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Abstract. There are many proposals of unkeyed hash functions based
on block ciphers. Preneel, Govaerts and Vandewalle, in their CRYPTO’93
paper, presented the general model of unkeyed hash functions based on
block ciphers such that the size of the hashcode is equal to the block size
and is almost equal to the key size. In this article, it is shown that, for ev-
ery unkeyed hash function in their model, there exist block ciphers secure
against the adaptive chosen plaintext attack such that the unkeyed hash
function based on them is not one-way. The proof is constructive: the se-
cure block ciphers are explicitly defined based on which one-way unkeyed
hash functions cannot be constructed. Some of the block ciphers pre-
sented are secure even against the adaptive chosen plaintext/ciphertext
attack.

1 Introduction

Hash functions are very important primitives in cryptography. Hash functions in
cryptography are classified in two types: unkeyed hash functions and keyed hash
functions. The former ones are also called manipulation detection codes (MDCs).
They are used for message digest in signature schemes. The latter ones are also
called message authentication codes (MACs). Excellent surveys are presented in
[4,8]. Unkeyed hash functions are discussed in this article.

There are many proposals of unkeyed hash functions. One of the approaches
is to construct them based on block ciphers. Some of the proposals following
this approach are found in [2,3,6,7]. The main motivation of this approach is the
minimization of design and implementation effort, which is supported by the
expectation that secure unkeyed hash functions can be constructed from secure
block ciphers.

Secure unkeyed hash functions are classified in two types: one-way hash func-
tions and collision resistant hash functions. One-way hash functions are further
classified in preimage resistant hash functions and second-preimage resistant
hash functions. Informally, preimage resistance means that, given an output, it
is infeasible to obtain an input which produces the output. Second-preimage re-
sistance means that, given an input, it is infeasible to obtain another input which
produces the same output as the given input. Collision resistance means that it
is infeasible to obtain two different inputs which produce the same output.
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Preneel, Govaerts and Vandewalle studied the unkeyed hash functions based
on block ciphers such that the size of the hashcode is equal to the block size
and is almost equal to the key size [9]. They presented the general model of such
hash functions. There are 64 schemes in their model. Let us call them PGVHFs.
They considered the security of all PGVHFs against the existing five important
attacks and concluded that 12 schemes are secure assuming that the underlying
block cipher is ideal. However, “ideal” means that the block cipher is a keyed
random permutation, which is quite impractical in a strict sense.

On the other hand, for collision resistance, Simon’s result [10] implies that
no provable construction of a collision resistant hash function exists based on a
“black box” one-way permutation, which means that the one-way permutation
is used as a subroutine, that is, the internal structure is not used. PGVHFs are
constructed based on a “black box” block cipher, and a block cipher can be
constructed based on a “black box” one-way permutation.

It is still open if there exist any provable one-way PGVHFs based on se-
cure block ciphers. In this article, a negative result is given to this problem. It
is shown that, for every PGVHF, there exist block ciphers secure against the
adaptive chosen plaintext attack such that the PGVHF based on them is not
one-way. Some of the block ciphers presented are secure against the adaptive
chosen plaintext/ciphertext attack. The proof is constructive: the secure block
ciphers are explicitly defined based on which one-way PGVHFs cannot be con-
structed. These block ciphers have a small amount of non-randomness. Though
the non-randomness cannot be used by adversaries of a block cipher, they can
be used to break one-wayness of PGVHFs. Informally, the reason is that block
ciphers have a secret input (secret key) randomly chosen, while unkeyed hash
functions do not have any secret input.

Actually, it is mentioned, for example in [4], that some kinds of non-
randomness of underlying block ciphers such as weak keys or fixed points may fa-
cilitate adversarial manipulation of PGVHFs. The contribution of this article is
that it shows explicitly that security of block ciphers against the adaptive chosen
plaintext(/ciphertext) attack is not sufficient for one-wayness of PGVHFs.

This article is organized as follows. Section 2 gives the definitions and basic
notations necessary for subsequent discussions. The main result of this article is
presented in Section 3. Further considerations are given in Section 4. Section 5
concludes the article with a few open questions.

2 Preliminaries

Let {0, 1}≤k = ∪k
i=1{0, 1}i. For b ∈ {0, 1}, let bn represent the sequence of n b’s.

For a {0, 1}-sequence x, let |x| represent the length of x. For two {0, 1}-sequences
x, y, let x · y represent the concatenation of x and y. For two {0, 1}-sequences
x, y such that |x| = |y|, x ⊕ y represents bit-wise addition modulo 2.

