

Secure Authentication System for Public WLAN Roaming
Yasuhiko Matsunaga†

Computer Science Division
Univ. of California, Berkeley

Berkeley, CA, U.S.A.

Ana Sanz Merino†

Computer Science Division
Univ. of California, Berkeley

Berkeley, CA, U.S.A.

Takashi Suzuki‡
Multimedia Laboratories

NTT DoCoMo, Inc.
Yokosuka, Kanagawa,Japan

Randy H. Katz†
Computer Science Division
Univ. of California, Berkeley

Berkeley, CA, U.S.A.

ABSTRACT
A serious impediment for seamless roaming between independent
wireless LANs (WLANs) is how best to confederate the various
WLAN service providers, each having different trust relationships
with individuals and each supporting their own authentication
schemes which may vary from one provider to the next. We have
designed and implemented a comprehensive single sign-on (SSO)
authentication architecture that confederates WLAN service
providers through trusted identity providers. Users select the
appropriate SSO authentication scheme from the authentication
capabilities announced by the WLAN service provider, and can
block the exposure of their privacy information while roaming. In
addition, we have developed a compound layer 2 and Web
authentication scheme that ensures cryptographically protected
access while preserving pre-existing public WLAN payment
models. Our experimental results, obtained from our prototype
system, show the total authentication delay are well within 2
seconds. This is dominated primarily by our use of industry-
standard XML-based protocols, yet are still small enough for
practical use.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks - General]: Data
communications, Security and protection.

General Terms
Security, Design, Experimentation

Keywords
wireless LAN, hotspot, roaming, authentication, single sign-on,
policy control, link layer security.

1. INTRODUCTION
Low deployment costs and high demand for wireless access

have led to rapid deployments of public WLAN hotspot services
by many providers, including startups and telecom operators [1].
Most service providers cannot cost-effectively deploy as many
access points as needed to achieve good wide-area coverage, and
thus supporting inter-operator roaming is a natural strategy for
enlarging their service area. In such a roaming model, users may
connect to the Internet via access points owned by providers that
are unknown to them, for whom a trust relationship may not exist.
Security mechanisms that protect both the user and the network
are required. The roaming architecture works well in the cellular
phone network because of its standard methods for determining
user and service provider identity, and service accounting and
settlement. Such a standardized architecture for authorization,
access, and accounting, agreed to by a larger and more
heterogeneous set of service providers, simply does not exist at
this time for public WLANs. Even with mobility extensions to the
Internet’s routing protocols, the lack of such an architecture makes
it difficult to federate WLAN service providers, leaving the user
with the considerable burden of maintaining multiple identities and
credentials.

Security always involves a tradeoff between convenience and
risk. For public WLANs, users require that authentication,
authorization and charging information (such as user unique
identifier and credit card information) be protected against
imprudent exposure to providers unless explicitly permitted by
the user. At the same time the user may want seamless roaming by
avoiding manual sign-on if it does not violate the user’s security
policy. From the provider’s viewpoint, strict network access
control is necessary to prevent theft of services from malicious
attackers. On the other hand, WLAN providers normally give IP-
level access to users before authentication to allow various
authentication and authorization options, such as one-time credit
card payment or to provide free local and advertisement content
for non-subscribers. However, giving IP-level access without
authentication yields a vulnerability to theft of service through IP
or MAC address spoofing.

In light of these problems, we have developed a
comprehensive security solution for public WLAN services, as an
overlay on existing standard authentication and authorization
models. We assume multiple underlying authentication methods;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WMASH ’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-768-0/03/0009…$5.00.

†{yasuhiko, asanz, randy}@eecs.berkeley.edu ‡suzuki@spg.yrp.nttdocomo.co.jp

we do not require a single method that is universally adopted. Our
solution is designed to achieve three goals: 1) to confederate
wireless LAN service provider under different inter-provider and
user-provider trust relationships, 2) to protect user authentication
information from unwilling exposure while also minimizing the
amount of user intervention during sign-on, and 3) to strictly
control network access by cryptographic methods while
supporting the existing alternative authorization methods
currently used in deployed public WLANs.

To achieve the first goal, we use single sign-on (SSO)
authentication technologies to confederate WLAN service
providers via trusted identity providers. As depicted in Fig. 1, we
assume that there is at least one and possibly several identity
providers with which the WLAN service providers have roaming
agreements, and with which the user has strong trust relationships.
Roaming agreements between a service provider and an identity
provider typically include supported authentication protocols,
configuration of secure communication channel, and the method of
charging/revenue settlements. Examples of such identity providers
are ISPs, credit-card companies, roaming service providers
(wireless LAN aggregators), cellular network operators, etc. Some
identity providers are already doing business in the public wireless
LAN roaming market. The presence of such identity providers
exempts users from having multiple identities and credentials, and
helps users to roam across WLAN service providers under
different levels of trust. The user is really authenticated by the
identity provider, and the service provider, based on its trust
relationship with the identity provider, relies on the authentication
result. In Fig.1, the user can roam between the networks of
WLAN service provider A and B because he has an account in
identity provider 1, and both service providers have roaming
agreements with identity provider 1. To roam into WLAN service
provider C’s network, the user should have an account at identity
provider 2 because no other identity provider is available.
Although the identity provider and the WLAN service provider
are logically different entities, both of them may belong to a single
administrative domain.

