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Abstract. This paper presents computationally “lightweight” schemes
for performing biometric authentication that carry out the comparison
stage without revealing any information that can later be used to im-
personate the user (or reveal personal biometric information). Unlike
some previous computationally expensive schemes — which make use
of slower cryptographic primitives — this paper presents methods that
are particularly suited to financial institutions that authenticate users
with biometric smartcards, sensors, and other computationally limited
devices. In our schemes, the client and server need only perform crypto-
graphic hash computations on the feature vectors, and do not perform
any expensive digital signatures or public-key encryption operations. In
fact, the schemes we present have properties that make them appealing
even in a framework of powerful devices capable of public-key signatures
and encryptions. Our schemes make it computationally infeasible for an
attacker to impersonate a user even if the attacker completely compro-
mises the information stored at the server, including all the server’s secret
keys. Likewise, our schemes make it computationally infeasible for an at-
tacker to impersonate a user even if the attacker completely compromises
the information stored at the client device (but not the biometric itself,
which is assumed to remain attached to the user and is not stored on the
client device in any form).
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functions.
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1 Introduction

Biometric-based identification starts with a physical measurement for capturing
a user’s biometric data, followed by the extraction of features from the measure-
ment, and finally a comparison of the feature vector to some previously-stored
reference vector. While biometric-based identification holds the promise of pro-
viding unforgeable authentication (because the biometric is physically attached
to the user), it has a number of practical disadvantages. For example, the storage
of reference vectors presents a serious privacy concern, since they usually con-
tain sensitive information that many would prefer to keep private. Even from a
security standpoint, biometric information must be stored and transmitted elec-
tronically, and, as the old adage goes, a user only gets nine chances to change
her fingerprint password (and only one chance to change a retinal password).
Thus, we would like to protect the privacy of biometric reference vectors.

One of the major difficulties in biometric information is that, even when it
comes from the same individual, it is variable from one measurement to the next.
This means that standard encryption of the reference vector is not sufficient to
achieve the desired properties. For, even when the reference vector is stored in
encrypted form, it appears as though the comparison step (comparing a recently-
read biometric image to the reference vector) needs to be done in the clear. That
is, standard techniques of comparing one-way hashes (or encryptions) of a stored
password and an entered password cannot be used in the context of biometric
authentication, as two very similar readings will produce very different hash (or
encrypted) values. Unfortunately, this cleartext comparison of biometric data
exposes sensitive information to capture by an adversary who obtains one of
the two in-the-clear comparands, e.g., through spy-ware at the client or at the
server. Moreover, in addition to this comparison-step vulnerability, encrypting
the reference vector is obviously not sufficient to protect biometric data from an
adversary who learns the decryption key, as could be the case with a dishonest
insider at a financial institution. We next review previous work in overcoming
these difficulties.

1.1 Related Work

There is a vast literature on biometric authentication, and we briefly focus here
on the work most relevant to our paper. There are two broad approaches: The
one where the comparison is done at the remote server, and the one where the
comparison is done at the client end (the portable device where the biomet-
ric measurement is done). Most of the recent work has focused on the second
category, ever since the landmark paper of Davida et al. [9] proposed that com-
parisons be done at the client end (although their scheme is also useful in the
first case, of remote comparison at the server end). Many other papers (e.g., [3, 4,
13], to mention a few) build on the wallet with observer paradigm introduced in
Chaum et al. [6] and much-used in the digital cash literature; it implies that there
is a tamper-proof device available at the client’s end where the comparison is
made. The “approximate equality” in biometric comparisons is a challenge faced



by any biometric scheme, and many ways have been proposed for overcoming
that difficulty while preserving the required security properties. These meth-
ods include the use of error-correcting codes [8–10, 16], fuzzy commitments and
fuzzy vaults [7, 15, 16] (for encrypting the private key on the smartcard using
fingerprint information), fuzzy extractors [11], secret extraction codes [20] and
the use of secure multi-party computation protocols [17]. Some methods carry
out the comparisons “in the clear” (after decryption), whereas others manage to
avoid it. They all rely, in varying degrees, to one (or more) of the following as-
sumptions: That the portable device is tamper-resistant (“wallet with observer”
based papers), that the portable device is powerful enough to carry out rela-
tively expensive cryptographic computations (public-key encryption, homomor-
phic encryption), and sequences of these for in carrying out complex multi-step
protocols. See [5, 12] for a review and a general discussion of the pitfalls and
perils of biometric authentication and identification (and how to avoid them),
and [18] for a rather skeptical view of biometrics.

