Secure and Selective Dissemination
of XML Documents

ELISA BERTINO
University of Milano
and

ELENA FERRARI
University of Insubria

XML (eXtensible Markup Language) has emerged as a prevalent standard for document represen-
tation and exchange on the Web. It is often the case that XML documents contain information of
different sensitivity degrees that must be selectively shared by (possibly large) user communities.
There is thus the need for models and mechanisms enabling the specification and enforcement of
access control policies for XML documents. Mechanisms are also required enabling a secure and se-
lective dissemination of documents to users, according to the authorizations that these users have.
In this article, we make several contributions to the problem of secure and selective dissemination
of XML documents. First, we define a formal model of access control policies for XML documents.
Policies that can be defined in our model take into account both user profiles, and document contents
and structures. We also propose an approach, based on an extension of the Cryptolope™ approach
[Gladney and Lotspiech 1997], which essentially allows one to send the same document to all users,
and yet to enforce the stated access control policies. Our approach consists of encrypting different
portions of the same document according to different encryption keys, and selectively distributing
these keys to the various users according to the access control policies. We show that the number
of encryption keys that have to be generated under our approach is minimal and we present an
architecture to support document distribution.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—
access controls; H.2.7 [Database Management]: Database Administration—security, integrity,
and protection

General Terms: Security

Additional Key Words and Phrases: Access control, secure distribution, XML

This work was partially supported by a grant from Microsoft Research.

Authors’ addresses: E. Bertino, Dipartimento di Scienze dell’Informazione, University of Milano,
Via Comelico 39/41, 20135 Milano, Italy, email: bertino@dsi.unimi.it; E. Ferrari, Dipartimento di
Scienze Chimiche, Fisiche e Matematiche, University of Insubria, Como, Via Valleggio, 11, 22100
Como, Italy; email: elena.ferrari@uninsubria.it.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a dispaly along with
the full citation. Copyrights for components of this worked owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

© 2002 ACM 1094-9224/02/0800-0290 $5.00

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002, Pages 290-331.

Secure and Selective Dissemination of XML Documents o 291

1. INTRODUCTION

Companies and organizations are today massively using the Web as the main
information distribution means both at internal and external level. Such a
widespread use of the Web has pushed the rapid development of suitable
standards for information representation. XML (eXtensible Markup Language)
[W3C 1998] is currently the most prevalent standardization effort in the
area of document representation through markup languages. The main ad-
vantages of XML, compared with HTML, are the possibility of defining tags,
nested document structures, and document types (called DTDs—Document
Type Definitions—or XMLSchemas) that describe the structure of documents.

As it is very often the case in most organizations, whenever one has large
amounts of data to be shared among users, one must put in place suitable ac-
cess control policies. In general, an access control policy states which subjects
can access which objects under which modes. Once access control policies are
stated, they are implemented by an access control mechanism. Because XML
is becoming the most prevalent means according to which documents and data
are encoded for distribution among users on the Web, there is a strong need for
models and mechanisms enabling the specification and enforcement of access
control policies for XML documents. Such models and mechanisms are crucial
in order to facilitate a selective dissemination of XML documents, containing
information of different sensitivity levels, among (possibly large) user commu-
nities. Their development poses, however, several requirements.

A first requirement is the support for varying protection granularity levels.
In some cases, the same access control policy may apply to a set of documents. In
other cases, different access control policies may apply to different components
within the same document. Many other intermediate situations may also arise.
The access control mechanism must be flexible enough to support a spectrum
of protection granularity levels.

A second related requirement is the support for content-based access control.
Content-based access control allows one to express authorization rules that take
document contents into account. This is an important requirement since very
often documents with the same type and structure have contents of different
sensitivity degrees. In order to support content-based access control, access
control policies must allow one to include conditions against document contents.

A third requirement is related to the heterogeneity of subjects. The popu-
lation of users accessing XML document sources is often composed of subjects
characterized by different skills and needs. Moreover, the population is dy-
namic, in that the number and type of subjects is not known a priori and can
very frequently change over time. This requires access control policies based on
user characteristics and qualifications, rather than based on very specific and
individual characteristics (e.g., user IDs).

A last requirement is to provide mechanisms enabling a secure and selec-
tive dissemination of XML documents to users, according to the authorizations
these users have. These mechanisms are particularly crucial when an injfor-
mation push approach is used for distributing documents to users. Under such
an approach, a server periodically (or whenever some relevant event arises)

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

292 o E. Bertino and E. Ferrari

broadcasts data to clients. Consider, for example, the case of a newsletter sent
once a week to all users. In general, since different users may have privilege to
see different, selected portions of the same document, supporting an informa-
tion push approach may entail generating different physical views of the same
document and sending them to the proper users. The number of such views may
become rather large and thus such an approach cannot be practically applied.

In this article, we propose an access control model and a related mecha-
nism addressing the above requirements. The model supports varying protec-
tion granularity levels and content-based access control. The last functional-
ity is achieved by integrating into our model the query language proposed in
Deutsch et al. [1999], in order to express conditions on document contents. In
addition, our model supports the specification of policies associated with sin-
gle documents, with collections of documents, and with DTDs. The last feature
allows one to associate the same access control policy with all instances of
a given DTD. Moreover, given the hierarchical, interlinked structure of XML
documents and DTDs, we support different propagation options for our ac-
cess control policies which state how a policy specified at a given level in a
document/DTD hierarchy propagates to lower levels, thus allowing a concise
expression of many security requirements. To better take into account user
profiles in the formulation of access control policies, our model supports the
use of credentials. A credential is a set of attributes concerning a user that
are relevant for security purposes (e.g., age, position within the organization,
projects the user is working on). The use of credentials allows the Security
Administrator (SA) to directly express relevant security policies in terms that
are closer to the organizational structure of the enterprise. For instance, by
using credentials, one can simply formulate policies such as “Only program-
mers that are permanent staff can access documents related to the internals of
the system.” Finally, to support document dissemination to large communities
of users, we propose a document distribution approach based on an extension
of the Cryptolope™ approach [Gladney and Lotspiech 1997]. Our approach
basically consists in encrypting different portions of the same document ac-
cording to different encryption keys, and selectively distributing these keys
to the various users according to the access control policies. We show that
the number of encryption keys that have to be generated under our approach
is minimal. Additionally, we present an architecture supporting information
push.

The work reported in this article builds on an access control mechanism for
XML documents proposed by us in Bertino et al. [2001c]. The current paper sig-
nificantly extends our previous work for what concerns both the access control
model and system architecture. Major extensions to the access control model
are the possibility of expressing access control policies based on subject cre-
dentials and on the content of XML documents, whereas in the access control
model proposed in Bertino et al. [2001c] policies are only specified in terms
of user identifiers and document structures. This is a major extension for the
flexibility it allows in specifying access control policies. Such flexibility is of
particular relevance in an open and dynamic environment like the Web.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 293

From the architectural point of view, the work reported in this article ex-
tends our previous work with the push mode for access control. Indeed, our
previous work only supports information pull. Under such a mode (which is
the one commonly used in conventional DBMSs), a subject explicitly submits
an access request to the system when he/she wishes to access a document. The
system checks the authorizations the subject possesses and, on the basis of
these authorizations, it returns the subject a view of the requested document
containing all and only those portions for which the subject has a proper autho-
rization. The extension proposed in this article is a major extension both for the
practical relevance of information push in distributed environments and for the
involved theoretical and performance issues. In the current article, we address
all these issues by proposing a method to support information push, which is
based on a selective encryption of documents, by proving the correctness and
the minimality of such method, and by developing an architecture and related
algorithms for its support.

In this article, we use examples from Global Legal Information Network
(GLIN) [Adam et al. 2002], a project undertaken by the Law Library of Congress
(LLoC) in 1993. The broad goal of GLIN is to create a knowledge base of inter-
national laws and to make this knowledge base available to member countries
from around the world (about 35 and growing). In GLIN, only a certain group
of users such as members of official government agencies or U.S. Congress can
gain access to certain documents. For example, the Law Library of Congress
publishes monthly a World Law Bulletin, which includes a blue page report
that provides a report about pending legislation which is a particular topic of
interest to Congress. This report should not be public until it is open for public
discussion because this could be a gold mine to lobbyists. Moreover, only certain
individuals are allowed to view or generate some parts of this report. Although
all our examples in this article are from the GLIN environment, our system can
be applied in other domains as well.

The remainder of this article is organized as follows. Section 2 presents the
basic concepts of XML. In Section 3, we show how access control policies for XML
documents can be specified in our system, and we give the formal semantics
of these policies. Section 4 presents the mechanisms we have developed for a
controlled distribution of XML documents, according to the specified policies.
Section 5 surveys related work. Finally, Section 6 concludes the article and
outlines future research directions. Appendix A summarizes the notation and
terminology used throughout the article, whereas formal proofs are reported in
Appendix B.

2. BASIC CONCEPTS OF XML

The basic concept of an XML document is the element. Elements can be nested at
any depth and can contain other elements (subelements). An element contains
a portion of the document delimited by two tags: the start tag, at the beginning
of the element, with the form <tag-name>, and the end tag, at the end of the
element, with the form </tag-name>, where tag-name indicates the type of the
element (markup).

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

294 o E. Bertino and E. Ferrari

<WorldLawBulletin Date=“8/8/2000” >
<Law Country=“USA” RelatedLaws=“LK75”>
<Topic> Taxation </Topic>
<Summary > ... </Summary>
< /Law>
<Law Id =“LK75” Country=*“Italy” >
<Topic> Import-Export </Topic>
<Summary > ... </Summary>
< /Law>
<BluePageReport>
<Section GeoArea=“Europe” >
<Law Country=“Germany” >
<Topic> Guns </Topic>
<Summary > ... </Summary>
</Law>

< /Section>
<Section GeoArea=“NorthAmerica”>
<Law Country=“USA”>
<Topic> Transportation </Topic>
<Summary > ... </Summary>
</Law>

< /Section>
< /BluePageReport>
< /WorldLawBulletin>

Fig. 1. An example of XML document.

An example of XML document is shown in Figure 1. The document is a
bulletin that provides information on laws all over the world. It contains a
special section, that is, the Blue Page Report, for pending legislation. For each
law, the document provides information on the country which issues the law,
on the law topic and on related laws. Moreover, it provides a brief summary of
the law. The Blue Page Report contains a section for each different geographic
area. This section contains a list of pending laws for that area. With reference
to Figure 1, the WorldLawBulletin element is an example of document element,
that is, the outermost element containing all the elements of the document.
Law, Topic, and BluePageReport are examples of elements at different depth
in the hierarchical structure of the XML document. Section is an example
of element with subelements in that it contains Law. Summary is an example
of element containing text (data content). Elements can also be empty. Empty
elements are characterized only by a start tag and do not contain data content
or subelements.

The start tag of each element can specify a list of attributes providing ad-
ditional information for the element (e.g., the start tag of the Law element in
Figure 1). Attributes are of the form name = attvalue, where name is a label
and attvalue is a string delimited by quotes. Attributes can have different types
allowing one to specify the element identifier (attributes of type ID often called
id), additional information about the element (e.g., attributes of type CDATA
containing textual information), or links to other elements of the document
(attributes of type IDREF referring to a single target or IDREFS referring to mul-
tiple targets). To be referenceable, an element must have an attribute of type
ID whose value provides a unique identifier. Other elements can reference it
through attributes of type IDREF(s).

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 295

In the following, we introduce a formal model of XML document (based on
Deutsch et al. [1999] and Milo and Zohar [1998]) and of the related concept
of DTD. Let Z¢ be a set of element identifiers, Label a set of element tags and
attribute names, and Value a set of attribute/element values. An XML document
can be formally defined as follows:

Definition 2.1 (XML document). An XML document is a tuple d =(Vy, 04,
Eg, ¢r,), where:

—Va = Vj U V§ is a set of nodes representing elements and attributes, re-
spectively. Each v € V§ has an associated element identifier id, € Z¢, whereas
each v € V{ has an associated value val € Value;

—04 is a node representing the document element (called document root);

—E;=E5UESCVy x Vg is a set of edges, where e € Ej is an edge represent-
ing an element-subelement relationship or a link between elements due to

IDREF(s) attributes (called link edge), and e € EY is an edge representing an
element-attribute relationship;

—¢g,: Eq — Label is the edge labeling function.

According to Definition 2.1, an XML document can be seen as a labeled graph
where nodes represent elements and attributes, and edges represent relation-
ships between them. A node representing an element contains the element
identifier (id). An element identifier can be the ID attribute value associated
with the element, or can be automatically generated by the system, if no at-
tribute of type ID is defined.