Fig. 1: Roaming Model

Our focus is to develop a decentralized authentication
framework for inter-service provider roaming where each provider

adopts its own authentication methods, and arbitrary roaming
agreement relationships are made between identity providers and
WLAN service providers. Our architecture is independent of the
kind of authentication methods supported by identity or service
providers, and allows users to choose the most preferred identity
provider and authentication scheme. In particular, we considered
two different SSO authentication standards in our architecture:
RADIUS [2] and Liberty Architecture [3]. These authentication
schemes were selected as examples because they represent the
span of possible methods, commonly encountered (RADIUS) and
other new schemes accommodated as they become available
(Liberty). While RADIUS-based roaming is currently being
deployed in public WLANs [4], Liberty-based roaming has an
advantage of hiding the user’s identity and credentials from
weakly-trusted WLAN service providers. It should be pointed out
that our approach is not limited to these authentication standards,
but rather we have chosen multiple standards to insure that the
architecture is flexible enough to handle heterogeneous underlying
authentication methods.

For the second goal, we create an authentication flow
adaptation framework in which the authentication scheme is
chosen based on the user’s authentication policy combined with
the capabilities of underlying authentication server. A client-side
policy engine determines the user authentication information based
on user-defined policies (written in XML) and the communication
context. The policy engine provides a generic API for
authentication information access, which can be invoked not only
by web-based mechanisms, but also by others such as link-layer
authentication. In addition, the policy engine can support various
access control models, such as requiring additional actions to be
taken before authorization (a.k.a. provisional action) [5][6].

As for the third goal, we have developed a compound layer-2
(L2) and Web authentication scheme to ensure cryptographically
protected access in public wireless LANs. In our compound
scheme, the user first establishes a L2 session key by using a guest
(anonymous) account in an IEEE 802.1X authentication. The user
then embeds the L2 session key digest in web authentication. By
binding the L2 and Web authentication results, our scheme
prevents theft of service, eavesdropping, and message alteration in
public WLANs.

To verify and evaluate our proposed architecture, we
developed a federated WLAN testbed. Measurement results show
that the additional delay by authentication adaptation process and
the compound L2 and web authentication process are 320 msec
and 120 msec, respectively.

The rest of this paper is organized as follows. Section 2
relates our design to previous works. Sections 3, 4, and 5 details
single sign-on authentication, the design of authentication
adaptation system, and the compound authentication scheme.
Section 6 describes the prototype system and evaluation results.
Finally, section 7 concludes the paper.

Identity
Provider 1

WLAN
Service

Provider A

WLAN
Service

Provider B

WLAN
Service

Provider C

User
Authentication

Roaming
Agreement

Subscription Fee

WLAN Service

Identity
Provider 2

2. RELATED WORK

Link layer authentication

IEEE 802.1X standard [7] provides port-based access control
based on the authentication results for devices interconnected by
IEEE 802 LANs, and is considered a promising solution for
securing corporate 802.11 networks. IEEE 802.11i [8] is being
standardized to provide robust security in 802.11 wireless LANs,
and its authentication scheme is based on 802.1X. 802.1X
employs Extensible Authentication Protocol (EAP), on which any
authentication mechanism can be used for authenticating both the
user and the network and establishing L2 session key dynamically.
Per-user encryption and message integrity check keys are derived
from the L2 session key. Those keys protect the data packets sent
over the air. Examples of authentication methods in the wireless
LAN environment include EAP-TLS [9] and EAP-TTLS [10].
EAP-TLS uses client and server certificates for mutual
authentication. EAP-TTLS also use certificate-based
authentication for server authentication, and allows the user to use
various client authentication schemes (e.g., MS-CHAPv2 [19]).
Although these authentication methods work well in corporate
WLAN environments, they exclude one-time credit-card
authorization options and free advertisements in public WLANs,
because they assume a pre-shared secret between user and
network.

