
sensors

Article

Secure Combination of IoT and Blockchain by Physically
Binding IoT Devices to Smart Non-Fungible Tokens
Using PUFs

Javier Arcenegui *, Rosario Arjona , Roberto Román and Iluminada Baturone

����������
�������

Citation: Arcenegui, J.; Arjona, R.;

Román, R.; Baturone, I. Secure

Combination of IoT and Blockchain

by Physically Binding IoT Devices to

Smart Non-Fungible Tokens Using

PUFs. Sensors 2021, 21, 3119.

https://doi.org/10.3390/s21093119

Academic Editor: Wenjuan Li

Received: 31 March 2021

Accepted: 27 April 2021

Published: 30 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Microelectronics Institute of Seville (IMSE-CNM), University of Seville, CSIC, C/Américo Vespucio 28,

41092 Seville, Spain; arjona@imse-cnm.csic.es (R.A.); roman@imse-cnm.csic.es (R.R.); lumi@imse-cnm.csic.es (I.B.)

* Correspondence: arcenegui@imse-cnm.csic.es

Abstract: Non-fungible tokens (NFTs) are widely used in blockchain to represent unique and non-

interchangeable assets. Current NFTs allow representing assets by a unique identifier, as a possession

of an owner. The novelty introduced in this paper is the proposal of smart NFTs to represent IoT

devices, which are physical smart assets. Hence, they are also identified as the utility of a user, they

have a blockchain account (BCA) address to participate actively in the blockchain transactions, they

can establish secure communication channels with owners and users, and they operate dynamically

with several modes associated with their token states. A smart NFT is physically bound to its IoT

device thanks to the use of a physical unclonable function (PUF) that allows recovering its private key

and, then, its BCA address. The link between tokens and devices is difficult to break and can be traced

during their lifetime, because devices execute a secure boot and carry out mutual authentication

processes with new owners and users that could add new software. Hence, devices prove their

trusted hardware and software. A whole demonstration of the proposal developed with ESP32-based

IoT devices and Ethereum blockchain is presented, using the SRAM of the ESP32 microcontroller as

the PUF.

Keywords: IoT security; blockchain technology; Ethereum; smart contracts; non-fungible tokens

(NFTs); physical unclonable functions (PUFs); trusted hardware; secure boot

1. Introduction

The Internet of things (IoT) is the paradigm where anything (devices, objects, subjects,
etc.) can be interconnected through the Internet with the capability of interacting, collecting,
processing, and sharing data in a smart way. The rapid growth in the number of things
connected to Internet has led to the need for security solutions. Most existing solutions
focus on the secure handling and sharing of the data, addressing risks that range from
the use of personal data without the owner’s consent or knowledge to data access or
manipulation by unauthorized parties [1]. Blockchain technologies have recently been
used with IoT since they provide a distributed and cryptographically secure chain of
data blocks, which allows an immutable data trail that guarantees ownership of data and
user privacy [2]. Each block in a blockchain is identified univocally and is linked to the
previous one by using a cryptographic hash function. A new block is added to the chain
if participants in the blockchain with the role of miners demonstrate that the new block
is secure and most of the miners agree with the demonstration, applying a consensus
algorithm. If an attacker tries to change data in a block, for example, data captured by the
sensors of an IoT device, the hash of the block changes and the data in the next block do
not match. The attacker would have to change all the subsequent blocks in the chain to not
be detected [3].