Let Z
+ be the set of non-negative integers and R

+ be the set of non-negative
reals. A function ε : Z

+ → R
+ is said to be negligible, if, for every c > 0, there
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exists some nc > 0 such that ε(n) < n−c for all n > nc. A function σ : Z
+ → R

+

is said to be non-negligible if it is not negligible.

2.1 Hash Functions

In this article, unkeyed hash functions are simply called hash functions. A hash
function is a function which maps an input of arbitrary length to an output of
fixed length.

Definition 1. A function H = {hn |hn : {0, 1}≤�(n) → {0, 1}n} is called a hash
function if

1. �(n) = nO(1) and �(n) > n,
2. the length of the description of hn is nO(1),
3. there exists a polynomial-time algorithm H such that H(1n, hn, x) = hn(x)

for every x ∈ {0, 1}≤�(n). �

The length of the input is polynomially bounded by the length of the output.
This is because only polynomially bounded adversary will be considered in the
following discussion.

In this article, the description of a function is denoted by its name as in the
above definition; the description of the function hn is also denoted by hn.

Three kinds of notions are provided with the security of a hash function;
preimage resistance, second-preimage resistance, and collision resistance. Infor-
mally, preimage resistance means that, given a hash function and its output, it
is intractable to find a preimage which produces the output. Second-preimage
resistance means that, given a hash function and its input, it is intractable to
find another preimage which produces the same output as the given input. Col-
lision resistance means that, given a hash function, it is intractable to find two
inputs which produce the same output.

In this article, only preimage resistance and second-preimage resistance are
considered. Formal definitions are given below.

Definition 2. A hash function H = {hn |hn : {0, 1}≤�(n) → {0, 1}n} is preim-
age resistant if, for every probabilistic polynomial-time algorithm F,

Pr[F(1n, hn, y) = x′ ∈ {0, 1}≤�(n) ∧ hn(x′) = y]

is negligible, where y = hn(x) such that x is selected uniformly from {0, 1}≤�(n).
The probability is taken over the random selection of x and the random choices
of F. �

Definition 3. A hash function H = {hn |hn : {0, 1}≤�(n) → {0, 1}n} is second-
preimage resistant if, for every probabilistic polynomial-time algorithm F,

Pr[F(1n, hn, x) = x′ ∈ {0, 1}≤�(n) ∧ x′ �= x ∧ hn(x′) = hn(x)]

is negligible, where x is selected uniformly from {0, 1}≤�(n) and the probability
is taken over the random selection of x and the random choices of F. �
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A hash function is usually defined with a round function with fixed length
of inputs, which is applied to the input iteratively to produce the output. Thus,
this kind of hash function is called an iterative hash function.

Definition 4. A hash function H = {hn |hn : {0, 1}≤�(n) → {0, 1}n} is called
an iterative hash function if hn is specified with

– a round function fn : {0, 1}n × {0, 1}m(n) → {0, 1}n, where �(n) > m(n) >
�log2(�(n) + 1)�,

– a padding rule Pad, and
– an initial-value generator IV.

A padding rule Pad is a deterministic polynomial-time algorithm which takes
1n and x ∈ {0, 1}≤�(n) and outputs z defined below. It first divides x into
l = �|x|/m(n)� blocks x1, x2, . . . , xl such that |xi| = m(n) for i = 1, . . . , l − 1
and 1 ≤ |xl| ≤ m(n). Then it outputs z = (z1, z2, . . . , zl+1) such that

zi =




xi for i = 1, 2, . . . , l − 1,
xl · 0m(n)−|xl| for i = l,
bin(|x|) for i = l + 1,

where bin(|x|) is the binary representation of the length of x.
An initial-value generator IV is a deterministic polynomial-time algorithm

which takes 1n for input and outputs IV ∈ {0, 1}n.
For x ∈ {0, 1}≤�(n), let z = (z1, . . . , zl+1) be the corresponding padded input.

hn(x) is defined as follows: hn(x) = vl+1, where v0 = IV and vi = fn(vi−1, zi)
for i = 1, 2, . . . , l + 1. �

As the padding rule in the above definition, adding a block which contains
the length of the input is called MD-strengthening after Merkle [5] and Damg̊ard
[1].

For the sake of generality, the initial-value generator is assumed in the above
definition. The results presented in the next section is independent of the initial
value.

2.2 Block Ciphers

In this article, for block ciphers, it is assumed that the length of a plaintext or
a ciphertext is equal to that of the secret key.