Web-based authentication and network layer access control

Many public WLAN providers employ web-based
authentication in conjunction with IP packet filtering at a network
access server based on the MAC and IP addresses. Since address
spoofing is easily accomplished using readily available tools, this
method does not provide strong security for network providers.
Malicious users can monitor the wireless channel, acquire MAC
and IP addresses of authenticated users, and send packets with
spoofed addresses to perform theft of service or DoS attacks.
Such an attack can be prevented by deploying IPsec
Authentication Headers [11] to check for packet integrity and to
control access based on its result, but at a substantial cost in
bandwidth and computational overhead. To roam across different
WLAN service providers, the authentication web server acts as a
RADIUS client and forwards authentication messages to a
RADIUS server in the user’s home provider [4]. Although
RADIUS-based roaming is being increasingly deployed, the user
must show its identity and credentials to the WLAN service
provider regardless of the level of trust relationship, due to
HTTPS-RADIUS protocol conversion process at the service
provider. Authentication schemes based on Zero knowledge
proofs [12] or Secure Remote Passwords [13] can help hide user
credentials at service providers by using a one-way hash function
and ephemeral public keys. However, they do not help protect the
user identifier from the service provider.

Several WLAN providers deploy their own proprietary
network access client, not for security reasons but rather for user

convenience to select the closest access point. They use their own
authentication protocols in the serving network, and the
authentication message flow is fixed regardless of user preference.

Finally, the CHOICE network [14] makes use of Microsoft
Passport as a web authentication database, and uses a proprietary
security sublayer between the link layer and IP layer. In their
scheme, as a result of web authentication, the network gives the
user terminal a (key, token) pair for the purpose of network
access control thereafter. Our work differs from theirs in that an
individual user can choose its own identity provider and use only
standard-based link layer security, while they assume a centralized
authentication server and require proprietary security sublayer.
Moreover, our scheme makes it possible for a user to select the
most preferred authentication method and identity provider among
others, and prevent unwilling security information exposure
according to the user’s policy, which are not mentioned in their
paper. This is mainly because our policy management function
resides both in the network and the client, while their model
assumed a policy controller only at the network side.

To summarize, existing web-based authentication does not
provide sufficient level of security against the theft of service,
dynamic selection of different authentication schemes, and user’s
policy-based protection of unwilling exposure of privacy
information while roaming.

3. SINGLE SIGN-ON FOR
CONFEDERATING WIRELESS LAN
SERVICE PROVIDERS

In public WLANs, users are required to authenticate every
time they roam into a different service provider’s network. We
make the following assumptions in designing our authentication
architecture.

• There exists at least one certificate authority trusted by
users, service providers, and identity providers.

• The user terminal can validate the certificate of the service
provider’s and identity provider’s authentication servers.

• There are static trust relationships between the user and the
identity provider, and between the service provider and the
identity provider.

• The user can authenticate the service provider’s
authentication server via the identity provider’s
authentication server, and vice versa.

These assumptions are necessary for clients and service providers
to authenticate each other to establish dynamic trust relationships.

Single sign-on (SSO) is a method for enabling users to access
multiple systems after being authenticated just once, thus reducing
the users’ burden in managing multiple identities and credentials.
Typical and generic cookie-based SSO authentication for public
WLANs is shown in Fig. 2. The user first shows its identity and

credential to service provider A’s web server. Then A’s web
server asks the identity provider’s authentication server about the
validity of the supplied identity and credential. If the
authentication is successful, the result is returned to the user with
a cookie, where it is stored in the user terminal. When the user
roams into the network of service provider B, B’s web server
simply retrieves the user’s credential from the cookie. Since the
web cookie is normally only valid at the web server from which it
is issued, SSO systems use special kinds that are valid across
multiple domains (so-called common-domain cookies), or they can
issue multiple cookies at a time.

Fig. 2: Single Sign-On in Public WLAN Roaming

We have considered two different authentication models in
our architecture: RADIUS and Liberty Architecture. As
mentioned in Section 1, the architectural approach is not limited to
these two underlying authentication methods, and could easily be
extended to add more as necessary. RADIUS utilizes a proxy
based authentication scheme; the user sends the authentication
data to the service provider and the service provider forwards this
to the user’s identity provider. Fig. 3 shows a simplified message
sequence in RADIUS-based authentication. While RADIUS is
widely deployed and provides backward compatibility, the user
must expose its identity and credentials to the untrusted service
provider, due to the HTTPS-RADIUS conversion process at
service provider’s web server.

On the other hand, the Liberty Browser Artifact Profile
makes use of a redirect-based authentication model (Fig. 4). The
user informs the service provider of the name of his identity
provider, and then the service provider redirects the user to that
identity provider. The user then sends the login information
directly to the identity provider, receives its result, and forwards
it to the service provider. The identity provider’s result includes a
pointer to an authentication assertion. Following the pointer, and
making use of the SAML protocol [15], the service provider
contacts the identity provider to obtain a secure confirmation
about the authentication result. Although Liberty-based
authentication is more complex than the RADIUS method, it has

the advantage of hiding a user’s identity and credential from
untrusted service providers. It should be noted that to make
possible the Liberty flow, a hole must be opened in the service
provider’s firewall during the authentication to allow the direct
communication between the user and the identity provider across
the service provider’s network.

