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State Information at the Transmitter
Amal Hyadi, Student Member, IEEE, Zouheir Rezki, Senior Member, IEEE,

Ashish Khisti, Senior Member, IEEE, and Mohamed-Slim Alouini, Fellow, IEEE

Abstract—We investigate the problem of secure broadcasting
over fast fading channels with imperfect main channel state
information (CSI) at the transmitter. In particular, we analyze
the effect of the noisy estimation of the main CSI on the
throughput of a broadcast channel where the transmission is
intended for multiple legitimate receivers in the presence of an
eavesdropper. Besides, we consider the realistic case where the
transmitter is only aware of the statistics of the eavesdropper’s
CSI and not of its channel’s realizations. First, we discuss the
common message transmission case where the source broadcasts
the same information to all the receivers, and we provide an
upper and a lower bounds on the ergodic secrecy capacity. For
this case, we show that the secrecy rate is limited by the legitimate
receiver having, on average, the worst main channel link and we
prove that a non-zero secrecy rate can still be achieved even
when the CSI at the transmitter is noisy. Then, we look at
the independent messages case where the transmitter broadcasts
multiple messages to the receivers, and each intended user is
interested in an independent message. For this case, we present
an expression for the achievable secrecy sum-rate and an upper
bound on the secrecy sum-capacity and we show that, in the limit
of large number of legitimate receivers K, our achievable secrecy
sum-rate follows the scaling law log((1−α) log(K)), where α

is the estimation error variance of the main CSI. The special
cases of high SNR, perfect and no-main CSI are also analyzed.
Analytical derivations and numerical results are presented to
illustrate the obtained expressions for the case of independent
and identically distributed Rayleigh fading channels.

Index Terms—Secure broadcasting, imperfect channel state in-
formation, ergodic secrecy capacity, common message broadcast,
independent messages broadcast.

I. INTRODUCTION

Ensuring the confidentiality of the users is one of the

key challenges of wireless communication systems. To date,

securing a communication is mainly performed at the appli-

cation layer using cryptographic protocols. From a research

perspective, it has been shown that securing a transmission

can be enhanced at the physical layer without the use of

cryptography. The first important results in this research area

were presented in [1] and [2]. In [1], Wyner introduced
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the degraded wiretap channel where a source communicates

with one receiver over a discrete, memoryless channel in

the presence of an eavesdropper observing the legitimate

channel’s output. Wyner has proved that, for such a system,

there exists a coding scheme that ensures the reliability of

the communication with perfect secrecy. In [2], Csiszár and

Körner reconsidered Wyner’s wiretap channel for the case

of a non-degraded communication, i.e., the main and the

eavesdropper’s channels are supposed to be independent from

each other. This model is considered to be more suitable to

analyze secrecy in mobile communication systems [3].

More recently, the impact of fading on secure communi-

cation was investigated in a number of works. Unlike the

traditional additive white Gaussian noise (AWGN) scenario,

fading generally increases the randomness of the channel input

and hence improves the communication security. Indeed, it has

been shown, in [4]–[8], that achieving a secure communication

over quasistatic fading channels is feasible even when the

average signal-to-noise ratio (SNR) of the main channel is less

than the one of the eavesdropper. In [9], the secrecy capacity of

a slow-fading channel with an eavesdropper was investigated

for the cases of full channel state information (CSI) and only

main CSI at the transmitter. In [10], an upper and a lower

bounds on the secrecy capacity were presented for fast-fading

channels with perfect main CSI at the transmitter. The case of

imperfect CSI was studied in [11], [12] where an upper and

a lower bounds on the secrecy capacity were presented for

single user transmission. Works in this area generally assume

that at least the statistics of the eavesdropper’s fading channel

are known to the transmitter.

Recent research interest has been given to analysing the

secrecy capacity of multi-antenna and multi-users systems.

In [13], [14], the secrecy capacity of a deterministic multi-

antenna wiretap channel was studied and the positive im-

pact of deploying multiple antennas on secrecy has been

highlighted. The authors in [8] analysed a degraded single-

input-multiple-output (SIMO) wiretap channel and showed

that the secrecy diversity gain is proportional to the num-

ber of receiver antennas. The corresponding multiple-input-

single-output (MISO) case was studied in [15] and [16],

while the multiple-input-multiple-output (MIMO) case was

considered in [13], [17]–[19]. For the broadcast multi-users

scenario, Csiszár and Körner extended the original wiretap

channel, proposed by Wyner, to the case where the source

sends common information to both the destination and the

eavesdropper while the confidential messages are sent only

to the destination. The secrecy capacity of this scenario, for
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the case of a broadcast wiretap channel with parallel and

fading channels assuming perfect main CSI at the transmitter,

was considered in [20]. For the multiple access scenario, the

authors in [21] investigated the secrecy capacity of a degraded

channel where the eavesdropper obtains a degraded version of

the receiver’s signal.

The great majority of works in the literature examine the

secrecy performances of wireless systems under the assump-

tion of perfect CSI at the transmitter. In this paper, we

consider the more realistic scenario where only partial CSI

is available. In particular, we investigate the impact on the

ergodic secrecy capacity of a broadcast wiretap channel where

a source transmits to multiple legitimate receivers in the pres-

ence of one eavesdropper. Assuming imperfect main CSI at the

transmitter, we present an upper and a lower bounds on the

secrecy capacity and we study the special cases of high-SNR,

perfect main CSI and no CSI transmissions. Both the common

message case, where a unique information is broadcasted to all

the legitimate receivers, and the independent messages case,

where the source transmits multiple independent messages, are

considered.

The present paper builds on the results in [11], [12],

obtained for single user transmission, and generalizes them to

the broadcast multiuser channel. Assuming imperfect channel

estimation at the transmitter, the work in [11], [12] provides a

lower and an upper bounds on the ergodic secrecy capacity of

the single user wiretap channel. The proposed achievable rate

follows from a standard wiretap code with a Gaussian input

and a simple on-off power control, while the upper bound

is obtained using an appropriate correlation scheme of the

main and the eavesdropper channels. In this paper, we expand

these results to the broadcast wiretap channel. We consider that

transmitter is aware of the statistics of the eavesdropper’s CSI

but not of its channel’s realizations. Also, we assume that the

transmitter is only provided with an imperfect estimation of the

main channel gain. It is worth mentioning that, on one hand,

when a common message is broadcasted to all the legitimate

receivers, the secrecy capacity performance is limited by the

user with the worst channel quality. Also, the transmission

scheme, achieving the proposed secrecy rate, is elaborated in

such a way to avoid any extra leakage of information to the

eavesdropper. On the other hand, when multiple independent

messages are broadcasted, a genie-aided channel must be

carefully selected to obtain the proposed upper bound. This

upper bound is shown to be tight in the very noisy CSI

extreme.

The paper is organized as follows. Section II describes the

system model. The main results along with the corresponding

proofs are introduced in section III for the common mes-

sage transmission and section IV for the independent mes-

sages case. Section V considers the case of Rayleigh fading

channels. Finally, selected numerical results are presented in

section VI, while section VII concludes the paper.

Notations: Throughout the paper, we use the following

notational conventions. The expectation operation is denoted

by E[.], the modulus of a scalar x is expressed as |x|, and

we define {ν}+=max(0, ν). The function P (.) is used to
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Fig. 1. The fading wiretap channel with multiple receivers and one eaves-
dropper.

describe the power profile adopted at the transmitter. The

argument of this function can be a scalar or a vector. The

entropy of a discrete random variable X is denoted by H(X),
and the mutual information between random variables X and

Y is denoted by I(X ;Y ). In addition, we use fX(.) and

FX(.) to denote the probability density function (PDF) and

the cumulative distribution function (CDF) of the random

variable X .

II. SYSTEM MODEL

We consider a broadcast wiretap channel where a transmitter

T communicates with K legitimate receivers (R1, · · · ,RK) in

the presence of an eavesdropper E as depicted in Fig. 1. Each

terminal is equipped with a single antenna for transmission

and reception. During every coherence interval i∈{1, · · · , n},

the received signals by each legitimate receiver Rk, k ∈
{1, · · · ,K}, and the eavesdropper are, respectively, given by

{
Yk(i) = hk(i)X(i) + vk(i)

Z(i) = g(i)X(i) + w(i),
(1)

where hk(i) ∈ C, g(i) ∈ C are zero-mean, unit-variance

complex Gaussian channel gains corresponding to each legit-

imate channel and the eavesdropper’s channel, respectively;

and vk(i) ∈ C, w(i) ∈ C represent zero-mean, unit-variance

circularly symmetric white Gaussian noises at Rk and E,

respectively; and X(i) is the transmitted message to all the

receivers. An average transmit power constraint is imposed

at the transmitter such that E[|X(i)|2] ≤ Pavg, where the

expectation is over the input distribution.