The data in the blocks can be data captured by the IoT devices, as well as data about
transactions and the participants involved in the transactions. The exchange of digital

Sensors 2021, 21, 3119. https://doi.org/10.3390/s21093119 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9717-2228
https://orcid.org/0000-0002-5728-0897
https://orcid.org/0000-0001-5463-2482
https://doi.org/10.3390/s21093119
https://doi.org/10.3390/s21093119
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21093119
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21093119?type=check_update&version=1

Sensors 2021, 21, 3119 2 of 23

currency or generic assets usually involves transactions between blockchain participants.
In recent public blockchains such as Ethereum, agreements between participants are
formalized through smart contracts represented by scripts. These scripts are validated
as part of transactions by the consensus algorithm and, thus, once validated, the smart
contracts are tamper-proof like the other data registered in the blockchain [4]. In addition,
protocols are applied to achieve secure execution of smart contracts [5]. All participants
execute the code of a smart contract in the same way and can check if the obligations
established by the contract are met. Therefore, in addition to integrity, blockchain allows
transparency because any participant can consult the data registered, including the smart
contracts. This has been exploited to integrate blockchain with supply chain management,
which, in the case of the IoT ecosystem, allows guaranteeing the origin and trustworthiness
of data without the need for intermediaries [6]. The IoT devices can be fully autonomous to
directly trade their data with third parties through smart contracts that govern all policies
of data trade and ownership rights [7].

Ownership information can be included in smart contracts by means of tokens. Since
a token is the digital representation of an asset in the blockchain, there are two main
types of tokens, fungible and non-fungible tokens (NFTs), depending on the represented
asset. Fungible tokens are identical and interchangeable tokens (such as a fiat currency),
which allow accounting and billing transactions. Non-fungible tokens are unique and non-
interchangeable tokens (such as notarial instruments or artwork collectables), which allow
traceability of unique physical or non-physical possessions. An example of a non-physical
possession in the context of IoT is the capability to access to resources or services. An IoT
device acting as provider can represent by NFTs the resources or services provided. If it
grants one of these NFTs to an IoT device acting as client, the client device is authorized
to access the unique resource or service represented by the NFT [8,9]. Another wide
use of NFTs is to represent physical products. Each product manufactured by a cloud
service can be represented by a NFT such that its price, provenance, and ownership can be
traced by the blockchain [10]. Applying a finer tokenization, each component of a product
can be represented by a NFT such that the creation of a product from its components is
registered in the blockchain as the minting of a new token from the tokens representing its
components. In this way, not only the origin but also the subsequent transformation of a
product can be traced [11].

This paper focuses on exploiting NFTs to make IoT devices secure, from a hardware
and software point of view, such that the data they provide become trusted. The blockchain
technology is exploited not only to ensure the trustworthiness of the hardware device
manufacturing, but also to guarantee the security of its software. Otherwise, all security
fails [12]. Concerning the software, special attention is given to the secure boot of the
microcontroller in the IoT device hardware, whose objective is to check that the code to
be executed is the expected one, and to the secure communication with owners and users,
which can change device software. Ethereum blockchain is considered since it is one of the
most extended public blockchains.

In the Ethereum community, which develops ERC (Ethereum Request for Comments)
standards [13], the ERC-20 standard defines fungible tokens and the ERC-721 standard
defines NFTs. An important attribute of an ERC-721 NFT is its owner, which is identified
uniquely by their blockchain account (BCA) address. A blockchain participant interacts
with the blockchain through a BCA, which is composed of a pair of cryptographic private
and public keys and a unique address derived from the public key. In addition to an
owner, a unique identifier is associated with an ERC-721 NFT. In the proposals where
the ERC-721 tokens represent physical goods, the token identifiers are usually related to
the logical attributes of the product, such as its bar or QR code [10], or to the product
information data, such as disposal instructions and expiration dates [11]. The problem
is that these identifiers are not related to something intrinsic of the product, i.e., they are
not true product identifiers since they can be modified, copied or transferred to another
product. To avoid this problem, crypto anchors were proposed as a tight link between the