Fig. 3: Proxy-based RADIUS Authentication

Fig. 4: Redirect-based Liberty Browser Artifact Profile
Authentication

4. AUTHENTICATION FLOW
ADAPTATION

In this section we describe our authentication flow adaptation
scheme that selects the appropriate SSO scheme while protecting
the privacy of user information in public WLAN environments. In
the first subsection, we list the desirable features and give a
typical usage scenario. In the following subsections, we describe
the key functional components in our framework.

4.1 Desirable Features and a Usage Scenario

Desirable Features

In federated public WLANs, a user roams across networks
operated by different providers, each with different billing options
and likely requiring different authentication information. Because
the user may roam whether they intend to or not, to maximize the
security of their user data, they should be notified when roaming
is to occur and be forced to input authentication information or

User
Terminal (2) AuthReq/

Credentials?

(4) Artifact

(3) Credentials/
Redirect

(6) AuthRsp

(5)AuthConfirm
/ Assertion

(1) Auth_Req/
Redirect

Identity
Provider’s

Authentication
Server

Service
Provider’s
Web server

User
Terminal

Identity Provider’s
Authentication Server

(RADIUS Server)

(1) AuthReq

(2) AuthReq (3) AuthRsp

(4) AuthRsp

Service Provider’s
Web server

(RADIUS client)

User
Terminal

Service
Provider A’s
Web Server

Identity
Provider’s

Authentication
Server

(2) Check
Credential

(3) AuthRsp
{cookie}

(4) AuthReq
{cookie}

(5) AuthRsp

 Service
Provider B’s
Web Server

(1)AuthReq
{ID, credential}

manually acknowledge it. The usability of this scheme worsens as
the frequency of inter-system roaming increases. To achieve
seamless network access, we require the following desirable
features for the user interface software:

• Protection of user authentication information against
exposure to entities not allowed to see it.

• Minimize user intervention for the sign-on process.

• Support alternative authentication flows and authentication
information as required by the underlying service providers.

The first two features require automated access control for the
user’s authentication information. The access control should be
performed according to user-defined policy rules. The policy rules
specify entities to be authorized to access each authentication
information element using their identifier or attributes (roles).

Information Element Examples

authn_info Authentication information file path
• authentication method
• login ID, password
• credit card type, card number, name,

expiration date
subject id: policy identifier

attribute:
role: ID provider
charging option

provisional
_action

• user notification
• user acknowledgment
• user input

condition • none
• through trusted service providers

only

Fig. 5: Policy Rule and Information Element Examples

The policy rules may include additional conditions to be
satisfied such as the rule is applicable only if the user is connected
to the trusted service provider’s network, and provisional actions
to be fulfilled such as user notification and acknowledgement.
Examples of information elements and rules are shown in Fig. 5. In
case the user terminal always demands user input or
acknowledgment, it is the end user who makes the access control
decision according to his security policy and contexts. Our
prototype thus far only deploys identifier, attribute (e.g.,

credentials and credential types), and additional action to be taken
(provisional action, e.g., confirmation on the pop-up window) for
access control decisions. To achieve the third feature, our scheme
enables an authentication server of the WLAN service provider
announce its authentication capabilities in response to the
authentication request message from the user terminal.

Typical Usage Scenario

To help understand our use of authentication flow adaptation
and the role of the policy engine, let’s consider an example
scenario:

“The user turns on the PDA in his office and
automatically gets connected to his department’s WLAN.
The department WLAN uses 802.1X authentication, and
the policy engine permits automatic submission of the
pre-shared secret between the user and the department
WLAN.

 Then the user walks out of the building with his PDA,
thus roaming into a campus-wide WLAN network. This
network uses a web-based authentication scheme, and is
strongly trusted by the user. The policy engine allows the
user to automatically submit his identity and credentials to
the campus-wide authentication system, thus allowing
him to get connected to the campus-wide WLAN network.