A node representing an attribute contains its associated value. For simplicity,
data content of an element is represented as a particular attribute whose name
is content and whose value is the element data content itself.

The graph contains edges representing the element-attribute and the
element-subelement relationships, and link edges, representing links between
elements introduced by attributes of types IDREF.! Edges are labeled with the
tag of the destination node (i.e., an element or an attribute) and are represented
by solid lines, whereas link edges are labeled with the name of the correspond-
ing IDREF attribute and are represented by dashed lines.

Figure 2 shows the graph representation of the XML document in Figure 1. In
the figure, nodes representing elements are denoted by white circles, whereas
nodes representing attributes are denoted by gray circles. Nodes represent-
ing elements have inside the corresponding id (system defined id are repre-
sented as &n, where n is a natural number). In the following, since an element/
attribute is represented as a node in a graph, we use indifferently the terms
element/attribute and node.

A document type declaration can be attached to XML documents, specifying
the rules that XML documents may follow. These rules are collectively known
as the Document Type Definition (DTD). A DTD is composed of two parts: the

L An attribute of type IDREFS is considered as a list of attributes of type IDREF.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

296 o E. Bertino and E. Ferrari

e & o @
content | contel alycomem content ?(

nt !
o
. . . NorthAmerica Coufitry Opi&mmary

Taxation ... Import-Export ... Europe
@ contem content
Germany
content
uns

o
T,
o
/
c
5
3
o
<

content
Trans ortatlon

Fig. 2. Graph representation of the XML document in Figure 1.

<!DOCTYPE WorldLawBulletin|
<!ELEMENT WorldLawBulletin(Law*,BluePageReport?)>
<!ELEMENT Law(Topic,Summary)>
<!ELEMENT Topic (#PCDATA)>
<!ELEMENT Summary ANY>
<!ELEMENT BluePageReport (Section+)>
<!ELEMENT Section(Law+)>
<!ATTLIST WorldLawBulletin Date CDATA>
<!ATTLIST Law Id ID Country CDATA

RelatedLaws IDREFS>

<!ATTLIST Section GeoArea CDATA >

Fig. 3. DTD for the document in Figure 1.

element declarations and the attribute list declarations. The element declara-
tions part specifies the structure of the elements contained in the document.
In particular, for an element it specifies its subelements (if any) and their or-
der and/or the type of the element data content. This type may be EMPTY, if
no content is allowed, ANY if all kind of content is allowed, or #PCDATA if only
data content is allowed. The attribute list declarations part specifies, for each
element, the list of its attribute names, types, optionality clauses (#IMPLIED to
denote an optional attribute, #REQUIRED to denote a mandatory one), and (pos-
sibly optional) default values. Figure 3 shows the DTD for the document in
Figure 1. For each element, the DTD contains information on its subelements
and attributes. Moreover, it is possible to specify the order of subelements,
whether they are optional (‘”’), whether they may occur multiple times (%’ or
‘+” with the usual meaning), and whether subelements are alternative with
respect to each other ().

Let Z7, be a set of DTD element identifiers, and Label* be the set of strings
obtained through the concatenation of names in Label and a symbol in {x, +, ?}.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 297

Let Type be a set of types, Type = {EMPTY, ANY, #PCDATA, ID, IDREF, IDREFS, CDATA}.
A DTD is formally defined as follows:

Definition 2.2 (DTD). A document type definition (DTD) is a tuple t =
(Vi, 0y, Ey, ¢5,), where:

—V,=V£ UV is a set of nodes representing elements and attribute types,
respectively. Each v € V¢ has an associated DTD element identifier id; € 77,
whereas, each v € V? has an associated type ¢ € Type;

—0; is the node representing the whole DTD element (called DTD root);

—E;, CV;xV; is a set of edges, where ecE; represents the element—
subelement or element—attribute relationship;

—¢g, : E; — Label* U {union, content} is the edge labeling function.

DTDs can be represented as a graph, using a representation similar to those
of XML documents.

An XML sourceis a set of XML documents and DTDs. Two kinds of documents
can be found in an XML source, namely, valid and well-formed documents. A
well-formed document follows the grammar rules of XML [W3C 1998] but does
not have an associated DTD, whereas a valid document is a document conform-
ing to a given DTD. Therefore, valid documents can be considered instances of
a corresponding DTD in the source. For example, the document in Figure 1 is
a valid document, since it conforms to the DTD in Figure 3. We use notation
Inst(dtd_id) to denote the identifiers of documents instance of the DTD with
identifier dtd_id.

Throughout the article, we assume that an XML source S is given.

3. ACCESS CONTROL POLICIES FOR XML DOCUMENTS

Access control policies regulate access to documents stored in a given source.
Access control policies for XML sources must cope with a dynamic subject pop-
ulation, often making accesses from remote locations, and they must support
a wide spectrum of protection granularities, ranging from a set of documents
to specific elements within a document. Consequently, we base access control
policies on the notion of subject credentials and on policy specifications at dif-
ferent granularity levels, with different propagation options. In what follows,
we introduce the basic components on which policy specification relies. We then
give the syntax and semantics of access control policy specifications.

3.1 Subject Specification

Access control policies are specified in terms of subject profiles, based on the
notion of credential. A credential is a set of subject attributes that are needed
for security purposes. Each subject has one or more associated credentials. We
assume that credentials are assigned when a subject subscribes to the system.
To make the task of credential specification easier, credentials with similar
structures are grouped into credential types.

To formalize the concepts of credentials and credential types, we use AN to
denote a set of attribute names, 7 to denote the set of possible types of attributes
in AN, and V to denote the set of legal values for types in 7. Moreover, we denote

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

298 o E. Bertino and E. Ferrari

Legal

Research Directorate
Employee

European
Division
Employee

Fig. 4. An example of credential type hierarchy.

the set of credential type identifiers with C7 and the set of credential identifiers
with CZ. Finally, we use S to denote a set of subject identifiers. Credential types
are formally defined as follows:

Definition 3.1 (Credential type). A credential type is a pair (ct_id, attr),
where ct_id € CT is the credential type identifier, and attr is a set of pairs
(a_name, a_dom), where a_name € AN is the attribute name (attribute names
must be distinct within a given credential type) and a_dom €7 is the attribute
domain.

Example 3.1. The following is an example of credential type:

(employee, {(age,string), (address,string),(salary,integer),
(nationality,string), (national origin,string)}).

Credential types are organized into a hierarchy, referred to as credential
type hierarchy, according to a partial order <.7. Given, two credential types
ct; and cts € CT we say that cty is a subcredential type (or shortly subtype) of
cty if and only if ¢ty <c7 ct1. Each credential type contains all the attributes
of the credential types preceding it in the hierarchy. Moreover, it can contain
additional attributes, apart from the inherited ones. Given a credential type
ct e CT, A(ct) denotes the set of attributes of instances of ct.2 Figure 4 gives an
example of credential type hierarchy for the GLIN domain.

A credential can be formally defined as follows:

Definition 3.2 (Credential). A credential c¢ is a tuple (c_id, sbj_id, state,
ct_id), where c_id € CT is the credential identifier; sbj _id € S id the identifier of
the subject to which the credential refers; state = (a1 : v1,...,a, : v,), Where
ai,...,a, € A(ct_id) are the names of the attributes of ¢, vy, ..., v, €V are their

2Here, we use the terminology of object-oriented data models. Thus, a credential is an instance of
a credential type ct and is in turn a member of all credential types ct’, such that c¢¢ <¢7 ct'.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 299

values, and ct_id € C7 is the identifier of the credential type of which ¢ is an
instance.

Example 3.2. The following is an example of credential for an employee:

(c1,Bob,(age:null,address:Queen Street, salary:70k,nationality:US,
national origin:Italy),employee).

The Credential Base, denoted CB, is the set of credentials associated with
subjects in S.

We have defined an XML-based language for encoding credentials and cre-
dential types. For simplicity, we do not report it here, details can be found in
Bertino et al. [2001b]. The language provides a uniform syntax for both doc-
uments and credentials. We can therefore apply our access control policies to
credentials themselves. For instance, some credential attributes (such as the
user name) may be made accessible to everyone, whereas other attributes may
be visible only to a restricted class of subjects. Additionally, the use of an XML
language for specifying credentials facilitates secure credential submission and
distribution, in that, to guarantee credential authenticity and integrity, we can
apply the digital signatures and encryption mechanisms we have developed for
XML documents.

In our model, subjects to which a policy applies are implicitly defined by
imposing a set of conditions on their credentials. Conditions on credentials are
expressed by means of a formal language. Expressions that can be specified in
the language, referred in the following as credential expressions, are formally
defined as follows:

Definition 3.3 (Credential Expression). The set CE of credential expres-
sions is defined as follows:

—each element in C7 is a credential expression;

—ifa EANa 1% EV’ and op € {=7 #; >,<,2,5,6, ¢> g) Z7 < ¢’ D 27 257 2}) then
a opP v is a credential expression;>

—if ceq, ceg € CE, then (ce; A ceg) and (cey V cey) are credential expressions.
Example 3.3. The following are examples of credential expressions in CE:

—(European Division Employee Vv LLoC Employee): this expression denotes
subjects with a credential of type European Division Employee or LLoC
Employee;

—(employee A age >18): this expression denotes the employees whose age is
greater than 18.

3.2 Object Specification

Access control policies are specified both at the DTD and at the document
level. Policies can be specified for a whole DTD(s) (respectively, document(s))

3The operators that can be used in an expression a op v are actually a subset of the ones listed
above, since they depend on the type of a. We assume that there is some mechanism in place to
verify that only meaningful operators are used.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

300 o E. Bertino and E. Ferrari

protection
granularity levels

/

DTD level document
/ \ level
all instances all instances collections of collections of
satisfying a documents explicitly documents qualified
given condition specified by content
elements attributes
explicilty denoted/ elements attributes
qualified by content explicilty denoted/
qualified by content

attributes attributes

explicilty denoted/

qualified by content explicilty denoted/

qualified by content

Fig. 5. Taxonomy of protection granularity levels.

or for selected elements and/or attributes within a DTD(s) (respectively, doc-
ument(s)). Elements/attributes can be either explicitly specified, or can be se-
lected on the basis of their content.

Policies specified at the DTD level apply to valid documents in that they prop-
agate to all DTD instances, or only to instances which satisfy a given condition.
Additionally, policies can be specified which apply to collections of both valid
and well-formed XML documents. A taxonomy of the protection granularity
levels supported by our access control mechanism is reported in Figure 5.

In the following, we use the term, protection object, to denote the docu-
ments (or portions of documents) to which a policy refers. The specification of
protection objects requires three steps: (1) the specification of one or more doc-
uments or DTDs; (2) the specification of selected element(s) within the speci-
fied DTD(s)/document(s); (3) the specification of selected attribute(s) within the
specified element(s). Steps (2) and (3) are optional.

Elements can be denoted by listing their identifiers, or by giving a path from
the DTD/document root to the node(s) representing the element(s). These possi-
bilities are formalized by the notion of element specification, defined as follows:

Definition 3.4 (Element Specification). Letd =(V,0,E,¢g)beaDTD or a
document. An element specification for d, denoted by element-spec, is:

—a set of element identifiers in d, that is, element-spec ={idy, ..., id,}, with
id; e {id, | ve Ve\{0}}, or

—a path expression, that is, element-spec = path_expr, where path_expr is
specified according to the following grammar: path_expr :: = x | tag |
path_expr. path_expr, where tag is an edge label corresponding to a tag of
an element in d.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 301

Example 3.4. Law.Topic, {LK75, &47}, BluePageReport.Section are exam-
ples of element specifications for the document in Figure 2.

In the following, we denote with P& the set of path expressions for source
S. Moreover, let pe € PE be a path expression, then Eval(pe) denotes the set of
identifiers of the elements denoted by pe. We are now ready to introduce the
definition of protection object specification.

Definition 3.5 (Protection Object Specification). A protection object speci-
fication is of the form:

DTDs-spec | docs-spec.[elements-spec].[attrs]*
where:

—DTDs-spec € Z7, U {#} is a DTD root identifier or the symbol #. Symbol # is
used to denote all the DTDs in S;

—docs-spec € 2% is a set of document root identifiers;

—elements-spec is an element specification for the DTDs (respectively, doc-
uments) denoted by DTDs-spec (respectively, docs-spec). If DTDs-spec = #,
then elements-spec.attrs must be omitted;

—attrs is a set of attributes of the elements denoted by elements-spec, if
elements-spec is not omitted; it is a set of attributes of the DTDs (respec-
tively, documents) denoted by DTDs-spec (respectively, docs-spec), otherwise.