The channel gains hk and g are independent, ergodic and

stationary. We consider that the transmitter is only aware of

the statistics of the eavesdropper’s CSI and not of its chan-

nel’s realizations g(i). Also, we assume that the transmitter

is only provided with a noisy version of each hk(i), say

ĥk(i)∼CN (0, 1), such that the main channel estimation model

can be written as

hk(i) =
√
1− αĥk(i) +

√
αh̃k(i),

where α is the estimation error variance (α ∈ [0, 1]) and

h̃k(i)∼CN (0, 1) is the zero-mean unit-variance channel esti-

mation error. We assume that ĥk(i) and h̃k(i) are uncorrelated
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and hence independent. To ensure correct decoding with high

probability at the legitimate receivers’ side, we assume that

each receiver Rk has a perfect knowledge of its channel gain

hk(i). Also, we assume that the eavesdropper is aware of its

channel gain g(i), and of all the legitimate receivers’ channel

gains hk(i), k ∈ {1, · · · ,K}. The estimated channel gains

ĥk(i), k ∈ {1, · · · ,K}, are known globally. Giving that the

channel gains are ergodic and stationary with bounded and

continuous PDFs, the index time i can be omitted. In the rest

of this paper, we denote |hk|2, |ĥk|2, |h̃k|2 and |g|2 by γk, γ̂k,

γ̃k and γe, respectively.

We are interested in the broadcast secrecy capacity of such

a channel when the block length of the transmitted message

is large, i.e., n → ∞. In accordance with Wyner’s weak

secrecy, we consider that a secret transmission is achieved

when the normalized leakage of information obtained by the

eavesdropper while observing its channel output, vanishes in

the limit of long block lengths.

III. BROADCASTING A COMMON MESSAGE

In this section, we consider the common message transmis-

sion case when a unique confidential information is broad-

casted to all the legitimate receivers. Taking into account the

adopted system model, we present the upper and the lower

bounds on the secrecy capacity. The asymptotic analyses,

for the high-SNR regime and the perfect CSI case, are also

investigated.

A. Main Results

In this subsection, we present the main results obtained for

the ergodic secrecy capacity of the considered system model

when broadcasting a common message.
1) Lower and Upper Bounds:

Theorem 1: The common message secrecy capacity, Cs,

of the fast fading broadcast channel under imperfect main

channels estimation at the transmitter is bounded by

C−
s ≤ Cs ≤ C+

s , (2)

such as C−
s =max

P (τ)
min

1≤k≤K
E

γe,γk,
γ̂k≥τ

[
log

(
1+γkP (τ)

1+γeP (τ)

)]
, (3a)

and

C+
s =min

1≤k≤K
max
P (ĥk)

E
ĥk,h̃k



{
log

(
1+|

√
1−αĥk+

√
αh̃k|2P (ĥk)

1+|h̃k|2P (ĥk)

)}+
 ,

(3b)

with P (τ)=Pavg/ (1−Fγ̂k
(τ)) and E[P (ĥk)]≤Pavg.

2) High-SNR Regime:

Corollary 1: At high-SNR regime, the secrecy capacity for

the common message case is bounded by

C−
H-SNR ≤ Cs ≤ C+

H-SNR, (4)

such as C−
H-SNR = min

1≤k≤K
E

γe,γk,
γ̂k≥τ

[
log

(
γk
γe

)]
, where τ

satisfies E
γk|γ̂k

[
log(γk)

∣∣γ̂k=τ
]
−E

γe

[
log(γe)

]
=0, and

C+
H-SNR = min

1≤k≤K
E

ĥk,h̃k




{
log

(
|
√
1−αĥk+

√
αh̃k|2

|h̃k|2

)}+


.

3) Perfect Main CSI case:

Corollary 2: When the transmitter has perfect knowledge

of the legitimate receivers’ CSI, the secrecy capacity is

bounded as

C−
P-CSI ≤ Cs ≤ C+

P-CSI, (5)

such as C−
P-CSI = max

P (τ)
min

1≤k≤K
E

γe,γk≥τ

[
log

(
1 + γkP (τ)

1 + γeP (τ)

)]
,

and C+
P-CSI= min

1≤k≤K
max
P (γk)

E
γk,γe

[{
log

(
1 + γkP (γk)

1 + γeP (γk)

)}+
]
,

with P (τ) = Pavg/ (1−Fγk
(τ)) and E[P (γk)] ≤ Pavg.

B. Ergodic Capacity Analysis

In this subsection, we establish the obtained results for the

ergodic secrecy capacity presented in the previous subsection.

1) Proof of Achievability in Theorem 1:

A detailed proof of achievability is provided in Appendix

A. Here, we outline the adopted transmission scheme. We

consider a probabilistic model where the transmission is con-

strained by the quality of the legitimate channels. Considering

the case K=2, we define the following parameters:

• τ is a prefixed transmission threshold,

• Rw=E [log(1+γeP (γ̂k))] , with P (γ̂k) is chosen to sat-

isfy the average power constraint,

• Rk=E [log(1+γkP (γ̂k)) |γ̂k ≥ τ ]−Rw,
• pk=Pr [γ̂k ≥ τ ] ,
• n0=pkpjn, and n1=pk(1−pj)n, with k, j∈{1, 2}/k 6=j.

We use two independent Gaussian codebooks C0 and C1

constructed similarly to the standard wiretap codes. Code-

book C0 is a (n0, 2
n0Rk) code, with 2n0(Rk+Rw) codewords

randomly partitioned into 2n0Rk bins, and codebook C1 is

a (n1, 2
n1Rk) code, with 2n1(Rk+Rw) codewords randomly

partitioned into 2n1Rk bins. The transmitted common message

is given in the form W=(W0,W1), where W0 and W1 are

uniformly distributed over the indices
{
1, 2, · · · , 2n0Rk

}
and{

1, 2, · · · , 2n1Rk
}

, respectively.

Next, we define the events: S1 = {γ̂1≥τ , γ̂2≥τ},

S2 = {γ̂1≥τ , γ̂2<τ}, S3 = {γ̂1<τ , γ̂2≥τ} and

S4 = {γ̂1<τ , γ̂2<τ}. That is, the transmitter selects ran-

domly a codeword Un0
0 associated with message W0 and

broadcasts it when he experiences event S1. For message

W1, the transmitter selects two codewords uniformly and

independently of one another; one codeword Un1
1 to be sent

in state S2 and the other one Un1
2 to be sent in state S3.

The source remains idle when experiencing event S4. The

randomness and the independence in the choice of the two

codewords for message W1 ensures that the eavesdropper does

not take advantage of this repetition.

Since message W0 is transmitted over channel state S1 with

Pr[S1] = Pr[γ̂1≥τ , γ̂2≥τ ], state S1 occurs n0/n times and the

size of codebook C0 is therefore n0. Similarly, message W1

is transmitted over channel state S2 and S3 with Pr[S2] =
Pr[S3] = Pr[γ̂k≥τ , γ̂j<τ ], k, j ∈ {1, 2}, k 6= j. Thus, state

S2 and S3 each occurs n1/n times and the size of codebook

C1 is n1. The transmission stops when we have transmitted

exactly n0 symbols of Un0
0 and n1 symbols each of Un1

1
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and Un1
2 . Given that the estimated channel gains are known

globally, the receivers know the current state of the system

and accordingly know which codeword the transmitted symbol

belongs to. Decoder 1 uses the observations corresponding to

the codewords Un0
0 and Un1

1 to recover message (W0,W1)
while decoder 2 uses the ones corresponding to the codewords

Un0
0 and Un1

2 to recover the message (W0,W1). Details on the

codebook generation, the coding and the decoding schemes,

and the secrecy analysis of this probabilistic transmission

model are similar to the perfect CSI case presented in [22].

The overall achievable rate can then be written as

R = min
k

{n0

n
Rk +

n1

n
Rk

}
= min

k
pkRk, (6)

which reduces to R = min
k

E
γe,γk,
γ̂k≥τ

[
log

(
1+γkP (γ̂k)

1+γeP (γ̂k)

)]
. The

extension to the case K ≥ 2 follows along similar lines as

[22]. To finish the proof, we consider a transmission power

that is instantaneously adapted according to the following on-

off power scheme

P (γ̂k)=





P (τ)=

Pavg

1−Fγ̂k
(τ)

γ̂k ≥ τ

0 otherwise,

(7)

then, we maximize the achievable rate R over P (τ) yielding

the lower bound on the secrecy capacity presented in (3a). The

threshold τ should then be chosen to satisfy

E
γk,γ̂k≥τ

[
γkP

′(τ)

1 + γkP (τ)

]
− E

γe

[
γeP

′(τ)

1 + γeP (τ)

]
(1− Fγ̂k

(τ)) =

fγ̂k
(τ)

(
E

γk|γ̂k

[
log (1+γkP (τ))

∣∣γ̂k=τ
]
−E

γe

[
log (1+γeP (τ))

])
.

(8)

Remark 1: We opted for the use of the On-Off power

scheme, for the achievable rate, because it is near optimal

and less complex. Clearly, the achievable secrecy rate can

be directly improved by optimizing over all power policies

satisfying the average power constraint. Indeed, one expects a

better rate by solving

C−
s = max

P (γ̂k)
E

γe,γk,γ̂k

[
log

(
1+γkP (γ̂k)

1+γeP (γ̂k)

)]
, k ∈ {1, · · · ,K}.