In spite of some drawbacks and practicality issues, these schemes have shown
the theoretical (and, for some, practical) existence of secure and private biometric
authentication.

1.2 Motivation for Our Approach

Just like the tiny (and weak) embedded microprocessors that are now perva-
sive in cars, machinery, and manufacturing plants, so will biometrically-enabled
electro-mechanical devices follow a similar path to pervasiveness (this is already
starting to happen due to security concerns). Not only inexpensive smartcards,
but also small battery-operated sensors, embedded processors, and all kinds of
other computationally weak and memory-limited devices may be called upon to
carry out biometric authentication. Our work is based on the premise that bio-
metric authentication will eventually be used in a such a pervasive manner, that
it will be done on weak clients and servers, ones that can compute cryptographic
hashes but not the more expensive cryptographic primitives and protocols; in a
battery-powered device, this may be more for energy-consumption reasons than
because the processor is slow. This paper explores the use of such inexpensive
primitives, and shows that much can be achieved with them.

Our solutions have other desirable characteristics, such as not relying on
physical tamper-resistance alone. We believe that relying entirely on tamper-
resistance is a case of “putting too many eggs in one basket”, just as would be a
complete reliance on the assumed security of a remote online server — in either
case there is a “single point of failure”. See [1, 2] on the hazards of putting too
much faith in tamper-resistance. It is desirable that a system’s failure requires
the compromise of both the client and remote server.

1.3 Lightweight Biometric Authentication

As stated above, this paper explores the use of lightweight computational prim-
itives and simple protocols for carrying out secure biometric authentication. As



in the previous schemes mentioned above, our security requirement is that an
attacker should not learn the cleartext biometric data and should not be able to
impersonate users by replaying encrypted (or otherwise disguised) data. Indeed,
we would like a scheme to be resilient against insider attacks; that is, a (dishon-
est) insider should be unable to use data stored at the server to impersonate a
user (even to the server). We also want our solutions to be simple and practi-
cal enough to be easily deployed on weak computational devices, especially at
the client, which could be a small smartcard biometric reader. Even so, we do
not want to rely on tamper-resistant hardware to store the reference vector at
the client. Ideally, we desire solutions that make it infeasible for an attacker to
impersonate a user even if the attacker steals the user’s client device (e.g., a
smartcard) and completely compromises its contents.

Even though the main rationale for this kind of investigation is that it makes
possible the use of inexpensive portable units that are computationally weak
(due to a slow processor, limited battery life, or both), it is always useful to
provide such faster schemes even when powerful units are involved.

1.4 Our Contributions

The framework of this paper is one where biometric measurement and feature
extraction are done in a unit we henceforth refer to as the reader, which we
sometimes refer to informally as the “smartcard,” although this physical imple-
mentation of the reader is just one of many possibilities. It is assumed that the
client has physical possession of the reader and, of course, the biometric itself.
The alignment and comparison of the resulting measured feature information
to the reference feature information is carried out at the comparison unit. Both
the reference feature information and the comparison unit are assumed to be
located at the server (at which authentication of the client is desired). Since
authentication for financial transactions is a common application of biometric
identification, we sometimes refer to the server informally as the “bank.”