In the following, we denote with PO the set of protection object specifications
for source S.

A protection object specification that contains a DTD identifier, or the symbol
#, implicitly denotes a set of valid XML documents (or parts of them). Specifi-
cally, it denotes all the documents (or portions) that are instances of the DTDs
denoted by the DTDs-spec component of the specification. However, specifying
policies that always apply to all DTDs instances is not always reasonable in
practice. For instance, consider two collections of XML documents: projects and
secret-projects, both with the same DTD, but with different security require-
ments (documents belonging to the secret-project collection require more re-
strictive access control policies). This means that different policies should be
applied to the two collections. Moreover, different portions of the same docu-
ment may have different protection requirements depending on their content.
As an example, consider the document in Figure 2 and a policy stating that
Laws pertaining to a given country contained in the BluePageReport section can
be made available only to subjects belonging to that country (since these laws
are pending). To support the possibility of expressing both the above protec-
tion requirements, we associate conditions with protection object specifications:
the policy is thus applied to all the documents (or portions of them) denoted
by the specification that satisfy the specified condition. In the following, C de-
notes the set of conditions that can be expressed in our model. In the current

4Square brackets denote optional components, whereas symbol ¢’ denotes alternative components.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

302 o E. Bertino and E. Ferrari

version of our access control mechanism, the language to express conditions is
based on the query language proposed in Deutsch et al. [1999]. However, other
languages could also be used as well.

Definition 3.6 (Document Specification). A document specification is a
pair (C, po), where C €C U {true} is a condition, and po € PO is a protection
object specification.

If a document specification has a true condition, then it denotes all documents
(or portions of documents) identified by its protection object specification. The
set of document specifications for source S is denoted with DS.

Example 3.5. Consider the DTD in Figure 3 and the XML document in
Figure 2. The following are examples of document specifications:

— (GeoArea = Europe,WorldLawBulletin.BluePageReport.Section): it de-
notes the section pertaining to Europe of the BluePageReport of all the in-
stances of WorldLawBulletin;

— (Topic # Guns,WorldLawBulletin.Law): it denotes the laws contained in
all the instances of WorldLawBulletin (apart from those contained in the
BluePageReport element) whose topic is not Guns;

— (true,&1.{LK75}): it denotes the element with identifier LK75.

3.3 Privilege Specification

Our model supports two categories of privileges: browsing and authoring
privileges.

Browsing privileges allow subjects to read the information in a document
(or in some of its elements) and/or to see the relations occurring among subele-
ments (defined trough IDREF(s) attributes). Three browsing privileges are sup-
ported: view, navigate, and browse_all. The view privilege authorizes a subject
to read the values of all (or some of) the attributes of a document (or of some
of its elements), apart from attributes of type IDREF(s). For IDREF(s) attributes,
the navigate privilege is introduced: if a subject has the navigate privilege
on a document (respectively, element), the subject can see all the semantic re-
lations implied by the attributes of type IDREF(s) contained in the document
(respectively, element). The navigate privilege can also be given on selected
attributes of a document and/or elements. Clearly, the view the subject has on
the referenced elements depends on the authorizations the subject has on such
elements. The navigate privilege is thus equivalent to a view privilege given on
IDREF(s) attributes only. However, the distinction between view and navigate
privilege makes it possible to grant subjects the access to an element without
disclosing the links of this element with other elements. For example, if a sub-
ject has the view privilege on the document in Figure 2, he/she can view all
the laws contained in the document, but he/she cannot see the relations of a
law with other laws in the document. To acquire this information, the subject
needs a navigate privilege on the document. Finally, the browse_all privilege
subsumes both the navigate and the view privilege, thus allowing a compact
specification of access control policies.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 303

Authoring privileges allow subjects to modify (or delete) an element/attribute
or a document. We support three distinct authoring privileges: append, write,
and auth_all. The append privilege allows a user to write information in an
element (or in some of its attributes), without deleting any preexisting infor-
mation. By contrast, the write privilege allows a user to modify the content
of an element/attribute, possibly deleting them. Thus, the write privilege sub-
sumes the append privilege. Finally, the auth_all privilege subsumes all the
other authoring privileges.

The set of all browsing and authoring privileges is denoted by P.

3.4 Propagation Options

Different propagation options can be exploited in the specification of an access
control policy. Propagation options state how policies specified at a given level of
a DTD/document hierarchy propagate (partially or totally) to lower levels. We
use a natural number n or the special symbol ‘¥’ to represent the propagation
option associated with a given policy. This number indicates the “depth” of the
propagation, in that:

—if propagation option is equal to *, then the policy propagates to all the direct
and indirect subelements of the element(s) specified in the policy specifica-
tion;

—ifpropagation option is equal to 0, then no propagation of the policy is enacted;

—if propagation option is equal to n, n > 1, then the policy propagates to the
subelements of the element(s) specified in the policy specification, which are
at most n levels down in the document/DTD hierarchy.

3.5 Policy Specification

Based on the components we have previously introduced, access control policies
for XML documents can now be formally defined as follows:

Definition 3.7 (Access Control Policy). An access control policy is a tuple
(subject-spec, document-spec, priv, prop-opt), where: subject-spec € C€ is a
credential expression; document-spece DS is a document specification; priv e
P is a privilege; prop-opte IN U {x} is the propagation option.

Moreover, the Policy Base, denoted as P8, is the set of access control policies
defined for source S.

Example 3.6. The following are examples of access control policies:®

—P; = ((LLoC Employee V European Division Employee),WorldLawBulletin.
Law,browse_all,*): this policy authorizes the LLoC and European Division
employees to view the laws (not contained in the BluePageReport element)
in all the instances of WorldLawBulletin. Relations among laws (i.e., the
RelatedLaws attributes, are also displayed);

5For simplicity, we omit true conditions from document specifications.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

304 o E. Bertino and E. Ferrari

—Pg = ((LLoC Employee V European Division Employee),&1,view,0):this pol-
icy authorizes LLoC and European Division employees to read the attributes
of the element with identifier &1 of the document in Figure 2;

—Pg3 = (NML Employee, WorldLawBulletin.Law,view,*): this policy authorizes
the NML employees to view the laws (not contained in the BluePageReport
element) in all the instances of WorldLawBulletin. Relations among laws are
not displayed. For instance, with reference to the XML document in Figure 2,
this policy allows an NML employee to view element &2 and LK75, but not the
link (denoted in the figure by the dashed line) between the two;

—P4 = (European Division Employee,(GeoArea=Europe,WorldLawBulletin.
BluePageReport.Section),browse_all,*): this policy authorizes Euro-
pean Division employees to view the section pertaining to Europe of the
BluePageReport in all the instances of the WorldLawBulletin;

—P5 = (LLoc Employee, WorldLawBulletin.Law,auth_all *): this policy autho-
rizes LLoC Employee to modify the laws (not contained in the BLuePageReport
element) in all the instances of the WorldLawBulletin.

Clearly, there are some restrictions on policy specifications. For instance,
policies which are defined for selected attributes in a document(s) or element(s)
must have the propagation option equal to 0, whereas policies for browse_all
and auth_all privileges apply only to documents and elements, not to attributes.
Finally, the view privilege cannot be granted on an IDREF(s) attribute, whereas
the navigate privilege cannot be granted on a non IDREF(s) attributes. These
conditions are checked at the time a policy is specified and the insertion of the
policy is accepted only if the conditions are satisfied.

In what follows, given an access control policy acp, we use subject-
spec(acp), document-spec (acp), priv(acp), and prop-opt (acp) to denote, re-
spectively, the credential expression, the document specification, the privilege,
and the propagation option in acp.

3.6 Policy Semantics

With the term policy semantics, we denote the set of access authorizations en-
tailed by a given access control policy. Access authorizations can be represented
asatriple(s,o0,p), where s € S is asubject, p € P is a privilege, and o is an object
denoting a document or a portion of a document (i.e., an element or attribute).
Thus, o can have one of four different formats:

(1) o =d_id, where d_id € Z¢ is a document root identifier;

(2) o =d_id.a, where d_id € Z¢ is a document root identifier, and a € Label is
the name of an attribute in d_id;

(8) o =d_id.e_id, where d_id € Z¢ is a document root identifier, and e_id € Z¢
is the identifier of an element in d _id;

(4) o=d_id.e_id.a,whered_id €I¢is a document rootidentifier,e_id € Z¢ is the
identifier of an element in d_id, and a € Label is the name of an attribute
ine_id.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 305

Table I. Credential Expression Semantics.

Credential expression | Semantics |
cteCT {s | (c.id, sbj_id, state,ct_id) € CB,

sbj_id = s, and ct_id = ct}

aorv,ac AN, v eV | {s|(c.id,sbj_id,state,ct_.id)eCB,

sbj_id = s, a € Alct_id), and v(a) op v’ holds}
ceq Aceg, cei,ceg €CE | Ylcer) N y(ces)

ceq V ceg, cei,ceg €CE | Ylcep) U y(ces)

Example 3.7. Suppose that Ann is a LLoC Employee. Thus, (Ann,&1.Date,
view) is an example of authorization implied by policy Py of Example 3.6.

In the following, given an access authorization A = (s,0,p), we denote with
s(4), o(A), and p(4), the subject, object, and privilege in A.

To give the semantics of an access control policy, it is first necessary to identify
the set of subjects denoted by its credential expression and the set of documents,
elements and/or attributes denoted by its document specification. Subjects de-
noted by a credential expression are formally defined as follows:

Definition 3.8 (Credential Expression Semantics). Let ce € CE be a creden-
tial expression. The semantics of ce, denoted as v (ce), is defined in Table 1.5

The semantics of a document specification can be given based on the seman-
tics of the protection object specification it contains. In defining the semantics of
a protection object specification, we make use of function ZD, defined as follows:
ID(d) =d,ifd €Iy, is a DTD root identifier; Z7D(d) = {d | d is the identifier of
a DTD root in S}, if d = #.

Definition 3.9 (Protection Object Specification Semantics). Let poe PO be
a protection object specification. The semantics of po, denoted as t(po), is de-
fined in Table II.

Based on function 7, we can now define the semantics of a document
specification.

Definition 3.10 (Document Specification Semantics). Let ds e DS be a doc-
ument specification. The semantics of ds, denoted as §(ds), is defined as follows:

—38((true, po)) = t(po), po € PO;
—38((C, po)) = {t | t € 1(po), t satisfies C}, po € PO, C € C\{true}.

We are now ready to introduce the semantics of an access control policy,
that is, the set of authorizations a policy entails. In defining the semantics, we
make use of function Succ™(), n € IN U {x}. This function receives as input an
element identifier e_id € Z¢. If n = %, it returns the identifiers of all the direct
and indirect subelements of e_id; if n = 0, it returns the empty set, whereas
if n e IN, n> 1, it returns the identifiers of the subelements of e_id that are at
most n level down in the document hierarchy with respect to e_id.