Sensors 2021, 21, 3119 3 of 23

digital and physical domains [14]. Silicon physical unclonable functions (PUFs), which
exploit the variabilities of the semiconductor manufacturing process [15], can be treated as
crypto anchors for electronic products such as IoT devices. The binding of ERC-721 NFTs
with physical IoT devices using PUFs was proposed in [16]. That work included, as a new
attribute in ERC-721 NFTs, the blockchain account (BCA) address associated with the IoT
device. The use of PUFs in the hardware of the IoT device was proposed to reconstruct the
private key from which the BCA address of the device in its associated token is derived.
In addition, that work also included, as a new attribute in ERC-721 NFTs, the blockchain
account (BCA) address associated with the user of the IoT device, such that not only the
ownership but also the use of the device can be traced by the blockchain with the same
token. However, that work did not allow detecting if the device is not operating correctly,
if the link between the device and the NFT is broken, or if the engagement with owner and
user is lost at some time. To avoid these security flaws, this paper introduces a new NFT,
named smart NFT, which strengthens the link between the IoT device and the NFT used to
represent it.

The main contributions of this paper are the following:

• The proposal of smart NFTs to represent IoT devices that can participate actively in the
blockchain by its BCA (to receive and provide information, and to sign transactions)
and that can operate in several modes. The attributes defined for smart NFTs are not
only the owner BCA address (as in the ERC-721 standard), the user BCA address,
and the device BCA address (as in [16]). In addition, token states are included to
trace the operating modes of the IoT device, public data are added to trace if secure
communication channels are established between a device and its owner and user, and
timestamps and timeouts are added to register the last validation of the link between
the token and the device.

• A solution that allows IoT devices proving during their lifetime that their hardware
and software are trusted because they are able to be bound to their smart NFTs and
operate as expected. Physical attacks, which are common at IoT devices, e.g., their
replacement by counterfeit devices or modifications of the content of their non-volatile
memory, are detected after a controlled delay time thanks to the use of PUFs and the
execution of a secure boot process.

• A solution that allows registering in the blockchain whenever shared secrets are
agreed between devices and owners and between devices and users. From them, fresh
session cryptographic keys can be derived for secure communication. Therefore, the
trustworthiness of the devices can be traced even if there is a change of owners and
users that manage them.

• A whole demonstration of the proposal developed with ESP32-based IoT devices
and Ethereum blockchain. In this demonstration, the internal SRAM of the ESP32
microcontroller acts as the PUF and a true random number generator (TRNG), and
it is controlled by a firmware developed in ESP-IDF (Espressif IoT Development
Framework) [17]. The smart contract was developed with Remix [18], and the DApp
(Decentralized Application) interfaces were created for the roles of manufacturer,
owner, and user of the devices. These DApps were connected with the blockchain
using a web interface and Metamask [19], and with the device using UART (Universal
Asynchronous Transmitter Receiver) serial communication.

The rest of the paper is structured as follows: Section 2 reviews the related work on
PUFs and NFTs associated with IoT devices. Section 3 describes the smart non-fungible
tokens proposed to represent IoT devices, since the related work of IoT paradigm requires
an extension of the ERC-721 tokens. The way of physically binding IoT devices to smart
NFTs using PUFs, as well as the preservation of the bounding by executing trusted software
are described in Section 4. The whole demonstration of the proposal is presented in
Section 5. Lastly, conclusions are given in Section 6.

Sensors 2021, 21, 3119 4 of 23

2. Related Work

A usual way to assign a cryptographic identity to a device is to assign it a private
cryptographic key. Since secure non-volatile memories are expensive, a simple way of
storing private keys in low-cost IoT devices is the use of internal eFuses or one-time
programmable memories. However, this solution does not maintain private keys as secret
but only provides data integrity, i.e., its contents cannot be modified but can be read. In
fact, in the case of IoT devices using old versions of ESP32 microcontrollers, it was shown
in [20] that, by injecting voltage glitches into the microcontroller, the protection of the keys
could be bypassed and intended secret data stored in eFuses could be read.