We present schemes for biometric authentication that can resist several pos-
sible attacks. In particular, we allow for the possibility of an attacker gaining ac-
cess to the communication channel between reader and comparison unit, and/or
somehow learning the reference information stored at the comparison unit (ref-
erence data is write-protected but could be read by insiders, spyware, etc.). We
also allow for the possibility of an attacker stealing the reader from the client
and learning the data stored on the reader. Such an attack will, of course, deny
authentication service to the client, but it will not allow the attacker to imperson-
ate the user, unless the attacker also obtains a cleartext biometric measurement
from the user or the stored reference information at the server. To further resist
even these two latter coordinated multiple attacks, the reader could have its data
protected with tamper-resistant hardware, but we feel such coordinated multiple
attacks (e.g., of simultaneously compromising the reader and the server) should
be rare. Even so, tamper-resistant hardware protecting the memory at the reader
could allow us to resist even such coordinated attacks.



Given such a rich mix of attacks that we wish to resist, it is desirable that
the authentication protocol between reader and comparator not compromise the
security or privacy of biometric information. We also require that compromise
of the reference data in the comparator does not enable impersonation of the
user. These requirements pose a challenging problem because biometrics present
the peculiar difficulty that the comparisons are necessarily inexact; they are for
approximate equality. We give solutions that satisfy the following properties:

1. The protocols use cryptographic hash computations but not encryption. All
the other operations used are inexpensive (no multiplication).

2. Information obtained by an eavesdropper during one round of authentication
is useless for the next round, i.e., no replay attacks are possible.

3. User information obtained from the comparison unit by an adversary (e.g.,
through a corrupt insider or spyware) cannot be used to impersonate that
user with that server or in any other context.

4. If a card is stolen and all its contents compromised, then the thief cannot
impersonate the user.

Our solutions are based on a decoupling of information between the physical
biometric, the reader, and the server, so that their communication and stor-
age are protected and private, but the three of them can nevertheless perform
robust biometric authentication. Moreover, each authentication in our scheme
automatically sets up the parameters for the next authentication to also be per-
formed securely and privately. Our scheme has the property that one smartcard
is needed for each bank; this can be viewed as a drawback or as a feature, de-
pending on the application at hand — a real bank is unlikely to trust a universal
smartcard and will insist on its own, probably as an added security feature for
its existing ATM card infrastructure. On the other hand, a universal card design
for our framework of weak computational clients and servers (i.e., a card that
works with many banks, as many of the above-mentioned earlier papers achieve)
would be interesting and a worthwhile subject of further research. For now, our
scheme should be viewed as a biometric supplement to, say, an ATM card’s PIN;
the PIN problem is trivial because the authentication test is of exact equality
— our goal is to handle biometric data with the same efficiency and results as if
a PIN had been used. Our scheme is not a competitor for the powerful PKI-like
designs in the previous literature, but rather another point on a tradeoff between
cost and performance.

We are not aware of any previous work that meets the above-mentioned secu-
rity requirements using only lightweight primitives and protocols. The alignment
stage, which precedes the comparison stage of biometric matching, need not in-
volve any cryptographic computations even when security is a concern (cf. [17],
which implemented a secure version of [14]). It is carrying out the (Hamming or
more general) distance-computation in a secure manner that involves the expen-
sive cryptographic primitives (in [17], homomorphic encryption). It is therefore
on this “bottleneck” of the distance comparison that we henceforth focus, except
that we do not restrict ourselves to Hamming distance and also consider other
metrics.



2 Security Definition for Biometric Authentication

2.1 Adversary Model

An adversary is defined by the resources that it has. We now list these resources,
and of course an adversary may have any combination of these resources:

1. Smartcard (SCU and SCC): An adversary may obtain an uncracked version
of the client’s smartcard (SCU) or a cracked version of the smartcard (SCC).
An adversary with SCU does not see the values on the smartcard, but can
probe with various fingerprints. An adversary with SCC is also able to obtain
all information on the smartcard. We consider an adversary that cracks the
smartcard and then gives it back to the user as outside of our attack model.

2. Fingerprint (FP): An adversary may obtain someone’s fingerprint, by dust-
ing for the print or by some other more extreme measure.

3. Eavesdrop (ESD, ECC, and ECU): An adversary can eavesdrop on various
components of the system. These include: i) The server’s database (ESD)
which contains all information that the server stores about the client, ii)
the communication channel (ECC) which has all information sent between
the client and server, and iii) the comparison unit (ECU) which has all
information from ESD, ECC, and the result of the comparison.