(9)

The objective function in (9) is not convex. Using the Lagrange

approach, it is possible to obtain the necessary optimality

condition via the Karush-Kuhn-Tucker (KKT) condition. The

corresponding Lagrangian, to the optimization problem in (9),

with the average power constraint E[P (γ̂k)]≤Pavg, can be

written as

L(P (γ̂k), µk) =

E
γe,γk|γ̂k

[
log

(
1+γkP (γ̂k)

1+γeP (γ̂k)

)]
−µk (E[P (γ̂k)]−Pavg) , (10)

with µk being the Lagrange multiplier. Differentiating

L(P (γ̂k), µk) with respect to P (γ̂k) yields the following

necessary condition for optimality

E
γe,γk|γ̂k

[
γk − γe

(1+γkP (γ̂k))(1+γeP (γ̂k))

∣∣∣γ̂k
]
= µk.

We define the function

fγ̂k
(P ) = E

γe,γk|γ̂k

[
γk − γe

(1+γkP (γ̂k))(1+γeP (γ̂k))

∣∣∣γ̂k
]
.

Then, following similar lines as [R5, Lemma 5], it can be

shown that if there exists γ̂k0 , such that E [γk − γe|γ̂k0 ] > 0,

i.e., such that (1 − α)(γ̂k0 − 1) > 0, then using the entire

available power is optimal, and the power allocation scheme

is given by

P (γ̂k) =

{
f−1
γ̂k

(µk) if 0 ≤ µk ≤ (1− α)(γ̂k − 1)

0 otherwise,

(11)

under the power constraint P (µk) = E
γ̂k

[P (γ̂k)] , i.e. each

value of µk corresponds to an average power constraint Pavg =
P (µk). This optimal procedure, although complex and time-

consuming, does not provide a substantial gain. Indeed, the

rate achieved by the proposed On-Off power scheme and the

one resulting from the Karush-Kuhn-Tucker (KKT) condition

are very close.

2) Proof of the Upper Bound in Theorem 1:

To establish the upper bound on the capacity in (2), we start

by supposing that the transmitter sends message X to only one

legitimate receiver Rk. Using a similar approach, as in [11],

we have

Cs ≤ max
P (ĥk)

E
ĥk,h̃k




{
log

(
1+|

√
1−αĥk+

√
αh̃k|2P (ĥk)

1+|h̃k|2P (ĥk)

)}+


 .

(12)

The choice of the receiver to transmit to is arbitrary. In order

to tighten this upper bound, we can then choose receiver Rk

that minimizes this quantity, yielding the result in (3b).

By setting ĥk=ρ̂keiθ̂k , h̃k=ρ̃keiθ̃k and uk=θ̂k−θ̃k, the

upper bound on the secrecy capacity can be expressed as

C+
s = min

1≤k≤K
max
P (ρ̂k)

(13)

E
ρ̂k,̃ρk,uk






log




1+
(
(1−α)ρ̂2k+αρ̃2k + 2

√
α(1 − α)ρ̂kρ̃k cos(uk)

)
P (ρ̂k)

1+ρ̃2kP (ρ̂k)









+

.

The optimal power profile, in this case, is the solution of the

optimality condition

E

ρ̃k≤
ρ̂k

ρ0(uk)

[
ξ(̂ρk, ρ̃k, uk)

1+ξ(̂ρk, ρ̃k, uk)P (ρ̂k)
− ρ̃2k
1+ρ̃2kP (ρ̂k)

]
−µk = 0.

(14)

with µk is the Lagrange multiplier obtained by setting

E[P (ρ̂k)]=Pavg,

ξ(̂ρk, ρ̃k, uk) =(1−α)ρ̂2k+αρ̃2k + 2
√
α(1− α)ρ̂kρ̃k cos(uk),

and

ρ0(uk)=

√
(1−α)(α cos(uk)2−α+ 1)−

√
α(1−α) cos(uk)

1−α
.
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3) Proof of the High-SNR Results in Corollary 1:

- Asymptotic Lower Bound: From Theorem 1, the rate

Rs(τ) = min
1≤k≤K

E
γe,γk,
γ̂k≥τ

[
log

(
1 + γkP (τ)

1 + γeP (τ)

)]

is achievable for any τ ≥ 0.

At high-SNR regime, i.e., Pavg→∞, we have

lim
Pavg→∞

Rs(τ)= min
1≤k≤K

lim
Pavg→∞

E
γe,γk,
γ̂k≥τ

[
log

(
1+γkP (τ)

1+γeP (τ)

)]
, (15)

since

∣∣∣∣log
(
1+γkP (τ)

1+γeP (τ)

)∣∣∣∣≤
∣∣∣∣log

(
γk
γe

)∣∣∣∣, fγe
is continuous and

bounded, E
γk,γ̂k≥τ

[γe] ≤ E
γk,γ̂k

[γe] < ∞ and

∣∣∣∣log
(
γk
γe

) ∣∣∣∣ < ∞,

then using the Dominant Convergence Theorem we can inter-

change the order of the limit and the expectation. We can then

write

lim
Pavg→∞

Rs(τ) = min
1≤k≤K

E
γe,γk,
γ̂k≥τ

lim
Pavg→∞

[
log

(
1 + γkP (τ)

1 + γeP (τ)

)]

(16)

= min
1≤k≤K

E
γe,γk,
γ̂k≥τ

[
log

(
γk
γe

)]
. (17)

To complete the proof, we choose τ that maximizes (17),

yielding the result in Corollary 1.

- Asymptotic Upper Bound: On one hand, we have

lim
Pavg→∞

C+
H-SNR

= lim
Pavg→∞

min
1≤k≤K

max
P (ĥk)

E
ĥk,h̃k



{
log

(
1+|

√
1−αĥk+

√
αh̃k|2P (ĥk)

1+|h̃k|2P (ĥk)

)}+


(18)

≥ lim
Pavg→∞

min
1≤k≤K

E
ĥk,h̃k



{
log

(
1+|

√
1−αĥk+

√
αh̃k|2Pavg

1+|h̃k|2Pavg

)}+



(19)

= min
1≤k≤K

E
ĥk,h̃k



{

lim
Pavg→∞

log

(
1+|

√
1−αĥk+

√
αh̃k|2Pavg

1+|h̃k|2Pavg

)}+



(20)

= min
1≤k≤K

E
ĥk,h̃k




{
log

(
|
√
1−αĥk+

√
αh̃k|2

|h̃k|2

)}+


 , (21)

where (20) is obtained using a similar reasoning as for the

asymptotic lower bound case. On the other hand, for any

P (ĥk) ≥ 0, we have

C+
H-SNR ≤ min

1≤k≤K
max
P (ĥk)

E
ĥk,h̃k




{
log

(
|
√
1−αĥk+

√
αh̃k|2

|h̃k|2

)}+




(22)

= min
1≤k≤K

E
ĥk,h̃k



{
log

(
|
√
1−αĥk+

√
αh̃k|2

|h̃k|2

)}+

. (23)

Taking the limit on both sides of (22) completes the proof.

4) Proof of the Perfect CSI Results in Corollary 2:

When the transmitter has perfect knowledge of the legiti-

mate receivers’ CSI, i.e., α=0, we have γ̂k=γk, yielding the

result in (5). This case captures the result in [20] with the

difference that in our lower bound, we have chosen an on-off

power scheme.

Remark 2: When no main CSI is available at the transmitter,

the secrecy capacity of the broadcast wiretap channel is equal

to zero: Cs=0. Indeed, when the transmitter has no main

CSI, i.e., α=1, each legitimate channel is statistically equiv-

alent to h̃, and no power adaptation can be performed, i.e.,

P (γ̂k)=Pavg. The eavesdropper channel is, then, equivalent to

the legitimate channels, implying

E
γk,γe

[log (1 + γkPavg)] = E
γk,γe

[log (1 + γePavg)] . (24)

Thus, the upper bound vanishes, yielding Cs = 0.

IV. BROADCASTING INDEPENDENT MESSAGES

In this section, we consider the independent messages case

when multiple confidential messages are transmitted to the

legitimate receivers. Taking into account the adopted system

model, we present the upper and the lower bounds on the

secrecy sum-capacity. The asymptotic analyses, for the high-

SNR regime and the perfect CSI case, are also investigated.

A. Main Results

In this subsection, we present the main results obtained for

the ergodic secrecy sum-capacity of the considered system

model when broadcasting independent messages.

1) Lower and Upper Bounds:

Theorem 2: The secrecy sum-capacity, C̃s, of the fast fading

broadcast channel with imperfect main CSI is bounded by

C̃−
s ≤ C̃s ≤ C̃+

s , (25)

such as C̃−
s = max

P (τ)
E

γe,γest
max,

γ̂max≥τ

[
log

(
1 + γest

maxP (τ)

1 + γeP (τ)

)]
, (26a)

with γest
max=|

√
1−αĥmax+

√
αh̃|2 and P (τ)=

Pavg

1−Fγ̂max
(τ)

,

and C̃+
s =min

{
max
P (Γ̂)

E
γmax,Γ̂,γ̃



{
log

(
1+γmaxP (Γ̂)

1+γ̃P (Γ̂)

)}+

 ,

Kmax
P (γ̂)

E
γ,γ̂,γ̃

[{
log

(
1+γP (γ̂)

1+γ̃P (γ̂)

)}+
]}

, (26b)

with Γ̂ = (γ̂1, γ̂2, · · · , γ̂K) , E[P (Γ̂)] ≤ Pavg and

E[P (γ̂)] ≤ Pavg.