Definition 5. A pair of functions B = (E, D) is called a block cipher if

1. E = {en | en : {0, 1}n×{0, 1}n → {0, 1}n} and for every k ∈ {0, 1}n, en(k, ·) :
{0, 1}n → {0, 1}n is a one-to-one mapping,

2. D = {dn | dn : {0, 1}n × {0, 1}n → {0, 1}n} and for every k ∈ {0, 1}n and
x ∈ {0, 1}n, dn(k, en(k, x)) = x,

3. the length of the description of en and dn is nO(1),
4. there exists a polynomial-time algorithm B such that B(1n, en, k, x)=en(k, x)

and B(1n, dn, k, x) = dn(k, x).

E is called an encryption function and D is called a decryption function. �
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In the following, security of a block cipher is defined. Adversaries are as-
sumed to make the adaptive chosen plaintext attack or the adaptive chosen
plaintext/ciphertext attack. The security goal is indistinguishability of encryp-
tion against the attacks.

Definition 6. An adversary A making the adaptive chosen plaintext attack is
defined as follows:

A is a probabilistic polynomial-time algorithm with an oracle B. Both A and
B take 1n and en, dn for input. Before the execution of A, B uniformly selects
k ∈ {0, 1}n. First, A selects and asks xi ∈ {0, 1}n to B, which replies en(k, xi)
for i = 1, 2, . . . , q. These queries are adaptive; A may select and ask xi+1 after it
receives en(k, xi). Then, A chooses x(0), x(1) ∈ {0, 1}n such that x(0) �= x(1) and
x(0), x(1) �∈ {x1, . . . , xq} and sends them to B. B selects b ∈ {0, 1} at random
and replies en(k, x(b)). A outputs the guess of b.

The advantage of an adversary A is |Pr[A(1n, en, dn) = b]− 1/2|, where the
probability is taken over the random choices of A and B. �

Based on the above definition, a block cipher secure against the adaptive
chosen plaintext attack is defined in the following way.

Definition 7. A block cipher is secure against the adaptive chosen plaintext
attack if, for every adversary making the adaptive chosen plaintext attack, its
advantage is negligible. �

Definition 8. An adversaryA making the adaptive chosen plaintext/ciphertext
attack is defined as follows:

A is a probabilistic polynomial-time algorithm with an oracle B. Both A and
B take 1n and en, dn for input. Before the execution of A, B uniformly selects
k ∈ {0, 1}n. First, A selects and asks (xi, si) to B such that xi ∈ {0, 1}n and
si ∈ {0, 1} for i = 1, 2, . . . , q. Then, B replies en(k, xi) if si = 0 and dn(k, xi)
if si = 1. These queries are adaptive; A may select and ask (xi+1, si+1) after it
receives the answer to (xi, si). Then, A chooses x(0), x(1) ∈ {0, 1}n and s ∈ {0, 1}
such that x(0) �= x(1) and

x(0), x(1) �∈
{{xi | si = 0} ∪ {dn(k, xj) | sj = 1} if s = 0
{xi | si = 1} ∪ {en(k, xj) | sj = 0} if s = 1

and sends them to B. B selects b ∈ {0, 1} at random and replies en(k, x(b)) if
s = 0 or dn(k, x(b)) if s = 1. A outputs the guess of b.

The advantage of an adversary A is |Pr[A(1n, en, dn) = b]− 1/2|, where the
probability is taken over the random choices of A and B. �

Based on the above definition, a block cipher secure against the adaptive
chosen plaintext/ciphertext attack is defined in the following way.

Definition 9. A block cipher is secure against the adaptive chosen
plaintext/ciphertext attack if, for every adversary making the adaptive chosen
plaintext/ciphertext attack, its advantage is negligible. �



344 Shoichi Hirose

2.3 Iterative Hash Functions Based on Block Ciphers

The general model of iterative hash functions considered in this article is defined.
This model was first defined by Preneel, Govaerts and Vandewalle [9].

Definition 10. An iterative hash function based on a block cipher is in the
general model by Preneel, Govaerts and Vandewalle if its round function

fn(vi−1, zi)
def= en(k, x) ⊕ y,

where

1. E = {en | en : {0, 1}n × {0, 1}n → {0, 1}n} is the encryption function of a
block cipher, and

2. k, x, y ∈ {vi−1, zi, vi−1 ⊕ zi} ∪ {0, 1}n. �

Let us call the iterative hash functions defined above PGVHFs. With a block
cipher, 64 kinds of PGVHFs are defined. Let a PGVHF be denoted by HF(k,x,y)

E

if its round function is defined by en(k, x) ⊕ y, where E = {en | en : {0, 1}n ×
{0, 1}n → {0, 1}n}. For example, HF(zi,vi−1,vi−1)

E is a PGVHF with the round
function fn(vi−1, zi) = en(zi, vi−1) ⊕ vi−1. This is known as the Davies-Meyer
scheme.