4. Malicious (MCC): An adversary may not only be able to eavesdrop on the
communication channel but could also change values. We consider adver-
saries that can change the comparison unit or the server’s database as outside
of our attack model.

2.2 Security Definitions

We look at the confidentiality, integrity, and availability of the system. The
confidentiality requirements of the system are that an adversary should not be
able to learn information about the fingerprint. The integrity of the system
requires that an adversary cannot impersonate a client. The availability of the
system requires that an adversary cannot make a client unable to login (i.e.,
“denial of service”). We now formally define the security requirements for the
notions above.
Confidentiality:

We present three oracles that are considered secure in our paper, and we
prove confidentiality by showing an adversary is equivalent to one of these or-
acles; in other words if given such an oracle you could emulate the adversary’s
information. We assume that the oracle has a copy of the ideal fingerprint f̄ .

1. Suppose the adversary has an oracle A : {0, 1}|f̄ | → {0, 1}, where A(f) is
true iff f̄ and f are close. In other words, the adversary can try an arbitrary
number of fingerprints and learn whether or not they are close to each other.
We consider a protocol that allows such adversaries to be strongly secure.



2. Suppose the adversary has an oracle B : ∅ → {0, 1}log |f |, where B() returns
the distance between several readings of a fingerprint (the actual fingerprints
are unknown to the adversary). In other words, the adversary sees the dis-
tance between several readings of a fingerprint. We consider a protocol that
allows such adversaries to be strongly secure.

3. Suppose the adversary has an oracle C : {0, 1}|f | → {0, 1}log |f̄ |, where C(f)
returns the distance between f̄ and f . In other words, the adversary can try
many fingerprints and will learn the distance from the ideal. Clearly, this
adversary is stronger than the above mentioned adversaries. A protocol with
such an adversary has acceptable security only in cases where the attack is
detectable by the client; we call this weakly secure.

Integrity:

To ensure integrity we show that there is a check in place (either by the
server or by the client) that an adversary with the specific resources cannot pass
without having to invert a one-way function or guess a fingerprint. Of course if
the adversary can weakly guess the fingerprint, then we say that the adversary
can weakly impersonate the client.
Availability:

The types of denial of service attacks that we consider are those where the
adversary can prevent the parties from communicating or can make the parties
have inconsistent information which would make them unable to successfully
authenticate.

2.3 Summary of Security Properties for our Schemes

Before we define the security of our system, we discuss the security (in the
terms outlined above) of an “ideal” implementation that uses a trusted oracle.
Such a system would require that the client use his fingerprint along with the
smartcard and that all communication with the oracle take place through a
secure communication channel. The trusted oracle would authenticate the user
if and only if both the fingerprint and the smartcard were present. Clearly, we
cannot do better than such an implementation.

Table 1 is a summary of an adversary’s power with various resources (in our
protocol); there are three categories of security: Strong, Weak, and No. Where
the first two are defined in the previous section, and “No” means that the system
does not protect this resource against this type of adversary. Furthermore, we
highlight the entries that are different from an “ideal” system. To avoid cluttering
this exposition we do not enumerate all values in the table below, but rather for
entries not in the table the adversary has capabilities equal to the maximum
over all entries that it dominates.

Thus, in many ways, the smartcard is the lynchpin of the system. While it is
desirable to have a protocol that requires both the biometric and the smartcard,
having the smartcard be the lynchpin is preferable to having the biometric be
the lynchpin. The reason for this is that a biometric can be stolen without the
theft being detected, however there is a physical trace when a smartcard is



Table 1. Security of our Protocols

Resources Confidentiality Integrity Availability

FP No Strong Strong

SCC and ESD No No No

SCU and FP No No No

MCC and ESD Strong No No

SCU and ESD and MCC No No No

MCC Strong Strong No

SCU Strong Strong No

SCU and ECU Weak Weak No

stolen (i.e., it is not there). The only exception to this is when the adversary
has malicious control of the communication channel and can eavesdrop on the
server’s database, and in this case it can impersonate the client (but cannot learn
the fingerprint).