61n the table, we use v(a) to denote the value of an attribute a.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

306 o E. Bertino and E. Ferrari

Table II. Protection Object Specification Semantics

[Protection object specification | Semantics |
dtd_id, dtd_id € I7,U {#} {d_id | d_id € Inst(d), d € ID(dtd_id))}
{d.idq,...,d.id,},d.id; €Zc,i=1,...,n {d.idy,...,d_id,}
dtd_id {ay,...,an}, dtd_id e I, {d-id.a | d_id € Inst(dtd_id),

a; €Label,i =1,...,m aclay,...,am}}

{d.idy,...,d.id,}.{a1,...,am}, {diid.a |d_id € {d-id,...,d.id,},

didjels,j=1,...,n,a;€Label,i=1,...,m ae{ay,...,am}}

dtd_id {e_idy, ..., e_idy)}, dtd_id € Iz, {d_id .e_id | d_id € Inst(dtd_id),

eidieZe,i=1,...,m e.id ele_idy,...,e.idp}}

{d.id1,...,d_idy) {e-idq, ..., e-id;}, d_id, {d_id.e.id | d_id € {d_-idq,...,d_id,},

eidieZe,j=1,...,n,i=1,....m eid efe_idy,...,e-idy,}}

did_id .pe, dtd_id € Ir,, pe e PE {d_id .e.id | d_id € Inst(dtd_id), e_id €
Eval(pe)}

{d-idy,...d_idy}.pe,d idi €Zs,i=1,...,n, {d_id.e.id |d_id € {d_idy,...,d_id,},

peePE e_id € Eval(pe)}

did_id {e_idy, ...,e.idp}{ay,...,a,},dtd.id €I7,, | {d-id .e.id.a | d_id € Inst(dtd_id), e_id €

eidiele,i=1,...,m,ajeclabel, j=1,...,n fesidq, ...,e.idp}, aclay,...,a,}}

{d_idq,...d-id,}.fe_idy, ..., e-idy)} {aq, ..., an}, {d_id .e.id.a |d-id € {d_id,...,d_id,},

d.d;,eidjele,i=1,...,n,j=1,...,m, e_id €le_idq,...,e.idy,},acfaq,...

a; €Label,l =1,...,h ..an))

did_id .pe{ay, ..., an}, dtd_id € I1,, pe € PE, {d_id .e_id.a | d_id € Inst(dtd_id),

a;€Llabel,i=1,...,n e_id € Eval(pe),a €fay, ..., ay}}

{d_idq,...,d_idy).pefaq, ..., az}, d_id € Zg, {d_id.e.id.a |d_id e{d_idq,...,d_idy},

i=1,...,m,pecPE a;clabel, j=1,...,n e_id € Eval(pe),a €{ay,...,an}}

Definition 3.11 (Access Control Policy Semantics). Let acp be an access
control policy. The semantics of acp, denoted as £ (acp), is defined as follows:

—if prop-opt(acp) = 0: (acp) = {(s,0,p) | s € Y(subject-spec(acp)),0€
8(document-spec(acp)), p = priv(acp)};

—if prop-opt(acp) =n,n € IN,n > 0, or n = *: E(acp) = U,ep ¢ Ext(acp €(@CP),
where Exit(acp) = {acp’ | subject-spec(acp’) = subject-spec(acp),
priv(acp’) = priv(acp), prop-opt(acp’) = 0, and document-spec(acp’) €
{document-spec(acp) U {d.e’ | d.e € §(document-spec(acp)), d,e € Z¢, and
e’ € Succ™(e)} U {d.e' | d € 8(document-spec(acp)),d € Z¢, and e’ € Succ™(d)}}.

4. CONTROLLED DISTRIBUTION OF XML DOCUMENTS

Once the access control policies for a given source have been specified, XML
documents belonging to the source can be released to subjects, on the basis of
the specified policies. Release of XML documents can be done according to two
different modalities:

—Information pull. Under this mode, subjects request XML documents to the
source when needed. When a subject submits an access request, the access
control system checks which authorizations the subject has on the requested
document, according to the specified access control policies. Based on these
authorizations, the subject is returned a view of the requested document that
contains all and only those portions for which he/she has a corresponding
authorization. When no authorizations are found, the access is denied.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 307

—Information push. Under this mode, the source periodically broadcasts data
to its clients. Also in this case, different subjects may have privileges to see
different, selected portions of the same document. Thus, different views of
the same document are sent to the various subjects.

Our system supports distribution of XML documents based on both the
above modes. Here, we describe the mechanisms we have developed for en-
forcing information push. Details on information pull can be found in Bertino
et al. [2001a]. Moreover, in the following we consider access control policies for
browsing privileges only. However, similar methods have been developed
for supporting information push for authoring policies [Bertino and Ferrari
2000].

4.1 Access Control within Information Push

The main problem in supporting access control within information push is that
it entails generating different physical views of the same document and send-
ing them to the proper subjects. Due to the possibly high number of subjects
accessing an XML source, and the wide range of access granularities we pro-
vide, the number of such views may become considerable large and thus such
an approach cannot be practically applied. We have therefore adopted a dif-
ferent solution, based on an approach similar to Cryptolope™ [Gladney and
Lotspiech 1997]. The approach consists of using different keys for encrypting
different portions of the same document. Each portion is encrypted with one and
only one key. The same (encrypted) copy of the document is then broadcasted
to all subjects, whereas each subject only receives the key(s) for the portion(s)
he/she is enabled to access.

Thus, three main issues need to be addressed: How to encrypt the documents
in a source, that is, which portions of the documents should be encrypted with
different keys; Which keys should be distributed to which subject, in that a
subject must be given all and only the keys that allow him/her to see the portions
of the document for which the subject has a corresponding authorization; and
Houw to distribute keys to subjects in such a way that keys are received only by
subjects that are entitled to receive them.

In the following sections, we first formally states the notion of correct en-
cryption, then we illustrate in details how we address the above issues. Finally,
we discuss the architecture of our system.

4.2 Formal Definitions

Before proceeding to illustrate our approach to secure information push, we
need to formally state when a document encryption is correct. Intuitively, a
document encryption is correct when: (1) each portion of the document is en-
crypted with one and only one key, and (2) each subject can be given the keys
to access all and only those portions of the document for which the subject has
a corresponding authorization, based on the specified policies.

To formally state the notion of encryption correctness, we first need to
introduce the notion of view of a document with respect to a subject. This
definition is given based on the notions of view of a document with respect to

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

308 o E. Bertino and E. Ferrari

Table III. View of a Document with Respect to an Authorization A

[0 [p(®) | Va (B
eiid,eid €Z¢ browse_all the element whose identifier is e_id
view the element whose identifier is e_id,

if e_id does not contain IDREF(s) attributes;

UAiESA Va(4i), Sa={(s',0,p) | s’ =s(A),p =p(Ad), o =
e_id.a, a is a non IDREF(s) attribute in e_id }, otherwise
navigate the element whose identifier is e_id,

if e_id does not contain non IDREF(s) attributes;

U, es, Va(ai), Sa={(s',0",p) | s’ =s(A),p' =p(h), o' =
e_id.a, a is an IDREF(s) attribute in e_id }, otherwise

e_id.a,e_id €Z¢, | brouse_all, the element whose identifier is e_id from which
a € Label view, navigate | all the attributes, apart a, have been removed

an authorization and of view of a document with respect to an access control
policy, defined as follows.

Definition 4.1 (View of a Document with respect to an Authorization). Let
d be an XML document and let A = (s,o0,p) be an authorization such that
Jacp € PB with A € £(acp). The view of d with respect to A, denoted as V;(4), is
defined in Table III.

Definition 4.1 above states that if the authorization applies to an attribute
a, then the view is equal to the element containing the attribute, from which
all the attributes different from a have been removed. If the authorization
applies to an element, then the view depends on the authorization privilege. If
the privilege is browse_all, then the view is equal to the element. In case of a
view authorization, all the IDREF(s) attributes must be removed from that view,
whereas when the authorization is for a navigate privilege, the non-IDREF(s)
attributes must be removed.

Based on Definition 4.1, we now introduce the definition of view of a document
wrt an access control policy. This view contains the document portions that can
be released under the given policy.

Definition 4.2 (View of a Document with respect to an Access Control
Policy). Let d be an XML document and let acp € PB be an access control
policy. The view of d wrt acp is defined as follows:

Vd (an) = UAL- €Authg Vd(Ai)’
where Authg = {A | A € E(acp) and o(A) contains the identifier of d }.

Now we are ready to define the view of a document with respect to a subject,
that is, the portions of a document that can be released to a subject according
to the policies in the Policy Base.

Definition 4.3 (View of a Document with respect to a Subject). Let d be an
XML document and let s € S be a subject. The view of d with respect to s is
defined as follows:

Va(s) = |J Va(acp;), V acp; € PB such that s € (subject-spec(acp;)).

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 309

We can now introduce the notion of correct encryption, that is, an encryption
that allows a subject to access the correct view of a document.

Definition 4.4 (Correct Encryption). Letd be an XML document. Let d° be
an encryption of d, and let Keys be the set of keys used for generating d¢. d° is
said to be correct iff both the following conditions hold: 1) each portion of d° is
encrypted with one and only one key; (2) V subject s € S, 3K’ C Keys such that
the document obtained by decrypting d¢ with keys in K’ is equal to V;(s).

In what follows, we are interested in a particular class of correct encryp-
tions, that is, those that encrypt the documents on the basis of the access con-
trol policies stored in the Policy Base. We call these encryptions well-formed
encryptions.

Definition 4.5 (Well-Formed Encryption). Letd be an XML document. Let
d*® be an encryption of d, and let Keys be the set of keys used for generating d®. d ¢
is said to be well-formed iff both the following conditions hold: (1) each portion of
d* is encrypted with one and only one key; (2) V acp € PB, 3K’ C Keys such that
the document obtained by decrypting d¢ with keys in K’ is equal to V;(acp).

The following proposition states the correctness of well-formed encryptions.
ProposiTioN 4.1. Each well-formed encryption is correct.

In a well-formed encryption, there is thus a correspondence between encryp-
tion keys and the policies that apply to the document. Each access control policy
implies a set of keys for the document (i.e., those that are needed to access the
corresponding view). A well-formed encryption has the nice property of making
revocation/insertion and update of access control policies easier to be man-
aged with respect to correct encryptions. Indeed, if a well-formed encryption is
used, different portions of a document are encrypted with the same key only
if the same policies apply to these portions. Thus, it is easier to develop algo-
rithms that efficiently modify the encryption of a document upon the execution
of an administrative operation. In particular, we have developed algorithms
[Carminati and Ferrari 2002] that incrementally maintain the document en-
cryption by modifying all and only those portions of the encryption that are
really affected by the administrative operation, without the need of reencrypt-
ing the document from scratch. We have also proved that all such algorithms
preserve the well-formed property of encryptions, that is, they generate a well-
formed encryption when applied to a well-formed encryption.

In the next section, we describe how to generate well-formed encryptions of
XML documents.

4.3 Encryption of XML Documents

A possible solution for generating a well-formed encryption of a document is to
encrypt it at the finest level granularity, that is, to encrypt every single attribute
of the document or of its elements with a different key. This solution, although
very easy to implement, may require the generation and distribution of a very
large number of keys. To limit the number of keys to be generated, we have

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

310 o E. Bertino and E. Ferrari

ArcoritHM 1. The Marking Algorithm

INPUT: An XML document d = (Vy, U4, Eq, ¢E,) in S, the Policy Base PB3
OUTPUT: M,, a marking of document d, and Iz (PB)

(1) Let M (PB) = {acp | acp € PB, priv(acp) is a browsing privilege 3 (s,0,p) € E(acp)
such that the id of d appears in o}
(2) M, is initialized to be empty
(3) For each acp; € I1;(PB):
(a) If document-spec (acp;) is of the form DTDs-spec or docs-spec:
For each e_id € {idy; } U SuccProPortacri)(id,.):
case priv(acp;) of
browse-all: Add (e-id ,acp;) to My
view: If e_id does not have IDREF(s) attributes: Add (e_id ,acp;) to My
else: For each non IDREF(s) attribute a in e_id: Add (e_id .a,acp;) to My
navigate:If e_id does not have non IDREF(s) attributes: Add (e-id ,acp;) to My
else: For each IDREF(s) attribute a in e_id: Add (e-id .a,acp;) to M4
(b) If document-spec (acp;) is of the form DTDs-spec.elements-spec or docs-spec.elements-spec:
Let E’ = {id | id is the identifier of an element in d which is denoted by elements-spec}
Let E* = {e_id | ¢'_id € E' and e_id € SuccProPoPt@cri)(e’_jd)}
For eache_id e E' U E*:
case priv(acp;) of
browse-all: Add (e-id ,acp;) to My
view: If e_id does not have IDREF(s) attributes: Add (e_id ,acp;) to My
else: For each non IDREF(s) attribute a in e_id: Add (e_id .a,acp;) to M4
navigate: If e_id does not have non IDREF(s) attribute: Add (e_id ,acp;) to My
else: For each IDREF(s) attribute a in e_id: Add (e_id .a, acp;) to Mg
(c) If document-spec(acp;) denotes a set of attributes A:
For each a € A:
Let e_id be the identifier of the element to which a belongs to
Add (e-id .a,acp;) to My
endfor
endfor
(4) For each e_id € Z¢ such that 3(el, ID,) e Mg, el =e_id .a:
If3el’,ID,) e Mgy, el' =e.id
Let A be the set of attributes in e_id
temp =0
For each a € A:
If Alel,ID,)e Mg, el =e_id.a: Add (e_id .a, ID}) to M,
else:
temp = temp UID,
Add (e-id .a,ID}) to Mg
endif
endfor
Replace (el’, ID;,) with (el’.TAG, ID;[J Utemp)in My
else:
Let S = JIID, | (el,IDp) e My, el =e.id a}
Add(e_id .tac, S) to My
endif
endfor

Fig. 6. The Marking Algorithm.

adopted a solution in which the portions of the document to which the same
policies apply are encrypted with the same keys.

The generation of a well-formed encryption can be logically decomposed into
two main phases: the first phase checks which keys are implied by the access
control policies stored into the Policy Base, whereas in the second phase the
document is encrypted based on the results of the first phase.