3 Secure Block Ciphers Are Not Sufficient for PGVHFs

In this section, the following statement is disproved:

There exists some PGVHF such that, for every secure block cipher B, it
is one-way if constructed with B.

The proof is constructive: for each PGVHF, some block cipher is explicitly de-
fined such that the PGVHF is not one-way if it is constructed with the block
cipher.

3.1 Secure Block Ciphers Used to Construct Counterexamples

Let B∗ = (E∗, D∗) be a block cipher, where E∗ = {e∗n | e∗n : {0, 1}n × {0, 1}n →
{0, 1}n} and D∗ = {d∗n | d∗n : {0, 1}n × {0, 1}n → {0, 1}n}. For even n and
x = (x1, . . . , xn) ∈ {0, 1}n, let xL = (x1, . . . , xn/2) and xR = (xn/2+1, . . . , xn).
Let W (x) denote the Hamming weight of x ∈ {0, 1}n. (0, 0, . . . , 0) ∈ {0, 1}n is
simply denoted by 0.

Eight block ciphers BA0, BA1, BB0, BB1, BC0, BC1, BD0, BD1 are defined in
the following way based on B∗. Only the definitions of the encryption functions
are presented. The definitions of the decryption functions can be derived easily
from those of the corresponding encryption functions.

eA0
n (k, x) =

{
x if W (k) ≤ 1,
e∗n(k, x) otherwise.
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eA1
n (k, x) =

{
k ⊕ x if W (k) ≤ 1,
e∗n(k, x) otherwise.

if k = 0, then eB0
n (k, x) = x,

otherwise eB0
n (k, x) =




k if x = k,
e∗n(k, k) if x = d∗n(k, k),
e∗n(k, x) otherwise.

if k = 0, then eB1
n (k, x) = x,

otherwise eB1
n (k, x) =




0 if x = k,
e∗n(k, k) if x = d∗n(k, 0),
e∗n(k, x) otherwise.

if k = 0, then eC0
n (k, x) = (xL ⊕ xR) · xL,

otherwise eC0
n (k, x) =




k if x = k,
e∗n(k, k) if x = d∗n(k, k),
e∗n(k, x) otherwise.

if k = 0, then eC1
n (k, x) = (xL ⊕ xR) · xL,

otherwise eC1
n (k, x) =




0 if x = k,
e∗n(k, k) if x = d∗n(k, 0),
e∗n(k, x) otherwise.

eD0
n (k, x) =




x if W (k ⊕ x) ≤ 1,
e∗n(k, e∗n(k, x)) if W (k ⊕ e∗n(k, x)) ≤ 1,
e∗n(k, x) otherwise.

eD1
n (k, x) =




k ⊕ x if W (k ⊕ x) ≤ 1,
e∗n(k, k ⊕ e∗n(k, x)) if W (e∗n(k, x)) ≤ 1,
e∗n(k, x) otherwise.

BA0 and BA1 have (n + 1) weak keys. The Hamming weight of the weak
keys are at most 1. BB0, BB1 have a weak key k = 0. BB0 and BC0 as well as
BB1 and BC1 are different from each other only when k = 0. BC0 and BC1 are
defined only if n is even.

To simplify the definitions of BD0 and BD1, it is assumed that {x̂ |W (k⊕x̂) ≤
1} ∩ {x̃ |W (k ⊕ e∗n(k, x̃)) ≤ 1} = φ and {x̂ |W (k ⊕ x̂) ≤ 1} ∩ {x̃ |W (e∗n(k, x̃)) ≤
1} = φ for every k ∈ {0, 1}n. In general, it is not restrictive for secure encryption
functions.

For the security of the block ciphers defined above, the following two lemmas
can be obtained.

Lemma 1. If B∗ is secure against the adaptive chosen plaintext attack, then
BA0, BA1, BB0, BB1, BC0, BC1, BD0, BD1 are secure against the adaptive chosen
plaintext attack.

(Proof) It is obvious that both BA0 and BA1 are secure against the adaptive
chosen plaintext attack because the probability that the weak keys are selected
is (n + 1)/2n and negligible.
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In the following part of this proof, it is only proved that BB0 and BB1

are secure against the adaptive chosen plaintext attack. It can be proved that
BC0, BC1, BD0 and BD1 are secure against the adaptive chosen plaintext attack
almost in the same way.