 As the user leaves the campus and strolls into a cafe,
the PDA detects the presence of public WLAN. The policy
engine finds both the RADIUS-based and the Liberty-
based authentication methods are available on that
network, and selects the Liberty-based authentication
according to the user’s preferences. This service adopts
time-based charging, and the user's policy file indicates
that automatic roaming should not be performed in such a
situation. The policy engine launches a pop-up window on
the user terminal and asks the user if he wants to connect
to the public WLAN. If the user acknowledges it, the policy
engine submits his authentication information to the
WLAN service provider's authentication server that
provides network access for the cafe, and the user gets
access to the Internet. "

4.2 Authentication Sequence Adaptation
Overview

In the case that the WLAN service provider supports
multiple authentication options, users can select their preferred
method. As shown in Fig. 6, in response to an authentication
request from a new user that wants to gain access to the external
network, the authentication server presents him with the available
alternatives and the information required for using each of them.
The user then selects the appropriate authentication method based
on the policy engine’s processing of the user’s pre-defined policy
(described in the next subsection), and provides the information
requested by the service provider for that particular scheme. The
service provider’s authentication server, switching between

Policy Rule
<policy>

<authn_info href=”…”/>
<rule>

<subject>
<id> … </id>
<attribute> … </attribute>

</subject>
<provisional_action name=”…”>
<condition> … </condition>

<rule>
<policy>

alternative methods according to the user preferences and the
available information, processes the information. The details of
authentication announcement protocol and authentication
sequence adaptation will be discussed in a separate paper.

It is worth mentioning that users can still get authenticated
regardless of whether the announcement function is installed on
the server or whether the user’s terminal utilizes the policy engine.
Users can get authenticated manually. Thus, legacy user terminals
and legacy service provider’s authentication servers are readily
supported in our architecture.

Fig. 6: Authentication Sequence Adaptation

4.3 Policy Engine
The policy engine supports policy-based access control for

user authentication information. Fig. 7 shows its major
components. It is implemented as an independent module which
can be invoked through a simple API from a user agent or link
layer network access client. An XML-based access control
language is used to define access control rules for the user
information. Although the policy engine only supports
authentication server ID and requested user information as inputs
so far, other input parameters, such as service attribute and
context, will be supported in future versions.

The access control component performs a policy compliance
check based on the input parameters and user-specified access
control rules, and outputs granted information along with
provisional actions, if any. The provisional action is what must be
performed before the corresponding information is sent to the
information requestor. In our current implementation, we support
only one provisional action, user authorization. If the access
control component returns user identity along with the
“authorization” provisional action, the policy engine launches a
new pop-up window to give the user the option to send the
identity to the server. The identity can be sent out only if user
pushes the “accept” button. If the access control component
returns granted information without provisional action, the
information is automatically sent to the server.

Fig. 7: Policy Engine Block Diagram

The advantages of public WLAN authentication using such a
policy engine are:

• Generality: Since the policy engine is built as an independent
component with simple APIs, network access clients, like a
web browser or an EAP-TLS client, can employ it.

• Scalability: Since users define access control rules using server
attributes (e.g., role) and specific server IDs, rule management
overhead is kept low even when many WLAN providers with
different server IDs are part of the WLAN federation.

• Flexibility: Given a standard vocabulary of the rule
specification for user authentication information, users can
customize their own access control rules for their
authentication information.

Limitation of the current implementation

Currently, the policy engine does not verify authentication
information requests to check the validity of input parameters
(e.g., server ID). There are several ways to accomplish this. One is
to use server’s digital signature on the invocation message. Access
control reflecting the service attribute or context is not yet
supported. When supported, sophisticated sign-on control will be
achieved.

5. SECURING WEB-BASED
AUTHENTICATION AND ACCESS
CONTROL

5.1 Security Threats in Web-based
Authentication

Most public wireless LAN systems use web-based
authentication schemes, and users can get IP-level network access
before showing their identity and credentials. Although this open-
style of network authentication enables fine-grained service
authorization and accounting options, lack of lower-layer
cryptographic bindings yields security vulnerabilities. Examples
include:

User Terminal

(3) Select
Authentication
Method
According to
the User’s
Preference

WLAN Service
Provider

(5)Authenticate
the User

(1) Request
Authentication

(2) Announce
Supported
Authentication
Methods (Liberty,
RADIUS, etc.)

(4) Submit
Selected
Authentication
method, ID,
Credentials

Network
Access
Client

End User

Policy
Repository

Context

Policy
Check

Policy Engine
Auth Info
Repository

Web
Browser

EAP /
802.1X

Network
Access
Server

User Terminal

Capability

WLAN
Service
Provider

• Theft of service by spoofing IP or MAC address;

• Eavesdropping because of no data encryption;

• Message alteration because of no message integrity check; and

• Denial of service attack by placing rogue access points.

The key to avoiding those security threats is to have a
cryptographic binding between the user and the network. As
explained in Section 2, IEEE 802.1X port-based network access
control is being deployed in corporate wireless LANs, and it uses
such a cryptographic method for user authentication and network
access control. Normally IEEE 802.1X adopts conventional
closed-style mutual authentication and assumes a pre-shared
secret between users and the network. However, we can’t assume
a pre-shared secret in public wireless LANs to accommodate one-
time users that use credit-card authorization, or to provide free
contents for non-subscribers. Table 1 summarizes the
characteristics of web-based and layer 2-based AAA schemes.
Shaded boxes in Table 1 represent the advantage of each
authentication scheme.