2) High-SNR Regime:

Corollary 3: At high-SNR regime, the secrecy sum-capacity

for the independent messages case is bounded by

C̃−
H-SNR ≤ C̃s ≤ C̃+

H-SNR, (27)
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such as C̃−
H-SNR= E

γe,γest
max,

γ̂max≥τ

[
log

(
γest

max

γe

)]
, where the threshold τ

satisfies E
γest

max|γ̂max

[
log
(
γest

max

) ∣∣γ̂max=τ
]
−E

γe

[
log(γe)

]
= 0, and

C̃+
H-SNR=min

{
E

γmax,γ̃

[{
log

(
γmax

γ̃

)}+]
,K E

γ,γ̃

[{
log

(
γ

γ̃

)}+]}
.

3) Perfect Main CSI case:

Corollary 4: When the transmitter has perfect knowledge

of the legitimate receivers’ CSI, the secrecy sum-capacity is

bounded as

C̃−
P-CSI ≤ C̃s ≤ C̃+

P-CSI, (28)

such as C̃−
P-CSI = max

P (τ)
E

γe,γmax≥τ

[
log

(
1 + γmaxP (τ)

1 + γeP (τ)

)]
,

with P (τ)=Pavg/ (1−Fγmax
(τ)), and

C̃+
P-CSI= max

P (γmax)
E

γmax,γe

[{
log

(
1 + γmaxP (γmax)

1 + γeP (γmax)

)}+
]
,

with E[P (γmax)] ≤ Pavg.

B. Ergodic Capacity Analysis

In this subsection, we establish the obtained results for

the ergodic secrecy sum-capacity presented in the previous

subsection.
1) Proof of Achievability in Theorem 2:

The lower bound on the secrecy capacity is achieved using a

time division multiplexing scheme that selects instantaneously

one receiver to transmit to. That is, at each time, the source

only transmits to the user with the best estimated channel

gain ĥmax. Since we are transmitting to only one legitimate

receiver at a time, the achieving coding scheme consists on

using independent standard single user wiretap codebooks with

power P (γ̂max) satisfying the constraint E[P (γ̂max)]≤Pavg. We

consider an on-off power scheme that instantaneously adapts

the power according to the value of γ̂max with regards to a

prefixed threshold τ , i.e.,

P (γ̂max)=





P (τ)=

Pavg

1−Fγ̂max
(τ)

γ̂max ≥ τ

0 otherwise.

(29)

The achievable sum-rate is then given by

R̃− = E
γe,γest

max,
γ̂max≥τ

[
log

(
1 + γest

maxP (τ)

1 + γeP (τ)

)]
. (30)

To finish the proof, we maximize R̃− over P (τ) yielding the

lower bound presented in (25).

Remark 3: Using Gelfand-Pinsker coding(GPC) [23] in a

broadcast context, by treating other users’ signals as side

information, is an effective scheme that can outperform the

time division multiplexing technique [24]. In the context of

secure broadcasting, and to the best of our knowledge, the

works dealing with the use of GPC to establish the secrecy rate

region of the broadcast channel with confidential messages,

consider fixed channel gains known perfectly at the transmitter

[25], [26]. Using GPC for secure broadcasting over fading

channel may be a good direction that is worth investigating

whether in the perfect or the imperfect CSIT cases.

2) Proof of the Upper Bound in Theorem 2:

We represent the upper bound on the secrecy sum-

capacity as the minimum between two upper bounds, i.e.,

C̃+
s =min

{
C̃+
1 , C̃+

2

}
with

C̃+
1 =max

P (Γ̂)
E

γmax,Γ̂,γ̃




{
log

(
1+γmaxP (Γ̂)

1+γ̃P (Γ̂)

)}+




C̃+
2 =Kmax

P (γ̂)
E

γ,γ̂,γ̃

[{
log

(
1+γP (γ̂)

1+γ̃P (γ̂)

)}+
]
.

(31)

The reason behind choosing this particular representation was

to ensure having the tightest possible upper bound for all the

values of the error variance α. We would note that C̃+
2 is a

loose upper bound for the secrecy sum-rate for most values of

α, especially when the number of users K is large. However,

when the CSI available at the transmitter gets very noisy, i.e.,

α→1, C̃+
2 becomes tighter then C̃+

1 . Moreover, for α=1, C̃+
2

vanishes, reflecting the fact that the secrecy capacity is zero

for the no CSI case, while C̃+
1 does not. To prove that C̃+

s is

an upper bound, we need then to prove that both C̃+
1 and C̃+

2

upper bound the secrecy sum-capacity of the system.

Using the result in (12), the secrecy capacity of each

legitimate receiver is upper bounded by

UBk= max
P (γ̂k)

E
γk,γ̂k,γ̃k

[{
log

(
1+γkP (γ̂k)

1+γ̃kP (γ̂k)

)}+
]
, (32)

with k∈{1, · · · ,K}. Thus,
∑K

k=1 UBk is a straightforward

upper bound on the secrecy sum-capacity for the independent

messages case. Since all the channel gains are identically

distributed, we can directly deduce that C̃+
2 upper bounds the

secrecy sum-capacity of the system.

Now, we need to prove that C̃+
1 is also an upper bound on

the secrecy sum-capacity. For that, we consider a new channel

whose capacity upper bounds the capacity of the K-receivers

channel with imperfect CSI at the transmitter. In order to

design this new genie aided channel, we need to take two

facts into consideration:

- On one hand, the receiver in the new channel needs to

instantaneously get the signal transmitted over the strongest

channel.

- On the other hand, the transmitter has to know the

estimated gains of all K channels of the original K-receivers

channel.

In point of fact, if we only consider that the transmission is

intended for the strongest receiver at each time, the capacity

of this channel cannot be proven to upper bound the capacity

of our K-receivers channel as the transmitter will have the

estimated gain of only the strong channel. That is, the new

channel needs to observe all the K channels and to account

for the strongest one at each time. This is what explain the

idea behind considering a genie aided channel with a selection

combining receiver equipped with a number of antennas

equivalent to the number of legitimate receivers in the K-

receivers channel. The selection combiner chooses the signal

with the highest instantaneous gain and uses it for decoding.

Picking the signal is equivalent to choosing the corresponding
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antenna among all receive antennas. The output signal of

the genie aided receiver after selecting the strongest signal

is Y (i) = hmax(i)X(i) + v(i), at time instant i, with hmax

being the channel gain of the best legitimate channel, i.e.,

|hmax|2=γmax and γmax=max1≤k≤K γk. The new channel can

then be modelled as{
Y (i) = hmax(i)X(i) + v(i)

Z(i) = g(i)X(i) + w(i).
(33)

We assume that the genie-aided receiver is aware of all the

channel gains h1, h2, · · · , hK as well as of the transmitter’s

estimated gains ĥ1, ĥ2, · · · , ĥk. The proof is conducted in two

steps. First, we prove that the secrecy capacity of this new

channel upper bounds the secrecy sum-capacity of the K-

receivers channel with imperfect CSI (Step 1). Then, we prove

that C̃+
1 in (31) upper bounds the secrecy capacity of the genie-

aided channel (Step 2).

Step 1: To prove this first step, it is sufficient to show that

if a secrecy rate point (R1,R2, · · · ,RK) is achievable on the

K-receivers channel with imperfect CSI then a secrecy sum-

rate
∑K

k=1 Rk is achievable on the new channel.

Let (W1,W2,· · ·,WK) be the independent transmitted mes-

sages corresponding to the rates (R1,R2,· · ·,RK), and

(Ŵ1, Ŵ2, · · ·, ŴK) the decoded messages. Thus, for any ǫ>0
and n large enough, there exists a code of length n such that

Pr[Ŵk 6=Wk]≤ǫ at each of the K receivers, and

H(Wk|W1,· · ·,Wk−1,Wk+1,· · ·,WK,Z
n,gn,Hn,Ĥn)/n≥Rk−ǫ,

(34)

with Hn = {h1(1), · · · , h1(n), h2(1), · · · , h2(n), · · · , hK(1),
· · · , hK(n)} and Ĥn defined similarly by taking ĥ instead

of h. Now, we consider the transmission of message

W=(W1,W2, · · · ,WK) to the genie-aided receiver using

the same encoding scheme as for the K-receivers case.

Adopting a decoding scheme similar to the one used at each

of the K legitimate receivers, the genie-aided receiver can

decode message W with a negligible probability of error, i.e.,

Pr(Ŵ 6=W )≤ǫ. For the secrecy condition, we have

H(W |Zn, gn, Hn, Ĥn)/n

= H(W1,W2, · · · ,WK |Zn, , gn, Hn, Ĥn)/n (35)

≥
K∑

k=1

H(Wk|W1,· · ·,Wk−1,Wk+1,· · ·,WK,Z
n,gn,Hn,Ĥn)/n

(36)

≥
K∑

k=1

Rk−Kǫ, (37)

which completes the first step of the proof.