3 Some False Starts

In this section, we outline some preliminary protocols for biometric authentica-
tion that should be viewed as “warmups” for the better solutions given later in
the paper. The purpose of giving preliminary protocols first is twofold: (i) to
demonstrate the difficulty of this problem, and (ii) to provide insight into the
protocol given later.

Initially, we give preliminary solutions for binary vectors and for the Ham-
ming distance, however these preliminary solutions are extended to arbitrary
vectors and other distance functions. The primary question that needs to be
addressed is:

“How does the bank compute the Hamming distance between two binary
vectors without learning information about the vectors themselves?”

We assume that the server stores some information about some binary vector
f0 (the reference vector), and that the client sends the server some information
about some other vector f1 (the recently measured biometric vector). Further-
more, the server authenticates the client if dist(f0, f1), the Hamming distance
between f0 and f1, is below some threshold, ǫ. In addition to our security goal of
being able to tolerate a number of possible attacks, there are two requirements
for such a protocol:

– Correctness: the server should correctly compute dist(f0, f1).
– Privacy: the protocol should reveal nothing about f0 and f1 other than the

Hamming distance between the two vectors.

We now give various example protocols that attempt to achieve these goals, but
nevertheless fail at some point:



1. Suppose the server stores f0 and the client sends f1 in the clear or en-
crypted for the server. This amounts to the naive (but common) solution
mentioned above in the introduction. Clearly, this protocol satisfies the cor-
rectness property, but it does not satisfy the privacy requirement. In our
architecture, this is vulnerable to insider attacks at the server and it reveals
actual biometric data to the server.

2. Suppose, instead of storing f0, the server stores h(f0||r), the result of a
cryptographic one-way hash of f0 and a random nonce, r. The client would
then need to compute f1||r and apply h to this string, sending the result,
h(f1||r), to the server. This solution improves upon the previous protocol in
that it protects the client’s privacy. Indeed, the one-way property of the hash
function, h, makes it computationally infeasible for the server to reconstruct
f0 given only h(f0||r). Unfortunately, this solution does not preserve the
correctness of biometric authentication, since cryptographic hashing does
not preserve the distance between objects. This scheme will work only for
the case when f0 = f1, which is unlikely given the noise that is inherent in
biometric measurements.

3. Suppose, then, that the server instead stores f0 ⊕ r and the client sends
f1 ⊕ r, for some random vector r known only to the client. This solu-
tion satisfies the correctness property for biometric authentication, because
dist(f0 ⊕ r, f1 ⊕ r) = dist(f0, f1) for the Hamming distance metric. This
solution might at first seem to satisfy the privacy requirement, because it
hides the number of 0’s and 1’s in the vectors f0 and f1. However, the server
learns the positions where there is a difference between these vectors, which
leaks information to the server with each authentication. This leakage is
problematic, for after several authentication attempts the server will know
statistics about the locations that differ frequently. Depending on the means
of how feature vectors are extracted from the biometric, this leakage could
reveal identifying characteristics of the client’s biometric information. Thus,
although it seems to be secure, this solution nonetheless violates the privacy
constraint.

4. Suppose, therefore, that the scheme uses a more sophisticated obfuscating
technique, requiring the server to store Π(f0 ⊕ r), for some random vector
r and some fixed random permutation over the indices of biometric vector,
Π, known only to the client. The client can authenticate in this case by
sending Π(f1 ⊕ r). This solution satisfies the correctness property, because
dist(Π(f0 ⊕ r),Π(f1 ⊕ r)) = dist(f0, f1), for the Hamming distance met-
ric. Moreover, by using a random permutation, the server does not learn
the places in f0 and f1 where differences occur (just the places where the
permuted vectors differ). Thus, for a single authentication round the server
learns only the Hamming distance between f0 and f1. Unfortunately, this
scheme nevertheless still leaks information with each authentication, since
the server learns the places in the permuted vectors where they differ. Over
time, because the same Π is used each time, this could allow the server to
determine identifying information in the biometric.