Table 1: Comparison of Web-based and layer 2-based AAA
schemes

 Web-based IEEE 802.1X/11i

Support
Most public wireless
LAN service providers

Corporate networks
(only in 802 LANs)

Pre-shared
Secret

Not necessary (users
can use credit-card

authorization)
Necessary

Encryption N/A
Per-station RC4,
AES (802.11i)

Authenticat
ion

SSL-protected
password

EAP-TLS
(certificate-based)

Access
Control

IP/MAC address
Cryptographic

Method

Accounting Fine-grained
Only at boot time and

periodic re-
authentication

5.2 Compound Layer 2 and Web
Authentication

To ensure cryptographically protected access in public
wireless LANs, we have developed a compound layer-2 and Web
authentication approach. To use this scheme, the WLAN service
provider must have 802.1X-capable access points and
authentication servers. The user terminal must also have an
802.1X client, but this stipulation turns out not to be an issue due
to the fact that some operation systems bundle an 802.1X client.
If this is not the case, free 802.1X clients are available for
download [16]. The network may accommodate 802.1X-incapable
legacy user terminals to account for backward compatibility.
However, allowing 802.1X-incapable clients, thus bypassing link

layer authentication, the network becomes vulnerable to common
web-based authentication security holes.

Fig. 8: Compound L2 and Web Authentication Message
Sequence

The compound authentication message sequence diagram is
shown in Fig. 8. In our scheme, the user terminal first associates
with an access point (Step 1) and then establishes a L2 session
key using guest (or anonymous) account in EAP-TLS message
exchange in IEEE 802.1X authentication (Step 2). A guest account
is used in L2 authentication for the reason that we can’t assume a
pre-shared secret between users and the network in public
wireless LAN. It should be noted that the EAP-TLS specification
does not mandate client authentication. After Step 2, the
encryption key derived from the L2 session key encrypts packets
transmitted over the air. The RADIUS server notifies the {MAC
address, L2 session key digest} pair to the web server for later use
(Step 3). Similarly, the L2 client in the user terminal passes
{MAC address, L2 session key digest} to the Web client (Step 4).
The inter-process communication in Step 4 can be accomplished
by using a customized web client or the policy engine described in
the previous section. Then the user terminal sends a Web
authentication message to the Web server, with {ID, credential,
MAC address, L2 session key digest} quadruplets (Step 5). In
Step 5, MAC address and L2 session key digest embedding is
required to avoid theft of service by race timing attack from
malicious clients. Finally, the Web server verifies the quadruplets
(Step 6), changes firewall rules so that the user can access to the
external network if the verification succeeds (Step 7), and returns
an authentication response to the user terminal (Step 8).

RADIUS
Server

Web
Server Firewall

(1)Link Establishment

(2)802.1X guest authentication
and L2 session key establishment

(4){MAC, session key digest}

(Web)

(5) Web Authentication Request
{ID, Credential, MAC, session key digest}

(8) Web Authentication Response

(6) Verify

(7) Gate-Open

(3) {MAC, session key digest}

User Traffic

User
Terminal

(L2)

Access
Point

5.3 System Security Analysis
In this section, we give a formal analysis how the proposed

compound layer 2 and web authentication scheme can deal with
various common security threats.

Theft of Service

A malicious user may spoof the IP and/or MAC address of
legitimate user to take over the WLAN service. Address spoofing
does not work in our scheme, because each user has its own
encryption key established through the 802.1X guest
authentication process. The access point simply discards the
malicious user’s packets if it can’t decrypt them. Because all layer
2 data frames are encrypted by per-user key, it is difficult for a
malicious user to guess the legitimate user’s IP address.

A malicious user can attempt a race timing attack by taking
advantage of guest authentication properties. In this case, the
malicious user sends a layer 2 authentication request just before a
legitimate user’s web authentication. The web server can
distinguish the malicious user from the legitimate user by checking
the {MAC, session key digest} pair embedded in the web
authentication request with the one informed by the RADIUS
server. Thus the race timing attack can be prevented.

A more sophisticated attack involves a rogue access point
between the legitimate user and the legitimate access point. This
rogue access point acts as a transparent SSL proxy to fake a
legitimate user’s network login process. Again, the web server can
detect the attack by checking the {MAC, session key digest} pair
embedded in the web authentication request message. It can’t alter
the MAC address or session key digest in the web authentication
request message because the message is SSL-encrypted. It should
be noted that 802.11i also has a countermeasure for such man-in-
the-middle attack by conducting a 4-way handshake immediately
after the 802.1X authentication.