Step 2: We have to prove that C̃+
1 upper bounds the

secrecy capacity of the genie-aided channel. Let R̃e be the

equivocation rate in the new channel. An upper bound on this

rate is derived as

nR̃e = H(W |Zn, gn, Hn, Ĥn) (38)

= I(W ;Y n|Zn,gn,Hn,′ !Ĥn)+H(W |Y n,Zn,gn,Hn,Ĥn)
(39)

≤ I(W ;Y n|Zn, gn, Hn, Ĥn)+nǫ (40)

=

n∑

i=1

I(W ;Y (i)|Zn, gn, Hn, Ĥn, Y i−1)+nǫ (41)

=

n∑

i=1

H(Y (i)|Zn, gn, Hn, Ĥn, Y i−1)

−H(Y (i)|W,Zn, gn, Hn, Ĥn, Y i−1)+nǫ (42)

≤
n∑

i=1

H(Y (i)|Z(i), g(i), hmax(i), Ĥ
i)

−H(Y (i)|W,X(i), Zn, gn, Hn, Ĥn, Y i−1)+nǫ (43)

=

n∑

i=1

H(Y (i)|Z(i), g(i), hmax(i), Ĥ
i)

−H(Y (i)|X(i), Z(i), g(i), hmax(i), Ĥ
i)+nǫ (44)

=
n∑

i=1

I(X(i);Y (i)|Z(i), g(i), hmax(i), Ĥ
i)+nǫ (45)

=

n∑

i=1

{
I(X(i);Y (i)|hmax(i), Ĥ

i)−I(X(i), Z(i)|g(i), Ĥi)
}+
+nǫ

(46)

where inequality (40) follows from the fact that

H(W |Y n, Zn, gn, Hn, Ĥn)≤H(W |Y n, Hn, Ĥn) and

Fano’s inequality: H(W |Y n, Hn, Ĥn)≤nǫ, and (46) is

obtained by selecting the appropriate value for the noise

correlation to form the Markov chain X(i)→Y (i)→Z(i) if

|hmax(i)|>|g(i)| or X(i)→Z(i)→Y (i) if |hmax(i)|≤|g(i)|, as

explained in [27].

We know that the right-hand side of (46) is maximized by

a Gaussian input, then taking X(i) ∼ CN
(
0,

√
ρi(Γ̂i)

)
with

1

n

n∑

i=1

E

[
ρi(Γ̂

i)
]
≤Pavg, we can write

nR̃e ≤
n∑

i=1

E
γe(i),Γ̂i,

γmax(i)



{
log

(
1 + γmax(i) ρi(Γ̂

i)

1 + γe(i) ρi(Γ̂i)

)}+

+nǫ

(47)

=

n∑

i=1

E
γe(i),Γ̂(i),

γmax(i)



 E
Γ̂i−1




{
log

(
1 + γmax(i) ρi(Γ̂

i)

1 + γe(i) ρi(Γ̂i)

)}+ ∣∣∣∣∣Γ̂(i)







+nǫ

(48)

≤
n∑

i=1

E
γe(i),Γ̂(i),

γmax(i)








log



1 + γmax(i) E

Γ̂i−1

[
ρi(Γ̂

i)
∣∣Γ̂(i)

]

1 + γe(i) E
Γ̂i−1

[
ρi(Γ̂i)

∣∣Γ̂(i)
]









+

+nǫ,

(49)

≤ n E
γe,Γ̂,
γmax



{
log

(
1 + γmax P (Γ̂)

1 + γe P (Γ̂)

)}+

+nǫ, (50)

where (49) and (50) are obtained using Jensen’s

inequality. The i.i.d. assumption is also used

to get (50) with P (Γ̂)=
1

n

n∑

i=1

E
Γ̂i−1

[
ρi(Γ̂

i)
∣∣Γ̂(i)

]
.

Finally, since γmax=max
k

|
√
1−αĥk+

√
αh̃k|2 with h̃k in-

dependent and identically distributed as g, and since the
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transmitter only knows ĥk, the channel estimation error h̃k is

independent of X and we can substitute g by h̃k, i.e., g=h̃k.

The justification for this substitution follows along similar

lines as in [12]. Therefore, C̃+
1 in (31) is an upper bound on

the secrecy sum-capacity. This completes the proof.

We note that, since upper bound C̃+
1 is obtained by

considering a new genie aided channel where the receiver

gets the signal of the strongest channel and the transmit-

ter adapts its power with all the estimated channel gains

Γ̂=(γ̂1, γ̂2, · · · , γ̂K), the argument of function P (.) is a vector

in this case.

3) Proof of the High-SNR Results in Corollary 3:

The proof can be conducted similarly to the common

message case.

4) Proof of the Perfect CSI Results in Corollary 4:

Note that for the case of perfect main CSI at the transmitter,

i.e., α=0, we have C̃+
s =C̃+

1 , with C̃+
1 and C̃+

2 as defined in (31).

Taking this fact into consideration, the proof follows along

similar lines as for the common message case.

5) Proof of the High-SNR Results in Corollary 3:

The proof can be conducted similarly to the common

message case.

6) Proof of the Perfect CSI Results in Corollary 4:

Note that for the case of perfect main CSI at the transmitter,

i.e., α=0, we have C̃+
s =C̃+

1 , with C̃+
1 and C̃+

2 as defined in (31).

Taking this fact into consideration, the proof follows along

similar lines as for the common message case.

V. RAYLEIGH FADING CHANNELS

In this section, we examine the obtained expressions for

the lower and the upper bounds on the secrecy capacity in the

case of independent and identically distributed (i.i.d.) Rayleigh

fading channels.

A. Broadcasting a Common Message

1) Achievable Rate: The achievable common message se-

crecy rate with imperfect main CSI at the transmitter, pre-

sented in (3a), can be expressed for the i.i.d. Rayleigh case as

C−
s =max

τ

{
exp

(
e−τ

Pavg

)
Ei

(
− e−τ

Pavg

)
e−τ (51)

+

∫ ∞

0

log(1+γPavgeτ ) exp(−γ)Q

(√
2
1−α

α
γ,

√
2τ

α

)
dγ

}
,

where Ei(.) is the exponential integral function [28,

Eq.(8.211.1)], both exp(.) and e(.) represent the exponential

function, and Q(., .) stands for the Q-function [29, Eq.(16)].

Note that the integral term in (51) can be further represented

in the form

∫ ∞

0

log(1+γPavgeτ ) exp(−γ)Q

(√
2
1−α

α
γ,

√
2τ

α

)
dγ

=
∞∑

n=0

∞∑

m=0

(1−α)n+mτm exp(−τ/α))

αm−1Γ(1 +m)Γ(1+n+m)
G1,3

3,2

(
αPavge

τ

∣∣∣∣
1, 1,−n−m

1, 0

)
,

(52)

where Γ(.) represents the gamma function [28, Eq.(8.310.1)],

and G.,.
.,.

(
.

∣∣∣∣
.

.

)
is the Meijer G-function [28, Eq.(9.301)].

Details of derivation are provided in Appendix B.

• High-SNR Regime:

At high SNR, the lower bound on the common message

secrecy capacity in (4) reduces for i.i.d. Rayleigh fading

channels to

C−
H-SNR=max

τ

{
− Ei(−τ) + Ei

(
− τ

α

)
(53)

− e−τ

(
Ei

(
−1−α

α
τ

)
− log((1−α)τ) −C

)}
,

where C is Euler’s constant [28, Eq.(8.367)].

• Perfect CSI Case:

When the transmitter has perfect CSI, the lower bound on the

common message secrecy capacity in (5) is given for i.i.d.

Rayleigh fading channels as

C−
P-CSI=max

τ

{
− exp

(
e−τ

Pavg

)
Ei

(−e−τ

Pavg

−τ

)
(54)

+ e−τ

(
log(1+Pavgτeτ )+ exp

(
e−τ

Pavg

)
Ei

(−e−τ

Pavg

))}
.

2) Upper Bound: The upper bound on the common mes-

sage secrecy capacity, presented in (3b), can be expressed for

the i.i.d. Rayleigh fading channels’ case as

C+
s =max

P (ρ̂)

∫ π

−π

∫ ∞

0

∫ ρ̂

ρ0(u)

0

log

(
1+ξ(ρ̂, ρ̃, u)P (ρ̂)

1+ρ̃2P (ρ̂)

)

× fρ̂(ρ̂)fρ̃(ρ̃)fu(u)dρ̂dρ̃du, (55)

where fρ̂(ρ̂)=fρ̃(ρ̂)=2ρ̂ e−ρ̂2

,

ξ(̂ρk, ρ̃k, uk) =(1−α)ρ̂2k+αρ̃2k + 2
√
α(1− α)ρ̂kρ̃k cos(uk),

ρ0(uk)=

√
(1−α)(α cos(uk)2−α+ 1)−

√
α(1−α) cos(uk)

1−α
,

and

fu(u) =




(2π + u)/(2π)2 −2π ≤ u < 0
(2π − u)/(2π)2 0 ≤ u < 2π
0 elsewhere.

• High-SNR Regime:

At high SNR, the upper bound on the common message

secrecy capacity in (4) can be written for i.i.d. Rayleigh fading

channels as

C+
H-SNR =

1

π

∫ π

−π

∫ ∞

ρ0(u)

log
(
(1−α)ρ2 +

√
α(1−α) cos(u)ρ+α

)

× ρ

(1+ρ2)2
dρdu. (56)

• Perfect CSI Case:

When the transmitter has perfect CSI, the upper bound on the

common message secrecy capacity in (5) is given for i.i.d.