A more recent and low-cost solution to identify devices is the use of PUFs. The
blockchain-based proposals in the literature that consider PUFs to identify IoT devices
do not employ NFTs explicitly. In [21], the challenge–response pairs provided by PUFs
were employed for counterfeit detection of components of IoT devices. The manufacturer,
using the generated PUF-based unique identifier, registers each device component in the
blockchain with a smart contract. PUF-based unique identifiers and ownership transfer
records were also employed in [22,23] to establish integrated circuit traceability. In [24,25],
instead of storing the PUF response directly in the blockchain, the registered manufacturers
store a cryptographic hash of the device identifier so that any end-user can verify the
authenticity of the device if its associated hash is present in the blockchain.

Theoretically, PUFs produce the same response with high probability. However,
PUF responses can be affected by system noise and environmental conditions (such as
temperature and voltage variations). Hence, cryptographic hash functions cannot be
applied directly to PUF responses to obtain a reliable identifier. The ISO/IEC DIS 20897 [26]
specifies the methods that can be employed to alleviate noise and generate non-stored
cryptographic parameters from PUFs. Usually, fuzzy extractors apply error correcting
codes to PUF responses to obfuscate and recover cryptographic keys without bit errors.
Fuzzy extractors are employed in authentication protocols that verify that only the authentic
device is able to recover the cryptographic key from the obfuscated stored data. In this
way, in [27,28], the authentication procedure of an IoT device was based on checking if the
cryptographic key is correctly recovered by the PUF. In [27], optical PUFs were employed
in private blockchains. In [28], SRAM PUFs inside microcontroller-based devices were
employed in zero-knowledge protocols. Only the public keys generated by the devices are
stored in the blockchain. The blockchain simplifies the management of the device public
keys and reduces the complexity of maintaining a central database.

Instead of PUFs, hardware security modules (HSMs) were employed in [29] to generate
cryptographic keys for IoT devices. In [30], an HSM was included in each vehicle of a
blockchain-based vehicle sharing platform. The HSM is utilized to generate randomly a
pair of a public and a private key. The private key is used to sign transactions and the BCA
address of the vehicle is derived from the public key. Two ERC-721 tokens are employed,
one of them is owned by the vehicle and the other is owned by the user of the vehicle.
However, an onboard HSM is more costly and complex for an IoT device than an intrinsic
silicon PUF. In addition, an HSM does not generate a physical link with the device. Hence,
we prefer the use of PUFs to establish a low-cost root of trust from which a private key
and then the BCA address of the IoT device can be generated, as in [16]. Instead of using
several ERC-721 tokens, as in [29], we prefer to introduce smart tokens, which extend the
ERC-721 tokens and allow using fewer tokens in the applications.

Different Ethereum improvement proposals (EIPs) have extended the ERC-721 NFTs to
allow for more versatility in certain use cases [13]. An example is the ERC-1155 Multi Token
Standard, which allows combining fungible and non-fungible tokens in the same token.
Other proposals in draft status are the EIP-2981, proposed to handle royalty payments, and
the EIP-2615, to support mortgage and rental functions. The draft EIP-1948 introduces a
non-fungible token that has dynamic data, that is, data that can change during the lifetime
of the token. However, none of these extensions of ERC-721 tokens are addressed for
IoT devices that can interact actively with the blockchain. The extension of the ERC-721

Sensors 2021, 21, 3119 5 of 23

token proposed in [16] is not enough to detect when and why the link between a device
and its token is broken. In addition, the transference of the token to a new owner is
done automatically without registering the smart contract for any mutual authentication
between the new owner and device. Hence, malicious owners that transfer non-operative
devices cannot be proven. Lastly, the transference of the token to a new user is completed
with the approval of the user but without registering the smart contract for any mutual
authentication between the new user and device. Hence, malicious users that misuse
devices cannot be proven. To represent IoT devices more securely, the next section describes
our proposal of smart non-fungible tokens.