Suppose that A is an adversary against B∗ and let X = {xi |xi ∈ {0, 1}n for
i = 1, . . . , q} be the set of plaintexts A asks to the oracle, where q is bounded
by some polynomial in n.

If the probability that {k, d∗n(k, k)} ∩ X �= φ is non-negligible, then A can
guess k correctly with non-negligible probability, which contradicts the assump-
tion that B∗ is secure against the adaptive chosen plaintext attack. If the proba-
bility that d∗n(k, 0) ∈ X is non-negligible, then the following adversary A′ against
B∗ can be constructed.

1. A′ guess j such that xj = d∗n(k, 0).
2. A′ simulates A and asks x1, . . . , xj−1 to the oracle.
3. When A generates xj , A′ terminates the simulation of A. A′ does not ask

xj to the oracle.
4. A′ randomly selects x(0) and sends x(0) and x(1) = xj to the oracle.
5. If the reply from the oracle is equal to 0, then A′ outputs 1. Otherwise, A′

randomly selects a bit and outputs it.

The advantage of A′ is non-negligible, which contradicts the assumption that
B∗ is secure against the adaptive chosen plaintext attack. Thus, for any adver-
sary, the probability that {k, d∗n(k, k), d∗n(k, 0)} ∩X �= φ is negligible. Thus, any
adversary for BB0 can ask k or d∗n(k, k) to the oracle only with negligible proba-
bility because eB0

n (k, x) = e∗n(k, x) for every x �∈ {k, d∗n(k, k)}. Any adversary for
BB1 can ask k or d∗n(k, 0) to the oracle only with negligible probability because
eB1

n (k, x) = e∗n(k, x) for every x �∈ {k, d∗n(k, 0)}. Thus, any adversary for BB0 or
BB1 is only as powerful as the most powerful adversary for B∗. Consequently,
both BB0 and BB1 is secure against the adaptive chosen plaintext attack. �

The next lemma is presented without proof because it can be proved in the
same way as the above lemma.

Lemma 2. If B∗ is secure against the adaptive chosen plaintext/ciphertext at-
tack, then BA0, BA1, BB0, BC0, BD0 are secure against the adaptive chosen
plaintext/ciphertext attack. �

It is obvious that BB1, BC1 and BD1 is not secure against the chosen plain-
text/ciphertext attack even if B∗ is secure against the chosen plaintext/ciphertext
attack. For these block ciphers, if an adversary asks the ciphertext 0 to the oracle,
then it can obtain the secret key.

In the following parts of this section, it is proved that each PGVHF is not one-
way if its round function is composed with at least one of BA0, BA1, BB0, BB1,
BC0, BC1, BD0, BD1.
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3.2 Counterexamples

In the following discussion, for HF(k,x,y)
E , when k, x or y are constant, they are

always regarded as 0. This is just for simplicity of the discussion. The following
discussion can be easily modified so as to be applied to the case when they are
non-zero constant.

Table 1 summarizes the results. It shows with which encryption function each
PGVHF is not second-preimage resistant. “-” represents that the PGVHF is not
second-preimage resistant with any encryption function.

Theorem 1. The following PGVHFs are not second-preimage resistant:

i. HF(vi−1⊕zi,0,vi−1)

EA1 , HF(vi−1⊕zi,0,zi)

EA0 , HF(vi−1⊕zi,vi−1,0)

EA1 , HF(vi−1⊕zi,vi−1,vi−1⊕zi)

EA0 ,
HF(vi−1⊕zi,zi,0)

EA0 , HF(vi−1⊕zi,zi,vi−1⊕zi)

EA1 , HF(vi−1⊕zi,vi−1⊕zi,vi−1)

EA0 ,
HF(vi−1⊕zi,vi−1⊕zi,zi)

EA1 ,
ii. HF(zi,vi−1⊕zi,vi−1)

EB0 , HF(zi,vi−1⊕zi,vi−1⊕zi)

EB1 , HF(vi−1⊕zi,zi,vi−1)

EB0 , HF(vi−1⊕zi,zi,zi)

EB1 ,
iii. HF(vi−1,zi,zi)

EC0 , HF(vi−1,zi,vi−1⊕zi)

EC1 , HF(vi−1,vi−1⊕zi,zi)

EC1 , HF(vi−1,vi−1⊕zi,vi−1⊕zi)

EC0 ,
iv. HF(zi,vi−1,vi−1)

ED1 , HF(zi,vi−1,vi−1⊕zi)

ED0 , HF(vi−1⊕zi,vi−1,vi−1)

ED1 , HF(vi−1⊕zi,vi−1,zi)

ED0 .