This final scheme is clearly the most promising of the above false starts,
in that it satisfies the correctness and privacy goals for a single authentication
round. Our scheme for secure biometric authentication, in fact, is based on taking
this final false start as a starting point. The main challenge in making this scheme
secure even for an arbitrarily long sequence of authentications is that we need a
secure way of getting the server and client to agree on future permutations and
random nonces (without again violating the correctness and privacy constraints).

4 Our Schemes for Secure Biometric Authentication

In this section, we give our protocols for secure biometric authentication. We
begin with a protocol for the case of Boolean vectors where the relevant distance
between two such vectors is the Hamming distance. We later extend this to
vectors of arbitrary numbers and distance metrics that depend on differences
between the corresponding components (this is a broad class that contains the
Euclidean distance L2, as well as L1). We use H(·) to denote a keyed hash, where
the key is a secret known to the client and server but not to others. An additional
challenge in using such a function is that we now must prevent someone who
accidentally (or maliciously) learns the client information at the server’s end
from using that information to impersonate the client to the server. Likewise,
we must maintain the property that someone who learns the client’s information
on the reader should not be able to use this information (and possibly previously
eavesdropped sessions) to impersonate the client.

4.1 Boolean Biometric Vectors

The server (in the database and the comparison unit) and the client (in the
smartcard) store a small collection of values, which are recomputed after each
round. Also, there are q copies of this information at the server and on the card,
where q is the number of fingerprint mismatches before a person must re-register
with the server. In what follows, fi and fi+1 are Boolean vectors derived from
biometric readings at the client’s end, Πi and Πi+1 denote random permutations
generated by and known to the client but not the server, and ri, ri+1, si, si+1, si+2

are random Boolean vectors generated by the client, some of which may end up
being revealed to the server.

Before a round, the server and client store the following values:

– The server has: si ⊕ Πi(fi ⊕ ri), H(si), H(si,H(si+1)).
– The client has: Πi, ri, si, si+1.

A round of authentication must not only convince the server that the client
has a vector fi+1 that is “close” (in the Hamming distance sense) to fi, but must
also refresh the above information. A round consists of the following steps:

1. The client uses the smartcard to read a new biometric fi+1 and to generate
random Boolean vectors ri+1 and si+2 and a random permutation Πi+1.



2. The smartcard connects to the terminal and sends to the server the following
values: Πi(fi+1 ⊕ ri), si, and “transaction information” T that consists of
a nonce as well as some other information related to this particular access
request (e.g., date and time, etc).

3. The server computes the hash of the just-received si and checks that it is
equal to the previously-stored H(si). If this check does not match it aborts
the protocol. If it does match, then the server computes the XOR of si with
the previously-stored si⊕Πi(fi⊕ri) and obtains Πi(fi⊕ri). Then the server
computes the Hamming distance between the just-computed Πi(fi ⊕ri) and
the received Πi(fi+1 ⊕ ri).

– If the outcome is a match, then the server sends H(T ) to the client.
– If it is not a match, then the server aborts but throws away this set of

information in order to prevent replay attacks; if the server does not have
any more authentication parts, then it locks the account and requires the
client to re-register.

4. The smartcard checks that the value sent back from the server matches
H(T ) (recall that H is a keyed hash). If the message does not match, the
smartcard sends an error to the server. Otherwise, the smartcard sends the
server the following information: si+1⊕Πi+1(fi+1⊕ri+1), H(si+1,H(si+2)),
and H(si+1). It also wipes from its memory the reading of fingerprint fi+1

and of previous random values ri and si, so it is left with Πi+1, ri+1, si+1,
si+2.

5. When the server receives this message it verifies that H(si,H(si+1)) matches
the previous value that it has for this quantity and then updates its stored
values to: si+1 ⊕ Πi+1(fi+1 ⊕ ri+1), H(si+1,H(si+2)), and H(si+1).

4.2 Arbitrary Biometric Vectors

Suppose the biometric vectors fi and fi+1 now contain arbitrary (rather than
binary) values, and the proximity decision is based on a distance function that
depends on |fi − fi+1|.

Modify the description of the Boolean protocol as follows:

– Each of ri, ri+1 is now a vector of arbitrary numerical values rather than
Boolean values (but si, si+1, si+2 are still Boolean).