3. Proposal of Smart Non-Fungible Tokens (NFTs) to Represent IoT Devices

The ERC-721 standard [31] defines how to build NFTs on the Ethereum blockchain
through a smart contract interface. Since the ERC-721 standard regards NFTs as unique
assets that can be owned and transferred, it defines two main attributes: tokenId, which
is the unique identifier of the token, and owner, which is the blockchain account (BCA)
address that owns the token, can transfer ownership, and can approve others (approved and
operators) to act in its name. However, something to consider when trying to represent IoT
devices by NFTs is that IoT devices cannot be considered as passive assets with unique
identifiers and owners; they need more attributes and functions to define them. Hence, an
extension of the ERC-721 standard is presented below.

3.1. Attributes of Smart NFTs

In the context of a blockchain, a main difference between an IoT device and a passive
asset is that the IoT device can interact actively with other blockchain participants, i.e.,
it can have a BCA. Hence, we propose the addition of the NFT attribute device, which is
the BCA address associated with the IoT device. Furthermore, an IoT device is not only
a possession of an owner but also an active agent that obeys a user to carry out certain
tasks in an application. Hence, we propose the addition of the NFT attribute user, which is
the BCA address of the user of the IoT device. In order to represent the dynamic activity
of the IoT device, six more attributes are proposed: timestamp, timeout, state, hashK_OD,
hashK_UD, and dataEngagement. The first of them, timestamp, registers in the blockchain
whenever the device checks it is bound with its token. This is very important to register if
the link is alive or not. The second of them, timeout, is the maximum delay time established
for the device to prove again the bounding. If it is exceeded, the device is considered to be
malfunctioning. The rest of the attributes are explained below.

An IoT device is a dynamic asset that can change of operating modes, which can be
represented by states. In particular, the states defining if the device has been engaged or
not with an owner or with a user deserve attention because the software to be executed by
the device, which should be verified prior to be executed, is different. Hence, we propose
the addition of the NFT attribute state and propose that the operating mode of the device
should be in correspondence with its token state. We consider four main states of the token.
The state Waiting for owner defines the situation whenever the token is created or transferred
to a new owner, but the device and owner have not yet been mutually verified. Once they
verify each other, the device recognizes its owner and the state of its token changes to
Engaged with owner. In this state, the owner can transfer the token to a user. If the token is
transferred to a user that coincides with the owner, the token state changes to Engaged with
user and the device is ready to operate in its application, obeying the commands from its
user. Otherwise, the token changes its state to Waiting for user. Once the user and the IoT
device are verified mutually, the token changes its state to Engaged with user. From this state,
the token can be transferred to another user, thus returning to the Waiting for user state. To
cope with a user that cannot reply, the token can be transferred to another user if its state is
Waiting for user. From all the states, the token can be transferred to another owner, thus
returning to the Waiting for owner state. Figure 1 illustrates the state diagram of the token.
The state changes are controlled by token functions as explained in the next subsection.

Sensors 2021, 21, 3119 6 of 23

Owner authentication

Transfer to new user

user == owner

Engaged with owner

Waiting for owner

Token creation

Engaged with user

Waiting for user

No

Yes

user == empty

Yes

No

User authentication

Transfer to new user

 (createToken function)

(ownerEngagement function)

(setUser function)

(userEngagement function)

(setUser function)

Transfer to new owner

(transferFrom function)

Transfer to new user

(setUser function)

Transfer to new owner

(transferFrom function)

Transfer to new owner
(transferFrom function)

–

Figure 1. State diagram of smart NFTs.

The engagements of the device with an owner and with a user are carried out after
mutual authentication protocols based on elliptic curve Diffie–Hellman key exchange
protocols. These protocols allow a key agreement between the device and its owner, on
the one hand, and the device and its user, on the other hand. Since the establishment of
a shared secret is very important for a secure communication between them, we propose
the inclusion of the attributes hashK_OD, hashK_UD, and dataEngagement. The first two
attributes define, respectively, the hash of the secret shared between the device and its
owner and that between the device and its user. Devices, owners, and users should check
whether they are using the correct shared secrets. The attribute dataEngagement defines the
public data needed for the agreement. If the mutual authentication fails, dataEngagement
allows detecting which parts failed. This is more thoroughly explained in the next section.

