S. Privacy-preserving multivariate statistical analysis:

linear regression and classification. In: Berry MW, editor. Proc. Fourth SIAM

Int. Conf. Data Min. SIAM. 2004. p. 222–33.

17. Kantarcioglu M. A survey of privacy-preserving methods across horizontally

partitioned data. In: Aggarwal CC, Yu PS, editors. Priv.-Preserv. Data Min.

New York: Springer; 2008. p. 313–35.

18. Vaidya J. A survey of privacy-preserving methods across vertically partitioned

data. In: Aggarwal CC, Yu PS, editors. Priv.-Preserv. Data Min. New York:

Springer; 2008. p. 337–58.

19. Clifton C, Kantarcioglu M, Vaidya J, Lin X, Zhu MY. Tools for privacy preserving

distributed data mining. ACM SIGKDD Explor Newsl. 2002;4:28–34.

20. Hailemichael MA, Yigzaw KY, Bellika JG. Emnet: a tool for privacy-preserving

statistical computing on distributed health data. In: Granja C, Budrionis A,

editors. Proc. 13th Scand. Conf. Health Inform. Linköping: Linköping

University Electronic Press; 2015. p. 33–40.

21. Andersen A, Yigzaw KY, Karlsen R. Privacy preserving health data processing.

IEEE 16th Int. Conf. E-Health Netw. Appl. Serv. Heal. IEEE; 2014. p. 225–30

22. Vatsalan D, Christen P, Verykios VS. A taxonomy of privacy-preserving record

linkage techniques. Inf Syst. 2013;38:946–69.

23. Pinkas B, Schneider T, Zohner M. Faster private set intersection based on OT

extension. In: Fu K, Jung J, editors. Proc. 23rd USENIX Secur. Symp. San

Diego: USENIX Association; 2014. p. 797–812.

24. Quantin C, Bouzelat H, Allaert FAA, Benhamiche AM, Faivre J, Dusserre L.

How to ensure data security of an epidemiological follow-up:quality assessment

of an anonymous record linkage procedure. Int J Med Inf. 1998;49:117–22.

25. Agrawal R, Evfimievski A, Srikant R. Information sharing across private

databases. Proc. 2003 ACM SIGMOD Int. Conf. Manag. Data. New York, NY,

USA: ACM; 2003. p. 86–97

26. El Emam K, Samet S, Hu J, Peyton L, Earle C, Jayaraman GC, et al. A protocol

for the secure linking of registries for HPV surveillance. PLoS One. 2012;7:

e39915.

27. Adam N, White T, Shafiq B, Vaidya J, He X. Privacy preserving integration of

health care data. AMIA Annu. Symp. Proc. 2007. 2007. p. 1–5.

28. Lai PK, Yiu S-M, Chow KP, Chong CF, Hui LCK. An efficient bloom filter based

solution for multiparty private matching. Secur. Manag. 2006. p. 286–292

29. Many D, Burkhart M, Dimitropoulos X. Fast private set operations with

SEPIA. Technical report, ETH Zurich; 2012

30. Beimel A. Secret-sharing schemes: a survey. In: Chee YM, Guo Z, Shao F,

Tang Y, Wang H, Xing C, editors. Coding Cryptol. Berlin: Springer; 2011. p. 11–46.

31. Dong C, Chen L, Wen Z. When private set intersection meets big data: an

efficient and scalable protocol. Proc. 2013 ACM SIGSAC Conf. Comput.

Commun. Secur. New York, NY, USA: ACM; 2013. p. 789–800

32. Kilian J. Founding crytpography on oblivious transfer. Proc. Twent. Annu.

ACM Symp. Theory Comput. New York, NY, USA: ACM; 1988. p. 20–31.

33. Karapiperis D, Vatsalan D, Verykios VS, Christen P. Large-scale multi-party

counting set intersection using a space efficient global synopsis. In: Renz M,

Shahabi C, Zhou X, Cheema MA, editors. Database Syst. Adv. Appl. Springer

International Publishing; 2015. p. 329–45.

34. Paillier P. Public-key cryptosystems based on composite degree residuosity

classes. In: Stern J, editor. Adv. Cryptol. — EUROCRYPT’99. Berlin: Springer;

1999. p. 223–38.

35. Karr AF, Lin X, Sanil AP, Reiter JP. Secure regression on distributed

databases. J Comput Graph Stat. 2005;14:263–79.