Eavesdropping/Message Alteration

It is obvious that eavesdropping and message alteration can
be prevented in our scheme, because all L2 data frames are
encrypted by per-user key and have message integrity check codes.
The per-user key is derived from the L2 session key that is
established through EAP-TLS process in 802.1X authentication.
Therefore, cracking a legitimate user’s per-user key is as difficult
as cracking TLS. It is also well known that current 802.11 WEP
(wired equivalent privacy) has security vulnerabilities of
eavesdropping and message alteration [17]. Countermeasures for
such security vulnerabilities are already taken into account in the
802.11i draft under standardization [8]. In the meantime, one can
reduce the risk of such vulnerabilities by shortening 802.1X re-
keying period.

Denial-of-Service

There are several DoS possibilities in 802.11 wireless LAN
[18], such as deauthenticating/disassociating a legitimate user,
spoofing power save mode, and faking the carrier sense mechanism.
Unfortunately, these DoS possibilities are inherent in the original
802.11 MAC protocol and our scheme does not solve such DoS
attacks. Moreover, because every user is given link layer access in
our scheme, a malicious user can disturb legitimate user’s
communication by spoofing the latter’s MAC address or flooding
frames in layer 2 networks. However, we consider theft of service
to be a much more serious problem than DoS attacks, and thus
have limited our scope to allow certain DoS scenarios. It is still
possible for legitimate users and access points to detect DoS
attack and notify it to the network management server.

6. EVALUATION
We have developed a prototype to prove the viability of the

architectural concepts we have described above to evaluate the
performance of a system that integrates them. In this section we
describe this prototype and present its performance.

6.1 Testbed
Our testbed consists of five authentication servers, a WLAN

access point, and two user terminals. Two of the authentication
servers act as service providers and other two act as identity
providers, and the last acts as an 802.1X authentication server. To
avoid wireless-specific delay variance, link layer authentication
delay and other delay were measured separately. Each server was
connected via 100Mb/s Fast Ethernet and link delay was minimal.
All of them are implemented on standard Linux or Windows PCs
using open-source software.

The hardware specifications of components in the testbed are
listed below.

- Identity Provider #1: Pentium III 864 MHz (Linux)

- Identity Provider #2: Pentium II 266 MHz (Linux)

- Service Provider #1: Pentium III 864 MHz (Linux)

- Service Provider #2: Pentium II 266 MHz (Linux)

- User Terminal #1: Pentium IV 1.6 GHz (Windows XP)

- User Terminal #2: Pentium III 1.1GHz (Linux)

- 802.1X Authentication Server: Pentium III 1.1GHz (Linux)

- WLAN Access Point: Cisco AIR-AP352

Fig. 9: Testbed Schematics

The open-source software components used in the testbed
are as follows.

- GNU RADIUS v0.96.4 (ID/password authentication server)

- FreeRADIUS v0.8.1 (802.1X authentication server)

- XSupplicant v0.6 (802.1X client)

- ForgeNet RADIUS Client 0.9c

- Sun Interoperability Liberty prototype v0.1

- OpenLDAP LDAP Server v2.1.12

- iptables v1.2.6a (Firewall)

- libwww-perl 5.64 (Web client)

6.2 Authentication Latency
To analyze the performance of the different alternatives, we

measured the authentication delay for each of the components
participating in the authentication process and for the two
authentication schemes we considered. In addition, we evaluate
two different authentication scenarios: local and remote. In the
former, the service provider also plays the role of identity
provider, directly authenticating the user. In the latter, a third
party plays this role. No transmission delays have been included,
as they vary with the distance between entities and are not
directly attributable to our implementation.

The following table shows the results obtained for roaming
authentication using the policy engine to submit the authentication

data. The total delay was less than 2 seconds in the worst case, in
our view an acceptable authentication latency for WLAN users.

The delay can be divided in four components: link layer
authentication, firewall redirection, policy engine and web
authentication. The link layer authentication delay is due to the
establishment of a secure layer 2 communication using the IEEE
802.1X protocol. Firewall redirection delay includes the detection
of an unauthenticated user and his redirection to the web
authentication interface using SSL. The Policy Engine delay
comprises the selection in the client side of the authentication
method to use and the information to submit depending on the
user defined policies and the communication context. Finally, the
web authentication delay is the elapsed time from when the user
sends his authentication data to the service provider to when the
authentication is completed and the user is notified.

The most significant delay in the web authentication segment
is the Liberty remote case. It is due to the exchange of SAML
messages between service provider and identity provider to
confirm the authentication of the user, which have to be signed and
verified using public-private key cryptography. This is not needed
when the authentication is local, since the same entity plays the
role of service provider and identity provider.

The next most significant delay was caused by the policy
engine processing the authentication rules in the client. It is due to
the parsing of XML files with the information, which is done
every time the engine is invoked. Alternative methods of
implementation could be used to reduce this delay.