(Proof) For each PGVHF listed above and a given preimage, a second preimage
will be presented which is of the same length as the given preimage. It is apparent
from the following proof that second preimages can be easily found for almost
all given preimages.

Let a1, a2, . . . , am ∈ {0, 1}n be a padded input corresponding to the given
preimage. Let bj = fn(bj−1, aj) for j = 1, . . . , m, where b0 is the initial value.
Let α(l) = (α(l)

1 , . . . , α
(l)
n ) ∈ {0, 1}n such that

α
(l)
j =

{
1 if j = l
0 otherwise,

for 1 ≤ l ≤ n.

(i)For HF(vi−1⊕zi,0,vi−1)

EA1 ,HF(vi−1⊕zi,0,zi)

EA0 ,HF(vi−1⊕zi,vi−1,0)

EA1 ,HF(vi−1⊕zi,vi−1,vi−1⊕zi)

EA0 ,
HF(vi−1⊕zi,zi,0)

EA0 , HF(vi−1⊕zi,zi,vi−1⊕zi)

EA1 , HF(vi−1⊕zi,vi−1⊕zi,vi−1)

EA0 and
HF(vi−1⊕zi,vi−1⊕zi,zi)

EA1 ,

vi = fn(vi−1, zi) =
{

vi−1 if zi = vi−1,

vi−1 ⊕ α(l) if zi = vi−1 ⊕ α(l).

Suppose m ≥ n+2. Let δ = (δ1, . . . , δn) = b0 ⊕ bn. Let a′
1, . . . , a

′
n, b′0, . . . , b

′
n−1 ∈

{0, 1}n such that b′0 = b0, b′j = fn(b′j−1, a
′
j) and

a′
j =

{
b′j−1 if δj = 0,
b′j−1 ⊕ α(j) if δj = 1

for j = 1, . . . , n. Then, b′n = bn. Thus, a′
1, . . . , a

′
n, an+1, . . . , am is a second preim-

age if (a′
1, . . . , a

′
n) �= (a1, . . . , an).
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(ii) Suppose m ≥ 4. For HF(zi,vi−1⊕zi,vi−1)

EB0 and HF(zi,vi−1⊕zi,vi−1⊕zi)

EB1 , let a′
j = 0

and a′
j+1 = bj+1 for some j ≤ m − 3. Then,

f(f(bj−1, a
′
j), a

′
j+1) = f(f(bj−1, 0), bj+1)

= f(0, bj+1)
= bj+1.

For HF(vi−1⊕zi,zi,vi−1)

EB0 and HF(vi−1⊕zi,zi,zi)

EB1 , let a′
j = bj−1 and a′

j+1 = bj+1 for
some j ≤ m − 3. Then,

f(f(bj−1, a
′
j), a

′
j+1) = f(f(bj−1, bj−1), bj+1)

= f(0, bj+1)
= bj+1.

Thus, for the above four PGVHFs, a1, . . . , aj−1, a
′
j , a

′
j+1, aj+2, . . . , am is a

second preimage if (a′
j , a

′
j+1) �= (aj , aj+1).

(iii) Suppose m ≥ 4. For HF(vi−1,zi,zi)

EC0 and HF(vi−1,zi,vi−1⊕zi)

EC1 , let a′
j = bj−1 and

a′
j+1 = (bL

j+1 ⊕ bR
j+1) · bL

j+1 for some j ≤ m − 3. Then,

f(f(bj−1, a
′
j), a

′
j+1) = f(0, a′

j+1)

= (bR
j+1 · (bL

j+1 ⊕ bR
j+1)) ⊕ ((bL

j+1 ⊕ bR
j+1) · bL

j+1)
= bj+1.

For HF(vi−1,vi−1⊕zi,zi)

EC1 and HF(vi−1,vi−1⊕zi,vi−1⊕zi)

EC0 , let a′
j = 0 and a′

j+1 = (bL
j+1⊕

bR
j+1) · bL

j+1 for some j ≤ m − 3. Then,

f(f(bj−1, a
′
j), a

′
j+1) = f(0, a′

j+1) = bj+1.

Thus, for the above four PGVHFs, a1, . . . , aj−1, a
′
j , a

′
j+1, aj+2, . . . , am is a

second preimage if (a′
j , a

′
j+1) �= (aj , aj+1).