An algorithm performing the first task is reported in Figure 6. The algorithm
receives as input a document and generates a marking of the document which

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 311

keeps track of which policies apply to the various portions of the document. A
document marking is formally defined as follows:

Definition 4.6 (Document Marking). Letd = (Vg,0q4, Eq, ¢g,) be an XML
document. A marking of d is a set of pairs (el, ID,), where el is:

(1) an identifier of an element in d, that is, el =e_id, e_id = id,,v € ViU {04},
or

(2) an expression univocally denoting an attribute in d or in one of its elements,
that is, e/ = e_id.a, where e_id = id,,ve VJ U {04}, and a is the name of
one of the attributes of e_id, or

(3) an expression of the form el = e_id.TAG, e_id =id,,ve VU {04}
and ID, is a set whose elements are identifiers of policies in PB.7

According to Definition 4.6, the marking can be done both at the attribute and
at the element level. Each attribute/element is marked with the identifiers of
the policies that apply to it. If the marking is at the element level, it means that
the same policies apply to all the attributes in the element, otherwise each single
attribute of the element is marked with the proper policy identifiers. Symbol
TAG is used for a correct encryption of elements containing attributes to which
different policies apply. Indeed, suppose to have an element e which contains
two attributes a; and as. Suppose moreover that policies P; and Py apply to a1,
whereas P applies to as. Thus, according to Definition 4.2, the view of element
e with respect to P; and Py is equal to element e from which all the attributes
different from a; have been removed, whereas the view of e with respect to Ps
is the element obtained from e by removing all the attributes different from as.
Thus, in a well-formed encryption, attributes a; and as must be encrypted with
different keys, since different policies apply to them. Additionally, another key
must be used to encrypt the start and end tag of e. Symbol TAG is then used to
notify the system that the marking applies only to the start and end tag of an
element and not to all its attributes.

Algorithm 1 builds the marking of the input document by considering each
policy that can be applied to such document (the set of these policies, denoted
by g (PB), is computed by Step (1)). The attributes/elements to which a policy
applies depend on the document specification in the policy as well as on the
privilege and propagation option. The algorithm makes use of function ‘Add()’,
to build a document marking. The result of the statement ‘Add (el, id) to M’
is the addition of element (el, id) to marking M, if there does not exist a pair
containing el in M;. Otherwise, it is the addition of id to the set of policy
identifiers in that pair.

Example 4.1. Consider the document in Figure 2 and let PB = {P1, Pq, P3,
P4}, where Py, ..., P4 are the policies in Example 3.6. The output of Algorithm 1
is shown in Figure 7. In the figure, keyword TAG is used to denote that the
marking applies only to the start and end tags of the corresponding element.

"We assume that each policy is identified by a unique label assigned by the system at the time of
its insertion.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

312 o E. Bertino and E. Ferrari

‘\I/VorldLawBulletin
P2

Copfitry Topic Summaly Codntry Topic Rummary

P1,P3

P1 Pf
USA P1p p1 [P3 ltaly P1,P3 P P3 Geohreal
content content content content

NorthAmem:a{/%,y op,%mmary
Coufitry ummary @ @
content content
Germany 4
comem

content

Taxatlon Impon Export ... Europe

Trans onatlon

Fig. 7. Marking of the XML document in Figure 3.

Once a marking has been generated, the next step is to generate the keys,
based on the marking, and to encrypt the document with these keys. The goal is
to generate a well-formed encryption which minimizes the number of keys to be
generated. An algorithm performing these operations is reported in Figure 8.
The algorithm receives as input a document and its marking generated by
Algorithm 1. Algorithm 2 groups elements and attributes according to their
marking (i.e., elements and attributes with the same marking are put in the
same group). Then, for each distinct group, it generates a different key. Such
key is then used to encrypt the members of the group. Then, the algorithm
generates an additional key, and encrypts each portion of the document that
has not been encrypted in the previous step with such key. The algorithm also
builds a table, named Key_Info, that contains information on the keys implied
by each policy that can be applied to the input document. Each entry of the
table has the form (acp, components, key), where acp is the identifier of an
access control policy, components is a set of portions of the document to which
the policy applies, and key is an encryption key generated for this portion. The
table contains an additional entry (pEFaULT, C, k) which stores the default key,
that is, the key which is used to encrypt those portions of the document which
are not covered by any policies.

The algorithm makes use of function ‘Add()’ to modify Key_Info and variable
MARK. MARK is a set whose elements are sets of policy identifiers. Thus, the result
of the statement ‘Add m to MARK’ is the inclusion of the set m into set MARK. By
contrast, the result of the statement ‘Add (acp, C, k) to Key_Info’ is the addition
of tuple (acp, C, k) to Key_Info, if there is no entry for acp in the table. Otherwise,
it is the addition of C and % to the entry corresponding to acp.

Example 4.2. Suppose we apply Algorithm 2 to the document in Figure 7.
MARK = {{P1, P3}, {P1}, {P2}, {P4}}. Thus, Step (4) of the algorithm identifies four
groups, generates one key for each group, and encrypts the group members with

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 313

ArcoritHM 2. The Encryption Algorithm

INPUT: 1. An XML document d = (Vy,vq, Eq, ¢g,)in S
2. The marking My of d, returned by Algorithm 1
OUTPUT: 1.d*°, the encrypted version of d
2. Table Key_Info. Each tuple in Key_Info has the form (id _p, C, key _set),
where id _p is the identifier of a policy in PB, C is a set of components of d,
and key_set is a set of keys
METHOD:

(1) MARK =
(2) For each (el,IDy)e Mg:If 1D, ¢ MARK: Add I D) to MARK
(3) Letd’ be a copy of d
4) For each m € MARK:
Let Sy, ={el | (el,IDp)e My and ID, = m}
Generate a key &
For each el € S,:
If el denotes a node n:
Encrypt n in d’ with %
If el denotes the start and end tags of an element e:
Encrypt the tags of e in d’ with %
endfor
For each acp € m: Add (acp,Sp,k) to Key_Info
endfor
(5) Generate a key &
(6) Let G be the set of components in d’ which are not encrypted
(7) Encrypt each element in G with %
(8) Add (pEFAULT,G, k) to Key_Info

Fig. 8. The Encryption Algorithm.

Table IV. Groups Generated by Algorithm 2

[Group members | Key |
&1 k1
&2.Country,&2.TAG,&3,&4,LK75 . Country, LK75.TAG,&5, &6 | kg
&2 .RelatedLaws, LK75.RelatedLaws k3
&8,&10,&11,&12 ky
&7,49,%13,414, &15 ks

this key. These groups and the corresponding keys are listed in the first four
rows of Table IV. Then, in Step (5), a key is generated for all the portions of the
document which have not yet been encrypted (this group is in the last line of
Table IV). The resulting table Key_Info is shown in Figure 9.

Note that Algorithm 2 is highly flexible in terms of the encryption algo-
rithm (i.e., symmetric vs. asymmetric, etc.) actually used to encrypt the various
portions of the XML documents and on the techniques used to encrypt such por-
tions. As such, techniques recently proposed by the W3C for the encryption of
XML documents [W3C 2000] can be used in the algorithm. However, as new de-
velopments in XML encryption will be proposed they can be easily incorporated
into our framework as well.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

314 o E. Bertino and E. Ferrari

| Policy | Components | Keys |
Py {%2.Country,&2.TAG,&3,44,LK75. Country, LK75.TAG,&5, &6, | {ko,k3}
&2 .RelatedLaws, LK75.RelatedLaws}
Py {&1} {k1}
P3 {&2.Country,&2.TAG,&3,44,LK75 . Country, LK75.TAG,&5, &6} | {ko}
Py (%8,&10,&11, %12} {4}
DEFAULT | &7,%9,&13,&14, &15 {ks5}

Fig. 9. Table Key_Info for the document in Figure 7.

We are now ready to prove the correctness of Algorithms 1 and 2.

TaEOREM 4.1. Let d be an XML document and let d¢ be the encryption of
d generated by Algorithms 1 and 2. Vacp € PB, let Keys(acp) be the set of keys
associated with acp in the table Key_Info of document d . The document obtained
by applying the keys in Keys(acp) to d¢ is equal to Vi(acp).

The encryption generated by Algorithms 1 and 2 is a well-formed encryption
and satisfies a minimality property, that is, it is the well-formed encryption
using the minimum number of keys.

THEOREM 4.2. The encryption of d generated by Algorithms 1 and 2 is well-
formed.

TuEOREM 4.3. Let d be an XML document, and let d¢ be the encryption of
d generated by Algorithms 1 and 2. No well-formed encryption d¢ of d exists,
d® #d°¢ such that the number of keys used to obtain d° is less than the number
of keys used to obtain d°.

Note that, Algorithm 1 is not activated each time a document is broadcasted
to a set of subjects, but it is activated only once, when the document is acquired
by the source. This makes the release of XML documents under the push mode
very efficient, since the documents are encrypted before the release, and the de-
cision of which keys each subject needs requires only a query on table Key_Info.
Clearly, when a policy is added/removed to/from the Policy Base, the Key_Info
tables of documents to which the policy applies must be updated accordingly,
and the encryption of the document may change. However, due to the properties
of well-formed encryption (cfr. Section 4.2) efficient algorithms [Carminati and
Ferrari 2002] can be devised that change only those portions of the encryption
that are really affected by the modification to the Policy Base, thus minimiz-
ing the computational overhead. Moreover, in real situations, administrative
operations changing the Policy Base are considerably less frequent than doc-
ument distribution. Note that operations changing some keys of a document?®
can also be easily supported since they do not require to rebuild the document
marking. From table Key_Info, one can easily determine which portions of the
document are encrypted by such keys and thus reencrypt them with the new
keys.

80ne needs to change a key if, for example, the key has been broken [Summers 1997].

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 315

Encrypted Document

keys for sbjl encrypted with public key of sbjl

keys for sbj2 encrypted with public key of sbj2

keys for sbijn encrypted with public key of sbjn

Fig. 10. Package structure.

4.4 Document and Key Distribution

Once a well-formed encryption of a document has been generated, the next step
is its delivery to a set of subjects along which the keys necessary for its decryp-
tion. In our system, two different methods for key distribution are supported:
under the first mode (called online mode) the keys are delivered to subjects
together with the encrypted document, whereas under the second mode (called
offline mode) the XML source sends only the encrypted document to subjects,
whereas keys are retrieved by the subject by further interactions with the XML
source. It is important to note that the choice of the key distribution method
depends on many factors such as the number of subjects to which a document
must be released, the explicit preferences stated by subjects (in the case they
have explicitly requested a particular method), the number of keys generated
during document encryption, the sensitivity of the information the document
contains, and the subject behavior (i.e., whether they are always connected to
the network or they are mobile users seldomly connected to the net). Since
so many factors influence key distribution techniques, we have designed our
system to provide support for a spectrum of key distribution methods thus
making the SA able to select the most appropriate one for each document to
be distributed under information push. In the following, we describe the key
distribution methods supported by our system.

4.4.1 Online Key Distribution. In the online approach to key distribution,
the XML source sends subjects the encrypted document as well as the corre-
sponding keys. The system supports two different modes for online distribution.
Under the first, the encrypted document is encapsulated into a package (see
Figure 10) that consists of multiple parts. The package contains the encrypted
document and the keys each subject needs for a correct decryption. The keys
are encrypted with the public key of the subject (or with a shared symmetric
key). Once a subject receives the package, he/she decrypts the document keys
using his/her private key (or a shared symmetric key). Then, the subject uses
these keys to decrypt the document content.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

316 o E. Bertino and E. Ferrari

AvLcoriTHM 3. The Document Package Generation Algorithm

INPUT: 1. The encryption d® of a document d and table Key_Info, returned by Algorithm 2
2. g (PB), returned by Algorithm 1, and the Credential Base CB
3. A set of subjects {s1, ..., s,} to which d should be sent
OUTPUT: A package P; containing document d and the keys for subjects {sq, ..., s}
METHOD:

(1) Insert d® into Py
(2) Foreachsef{sy,...,s}:
Let Cs € CB be the set of credentials of subject s
Let P = {acp | acp € I14(PB) and C; satisfies subject-spec(acp)}
Keys =0
For each acp € P:
Retrieve the tuple corresponding to acp in Key_Info
Let k4, ..., kn be the keys in the tuple
Keys = Keys U {kq, ..., ki)
endfor
Encrypt the keys in Keys with the public key of s (or with a shared symmetric key)
Add the encrypted keys to Py
endfor
(3) Send Py tosy,...,sn

Fig. 11. An algorithm for document package generation.