Rayleigh fading channels as

C+
P-CSI = max

P (γ)

∫ ∞

0

e−γ

(
log(1+γP (γ))+ exp

(
1

P (γ)

)

×
(

Ei

(
− 1

P (γ)

)
−Ei

(
− 1

P (γ)
−γ

)))
dγ. (57)
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B. Broadcasting Independent Messages

1) Achievable Rate: When broadcasting independent mes-

sages to K legitimate receivers over i.i.d. Rayleigh fading

channels with imperfect main CSI at the transmitter, the lower

bound on the secrecy capacity, presented in (25), is given by

C̃−
s =max

τ

{
exp

(
1

P (τ)

)
Ei

(
− 1

P (τ)

)(
1−
(
1− e−τ

)K)

+K

K−1∑

k=0

(
K−1

k

)
(−1)k

1+αk

∫ ∞

0

log(1+γP (τ)) exp

(
− (1+k)γ

1+αk

)

× Q

(√
2

1−α

α(1+αk)
γ,

√
2τ

α
(1+αk)

)
dγ

}
, (58)

where P (τ)=Pavg/
(
1− (1− e−τ )

K
)

and
(
.
.

)
is the binomial

coefficient. Note that the integral term in (58) can be further

represented in the form

∫ ∞

0

log(1+γP (τ)) exp

(
− (1+k)γ

1+αk

)
Q

(√
2

1−α

α(1+αk)
γ,

√
2τ

α
(1+αk)

)
dγ

=
∞∑

n=0

∞∑

m=0

(1−α)n+m(1+αk)−nτm

αm−1Γ(1 +m)Γ(1+n+m)
exp

(
−τ(1+αk)

α

)

×G1,3
3,2

(
αP (τ)

∣∣∣∣
1, 1,−n−m

1, 0

)
. (59)

Details of derivation are provided in Appendix C.

• High-SNR Regime:

At high SNR, the lower bound on the independent messages

secrecy capacity in (27) reduces for i.i.d. Rayleigh fading

channels to

C̃−
H-SNR=max

τ

{
K

K−1∑

k=0

(
K−1

k

)
(−1)k

1+αk

(
− Ei(−(1+k)τ)

+ Ei

(
−τ(1+αk)

α

)
−e−(1+k)τ

(
Ei

(
α−1

α
τ

)
−log

(
1−α

1+αk
(1+k)τ

)

+ log

(
1+k

1+αk

))
+C

(
1−
(
1−e−τ

)K)
)}

. (60)

• Perfect CSI Case:

When the transmitter has perfect CSI, the lower bound on the

independent messages secrecy capacity in (28) is given for

i.i.d. Rayleigh fading channels as

C̃−
P-CSI=max

τ

{
exp

(
1

P (τ)

)
Ei

(
− 1

P (τ)

)(
1−
(
1− e−τ

)K)

+K
K−1∑

k=0

(
K−1

k

)
(−1)k

1+k

(
e−(1+k)τ log(1 + τP (τ))

− exp

(
1+k

P (τ)

)
Ei

(
−(1+k)

(
1

P (τ)
+τ

)))}
. (61)

2) Upper Bound: The upper bound on the indepen-

dent messages secrecy capacity with imperfect main CSI

at the transmitter, presented in (25), can be expressed as

C̃+
s =min

{
C̃+
1 , C̃+

2

}
, with C̃+

1 and C̃+
2 defined in (31). When

transmitting to K legitimate receivers over i.i.d. Rayleigh

fading channels, we have C̃+
2 =KC+

s , where C+
s is given

in (55), and

C̃+
1 = max

P (Γ̂)

∫ ∞

0

∫ ∞

0

∫ γ

0

log

(
1+γP (Γ̂)

1+γ̃P (Γ̂)

)
fΓ̂|γmax,γ̃

(Γ̂|γ, γ̃)

× fγmax|γ̃(γ|γ̃)fγ̃(γ̃) dγ̃dγdΓ̂, (62)

where fγ̃(γ̃) = e−γ̃ ,

fγmax|γ̃ (γ|γ̃) =
(1−e−γ)

K−1

1−α
exp

(
−γ+αγ̃

1−α

)
I0

(
2

√
α

(1−α)2
γγ̃

)

+(K−1)e−γ
(
1−e−γ

)K−2

(
1−Q

(√
2α

1−α
γ̃,

√
2

1−α
γ

))
, (63)

and

fΓ̂|γmax,γ̃
(Γ̂|γ, γ̃) = 1

α
exp

(
−γ+(1−α)γ̂

α

)
I0

(
2

√
1−α

α2
γγ̂

)

× e−γ̂e−γ̂2 · · · e−γ̂K

e−γ(1− e−γ)K−1

(
1−Q

(√
2(1−α)

α
γ̂,

√
2

α
γ

))K−1

. (64)

• High-SNR Regime:

At high SNR, we have C̃+
2 =KC+

H-SNR, where C+
H-SNR is given

in (56), and

C̃+
1 =

∫ ∞

0

∫ γ

0

log

(
γ

γ̃

)
e−γ̃fγmax|γ̃(γ|γ̃) dγ̃dγ (65)

• Perfect CSI Case:

When the transmitter has perfect CSI, the upper bound on the

independent messages secrecy capacity in (28) is given for

i.i.d. Rayleigh fading channels as

C̃+
P-CSI=max

P (γ)
K

K−1∑

k=0

(
K−1

k

)
(−1)k

∫ ∞

0

e−(k+1)γ

(
log(1+γP (γ))

+exp

(
1

P (γ)

)(
Ei

(
− 1

P (γ)

)
−Ei

(
− 1

P (γ)
−γ

)))
dγ. (66)

3) Scaling Law: In this subsection, we present an asymp-

totic analysis of the secrecy sum-capacity when transmitting

to a large number of legitimate receivers, in the high-SNR

regime, and over Rayleigh fading channels.

Corollary 5: The secrecy sum-capacity when broadcasting

independent messages to a large number of legitimate re-

ceivers, i.e., K→∞, with an infinite average power constraint,

i.e., Pavg→∞, is bounded by

log((1−α) log(K)) ≤ C̃s ≤ log logK, for all α6=1. (67)

Proof of Corollary 5: In the high-SNR regime, the secrecy

sum-capacity is bounded by

C̃−
H-SNR ≤ C̃s ≤ C̃+

H-SNR, (68)

where C̃−
H-SNR and C̃+

H-SNR are given in (27). On one hand, we

have,

C̃−
H-SNR = max

τ
E

γe,γest
max,

γ̂max≥τ

[
log

(
γest

max

γe

)]
≥ E

γe,γest
max,

γ̂max

[
log

(
γest

max

γe

)]
.

(69)
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Since the distribution of the maximum fγ̂max
(γ̂max) converges

toward δ(γ̂max− logK) as K→∞, with δ(.) is the Dirac-Delta

function, it is almost sure that γ̂max= logK as K→∞. We

have then

lim
K→∞

C̃−
H-SNR ≥ lim

K→∞

(
Pr (γ̂max= logK)

× E
γest

max

[
log
(
γest

max

) ∣∣γ̂max= logK
]
−E

γe

[log (γe)]

)
. (70)

Now, since Pr (γ̂max= logK)=1 as K→∞, and the variable γe
does not depend on K; the term E

γe

[log (γe)] is asymptotically

dominated by log logK , i.e., E
γe

[log (γe)]=o(log logK), then

lim
K→∞

C̃−
H-SNR ≥ lim

K→∞
E
γest

max

[
log
(
γest

max

) ∣∣γ̂max= logK
]
. (71)

Furthermore, since γest
max=|

√
1−αĥmax+

√
αh̃|2 and

√
1−α|ĥmax|−

√
α|h̃| ≤ |

√
1−αĥmax+

√
αh̃| ≤

√
1−α|ĥmax|+

√
α|h̃|,
(72)

with |ĥmax|=
√
γ̂max→

√
logK, and |h̃|=o(log logK) as

K→∞, then, γest
max → (1−α) logK as K→∞. Thus, we have

lim
K→∞

E
γest

max

[
log
(
γest

max

) ∣∣γ̂max= logK
]
− log ((1−α) logK)=0,

yielding

lim
K→∞

C̃−
H-SNR− log ((1−α) logK) ≥ 0. (73)

An alternative, more analytical, proof of the lower bound is

provided in Appendix D.

On the other hand, we have

C̃+
H-SNR=min

{
E

γmax,γ̃

[{
log

(
γmax

γ̃

)}+
]
,K E

γ,γ̃

[{
log

(
γ

γ̃

)}+
]}

≤ E
γmax,γ̃

[{
log

(
γmax

γ̃

)}+
]
. (74)

Considering the fact that fγmax
(γmax) → δ(γmax− logK) and

γ̃=o(log logK) as K→∞, we get

lim
K→∞

C̃+
H-SNR− log logK ≤ 0. (75)

Substituting (73) and (75) in (68) concludes the proof. It can

be seen that, in the limit of large number of legitimate receivers

K , the gap between the lower and the upper bounds on the

secrecy sum-capacity is log(1−α) for all α6=1. Besides, we

can see that this difference vanishes as the estimation error

variance of the CSI decreases, i.e., α→0.