Identity Provider #1

RADIUS

Web

Identity Provider #2

RADIUS

Web

Service Provider #1

RADIUS

Web Firewall

Service Provider #2

RADIUS

Web Firewall

User Terminal #1

Policy Engine

Access Point

User Terminal #2

802.1X Client

External Network

802.1X
Authentication

Server

The link layer (802.1X) authentication delay was as small as
0.12 sec, and the additional overhead of verifying {MAC, L2 key
digest} at web authentication was smaller than 1 msec.

Table 2: Authentication Delay Profile

Proxy-based
(RADIUS)

Redirect-based
(Liberty)

Local Remote Local Remote

Web
Authentication

0.098 0.102 0.089 1.381

Policy Engine 0.318

Firewall
Redirection

0.086

Link Layer
(802.1X)

Authentication
0.124

Total 0.626 0.630 0.617 1.909

7. CONCLUSION
Dynamic selection of the authentication method and the

identity provider will play a key role in confederating public
wireless LAN service providers under different trust levels and
with alternative authentication schemes. The proposed
authentication adaptation framework makes it possible to
accommodate multiple authentication methods. We exploited two
different industry-standard single sign-on authentication schemes
in public wireless LANs: RADIUS and Liberty Architecture. A
client-side policy engine enables the user to select which of the
alternate single sign-on authentication schemes to use. The policy
engine also protects the user‘s privacy information by forcing him
to input authentication information manually when he roams into
a service provider he weakly trusts. In addition, we developed a
compound layer 2 and Web authentication scheme to prevent theft
of service, eavesdropping, and message alteration in public
wireless LANs. To demonstrate the feasibility of our approach,
we developed a single sign-on prototype system. The measured
authentication delay values ranged from 0.6 to 1.9 sec depending
on the authentication types, and they were all small enough for
practical use.

8. ACKNOWLEDGMENTS
The authors would like to thank David Wagner for valuable
suggestions on trust relationship, and Manish Shah for carefully
reviewing the paper. Yasuhiko Matsunaga is supported by NEC
Corporation, as a visiting industrial fellow at University of
California, Berkeley. Takashi Suzuki was supported by NTT
DoCoMo, as a visiting industrial fellow at University of California,
Berkeley, until May 2003. Funding for this work was provided in
part by the California MICRO Program, with matching industrial
support from Sprint and Ericsson.

9. REFERENCES
[1] HotSpotList.com, http://www.hotspotlist.com/

[2] IETF, RFC 2865 “Remote Authentication Dial In User
Service (RADIUS)”, June 2000.

[3] Liberty Alliance Project, “Liberty Architecture
Overview”, version 1.1, January 2003.

[4] Wi-Fi Alliance, “Best Current Practices for Wireless
Internet Service Provider (WISP) Roaming”, ver. 1.0,
2003.

[5] S. Hada and M. Kudo, “Access Control Model with
Provisional Actions”, IEICE Trans. Fundamentals, Vol.
E84-A, No.1, Jan. 2001.

[6] OASIS eXtensible Access Control Markup Language,
http://www.oasis -
open.org/committees/tc_home.php?wg_abbrev=xacml.

[7] IEEE Std 802.1X-2001, “Port-Based Network Access
Control”, June 2001.

[8] IEEE Std 802.11i/D4.0, ”Medium Access Control (MAC)
Security Enhancements”, May 2003.

[9] IETF, RFC 2716, “PPP EAP TLS Authentication
Protocol”, Oct. 1999.

[10] Internet-Draft, “EAP Tunneled TLS Authentication
Protocol”, draft-ietf-pppext -eap-ttls -02.txt, work in
progress.

[11] IETF RFC 2402, “IP Authentication Header”, Nov. 1998.

[12] D. Jablon, “Strong Password-Only Authenticated Key
Exchange”, Computer Communication Review, Vol.26,
1996.

[13] http://srp.stanford.edu/

[14] V. Bahl, A. Balachandran, S. Venkatachary, “The
CHOICE Network: Broadband Wireless Internet Access
In Public Places”, Microsoft Technical Report, MSR-
TR-2000-21, Feb. 2000.

[15] OASIS, “Assertions and Protocol for the OASIS
Assertion Markup Language (SAML)”, Committee
Specification 01, May 2002.

[16] http://www.open1x.org/

[17] N. C-Winget, R. Housley, D. Wagner, J. Walker,
“Security flaws in 802.11 data link protocols ”,
Communications of the ACM, 46(5), May 2003, pp. 35-
39

[18] J. Bellardo and S. Savage, “802.11 Denial-of-Service
Attacks: Real Vulnerabilities and Practical Solutions”,
to appear in Proceedings of the USENIX Security
Symposium, August 2003.

[19] IETF, RFC2759 “Microsoft PPP CHAP Extensions,
Version 2”, Jan. 2000.