An algorithm for the generation of document packages is shown in Figure 11.
The algorithm receives as input the encryption of a document d and its table
Key_Info, returned by Algorithm 2, and a set of subjects to which the docu-
ment has to be sent. Additionally, it receives as input I14(PB), computed by
Algorithm 1, that is, the set of policies that apply to d, and the Credential Base
CB. For each subject, the algorithm determines the keys the subject needs to
access the correct view of the document. Then, the algorithm generates the
package according to the methods previously sketched and sends it to all the
subjects received in input. The algorithm retrieves information on the keys by
querying table Key_Info. Thus, by Theorem 4.1, we are assured that each subject
accesses the correct view of the document. Note moreover that this approach
has the advantage of sending the same package to all the subjects to which
the document should be released. Moreover, content protection is ensured since
each encrypted part can only be decrypted by an owner of the corresponding
private key. The drawback of this approach is that the dimension of the pack-
age could be considerable when the number of subjects to which the document
should be released is high and when each subject has several keys associated
with him/her. Since the keys of all subjects are contained in the same package,
this approach can be more vulnerable to attacks by malicious subjects, such as
for instance denials of service attacks where a malicious subject deletes from
the package the keys corresponding to another subject thus making the subject
enable to decrypt the document content. For all these reasons, the system also
supports an alternative mode for online distribution under which the keys are
not encapsulated into the package but are sent to each subject in a separate

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 317

ct:employee

:LLoC I ct:NML employee sid: Bob
|d o eme oyee| | il | address: Queen Street

salary: 70K
nationality: US
nat. origin: ltaly

\/ objectclass: employee
sid: Ann \/ X,
name:doc name:doc7

key:... = n u wkey:...

key:... key:...
name:doc§ name:doc23
key:... = nmou|key..
key:... key:...

Fig. 12. LDAP directory structure.

message using secure mail techniques such as Pretty Good Privacy (PGP) and
S/MIME [Stallings 2000].

4.4.2 Offline Key Distribution. In the offline techniques for key distribu-
tion the system does not directly send keys to subjects; rather it sends only
the (same) encrypted copy of the document to all the subjects, whereas keys
are retrieved by subjects through further interactions with the server. To this
purpose, the system employs the Lightweight Directory Access Protocol (LDAP)
[Srivastava 2000] to store decryption keys. Subjects obtain the appropriate keys
by querying the LDAP directory. In a nutshell, an LDAP directory consists of
nodes (called directory entries) organized in a forest. Each entry contains a set of
(attribute, value) pairs denoting properties of the entity and has a type (referred
to as objectclass) associated with it. Retrieval of information in an LDAP direc-
tory can be done through the LDAP query language. Prevalent features of the
query language are the possibility of defining a scope for the query (e.g., a por-
tion of the LDAP directory tree) and of specifying Boolean filters. Boolean filters
are obtained by combining conditions on attribute values using the AND, OR,
and NOT operators. A filter answer consists of all the entries whose (attribute,
value) pairs satisfy the Boolean filter.

Since access control policies are specified in terms of subject credentials the
LDAP directory is structured based on the credential type hierarchy (Figure 12
reports a portion of the LDAP directory for the credential type hierarchy
of Figure 4). More precisely, the directory contains three different types of
entries:

—it contains an entry for each credential type in the credential type hierarchy

—it contains an entry for each subject for which the offline mode for key distri-
bution has to be used

—it contains an entry for each document for which the offline mode for key
distribution has to be used.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

318 o E. Bertino and E. Ferrari

Children of an entry corresponding to a credential type are all the entities
corresponding to its subcredential types in the credential type hierarchy and all
the subjects to which the credential type is associated. Entries corresponding
to subjects contain a pair (attribute, value) for each attribute of the creden-
tial type to which the subject belongs to (see, e.g., the entry corresponding to
Bob in Figure 12). Children of an entry corresponding to a subject denote the
documents that have to be released to that subject using the offline mode for
key distribution. Each of these entries contains the corresponding keys for that
subject encrypted with her/his public key.

The correspondence between the credential type hierarchy and the LDAP di-
rectory structure has been designed to speed up updates to the LDAP directory
when the keys for a new encrypted document must be placed in the directory.
Indeed, we need only to determine the set of access control policies which apply
to the document (this can be simply done by querying table Key_Info) and then
take the credential expression contained in each of this policy. The credential
expression can be easily converted into an LDAP query that retrieves all the
entities that satisfy the credential expression. These entities can correspond
either to a credential type or to a subject. For example, with reference to the
directory in Figure 12, the query LLoC Employee (referring to a policy which
applies to all LLoC employees) returns as answer the entity corresponding to
the credential type LLoC Employee, whereas the query Employee AND nation-
ality = US returns as answer the entity corresponding to subject Bob. When the
query returns as answer an entity corresponding to a subject we simply need to
update the subtree rooted at that entity by inserting a subentity corresponding
to the considered document (if this entity does not already exist) containing
an attribute for each key associated with the policy in table Key_Info. If this
entry already exists we simply need to update it by inserting the keys. Keys are
encrypted with the public key of the subject. By contrast, if the entity returned
as answer to the query denotes a credential type the procedure we have just
presented is performed for each child of this entity denoting a subject.

Figure 13 reports an algorithm to insert keys for a new document into the
LDAP directory.

Example 4.3. Consider the LDAP directory in Figure 12 and the document
in Figure 7 whose associated Key_Info table is reported in Figure 9. Suppose
that the LDAP directory must be updated with the keys corresponding to this
document. Algorithm 4 considers in turn each policy contained in table Key_Info,
namely Py, ..., P4. The algorithm first considers policy P;. The credential ex-
pression in this policy is LLoC Employee V European Division Employee (cfT.
Example 3.6). Thus, the corresponding query on the portion of the LDAP direc-
tory in Figure 12 returns entity LLoC Employee. Thus, the algorithm considers
all the children of this entity which denote a subject (in the example the only
entity satisfying this condition is the one denoting user Ann) and updates the
subtree rooted at this entity by inserting an entity corresponding to the doc-
ument of Figure 7 containing as attributes keys ks and k3 encrypted with the
public key of Ann. Then, the algorithm considers policy Py and repeats the same
steps we have illustrated for policy P;. The result is that the entity inserted at

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 319

ArLcoriTHM 4. The LDAP Directory Update Algorithm

INPUT: 1. A document d and its associated table Key_Info returned by Algorithm 2
2. The LDAP Directory

OUTPUT: The LDAP Directory updated with the keys for document d

METHOD:

(1) Let P be the set of policies in Key_Info
(2) For each pe P:
Let K, be the set of keys associated with p in Key_Info
Let ce, be the credential expression in p
Let E be the set of entities in the LDAP directory that satisfies the query
corresponding to cep,
For eache € E:
If e denotes a subject s:
If 3 a children ¢ of e corresponding to d:
encrypt keys in K, with the public key of s
insert the encrypted keys in ¢
else:
create a children c of e
encrypt keys in K, with the public key of s
insert the encrypted keys in ¢
endif
endif
If e denotes a credential type
Let C be the set of children of e representing subjects
For eachceC
Let s be the subject represented by ¢
If 3 a children ¢’ of ¢ corresponding to d:
encrypt keys in K, with the public key of s
insert the encrypted keys in ¢’
else:
create a children ¢’ of ¢
encrypt keys in K, with the public key of s
insert the encrypted keys in ¢’
endfor

Fig. 13. An algorithm for LDAP directory update.

the preceding iteration is updated by inserting key k1 encrypted with the public
key of Ann. Policies P3 and P4 do not imply any update to the portion of LDAP
directory in Figure 12. Thus, the resulting LDAP directory is the one shown in
Figure 14. In the figure, Kua denotes the public key of Ann.

Possible redundancy of information that arises when a subject belongs to
more than one credential type can be avoided by using embedded references
[Srivastava 2000] in the LDAP directory.

4.5 System Architecture

In this section, we present the architecture of our system. We describe only the
portion of the architecture supporting information push. Details on information
pull support can be found in Bertino et al. [2001c].

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

320 o E. Bertino and E. Ferrari

ct:employee

L ! ct:NML empl Sid: Bob
ICt oC employee | ‘ employee | address: Queen Street

salary: 70K
nationality: US

nat. origin: Italy
objectclass: employee

sid: Ann \/ i’
name:docf name:doc7]
key:... = = n akey..

key:... key:...
name:doc§ name:doc23
key:... = nmu|key:...
key:... key:...
A

name:wlb08082000

key: E cuaK2)

key: Eya(k3)

key: E kuAK1)

Fig. 14. LDAP directory for Example 4.3.

Policy
Base
—_— Key Generation &

Encryption Module \

encrypted
document

XML document

Key_Info

Fig. 15. Key generation and encryption module.

The architecture consists of two main modules: the Key Generation and En-
cryption Module and the Document and Key Distribution Module. The Key Gen-
eration and Encryption Module, illustrated in Figure 15, receives as input an
XML document and decides which portions of the document should be encrypted
with different keys on the basis of the access control policies in the Policy Base.
This task is performed by Algorithm 1 illustrated before. The module then en-
crypts (by activating Algorithm 2) the document and returns table Key_Info,
storing information on the generated keys. The Document Distribution Module
is in charge of broadcasting the encrypted document to a given set of subjects
and of managing keys. The operations that this module performs depend on
whether the online or the offline strategy for key distribution has been selected
by the SA for the considered document.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents 321
document
package
Y
Policy Credential
Base Base

set of subjects
{s1,...,sk}

encrypted
document

\/

Online Document
Distribution Module

\ /

encrypted

/

Key_Info

document

EXXXXXA keys for s1

XXX keys for sk

Fig. 16. Document and Key Distribution Module: Online Mode.

set of subjects
{s1,...,sk}

A

\\

2

updated

LDAP Directory
/ LDAP Directory

Offline Document

~
o

% v
7 Distribution Module 7
encrypted
document
encrypted
document

Key_Info

Fig. 17. Document and Key Distribution Module: Offline Mode.

Operations performed for the online mode are illustrated in Figure 16. In
this case, the module receives as input the encrypted document, generated by
the Key Generation and Encryption Module, and a set of subjects to which the
document should be released. On the basis of the access control policies in the
Policy Base, on the subject credentials, and on the content of table Key_Info
for the input document, the module determines which keys are needed by the
various subjects to access the correct view of the document, and, based on that,
it builds the package to be sent to these subjects (by executing Algorithm 3) or
sends the keys to each subject in a separate message, according to the strategy
that has been selected.

The other mode of operation of the Document and Key Distribution Module
(illustrated in Figure 17) is used when the offline mode for key distribution has
been selected. In such case, the system sends to all subjects only the encrypted
copy of the document, whereas the corresponding keys are stored into the

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

322 o E. Bertino and E. Ferrari

LDAP directory (this operation is done by Algorithm 4) and further retrieved
by the subjects.

5. RELATED WORK

The work presented in this article has some relationships with access control
models and mechanisms developed for object-oriented DBMSs [Fernandez et al.
1994; Rabitti et al. 1991], HTML documents [Samarati et al. 1996], and XML
documents [Damiani et al. 2000].

The models proposed in Fernandez et al. [1994] and Rabitti et al. [1991] are
specifically tailored to an object-oriented DBMS storing conventional, struc-
tured data. As such, great attention has been devoted to concepts such as ver-
sions and composite objects, which are typical of an object-oriented context.
Those models support concepts such as positive and negative authorizations,
and authorization propagation. Our model also supports such concepts, even
though it has a larger variety of authorization propagation options. Three differ-
ent options are supported by which the SA can specify (i) that an authorization
defined at a given level in the hierarchy propagates to all lower levels, (ii) that
the propagation stops at a specified level down in the hierarchy, or (iii) that
no propagation has to be enforced. By contrast, ORION [Rabitti et al. 1991]
has only one propagation policy, which is equivalent to option (i). Moreover,
none of the above-mentioned models provide support for secure information
push mechanisms. This is the most innovative feature of our access control
model, which is not found in any access control model previously proposed for
object-oriented DBMSs. An access control model for WWW documents has been
proposed in Samarati et al. [1996]. In this model, HTML documents are con-
sidered, organized as unstructured pages connected by links. Authorizations
can be given either to the whole document or to selected portions within the
document. Although we borrow from Samarati et al. [1996], the idea of selec-
tively granting access to a document (by authorizing a subject to see only some
portions and/or links in the document), our work substantially differs from this
proposal. Differences are due to the richer structure of XML documents with
respect to HTML documents and to the possibility of attaching a DTD to an
XML document, describing its structure. Such aspects require the definition
and enforcement of more sophisticated access control policies, than the ones
devised for HTML documents. The access control model proposed in Samarati
et al. [1996] has great limitations deriving from the fact that it is not based
on a language able to semantically structuring the data, as in our model for
XML. As such, administering authorizations is very difficult. In particular, if
one wants to give access to portions of a document, he/she has to manually split
the page into different slots on which different authorizations are given. This
problem is completely overcome in our model because XML provides seman-
tic information for various document components. Authorizations can thus be
based on this semantic information.