VI. NUMERICAL RESULTS

In this section, we provide selected numerical results for

the case of independent and identically distributed Rayleigh

fading channels. We consider that the system’s variables,

the main channel gains hk, k ∈ {1, · · · ,K}, the estimated

channel gains ĥk, the channel estimation errors h̃k and the

eavesdropper’s channel gain g, are all drawn from the zero-

mean, unit-variance complex Gaussian distribution.
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Fig. 2. Comparison of the asymptotic results for high SNR and perfect CSI
with the lower and upper bounds on the common message secrecy capacity
with α=0.5.
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Fig. 3. Lower and upper bounds on the common message secrecy capacity
in function of α.

Figure 2 presents the lower and the upper bounds on

the secrecy capacity, in nats per channel use (npcu), when

transmitting a common message to two legitimate receivers

with α=0.5. The special cases of high-SNR and perfect main

CSI are also depicted. We can see that, at high SNR, the lower

bound with perfect main CSI at the transmitter presented in

this paper coincides with the one provided in [20]. However, at

low SNR, the curves of the two bounds differ. This difference,

at the low SNR regime, is explained by the use of different

power transmission schemes.
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Fig. 4. Lower and upper bounds on the independent messages secrecy sum-
capacity in the case of Rayleigh fading channels with K=2 and two values
of the estimation error variance α, i.e., α=0.5 and α=0.9.
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Fig. 5. Optimal on-off power parameter τ versus SNR, for Rayleigh fading
channels, with K=2 and various values of α. Subfigure (a) illustrates
the common message case while subfigure (b) represents the independent
messages case.

The effect of changing the estimation error variance on the

lower and the upper bounds on the secrecy capacity when

broadcasting a common message to two legitimate receivers

is illustrated in Fig. 3. We consider three different values

of the average power constraint Pavg=10 dB, Pavg=15 dB

and Pavg=30 dB. It is clear from this figure that the secrecy

capacity vanishes when no main CSI is available at the

transmitter (α=1). Moreover, we can see that the gap between

the achievable secrecy rate and the upper bound on the secrecy

capacity gets narrower as the value of Pavg decreases.

Figure 4 illustrates the lower and the upper bounds on the

secrecy capacity when transmitting independent messages to

two legitimate receivers, i.e., K=2, with two different values

of the error variance, α=0.5 and α=0.9.
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Fig. 6. Comparison between the upper bounds C̃+
s in (25) and C̃+

1
in (31)

for the independent messages case, in terms of α.

The variation of the threshold τ , of the On-Off power

scheme, is presented in Fig. 5 for both the common message

and the independent messages cases. We can see that, at high

SNR, and for a given channel estimation error α, τ converges

towards a fixed value. Note also that for a given SNR value,

τ decreases with the channel estimation quality.

The motivation behind choosing the upper bound on the

secrecy capacity as the minimum between C̃+
1 and C̃+

2 , for the

independent messages case, is highlighted in Fig. 6. Indeed,

a comparison between the upper bounds C̃+
s in (25) and C̃+

1

in (31) is presented, in terms of α, for K=1, 2, and 3 with

Pavg=30 dB. In accordance with what was stated in the proof

of Theorem 2, we can see that C̃+
2 is a loose upper bound for

the secrecy sum-rate for most values of α, especially when the

number of users K is large. That is, C̃+
s =C̃+

1 for most values of

α. However, when the CSI available at the transmitter gets very

noisy, i.e., α→1, C̃+
2 becomes tighter then C̃+

1 . Moreover, for

α=1, C̃+
2 vanishes, reflecting the fact that the secrecy capacity

is zero for the no CSI case, while C̃+
1 does not.

The upper bound on the secrecy capacity, for the inde-

pendent messages case, is presented in Fig. 7 in function of

the number of legitimate receiver K with Pavg=30 dB. We

can observe that, when K→∞, the curves representing C̃+
s

converge toward the perfect CSI curve (α=0) for all α > 1.

For the no CSI case (α=1), the secrecy capacity is zero.

Figure 8 considers the case when broadcasting independent

messages to K legitimate receivers with an estimation error

variance α=0.5 and two values for the average power con-

straint Pavg=10 dB and Pavg=30dB. From this figure, we can

see that both the achievable secrecy sum-rate and the upper

bound on the secrecy sum-rate, scale with the number of users

K . That is, and in accordance with the multiuser diversity aim,

the proposed achievable scheme is asymptotically optimal as

the number of legitimate receivers grows. The figure shows

also that the difference between the lower and the upper
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Fig. 7. Upper bound on the secrecy capacity versus the number of legitimate
receivers K for the independent messages case with different values of α.

bounds on the secrecy sum-rate approaches log(1−α) as

the number of users increases. This supports our claim in

Corollary 5. Note that all the results presented in this section

have been verified through Monte Carlo simulations.

VII. CONCLUSION

In this work, we investigated the ergodic secrecy capacity

of a broadcast wiretap channel over fast fading channels

with imperfect main CSI at the transmitter. In particular, we

analyzed the effect of the noisy estimation of the CSI on the

throughput of a broadcast channel where the transmission is

intended for multiple legitimate receivers in the presence of

an eavesdropper and we proved that a non-zero secrecy rate

can still be achieved even when the CSI at the transmitter is

noisy. The obtained results show that the secrecy rate when

broadcasting a common message is limited by the legitimate

receiver having, on average, the worst main channel link,

i.e., the legitimate receiver with the lowest average SNR. For

the independent messages case, we proved that the achiev-

able secrecy sum-rate scales with the number of users K
according to the scaling law log((1−α) log(K)), where α is

the estimation error variance of the CSI at the transmitter.

Asymptotic analysis at high-SNR, perfect and no-main CSI

were addressed and the results were illustrated for the case of

Rayleigh fading channels.

APPENDIX A

PROOF OF ACHIEVABILITY IN THEOREM 1

To prove the achievability of the lower bound on the

secrecy capacity in (2), we adopt a coding scheme similar

to the one presented in [20]. We denote the message

to be transmitted by W , and we let U be a sequence

of independent random variables over some alphabet U .

Also, we adopt the following notation H={h1, · · · , hK},

Hi={h1(1), · · · , h1(i), h2(1), · · · , h2(i), · · · , hK(1), · · · , hK(i)},
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Fig. 8. Upper and Lower bounds on the secrecy sum-rate versus the number
of users K with α=0.5 and two values of Pavg.

Ĥ={ĥ1, · · · , ĥK}, and Ĥi={ĥ1(1), · · · , ĥ1(i), ĥ2(1), · · · ,
ĥ2(i), · · · , ĥK(1), · · · , ĥK(i)}. Let η1 and η2 be two positive

constants, we define Re = I(U ;Z|g,H, Ĥ) − η2, and

R=min1≤k≤K

{
I(U ;Yk|H, Ĥ)− I(U ;Z|g,H, Ĥ)

}
− η1.

We construct K independent random codebooks

C1, · · · , CK+1, for the K legitimate subchannels. For

each message W , codebook Ck is randomly partitioned into

2nR bins, such that each bin contains 2nRe codewords. To

decode the received signal, each receiver will try to find a

message W that is jointly typical with the channel output

Yk. The error probability analysis are similar to the case of

perfect CSI [20].

For the secrecy analysis, we need to prove that, for

n sufficiently large
1

n
I(W ;Zn|gn, Hn, Ĥn) ≤ ǫ. We have

I(W ;Zn|gn, Hn, Ĥn)=H(W |gn, Hn, Ĥn)−H(W |Zn, gn, Hn, Ĥn),

and

H(W |Zn, gn, Hn, Ĥn)

= H(W,Un|Zn,gn,Hn,Ĥn)−H(Un|W,Zn,gn,Hn,Ĥn) (76)

= H(Un|Zn,gn,Hn,Ĥn)−H(Un|W,Zn,gn,Hn,Ĥn) (77)

≥ H(Un|Zn, gn, Hn, Ĥn)−nǫ1 (78)

= H(Un|gn,Hn,Ĥn)−I(Un;Zn|gn,Hn,Ĥn)− nǫ1 (79)

= H(Un,W |gn,Hn,Ĥn)−I(Un;Zn|gn,Hn,Ĥn)−nǫ1 (80)

= H(W |gn, Hn, Ĥn)+H(Un|W, gn, Hn, Ĥn)

− I(Un;Zn|gn, Hn, Ĥn)−nǫ1 (81)

= H(W |gn,Hn,Ĥn)+nI(U ;Z|g,H,Ĥ)

− I(Un;Zn|gn,Hn,Ĥn)−nǫ1 (82)

≥ H(W |gn, Hn, Ĥn)− nǫ1 − nη2 − nǫ2, (83)

where (77) and (80) follows from the fact that each codeword

Un corresponds to one message W , i.e., W is deterministic
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given Un, where (78) is obtained using Fano’s inequality, i.e.,

1

n
H(Un|W,Zn, gn, Hn, Ĥn) ≤ 1

n
+ η2Re , ǫ1,

where (82) follows from the fact that each bin contains nRe

codewords, i.e., H(Un|W,gn,Hn,Ĥn)=nI(U ;Z|g,H,Ĥ)−nη2,
and where (83) results from the fact that the codewords are

equally likely to be transmitted [1], i.e.,

1

n
I(Un;Zn|gn, Hn, Ĥn) ≤ I(U ;Z|g,H, Ĥ) + ǫ2.