– Every fj ⊕x gets replaced in the protocol’s description by fj +x, e.g., fi⊕ri

becomes fi + ri. (The length of si must of course now be the same as the
number of bits in the binary representation of fi + ri, but we refrain from
belaboring this straightforward issue.)

The above requires communication O((log Σ)n), where Σ is the size of the
alphabet and n is the number of items. This reveals slightly more than the
distance, in that it reveals the component-wise differences. This information
leakage is minimal especially since the values are permuted. In the case where

the function is
n∑

i=1

|fi − fi+1|, we could use a unary encoding for each value and



reduce it to a Hamming distance computation, for which the protocols of the
previous section can then be used. This does not reveal the component-wise
differences, but it requires O(Σn) communication.

5 Security of the Protocols

In this section, we define the information and abilities of the adversaries, and
then prove the confidentiality, integrity and availability constraints.
Resources

The following table summarizes the information of various adversaries. Gen-
erally, an adversary with multiple resources gets all of the information of each
resource. There are cases where this is not the case, e.g., consider an adver-
sary with SCU and ECC; the adversary could not see readings of the client’s
fingerprint, because the client no longer has the smartcard to attempt a login.

Table 2. Information of Various Adversaries

Adversary Information

FP f

SCU Ability to probe small number of fingerprints

SCC SCU and ri, si, Πi, k

ESD k and several sets of H(si), H(si, H(si+1)), si ⊕Πi(f ⊕ ri)

ECC Several sets of si, Πi(f ⊕ ri), H(si+1), H(si+2)

ECU ESD and ECC and distances of several readings

MCC ECC and can change values

Confidentiality

Before we prove the confidentiality requirements we need the following lemma
(the proof is omitted sue to space constraints):

Lemma 1. The pair of values (Π(f ⊕ r)) and (Π(f ′⊕ r)) reveals nothing other
than the distance between each pair of vectors.

Theorem 1. The only cases where an adversary learns the fingerprint are in:
i) FP, ii) SCC and ESD, iii) SCU and ESD and MCC, and iv) any superset
of these cases. In the case of SCU and ECU, the adversary weakly learns the
fingerprint.

Proof: First when the adversary has the fingerprint the case is clearly true.
Suppose that the adversary has ECU and MCC, the adversary sees several pairs
of Π(f ⊕ r) and Π(f ′ ⊕ r) and by Lemma 1, this only reveals a set of distances,
which is equivalent to oracle B and thus is secure. Thus any attack must involve
an adversary with the smartcard in some form. Clearly, any adversary with the
smartcard cannot eavesdrop on communication when the client is logging into
the system.



Suppose that the adversary has SCC and MCC. The adversary has no in-
formation about the fingerprint in any of its information, since nothing is on
the smartcard and a client cannot login without the smartcard, and thus the
fingerprint is protected. However, if the adversary has SCC and ESD, they can
trivially learn the fingerprint from knowing Πi, ri, si, si ⊕ Πi(f ⊕ ri).

Any adversary with SCU can only probe various fingerprints, as no other
information is given. Suppose that the adversary has SCU and ECU. In this
case the adversary can probe various fingerprints and can learn the distance,
which is equivalent to oracle C and thus is weakly secure. Consider an adversary
with SCU and ESD. In this case they can probe using the SCU, but this is just
oracle A. If the adversary has SCU and MCC, they can learn s, Π, and r values
by stopping the traffic and trying various fingerprints, however they cannot use
this to glean the fingerprint as the client cannot login once the smartcard is
stolen. Finally, if the adversary has SCU and MCC and ESD, then they can
learn the values and then learn the fingerprint. ✷

Integrity and Availability

Theorem 2. The only cases where an adversary can impersonate a client are
in: i) SCU+FP, ii) SCC and ESD, iii) MCC and ESD, and iv) any superset of
these cases. In the case of SCU and ECU, the adversary weakly impersonate the
client. The only cases where an adversary can attack the availability of the client
are in: i) SCU, ii) MCC, and iii) any superset of these cases.