36. Bellika JG, Henriksen TS, Yigzaw KY. The Snow system - a decentralized

medical data processing system. In: Llatas CF, García-Gómez JM, editors.

Data Min. Clin. Med. Springer; 2014

37. Stewart BA, Fernandes S, Rodriguez-Huertas E, Landzberg M. A preliminary

look at duplicate testing associated with lack of electronic health record

interoperability for transferred patients. J Am Med Inform Assoc JAMIA.

2010;17:341–4.

38. Lazarus R, Kleinman KP, Dashevsky I, DeMaria A, Platt R. Using automated

medical records for rapid identification of illness syndromes (syndromic

surveillance): the example of lower respiratory infection. BMC Public Health.

2001;1:1.

39. Richesson RL, Horvath MM, Rusincovitch SA. Clinical research informatics

and electronic health record data. Yearb Med Inform. 2014;9:215–23.

40. Curtis LH, Weiner MG, Boudreau DM, Cooper WO, Daniel GW, Nair VP, et al.

Design considerations, architecture, and use of the Mini-Sentinel distributed

data system. Pharmacoepidemiol Drug Saf. 2012;21:23–31.

41. Weber GM, Murphy SN, McMurry AJ, MacFadden D, Nigrin DJ, Churchill S,

et al. The Shared Health Research Information Network (SHRINE): a prototype

federated query tool for clinical data repositories. J Am Med Inform Assoc.

2009;16:624–30.

42. El Emam K, Mercer J, Moreau K, Grava-Gubins I, Buckeridge D, Jonker E. Physician

privacy concerns when disclosing patient data for public health purposes during a

pandemic influenza outbreak. BMC Public Health. 2011;11:454.

43. Lindell Y, Pinkas B. Secure multiparty computation for privacy-preserving

data mining. J Priv Confidentiality. 2009;1:5.

44. Goldreich O. Secure multi-party computation (working draft). 2002.

Available from http://www.wisdom.weizmann.ac.il/~oded/PSX/prot.pdf.

Accessed 18 Oct 2016.

45. Cramer R, Damgård I. Multiparty computation, an introduction. In: Castellet

M, editor. Contemp. Cryptol. Basel: Birkhäuser Basel; 2005. p. 41–87.

46. Goldreich O. Foundations of cryptography: basic applications. 1st ed. New

York: Cambridge University Press; 2004.

47. Vaidya J, Clifton C. Leveraging the “Multi” in secure multi-party computation.

Proc. 2003 ACM Workshop Priv. Electron. Soc. New York, NY, USA: ACM;

2003. p. 53–9

48. Bloom BH. Space/time trade-offs in hash coding with allowable errors.

Commun ACM. 1970;13:422–6.

49. Tarkoma S, Rothenberg CE, Lagerspetz E. Theory and practice of bloom

filters for distributed systems. Commun Surv Tutor IEEE. 2012;14:131–55.

50. Fan L, Cao P, Almeida J, Broder AZ. Summary cache: a scalable wide-area

Web cache sharing protocol. IEEE ACM Trans Netw. 2000;8:281–93.

51. Dimitriou T, Michalas A. Multi-party trust computation in decentralized

environments. 2012 5th Int. Conf. New Technol. Mobil. Secur. NTMS. 2012.

p. 1–5

52. Dimitriou T, Michalas A. Multi-party trust computation in decentralized

environments in the presence of malicious adversaries. Ad Hoc Netw.

2014;15:53–66.

53. Karr AF, Fulp WJ, Vera F, Young SS, Lin X, Reiter JP. Secure, privacy-preserving

analysis of distributed databases. Technometrics. 2007;49:335–45.

54. Hernández MA, Stolfo SJ. Real-world data is dirty: data cleansing and the

merge/purge problem. Data Min Knowl Discov. 1998;2:9–37.

55. Hernández MA, Stolfo SJ. The merge/purge problem for large databases.

Proc. 1995 ACM SIGMOD Int. Conf. Manag. Data. New York, NY, USA: ACM;

1995. p. 127–38

56. Lunde AS, Lundeborg S, Lettenstrom GS, Thygesen L, Huebner J. The

person-number systems of Sweden, Norway, Denmark, and Israel. Vital

Health Stat 2. 1980;84:1–59.

57. Ludvigsson JF, Otterblad-Olausson P, Pettersson BU, Ekbom A. The Swedish

personal identity number: possibilities and pitfalls in healthcare and medical

research. Eur J Epidemiol. 2009;24:659–67.