An access control model for XML documents has been recently proposed
Damiani et al. [2000]. This model is very similar to previous models for object-
oriented databases and does not actually take into account some peculiarities

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 323

of XML. In particular, this model has two main shortcomings. The first one
is that it does not consider the problem of a secure massive distribution of
XML documents and thus considers only the information pull mode. Second,
the model proposed in Damiani et al. [2000] does not provide access control
modes specific to XML documents. It only provides the read access mode. By
contrast, we provide a number of specialized access modes for browsing and
authoring, which allow the SA to authorize a user to read the information in
an element and/or to navigate through its links, or to modify/delete the content
of an element/attribute.

Because of the widespread use of XML and due the relevance of XML secu-
rity, the World Wide Web Consortium (W3C) has set up several working groups
to address the various security aspects related to XML. For example, The XML
Working Groups of the W3C are working on standards for both an XML repre-
sentation of digital signatures (W3C XML Signature Working Group) and en-
crypted contents (W3C XML Encryption Working Group). The goal of the OASIS
Consortium [OASIS Consortium] is the design and development of industry
standard specifications for XML-based interoperability. In this framework, the
XACML Technical Committee is studying the definition of a standard model for
XML-based security policies. However, the draft proposal for XACML is based
on very simple access control policies, in that notions such as credentials, pos-
itive/negative policies, conflict management, and dissemination strategies are
not taken into account.

Other related work deals with approaches proposing more flexible methods
to qualify subjects with respect to traditional identity-based schemes for access
control. One of the most relevant research efforts in this area are role-based
access control (RBAC) models. In particular, note that the concept of credential
has some similarity with that of role [Osborn 2000; Sandhu et al. 1996]. Roles
can be seen as a set of actions or responsibilities associated with a particular
working activity. Under role-based models, all authorizations needed to perform
a certain activity are granted to the role associated with that activity, rather
than being granted directly to users. Users are then made members of roles,
thereby acquiring the roles’ authorizations. User access to data is mediated by
roles; each user is authorized to play certain roles and, on the basis of the role,
he/she can perform accesses on the data. Whenever a user needs to perform a
certain activity, the user only needs to be granted the authorization of playing
the proper role, rather than being directly assigned the required authoriza-
tions. A basic distinction between roles and credentials is that credentials are
characterized by a set of attributes, and this allows us to grant access autho-
rizations only to users whose credentials satisfy certain conditions (e.g., access
to a document can be granted to all the users with a given age or with a given
nationality). This can of course be done also through roles but it requires the
creation of a distinct role for each condition we would like to enforce (e.g., en-
forcing the access control policy of the previous example requires the creation
of two distinct roles, one corresponding to the users with the specified age,
and the other corresponding to the users with the specified nationality). This
makes the specification and management of authorizations very difficult, given
also the large variety of users that typically access XML documents.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

324 o E. Bertino and E. Ferrari

The concept of subject credential was first presented by Winslett et al. [1997],
whereas the access control model proposed in Adam et al. [2000] provides a
formalization of the concept of subject credential by proposing the credential
logic-based specification language that we use in this article. Other related
work is the work on credential specification for stranger parties. In particular,
the work by IBM on Trust Policy Language (TPL) [Herzberg and Mass 2001]
is devoted to the enforcement of an XML-based framework for specifying and
managing role-based access control in a distributed context. This framework
has been extended for mapping subject certificates to a role, based on policies
defined by the owner of the resource and on the roles of the issuers of the
certificates [Herzberg et al. 2000].

6. CONCLUSIONS

In this article, we have presented an access control system supporting selec-
tive distribution of XML documents among possibly large user communities.
Our system supports the formulation of high-level access control policies. Such
policies take into account both user characteristics, and document contents and
structure. Some of the main results of our work include an efficient approach
for secure document distribution. A prevalent feature of such approach is that
it requires a minimum number of keys in order to encrypt the various document
components. Additionally, the system provides a range of key distribution meth-
ods thus allowing one to apply different key distribution strategies to different
documents. This variety of methods is provided as part of our system because
the choice of the optimal key distribution mode varies depending on several
heterogeneous factors. For instance, the online mode is more appropriate for
minimizing the number of message exchanges between subjects and the XML
source, whereas the offline mode can be preferable in the case of documents of
large size and to which many different access control policies apply (because
in such case the dimension of the document package can be quite large). Other
factors influencing the key distribution mode are explicit preferences stated by
users, the degree of confidentiality to be guaranteed for the transmitted infor-
mation, and the frequency of document and access control policy updates. An
interesting research direction we are currently investigating is thus an evalu-
ation of the performance, both at the theoretical and at the experimental level,
in order to determine which key distribution strategy is better and under which
circumstances.

Another extension we are currently working on is the development of a user
friendly interface for access control administration. Such an interface already
exists for credential management [Bertino and Ferrari 2000]. We are also in-
vestigating issues related to the mediation of security policies when integrating
heterogeneous document sources, as well as content-based authorizations for
XML documents containing multimedia data. Additionally, we are extending
our system to support also document integrity [Bertino et al. 2002]. Another in-
teresting research direction is related to access control policies for distributed
document modifications. An important issue in this context is related to the
fact that sometimes a document must follow a specific path during its update.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 325

For instance, the document must be first modified by a secretary then signed by
a manager, and so on. Techniques are therefore needed to specify such update
paths and to verify that they are followed by XML documents. To support this
facility, we plan to investigate the use of roles and document signatures.

APPENDIX
A. NOTATIONS USED IN THE ARTICLE

Table V lists, for the convenience of the reader, the symbols more frequently
used in this article. For each symbol, the table reports a brief explanation of its
meaning.

B. PROOFS

Proor or ProposiTioN 4.1. Let d° be a well-formed encryption of a document
d . By Definition 4.4, proving the thesis is equivalent to prove:

(1) each portion of d* is encrypted with one and only one key;

(2) Vse S, AK’ C Keys such that the document obtained by decrypting d¢ with
the keys in K’ is equal to V;(s).

By hypothesis the encryption is well formed. Thus, by Definition 4.5, each
portion of d¢ is encrypted with one and only one key. Thus, we are left to
prove point 2. Let us consider a subject s and let [1;(PB) = {acp | acpe PB
and s € Yy (subject-spec(acp))}, that is, [1,(PB) is the set of policies which ap-
ply to subject s. By hypothesis, for each acp € I13(PB), 3K’ C Keys such that the
document obtained by decrypting d¢ with the keys in K’ is equal to V;(acp). By
Definition 4.3, V4(s) = |J Va(acp;), V acp; such that s € y(subject-spec(acp;)).
Thus, by applying to d¢ the union of the sets of keys corresponding to policies
in IT,(PB) we obtain Vy(d), which proves the thesis. O

Proor oF THEOREM 4.1. Let d® be the encryption generated by Algorithms 1
and 2 for a document d. Let Keys(acp) be the keys associated with the access
control policy acp in the table Key Info of document d, Vacp € PB. We have
to prove that Vacp € PB, the document obtained by applying to d¢ the keys in
Keys(acp) is equal to V(acp).

Let us first suppose that acp does not apply to document d, that is, that
A(s,o0,p) € E(acp) such that the identifier of d appears in o. In such case, by
Definition 4.2, V;(acp) is empty. Let us consider Algorithm 1. If A(s,0,p) €
E(acp) such that the identifier of d appears in o, then acp is not included into
set Iz (PB) by Step (1) of the algorithm. Thus, at the end of the execution of
Algorithm 1, #(el, ID,) € M4, such that acp € ID,. Algorithm 2 adds an entry
(acp’, K') to Key_Info, acp’ € PB, only if 3(el, ID,) € My such that acp’ €ID,.
Thus, at the end of the execution of Algorithm 2, table Key_Info does not contain
any entry for acp, which proves the thesis.

Suppose now that acp applies to document d, that is, 3(s,0,p) € E(acp)
such that the identifier of d appears in o. In such case, set I[15(P5) computed
by Step (1) of Algorithm 1 includes acp. Thus, acp is considered during the

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

326 o E. Bertino and E. Ferrari

Table V. Notations and Terminology.

| Symbol | Meaning

Ie, I1; a set of element/DTD element identifiers

Label, Value a set of element tags and attribute names
/element values

Label* strings obtained by the concatenation of names in
Label and a symbol in {*|+| ?}

Type a set of types to be associated with names in Label*

S an XML source

Inst(dtd -id) the identifiers of instances of DTD dtd -id

AN, T,V a set of attribute names/types/values

CT,CT a set of credential type/credential identifiers

<cT the credential type hierarchy

Alcet) the set of attributes of instances of the credential
type ct

CE, PE the set of credential/path expressions

C,P,S the set of conditions/ privileges/subjects

PO, DS the set of protection object/document specifications

CB, PB the credential/policy base

v(a) the value of attribute a

Eval(pe) the set of element identifiers denoted by

the path expression pe

subject-spec(acp), document-spec |the subject/document specification, privilege, and
(acp) priv(acp), prop-opt(acp) |propagation option of the access control policy acp

s(4), o0(A), p(A) the subject, object, and privilege of authorization A
D) it returns d, if d is a DTD root identifier;
it returns the identifiers of DTD roots in S, if d = #.
Y(ce) the subjects denoted by the credential expression ce
(po) the set of documents, elements, and/or attributes
denoted by the protection object specification po
Succ(e_id) if n = %, it returns the identifiers of all the subelements

of e_id, if n = 0, it returns the empty set,

if n € IN, it returns the identifiers of the subelements
of element e_id which are at most n level down in the
hierarchy with respect to e_id;

8(ds) the set et of documents, elements, and/or attributes
denoted by the document specification ds
E(acp) the set of authorizations entailed by the
access control policy acp
Va(a) view of document d with respect to authorization A
V4 (acp) view of document d with respect to access control policy acp
Va(s) view of document d with respect to subject s

execution of Step (3) of the algorithm. Several cases can arise based on the
form of document-spec(acp). Let us consider all these cases in turn:

(1) document-spec(acp) denotes a set of attributes of document d. Let A be
the set of such attributes. In this case, by Definition 4.2, V;(acp) is equal to
the set of elements that contain at least an attribute in A, from which
all the attributes that do not appear in A have been removed. Since,
document-spec (acp) denotes a set of attributes, Step (3)(c) of Algorithm 1
is executed. At the end of this step, for all and only the attributes a € A,

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

(2)

Secure and Selective Dissemination of XML Documents o 327

3el, ID,) e M4 such that el = e_id.a, e_id €¢, acp € ID,, where e_id is
the identifier of the element that contains attribute a. Step (4) of the al-
gorithm is executed is executed since the condition in the If statement is
satisfied. It is easy to verify that, at the end of the execution of Step (4), for
all and only the attributesa € A, 3(el, ID,,) € Mg such thatel =e_id.a,acp e
ID,, where e_id is the identifier of the element that contains a. More-
over, for each element that contains an attribute in A, 3(el’.tag, ID})) such
that el’ is the identifier of the element, and acp € ID),. Let us consider
Algorithm 2. Step (4) encrypts each attribute in A and adds the corre-
sponding key to the entry associated with acp. Moreover, it encrypts the
start and end tags of the elements that contain an attribute in A and adds
the corresponding keys to the entry associated with acp in Key Info. No
other element of the marking contains acp and thus no further updates are
performed on the entry of Key_Info corresponding to acp. Thus, by decrypt-
ing d¢ with the keys associated with acp in Key_Info, V;(acp) is obtained,
which proves the thesis.

document-spec (acp) denotes a set of elements in d. Let E be the set of the
identifiers of the elements of d denoted by document-spec (acp). In this case,
Step (3)(b) of Algorithm 1 is executed. Several cases can arise, depending
on the privilege in acp:

—priv(acp) =browse_all. By Definition 4.2, V;(acp) depends on the prop-
agation option in acp. If prop-opt(acp) = *, then the view contains
all the elements in E and all the subelements of elements in E. If
prop-opt (acp) =0, then the view contains all the elements in E, whereas
if prop-opt (acp) = n, n > 1, then the view contains all the elements in
E and all the subelements of elements in E from the direct subelements
going down n levels in the document hierarchy. In all the above cases,
the set of identifiers of the elements belonging to the view, is equal to
set E' U E*, where E* and E are the sets computed at the beginning of
Step (3)(b). Thus, at the end of Step (3)(b), for all and only e_id € E' U
E*, A(el, ID,) e My such that el =e_id and acp € ID,. If Step (4) of
Algorithm 1 is not executed elements in E' U E* are entirely encrypted
by Step (4) of Algorithm 2, and the corresponding keys are added to the
entry corresponding to acp in table Key_Info. No other element of the
marking contains acp, thus no further update to the entry correspond-
ing to acp in Key_Info is performed. Thus, the thesis holds. By contrast
if Step (4) of Algorithm 1 is executed, then at the end of Step (4) for
all and only e_id € E' U E* and for all and only the attributes a in the
element whose identifier is e_id, 3(el, ID,) € M4 such that el = e_id .a,
acp € ID,,, and 3(el’, ID,)e My such that el’ = e_id .TAG, acp € ID,. Thus,
similar to point 1, it can be proved that at the end of the execution of
Algorithm 2, the entry corresponding to acp in Key_Info contains all and
only the keys that, when applied to d¢, return V;(acp). Thus, the thesis
holds.