Proof: The proof of this claim will be in the full version of the paper.

6 Storage-Computation Tradeoff

In this section, we introduce a protocol that allows q fingerprint mismatches
before requiring the client to re-register with the server, with only O(1) storage,
but that requires O(q) hashes to authenticate. This utilizes similar ideas as
SKEY [19]; in what follows Hj(x) denotes the value of x hashed j times. We do
not prove the security of this system due to space limitations. After the setup
the following is the state of the system:

– Server has:
⊕q−1

j=0 Hj(si) ⊕ Πi(fi ⊕ ri), Hq(si), and H(Hq(si),H
q(si+1)).

– Client has: Πi, ri, si, and si+1.

After t fingerprint mismatches the server has:
⊕q−t−1

j=0 Hj(si) ⊕ Πi(fi ⊕ ri),

Hq−t(si), and H(Hq(si),H
q(si+1)).

The authentication and information-updating round is as follows for the tth
attempt to authenticate the client:

1. The client uses the smartcard to read a new biometric fi+1 and to generate
random Boolean vectors ri+1 and si+2 and a random permutation Πi+1.

2. The smartcard connects to the terminal and sends to the server the following
values:

⊕q−t−1

j=0 Hj(si) ⊕ Πi(fi+1 ⊕ ri) and Hq−t(si).



3. The server computes the hash of the just-received Hq−t(si) and checks that
it is equal to the previously-stored Hq−t+1(si). If this check does not match
it aborts the protocol. If it does match, then the server computes the XOR
of Hq−t(si) with the previously-stored

⊕q−t

j=0 Hj(si) ⊕ Πi(fi ⊕ ri) and ob-

tains
⊕q−t−1

j=0 Hj(si)⊕Πi(fi ⊕ ri). It then computes the Hamming distance

between the just-computed
⊕q−t−1

j=0 Hj(si) ⊕ Πi(fi ⊕ ri) and the received
⊕q−t−1

j=0 Hj(si) ⊕ Πi(fi+1 ⊕ ri).
– If the outcome is a match, then the server sends H(T ) (recall that H is

a keyed hash) to the client.
– If it is not a match, then the server updates its values to the following:⊕q−t−1

j=0 Hj(si)⊕Πi(fi⊕ri), Hq−t(si), and H(Hq(si),H
q(si+1)). If t = q,

then the server locks the account and requires the client to re-register.
4. If the smartcard checks that the value sent back from the server matches

H(T ), then the smartcard sends the server the following information:
⊕q−1

j=0 Hj(Hq−t(si+1)) ⊕ Πi+1(fi+1 ⊕ ri+1), as well as Hq(si+1), and also
H(Hq(si+1),H

q(si+2)). If it does not match, then it sends an error to the
server and aborts. In either case, it wipes from its memory the reading of
fingerprint fi+1 and those previously stored values that are no longer rele-
vant.

5. When the server receives this message it verifies that H(Hq(si),H
q(si+1))

matches the previous value that it has for this quantity and then updates its
stored values to:

⊕q−1

j=0 Hj(Hq−t(si+1)) ⊕ Πi+1(fi+1 ⊕ ri+1), Hq(si+1), and
H(Hq(si+1),H

q(si+2))

7 Conclusions and Future Work

In this paper, a lightweight scheme was introduced for biometric authentication
that could be used by weak computational devices. Unlike other protocols for
this problem, our solution does not require complex cryptographic primitives,
but instead relies on cryptographic hashes. Our protocols are secure in that
the client’s fingerprint is protected, it is “hard” to impersonate a client to the
comparison unit, and adversaries with malicious access to the communication
channel cannot steal a client’s identity (i.e., be able to impersonate the client
to the comparison unit after the transaction). To be more precise, an adversary
would need the smartcard and either the fingerprint or the server’s database to
impersonate the client. One problem with our protocol is that for every successful
authentication, the database must update its entry to a new value (to prevent
replay attacks), and thus we present the following open problem: is it possible for
the server to have a static database and have a secure authentication mechanism
that requires only cryptographic hash functions?
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