(iv) Suppose m ≥ n + 2. Let δ = (δ1, . . . , δn) = b0 ⊕ bn.
For HF(zi,vi−1,vi−1)

ED1 and HF(zi,vi−1,vi−1⊕zi)

ED0 ,

vi = fn(vi−1, zi) =
{

vi−1 if zi = vi−1,
vi−1 ⊕ α(l) if zi = vi−1 ⊕ α(l).

Let a′
1, . . . , a

′
n, b′0, . . . , b′n−1 ∈ {0, 1}n such that b′0 = b0, b′j = fn(b′j−1, a

′
j) and

a′
j =

{
bj−1 if δj = 0,
bj−1 ⊕ α(j) if δj = 1

for j = 1, . . . , n. Then, b′n = bn.
For HF(vi−1⊕zi,vi−1,vi−1)

ED1 and HF(vi−1⊕zi,vi−1,zi)

ED0 ,

vi = fn(vi−1, zi) =
{

vi−1 if zi = 0,
vi−1 ⊕ a(l) if zi = α(l).
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Let a′
1, . . . , a

′
n, b′0, . . . , b

′
n−1 ∈ {0, 1}n such that b′0 = b0, b′j = fn(b′j−1, a

′
j) and

a′
j =

{
0 if δj = 0,
α(j) if δj = 1

for j = 1, . . . , n. Then, b′n = bn.
Thus, for the above four PGVHFs, a′

1, . . . , a
′
n, an+1, . . . , am is a second preim-

age if (a′
1, . . . , a

′
n) �= (a1, . . . , an). �

Theorem 2. The following PGVHFs are not preimage resistant:

i. HF(0,vi−1⊕zi,zi)
E if E ∈ {EA0, EA1},

ii. HF(zi,vi−1,0)

EA1 , HF(zi,vi−1,zi)

EA0 , HF(zi,vi−1⊕zi,0)

EA0 , HF(zi,vi−1⊕zi,zi)

EA1 ,
iii. HF(vi−1⊕zi,vi−1⊕zi,vi−1)

E and HF(vi−1⊕zi,vi−1⊕zi,zi)
E if E ∈ {EB0, EC0}.

(Proof) (i) It is obvious that HF(0,vi−1⊕zi,zi)
E is not preimage resistant if E ∈

{EA0, EA1}, because the round function fn(vi−1, zi) = en(0, vi−1⊕zi)⊕zi = vi−1

for any vi−1, zi if en ∈ {eA0
n , eA1

n }.
(ii) In this part, a procedure is presented to compute a preimage of a given
output only for HF(zi,vi−1,zi)

EA0 . Preimages can be obtained in the same way for
the other three PGVHFs.

Let bn+2 be the given output. The padded input a1, . . . , an+2, which consists
of n + 2 blocks, is obtained in the following way.

1. Fix an+2 and an+1. an+2 is the binary representation of the length of the
preimage. Without loss of generality, suppose that the length of the preimage
is n2 + 1. Then, an+1 ∈ {(0, 0, . . . , 0), (1, 0, . . . , 0)}.

2. Compute bn+1 = dA0(an+2, bn+2 ⊕ an+2) and bn = dA0(an+1, bn+1 ⊕ an+1).
3. Let δ = (δ1, . . . , δn) = b0 ⊕ bn, where b0 is the initial value of the PGVHF.

For j = 1, . . . , n, let

aj =
{

0 if δj = 0,
α(j) if δj = 1.

It can be verified easily that a1, . . . , an+2 is a padded input which produces the
output bn+2 from the fact that

vi = fn(vi−1, zi) =
{

vi−1 if zi = 0,
vi−1 ⊕ α(l) if zi = α(l)

for HF(zi,vi−1,zi)

EA0 .

(iii) It is obvious that HF(vi−1⊕zi,vi−1⊕zi,vi−1)
E and HF(vi−1⊕zi,vi−1⊕zi,zi)

E are not
preimage resistant if E ∈ {EB0, EC0}. If en ∈ {eB0

n , eC0
n }, then, for any vi−1, zi,

the round function of HF(vi−1⊕zi,vi−1⊕zi,vi−1)
E is en(vi−1⊕zi, vi−1⊕zi)⊕vi−1 = zi

and that of HF(vi−1⊕zi,vi−1⊕zi,zi)
E is en(vi−1 ⊕ zi, vi−1 ⊕ zi) ⊕ zi = vi−1. �
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Table 1. With which block cipher each PGVHF is not second-preimage resistant.
Especially, � represents that the corresponding PGVHF is not preimage resistant
with the specified block cipher. “-” represents that the corresponding PGVHF
is not second-preimage resistant with any block cipher.