Table 1 shows the attributes of smart NFTs. The standard attributes approved and
operator (which help the owner to transfer ERC-721 NFTs to other owners) are omitted
in Table 1 because they are not in the scope of this work. Of course, they can also be
considered in the proposed smart NFTs.

Table 1. Attributes of smart NFTs.

Type Name of Variable Defined by ERC-721

uint256 tokenId Yes
address owner Yes
address device No
address user No
enum state No

uint256 hashK_OD No
uint256 hashK_UD No
uint256 dataEngagement No
uint256 timestamp No
uint256 timeout No

Sensors 2021, 21, 3119 7 of 23

3.2. Functions and Events of Smart NFTs

Table 2 shows the main functions and events of a smart NFT, which are defined in
its interface. The pseudo-codes of the functions createToken, updateTimestamp, setTimeout,
and checkTimeout are shown in Table 3. The function createToken is implicit in the ERC-721
standard. However, the proposed smart NFT defines it explicitly to link the device BCA
address to the tokenId. In our proposal, only an agent identified as manufacturer can
create the token. It is defined in the constructor of the smart contract associated with the
smart NFT. The function updateTimestamp, which can be carried out only by the device,
can be seen as a proof of liveness of the device. The function setTimeout lets the owner
establish how much time the device has to again prove that it is operating properly. Device
malfunctioning can be detected with the function checkTimeout. This function is employed
in many of the functions described below.

The pseudo-codes of the functions transferFrom, and setUser are shown in Table 4.
The function transferFrom defines the new owner and generates the event Transfer when
finished (if the device is operating correctly). The function setUser defines the new user.
Only a user can use the device bound to the token. Therefore, if the owner needs to use
the device, the owner BCA address has to be defined as user BCA address. If a device is
already engaged with an owner, mutual authentication is not required again if the owner is
defined as user. The function setUser generates the event UserAssigned when finished (and
the device is operating correctly). If the device is malfunctioning, the event TimeoutAlarm
is sent. Devices, owners, and users have to be subscribed to events to be aware of the
transferences. In the case of devices, these events make them aware of a change in the
operating mode, as detailed in the next section.

Table 2. Functions and events of Smart NFTs.

Functions and Events Defined by ERC-721

function transferFrom (address _from, address _to, uint256 _tokenId) external payable; Yes
function ownerOf (uint256 _tokenId) external view returns(address); Yes
function balanceOf (address _owner) external view returns(uint256); Yes
function createToken (address _device, address _owner) external view returns (uint256); No
function startOwnerEngagement (uint256 _tokenId, uint256 _dataEngagement, uint256 _hashK_O) external; No
function ownerEngagement (uint256 _tokenId, uint256 _hashK_D) external; No
function startUserEngagement (uint256 _tokenId, uint256 _dataEngagement, uint 256 _hashK_U) external; No
function userEngagement (uint256 _tokenId, uint256 _ hashK_D) external; No
function setUser (uint256 tokenId, address _user) external; No
function tokenFromAddress (address _device) external view returns (uint256); No
function ownerOfFromAddress (address _device) external view returns (address); No
function userOfFromAddress (address _device) external view returns (address); No
function userOf (uint256 _tokenId) external view returns (address); No
function userBalanceOf (address _user) external view returns (address); No
function userBalanceOfAnOwner (address _user, address _owner) external view returns (address); No
function updateTimestamp () external; No
function setTimeout (uint256 _tokenId, uint256 _timeout) external; No
function checkTimeout (uint256 _tokenId) external returns (bool); No
event Transfer (address _from, address _to, uint256 _tokenId); Yes
event OwnerEngaged (uint256 _tokenId); No
event UserAssigned (uint256 _tokenId, address _user); No
event UserEngaged (uint256 _tokenId); No
event TimeoutAlarm (uint256 _tokenId); No

Sensors 2021, 21, 3119 8 of 23

Table 3. Pseudo-codes of the functions related to the creation and configuration of smart NFTs.