Taking ǫ=ǫ1+ǫ2+η2, we deduce the secrecy constraint. To fin-

ish the proof, we consider the proposed on-off power scheme

in (7), set X=U∼CN (0, P (τ)) and adopt a probabilistic

transmission model as explained in Section III-B1.

APPENDIX B

DERIVATION DETAILS OF (51)

When transmitting over i.i.d. Rayleigh fading, the lower

bound on the common message secrecy capacity with imper-

fect main CSI at the transmitter, presented in (3a), can be

written as

C−
s = max

P (τ)

∫ ∞

γ=0

∫ ∞

γ̂=τ

∫ ∞

γe=0

log

(
1+γP (τ)

1+γeP (τ)

)

× fγe
(γe)fγ|γ̂(γ|γ̂)fγ̂(γ̂)dγedγdγ̂, (84)

with P (τ) = Pavgeτ , fγe
(γe) = e−γe , fγ̂(γ̂) = e−γ̂ , and

fγ|γ̂(γ|γ̂) =
1

α
exp

(
−γ+(1−α)γ̂

α

)
I0

(
2

√
1−α

α2
γγ̂

)
, (85)

where I0(.) is the modified Bessel function of the first

kind [28, Eq.(8.406.3)]. We can then express (84) such as

C−
s =maxτ {I1 − I2} , with integrals I2 and I1, respectively,

given by

I2 = e−τ

∫ ∞

0

log(1+γePavgeτ ) e−γedγe (86)

= − exp

(
e−τ

Pavg

)
Ei

(
− e−τ

Pavg

)
e−τ , (87)

where (87) is obtained using [28, Eq.(4.337.2)], and

I1 =
1

α

∫ ∞

0

log(1+γPavgeτ ) exp
(
− γ

α

)

×
∫ ∞

τ

exp

(
− γ̂

α

)
I0

(
2

√
1−α

α2
γγ̂

)
dγ̂dγ. (88)

Using the definition of the Q-function [29, Eq.(16)] and the

appropriate change of variables, we have

∫ ∞

τ

exp

(
− γ̂

α

)
I0

(
2

√
1−α

α2
γγ̂

)
dγ̂

= α exp

(
1−α

α
γ

)
Q

(√
2
1−α

α
γ,

√
2τ

α

)
, (89)

which allows us to write

I1=
∫ ∞

0

log(1+γPavgeτ ) e−γQ

(√
2
1−α

α
γ,

√
2τ

α

)
dγ. (90)

Substituting I2 and I1 by their respective expressions in (87)

and (90), we get (51). Now, using [30, Eq.(9)], we have

Q(a, b)=e−
a2+b2

2

∞∑

n=0

∞∑

m=0

a2(n+m)b2m

2n+2mΓ(1+m)Γ(1+m+n)
, (91)

we can then rewrite I1 in the form

I1 =

∞∑

n=0

∞∑

m=0

(1−α)n+mτm exp(−τ/α))

αn+2mΓ(1 +m)Γ(1+n+m)

×
∫ ∞

0

γn+m log(1+γPavgeτ ) exp
(
− γ

α

)
dγ. (92)

Finally, we make use of [31, Eq.(01.03.26.0004.01)],

[31, Eq.(01.04.26.0003.01)], and [31, Eq.(07.34.21.0011.01)],

to get

I1 =

∞∑

n=0

∞∑

m=0

(1−α)n+mτm exp(−τ/α))

αm−1Γ(1 +m)Γ(1+n+m)

×G1,3
3,2

(
αPavge

τ

∣∣∣∣
1, 1,−n−m

1, 0

)
. (93)

APPENDIX C

DERIVATION DETAILS OF (58)

The lower bound on the secrecy sum capacity with imperfect

main CSI at the transmitter, presented in (26a), can be written

for the i.i.d. Rayleigh fading channels as

C̃−
s = max

P (τ)

∫ ∞

γ=0

∫ ∞

γ̂=τ

∫ ∞

γe=0

log

(
1+γP (τ)

1+γeP (τ)

)

× fγe
(γe)fγest

max|γ̂max
(γ|γ̂)fγ̂max

(γ̂)dγedγdγ̂, (94)

with P (τ) = Pavg/
(
1− (1− e−τ )

K
)

, fγe
(γe) = e−γe ,

fγ̂max
(γ̂) = Ke−γ̂(1−e−γ̂)K−1, and

fγest
max|γ̂max

(γ|γ̂)= 1

α
exp

(
−γ+(1−α)γ̂

α

)
I0

(
2

√
1−α

α2
γγ̂

)
.

We can then express (94) such as

C−
s =max

τ

{
Ĩ1 − Ĩ2

}
, (95)

with integrals Ĩ2 and Ĩ1, respectively, given by

Ĩ2=K

∫ ∞

τ

∫ ∞

0

log (1+γeP (τ)) e−γee−γ̂(1−e−γ̂)K−1dγedγ̂

(96)

=
(
1−
(
1−e−τ

)K)
∫ ∞

0

log (1+γeP (τ)) e−γedγe (97)

= −
(
1−
(
1−e−τ

)K)
exp

(
1

P (τ)

)
Ei

(
− 1

P (τ)

)
, (98)

where (98) is obtained using [28, Eq.(4.337.2)], and

Ĩ1 =
K

α

∫ ∞

0

∫ ∞

τ

log (1+γP (τ)) exp

(
−γ + (1−α)γ̂

α

)

× I0

(
2

√
1−α

α2
γγ̂

)
e−γ̂(1−e−γ̂)K−1dγ̂dγ. (99)
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Using the binomial theorem [28, Eq.(1.111)] along with equa-

tion (89), integral Ĩ1 can be given by

Ĩ1=K

K−1∑

k=0

(
K−1

k

)
(−1)k

1+αk

∫ ∞

0

log(1+γP (τ)) exp

(
− (1+k)γ

1+αk

)

× Q

(√
2

1−α

α(1+αk)
γ,

√
2τ

α
(1+αk)

)
dγ. (100)

Substituting Ĩ2 and Ĩ1 in (95) by their respective expressions

in (98) and (100), we get (58).

APPENDIX D

ALTERNATIVE PROOF OF THE LOWER BOUND IN

COROLLARY 5

At high-SNR, the achievable secrecy sum-rate is given by

(27), i.e.,

C̃−
H-SNR = E

γe,γest
max,

γ̂max≥τ

[
log

(
γest

max

γe

)]
(101)

=

∫ ∞

0

∫ ∞

τ

∫ ∞

0

log

(
γ

γe

)
fγe

(γe)fγest
max|γ̂max

(γ|γ̂)fγ̂max
(γ̂)dγedγ̂dγ.

Since fγ̂max
(γ̂max) −−−−−→

K→∞
δ(γ̂max− logK) as K→∞, then,

we can write

lim
K→∞

C̃−
H-SNR= lim

K→∞

(
1

α

∫ ∞

0

log(γ) exp

(
−γ+(1−α) logK

α

)

×I0

(
2

√
1−α

α2
logKγ

)
dγ−E

γe

[log γe]

)
, (102)

and since the variable γe does not depend on K , the term

E
γe

[log (γe)] is asymptotically dominated by log logK , i.e.,

E
γe

[log (γe)] =o(log logK). Thus, we have

lim
K→∞

C̃−
H-SNR= lim

K→∞

(
1

α
exp

(
α−1

α
logK

)

×
∫ ∞

0

log(γ) exp
(
− γ

α

)
I0

(
2

√
1−α

α2
logKγ

)
dγ

)
(103)

(a)
= lim

K→∞

(
1

α
exp

(
α−1

α
logK

) ∞∑

m=0

1

Γ(m+ 1)m!

×
(
1−α

α2
logK

)m ∫ ∞

0

γm log(γ) exp
(
− γ

α

)
dγ

)

(b)
= lim

K→∞

(
1

α
exp

(
α−1

α
logK

)((
logα−C

)

×
∞∑

m=0

(1−α)m(logK)m

αm−1m!
+

∞∑

m=0

Hm(1−α)m(logK)m

αm−1m!

))

(c)
= lim

K→∞

(
log((1−α) logK)− Ei

(
−1−α

α
logK

))
,

where (a) is obtained using Iv(z) =

∞∑

m=0

(
z
2

)2m+v

Γ(m+v+1)m!
, (b)

follows from
∫ ∞

0

γm log(γ) exp
(
− γ

α

)
dγ=αm+1Γ(m+ 1) (logα+Hm−C),

with Hm is the harmonic number, and (c) comes from

∞∑

m=0

(1−α)m(logK)m

αm−1m!
=αK

1−α
α ,

and

∞∑

m=0

Hm(1−α)m(logK)m

αm−1m!
= αK

1−α
α

×
(
C−Ei

(
−1−α

α
logK

)
+ log

(
1−α

α
logK

))
. (104)

Now, since lim
K→∞

Ei

(
−1−α

α
logK

)
=0, then we have

lim
K→∞

[
C̃−

H-SNR− log((1−α) logK)
]
=0.
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