k x y
0 vi−1 zi vi−1 ⊕ zi

0 0 - - - -
0 vi−1 - - - -
0 zi - - - -
0 vi−1 ⊕ zi - - A0�, A1� -

vi−1 0 - - - -
vi−1 vi−1 - - - -
vi−1 zi - - C0 C1
vi−1 vi−1 ⊕ zi - - C1 C0

zi 0 - - - -
zi vi−1 A1� D1 A0� D0
zi zi - - - -
zi vi−1 ⊕ zi A0� B0 A1� B1

vi−1 ⊕ zi 0 - A1 A0 -
vi−1 ⊕ zi vi−1 A1 D1 D0 A0
vi−1 ⊕ zi zi A0 B0 B1 A1
vi−1 ⊕ zi vi−1 ⊕ zi - A0, B0�, C0� A1, B0�, C0� -

4 Discussion

In this section, a few considerations are given to the results obtained in the
previous section.

Twelve Schemes Secure against the Existing Attacks. It is interesting that only
for PGVHFs regarded as secure by Preneel, Govaerts and Vandewalle [9], some
non-randomness other than weak keys is required for block ciphers to disprove
their second-preimage resistance. These are the PGVHFs whose corresponding
entries in Table 1 include B0, B1, C0, C1, D0, or D1 without �. Other PGVHFs
may not be one-way with any block cipher or block ciphers only with some weak
keys.

Preimage Resistance. For some of the PGVHFs in Theorem 1, preimages may
be found for given outputs. However, it seems infeasible to find a preimage with
polynomial length for such PGVHFs.

Example 1. For HF(vi−1,zi,zi)

EC0 , a preimage can be found for a given output by
the following algorithm.
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1. Let bm ∈ {0, 1}n be the given output.
2. Let bm−1 = 0 and am = (bL

m ⊕ bR
m) · bL

m. Then, fn(bm−1, am) = bm.
3. Select arbitrarily am−1 such that it ends with at least n− (len mod n) con-

secutive 0’s, where len is the length of the input represented by am. Let
bm−2 = am−1. Then, fn(bm−2, am−1) = bm−1 = 0.

4. Select a1, a2, . . . , am−4 arbitrarily, and compute bm−4.
5. Compute am−3, am−2 for bm−4, bm−2 with the technique used in the proof

of Theorem 1.

However, if EC0 is random enough except for some non-randomness provided,
then bm is also random. Thus, the probability is negligible that the length of the
preimage obtained by the above algorithm is polynomial in n. �

Padding Rules. In the above discussions, only the padding rule with MD-
strengthening is considered. Thus, the length of every second preimage obtained
in the proof of Theorem 1 is equal to that of the corresponding first preimage.
Fixed points of the round function fn such as fn(vi−1, zi) = vi−1 are not used
in that proof. If the padding rules without MD-strengthening are adopted, that
is, the padded inputs do not contain the length of the original inputs, then it is
much easier to find the examples which are not one-way for some of PGVHFs
using fixed points.

Example 2. For HF(vi−1,vi−1⊕zi,zi)
E , if E = EB0 or EC0, then fn(vi−1, 0) = vi−1

for every vi−1. Thus, for every input x, second preimages such as 0 · x can be
found easily. �

5 Conclusion

In this article, it has been shown that, for every PGVHF, there exist block ciphers
secure against the adaptive chosen plaintext attack such that the PGVHF based
on them is not one-way. The secure block ciphers have been explicitly defined
based on which one-way PGVHFs cannot be constructed. Some of them are
secure against the adaptive chosen plaintext/ciphertext attack.

The followings are some open questions.

– Are the following PGVHFs second-preimage resistant if their round func-
tions are composed with any block cipher secure against the adaptive chosen
plaintext/ciphertext attack?

HF(vi−1,zi,vi−1⊕zi)
E , HF(vi−1,vi−1⊕zi,zi)

E , HF(zi,vi−1,vi−1)
E ,

HF(zi,vi−1⊕zi,vi−1⊕zi)
E , HF(vi−1⊕zi,vi−1,vi−1)

E , HF(vi−1⊕zi,zi,zi)
E .

– Are the following PGVHFs preimage resistant if their round functions are
composed with any block cipher secure against the adaptive chosen plaintext
attack?

HF(vi−1,zi,zi)
E , HF(vi−1,vi−1⊕zi,vi−1⊕zi)

E , HF(zi,vi−1,vi−1⊕zi)
E ,

HF(zi,vi−1⊕zi,vi−1)
E , HF(vi−1⊕zi,vi−1,zi)

E , HF(vi−1⊕zi,zi,vi−1)
E .
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