—priv(acp) = view. By Definition 4.2, V;(acp) depends on the propagation
optionin acp. If prop-opt (acp) = *, then V;(acp) contains all the elements

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

328 o E. Bertino and E. Ferrari

in E and all the subelements of elements in £ which do not contain
IDREF(s) attributes . If an element contains IDREF(s) attributes, then such
attributes are removed from the view. If prop-opt (acp) =0, then V;(acp)
contains all the elements in E which do not contain IDREF(s) attributes.
If an element in E contains IDREF(s) attributes, then such attributes are
removed from the view. Finally, if prop-opt(acp) = n, n > 1, then the
view contains all the elements in £ and all the subelements of elements
in E from the direct subelements going down n levels in the hierarchy,
which do not contain IDREF(s) attributes . If an element contains IDREF(s)
attributes, then such attributes are removed from the view. In all the
above cases, the set of identifiers of the elements belonging to the view
is equal to the set E’ U E* computed at the beginning of Step (3)(b). At
the end of Step (3)(b) for all and only the elements whose identifiers
are in E’' U E* and such that they do not contain IDREF(s) attributes,
3(el, ID,) € M4 such that el = e_id, and acp € ID,. By contrast, for all
and only the elements whose identifiers are in E'U E* and such that they
contain IDREF(s) attributes, 3(el, ID,) € M4 such thatel =e.id.a,ais a
non IDREF(s) attribute in e_id and acp € ID, ¥ non IDREF(s) attribute in
the element whose identifier is e_id. Thus, similar to the previous case,
it is easy to prove that at the end of Algorithm 2, the entry associated
with acp in Key_Info contains all and only the keys to obtain V;(acp)
from d°.

—priv(acp) =navigate. We omit the prove because it is similar to the proof
for priv(acp) = view.

(3) document-spec(acp) denotes the whole document d. The proof is analo-
gous to the one for the case in which document-spec(acp) denotes a set of
elementsind. O

Proor oF THEOREM 4.2. Let d° be the encryption generated by Algorithms 1
and 2 for a document d. By Definition 4.5, proving the thesis is equivalent to
prove that:

(1) each portion of d° is encrypted with one and only one key, and

(2) VYacp € PB, 3K’ C Keys such that the document obtained by decrypting d°
with the keys in K’ is equal to V;(acp).

Proving point (2) is straightforward. Indeed, by Theorem 4.1, Yacp € PB,
Vi(acp) can be obtained by applying to the encryption returned by Algo-
rithm 2 the keys associated with acp in table Key_Info. Thus, we are left to
prove that Algorithm 2 encrypts each portion of d¢ with one and only one
key.

Let us first prove that there does not exist a portion of d¢ which is not en-
crypted. Step (4) of Algorithm 2 encrypts each element/attribute in d for which
there exists a corresponding tuple in M;. Moreover, Step (6) encrypts each
portion of d¢ which has not been encrypted during Step (4). Thus, after the
execution of Step (7) no un-encrypted portions of d¢ exist.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 329

Let us now prove that there does not exist a portion of d¢ which is encrypted
with more than one key. Portions of d¢ which are encrypted by Algorithm 2 are:

(1) a whole element (i.e., an element and all its attributes);
(2) an attribute;
(3) the start and end tag of an element.

Let us consider all the above cases.

(1) Suppose that there exists a whole element e in d which is encrypted with
two different keys. This element has been encrypted either by Step (4) or
(6) of Algorithm 2. Step (6) of Algorithm 2 encrypts with a unique key only
those portions of d¢ which have not been encrypted by Step (4). Thus, if e
is encrypted by Step (6), it is encrypted with only one key, that contradicts
the assumption. It is easy to prove that, if the whole element is encrypted
with the same key by Step (4), then 3(el, ID,) e M4, such that el is the
identifier of e. Let us consider Algorithm 1. Updates to the marking My
are only performed by calling function Add(). By the definition of function
Add(), there cannot exist two elements (el, ID,), (el’, ID’)) € Mg such that
el = el’. Thus, My contains only one element for e. This means that e is
considered only once during Step (4) and thus is encrypted with only one
key, that contradicts the assumption.

(2) Suppose that there exists an attribute ¢ which is encrypted with two keys. If
there does not exist an element in M for attribute a, then a is encrypted by
Step (6) of Algorithm 2 with only one key, which contradicts the assumption.
Let us suppose that 3(el, ID,) € Mz such that el = e_id .a, where e_id is the
identifier of the element which contains a. Using the same considerations
we have used for the previous case it can be proved that there cannot exist
(el',ID}) € M4 such that el” = e_id .a. Thus, the only possibility for encrypt-
ing a with two different keys, is that Algorithm 2 encrypts the whole element
in which a is contained with a key, and then it encrypts a with another key.
However, by Step (4) of Algorithm 1, if 3(el, ID,) € Mg such thatel =e_id .a,
then there exists one and only one element (el’.TAG, ID;,) € M4 such that
el’ = e_id. This implies that only the start and end tag of the element are
encrypted by Step (4) of Algorithm 2, that contradicts the assumptions.

(3) Suppose that there exists the start and/or the end tag of an element which
is encrypted with more than one key. In such a case, using a reasoning
similar to the one we have used for the first case, it can be proved that a
contradiction arises. O

Proor orF THEOREM 4.3. We suppose that the thesis does not hold and de-
rive a contradiction. Suppose that there exists a well-formed encryption d¢ of
document d such that the number of keys used to obtain d¢ is less that the
number of keys used to obtain d¢, where d* is the encryption of d returned by
Algorithm 2. Let Keys(d®) be the set of keys used to obtain d¢ and let Keys(d®)
be the set of keys used to obtain d°. Since, by hypothesis, d¢ and d¢ are well
formed, it means that 3 acp € P such that the number of keys in Keys(d¢') that

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

330 o E. Bertino and E. Ferrari

have to be used to obtain V;(acp) is less than the number of keys in Keys(d®¢)
that have to be used to obtain V;(acp). This means that two portions of V;(acp)
are encrypted with the same key in d¢ and with different keys in d°. It is easy
to prove that if Algorithm 2 encrypts two portions of V;(acp) with different
keys, then Jacp’ € PB such that acp’ applies to a portion and not to the other.
Thus, if the two portions are encrypted with the same key % in d¢, this means
that there does not exist a subset of Keys(d¢) that allows one to obtain exactly
Vy(acp’). Indeed, if & is contained in this set, then a portion of d¢ which is not in
Vg(acp’) is decrypted. Similarly, if £ is not contained in this set, then a portion
of Vz(acp’) is not decrypted. In both cases, a contradiction arises. O

REFERENCES

Apawm, N., ATLURI, V., BERTINO, E., AND FERRARI, E. 2002. A content-based authorization model for
digital libraries. IEEE Trans. Knowl. Data Eng. 14, 2, 296-315.

BerTiNO, E., CARMINATI, B., FERRARI, E., THURAISINGAM, B., AND GUPTA, A. 2002. Selective and au-
thentic third-party distribution of XML documents. MIT Sloan Working Paper No. 4343-02.

BerTINO, E., CASTANO, S., AND FERRARL, E. 2001a. Author-X: A comprehensive system for securing
XML documents. IEEE Internet Comput. 5, 3, 21-31.

BEeRrTINO, E., CAsTANO, S., AND FERRARI, E. 2001b. On specifying security policies for web documents
with an XML-based language. In Proceedings of the 1st ACM Symposium on Access Control
Models and Technologies (SACMAT’01) (Chantilly, Va.). ACM, New York.

BertiNo, E., Castano, S., FERrARI, E., AND MESITI, M. 2001c. Specifying and enforcing access control
policies for XML document sources. WWW . 3, 3, 139-151.

BEeRTINO, E., AND FERRARL, E. 2000. Secure and Selective Dissemination of XML Documents. Tech-
nical Report, Department of Computer Science, University of Milano (Extended version of this
article.)

CarMINATI, E. AND FERRARI, E. 2002. Access control policy management for XML documents. Tech.
Rep. Department of Computer Science, University of Milano, Milano, Italy, submitted for publi-
cation.

Dawmiani, E., pE CapiTant p1 VIMERCATI, S., PARABOscHI, S., AND SamaraTI, P. 2000. Securing XML
Documents. In Proceedings of the 6th International Conference on Extending Database Technology
(Konstanz, Germany), pp. 121-135.

DeurscH, A., FErNaANDEZ, M., FLoRrEScU, D., LEvy, A., AND Suciuy, D. 1999. Securing XML doc-
uments. In Proceedings of the International Conference on World Wide Web, available at:
http://www.research.att.com/suciu.

FernanDEZ, E., GUDEs, E., AND Song, H. 1994. A model for evaluation and administration of
security in object-oriented databases. IEEE Trans. Knowl. Data Eng. 6, 275-292.

GrapNEY, H. anD LotspiecH, J. 1997. Safeguarding digital library contents and users: Assuring
convenient security and data quality. D-lib Mag.

HERZBERG, A. AND Mass, Y. 2001. Relying party credentials framework. In Proceedings of the RSA
Conference (San Francisco, Calif.).

HERZBERG, A., Mass, Y., AND MiHAELL J. 2000. Access control meets public key infrastructure, or:
assigning roles to strangers. In Proceedings of the IEEE Symposium on Security and Privacy
(Oakland, Calif.). IEEE Computer Society Press, Los Alamitos, Calif.

Miro, T. AND ZOHAR, S. 1998. Using schema matching to simplify heterogeneous data translation.
In Proceedings of the 24th International Conference on Very Large Data Bases (VLDB’98). pp.
122-133.

OASIS ConsoRTIUM. http://www.oasis-open.org.

OsBORN, S. ED. 2000. Proceedings of the 5th ACM Workshop on Role-Based Access Control (Berlin,
Germany). ACM, New York.

RazitT, F., BERTINO, E., KiM, W., AND WOELK, D. 1991. A model of authorization for next-generation
database systems. ACM Trans. Datab. Syst. 16, 1, 88-131.

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

Secure and Selective Dissemination of XML Documents o 331

SaMARATL P., BERTINO, E., AND JAJoDIA, S. 1996. An authorization model for a distributed hypertext
system. IEEE Trans. Knowl. Data Eng. 8, 4, 555-562.

SanpuU, R., Covyng, E., FEINsTEIN, H., AND YouMaNn, C. 1996. Role-based access control models.
IEEE Comput. 29, 2, 38-417.

Starrings, W. 2000. Network security essentials: Applications and standars. Prentice-Hall,
Englewood Cliffs, N.J.

Srivastava, D. 2000. Directories: Managing Data for Networked Applications. Tutorial presented
atthe 16th IEEE International Conference on Database Engineering (ICDE’00) (San Diego, Calif.).
IEEE, Computer Society Press, Los Alamitos, Calif.

SummERS, R. C. 1997. Secure Computing: Threats and Safeguards. McGraw-Hill, New York.

WinsLeTT, M., CHING, N., JoNES, V., AND SLEPCHIN, I. 1997. Using digital credentials on the world
wide web. J. Comput. Secu. 7.

WorLD WiDE WEB Consortium 1998. Extensible Markup Language (XML) 1.0. Available at:
http://www.w3.org/TR/REC-xml.

WorLp WibE WEB Consortrum 2000. XML Encryption Syntax and Processing. Available at:
http://lists.w3.org/Archives/Public/xml-encryption/2000Aug/att-0001/01-xmlencoverview.html.

Received September 2000; revised March 2002; accepted March 2002

ACM Transactions on Information and System Security, Vol. 5, No. 3, August 2002.