58. Randall SM, Ferrante AM, Boyd JH, Semmens JB. The effect of data cleaning

on record linkage quality. BMC Med Inform Decis Mak. 2013;13:64.

59. Sweeney L. Simple demographics often identify people uniquely [Internet].

Pittsburgh: Carnegie Mellon University; 2000 p. 1–34. Report No.: 3. Available

from: http://dataprivacylab.org/projects/identifiability/paper1.pdf

60. El Emam K, Buckeridge D, Tamblyn R, Neisa A, Jonker E, Verma A. The

re-identification risk of Canadians from longitudinal demographics. BMC

Med Inform Decis Mak. 2011;11:46.

61. Koot M, Noordende G, Laat C. A study on the re-identifiability of Dutch

citizens. Workshop Priv. Enhancing Technol. PET. 2010

62. Potosky AL, Riley GF, Lubitz JD, Mentnech RM, Kessler LG. Potential for

cancer related health services research using a linked Medicare-tumor

registry database. Med Care. 1993;31:732–48.

63. Warren JL, Klabunde CN, Schrag D, Bach PB, Riley GF. Overview of the

SEER-Medicare data: content, research applications, and

generalizability to the United States elderly population. Med Care.

2002;40:IV3–IV18.

64. Saint-Andre P, Smith K, Tronçon R. XMPP: the definitive guide: building

real-time applications with jabber technologies. 1st ed. Sebastopol: O’Reilly

Media, Inc.; 2009.

65. Collet Y. RealTime data compression: LZ4 explained [Internet]. 2011 [cited

2016 Apr 7]. Available from: http://fastcompression.blogspot.com/2011/05/

lz4-explained.html

66. Friedman C, Rigby M. Conceptualising and creating a global learning health

system. Int J Med Inf. 2013;82:e63–71.

67. Weber GM. Federated queries of clinical data repositories: scaling to a

national network. J Biomed Inform. 2015;55:231–6.

68. Christen P. A survey of indexing techniques for scalable record linkage and

deduplication. IEEE Trans Knowl Data Eng. 2012;24:1537–55.

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 18 of 19

http://www.wisdom.weizmann.ac.il/~oded/PSX/prot.pdf
http://dataprivacylab.org/projects/identifiability/paper1.pdf
http://fastcompression.blogspot.com/2011/05/lz4-explained.html
http://fastcompression.blogspot.com/2011/05/lz4-explained.html

69. Pohlig SC, Hellman ME. An improved algorithm for computing logarithms

over and its cryptographic significance (Corresp.). IEEE Trans Inf Theory.

1978;24:106–10.

70. Schnell R, Bachteler T, Reiher J. Privacy-preserving record linkage using

Bloom filters. BMC Med Inform Decis Mak. 2009;9:41.

71. Durham EA, Kantarcioglu M, Xue Y, Toth C, Kuzu M, Malin B. Composite bloom

filters for secure record linkage. IEEE Trans Knowl Data Eng. 2014;26:2956–68.

72. Cormode G, Muthukrishnan S. An improved data stream summary: the

count-min sketch and its applications. J Algorithms. 2005;55:58–75.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Yigzaw et al. BMC Medical Informatics and Decision Making (2017) 17:1 Page 19 of 19

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Introduction
	Privacy-preserving distributed statistical computation
	Privacy-preserving deduplication

	Related work
	Use case
	Problem statement and definitions
	Data custodian (Di)
	Data schema
	Virtual dataset (VD)
	Record linkage
	Problem statement

	Methods
	Overview
	Requirements for secure deduplication protocol
	Threat model and assumptions
	Bloom filter
	Notations
	Set operations on Bloom filters
	Secure sum protocol

	A secure deduplication protocol
	Setup phase
	Computation phase
	A secure duplicate identifier subprotocol
	Secure distributed sorted neighborhood subprotocol

	Extension of the secure deduplication protocol for deterministic algorithms

	Results
	Security analysis
	Implementation
	Analytical evaluation
	Experimental evaluation
	In situ experiments
	In vitro experiments

	Discussion
	Conclusions
	Commutative encryption is a form of encryption in which the order of the consecutive encryption and decryption of a value with different cryptographic keys does not affect the final result and no two values have the same encrypted value [69].
	Additional files
	Abbreviations
	Acknowledgments
	Funding
	Availability of data and material
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