createToken: Creates a New Token Linking a Device BCA Address to a TokenId

Input: _device, _owner
Output: tokenId
Require manufacturer = = msg.sender
Generate new tokenId
Set owner of tokenId = _owner
Set state of tokenId = Waiting for owner
Set BCA address of tokenId = _device
Set timestamp = block timestamp
Return tokenId

updateTimestamp: The device updates the attribute timestamp of its token

Set timestamp of tokenFromBCA(msg.sender) = block timestamp

setTimeout: The owner of the token sets its attribute timeout

Input: _tokenId, _timeout
Require owner of _tokenId = = msg.sender
Set timeout of _tokenId = _timeout

checkTimeout: Checks if the device remains bound to its token

Input: _tokenId
if timestamp + timeout < block timestamp
then return false
else return true

Table 4. Pseudo-codes of the functions of smart NFTs related to the definitions of new owners and users.

TransferFrom: Transfers a Token from an Owner to a New Owner

Input: _old_Owner, _new_Owner, _tokenId
Require {owner, operator, approved} of _tokenId = = msg.sender
if checkTimeout = = true
then Set user BCA address from _tokenId = _user
and Set {dataEngagement, hashK_UD} = 0
and if _user = = 0 then Set state of _tokenId = Engaged with owner
and else Set state of _tokenId = Waiting for user
and Send event UserAssigned
else Send event TimeoutAlarm

setUser: The owner assigns a user to the token

Input: _tokenId, _user
Require state is Engaged with owner, Waiting for user or Engaged with user and owner of _tokenId = = msg.sender
if checkTimeout = = true
then Set user BCA address from _tokenId = _user
and Set {dataEngagement, hashK_UD} = 0
and if _user = = 0 then Set state of _tokenId = Engaged with owner
and else Set state of _tokenId = Waiting for user
and Send event UserAssigned
else Send event TimeoutAlarm

The pseudo-codes of the functions startOwnerEngagement, startUserEngagement, owner-
Engagement, and userEngagement are shown in Table 5. The functions startOwnerEngage-
ment and startUserEngagement, which are executed by the owner and user, respectively,
save the public data dataEngagement and the hash of the secret they propose to share. The
functions ownerEngagement and userEngagement, which are executed by the device, check
if the device agrees with the secret. If the checking is successful, the token state changes
from Waiting for owner to Engaged with owner and from Waiting for user to Engaged
with user, respectively.

Sensors 2021, 21, 3119 9 of 23

Table 5. Pseudo-codes of the functions of smart NFTs related to the engagement with owners and users.

startOwnerEngagement: Starts Engagement Process between Owner and Device

Input: _tokenId, _dataEngagement, _hashK_O
Require state is Waiting for owner and owner of _tokenId = = msg.sender
if checkTimeout = = true
then Set dataEngagement of _tokenId = _dataEngagement and Save _hashK_O
else Send event TimeoutAlarm

ownerEngagement: Notifies owner and device their mutual authentication

Input: _tokenId, _hashK_D
Require state is Waiting for owner and dataEngagement is not zero and BCA address of _tokenId = = msg.sender
if _hashK_D = = _hashK_O
then Set state of _tokenId = Engaged with owner
and Set hashK_OD of _tokenId = _hashK_O
and Set timestamp = block timestamp
and Send event OwnerEngaged

startUserEngagement: Starts engagement process between user and device

Input: _tokenId, _dataEngagement, _hashK_U
Require state is Waiting for user and user of _tokenId = = msg.sender
if checkTimeout = = true
then Set dataEngagement of _tokenId = _dataEngagement and Save _hashK_U
else Send event TimeoutAlarm

userEngagement: Notifies user and device their mutual authentication

Input: _tokenId, _hashK_D
Require state is Waiting for user and dataEngagement is not zero and BCA address of _tokenId = = msg.sender
if _hashK_D = = _hashK_U
then Set state of _tokenId = Engaged with user
and Set hashK_UD of _tokenId = _hashK_U
and Set timestamp = block timestamp
and Send event UserEngaged

Given the device BCA address, the functions tokenFromAddress, ownerOfFromAddress
and userOfFromAddress return, respectively, the token identifier, the address of owner, and
the address of user. Given the tokenId, the function userOf returns the address of the user.
The tokenIds assigned to a user are returned by the function userBalanceOf, and the tokenIds
of a particular owner assigned to a user are returned by the function userBalanceOfAnOwner.

4. Proposal of Physically Binding IoT Devices to Smart NFTs Using PUFs

4.1. Creation of Smart NFTs

A blockchain is cryptographically secure because the participants sign their transac-
tions. To be allowed to sign transactions, it is fundamental to have a public/private key
pair and an address associated with a blockchain account (BCA). The BCAs are unique
and univocally identify the participants. From the private key, the public key and the
address are derived. Authenticity, integrity, and non-repudiation are ensured only if the
private key is kept secret and is properly protected. If not, an impersonation attack can
be carried out since the key pair conforms the identity of the participant. In this work,
physical unclonable functions (PUFs) are used to obfuscate and reconstruct the private
keys on the fly. Since PUF responses are noisy, a fuzzy extractor or helper data algorithm
(HDA) is needed. The fundamental primitive of the HDA is an error correction [n, k, d]
code C with coding and decoding algorithms capable of correcting up to t errors given a
distance d. An enrollment phase is performed to generate the device private key SKDEV,
on the one hand, and the public Helper Data HDDEV needed to reconstruct it, on the other
hand. In this work, it is assumed that SKDEV is generated from a random seed provided
by a true random number generator (TRNG). HDDEV is generated by mapping SKDEV to a
codeword cs through the coding algorithm of C and later by XORing it with a PUF response

Sensors 2021, 21, 3119 10 of 23

R of length n. To reconstruct SKDEV, HDDEV is XORed with a fresh PUF response R’ and,
later, it is applied to it the decoding algorithm of C. In this form, the private key is not
stored anywhere, and only the genuine device can recover it.

SRAM PUFs are employed in this work since SRAMs can be found in the majority of
IoT devices and no additional hardware is required to be included or implemented. Hence,
these types of PUFs have a low cost. Basically, an SRAM cell is formed by six transistors,
four of which are used as two cross-coupled inverters and two of which are used as access
transistors. A write operation can force the output value toward 0 or 1 depending on the
applied input. However, if the cell is powered up and no external signal is applied as
input, the output value of the cell (known as the start-up value) is fixed by the inverter
that begins to conduct. This outcome is unpredictable without having direct access to the
cell since it depends on the transistor mismatching determined by random variations of
the semiconductor fabrication process. The start-up value of the cell is not necessarily
the same between different power-ups due to the presence of noise. This bit flipping is
generally unwanted when the SRAM cell start-up value is used in the PUF response, since
the PUF reproducibility is reduced and the complexity of the error correction code raises
accordingly. To mitigate this, the solution explained in [32] is used herein, which only
employs the most stable cells to generate the SRAM PUF response. If the resulting SRAM
PUF responses show some bias, a debiasing algorithm has to be considered. The unbiased
stable cells after this classification process are named ID cells. Using these ID cells, a simple
repetition error correction code works correctly, as shown in [16,32].

Unlike ID cells, which show stability in several power-ups, there are cells that are
very unstable by nature and their start-up values vary greatly. These cells can be used as a
TRNG, as explained in [33]. In this work, these cells, named as RND cells, are used as a
source of entropy for the generation of the IoT device private keys employed for the BCAs
and for the generation of the nonces employed in the communication protocols.

As illustrated in Figure 2, prior to create the token, the manufacturer challenges
the SRAM PUF of the IoT device. The IoT device carries out the cell classification from
which the IDMASK and RNDMASK are generated. With the application of the RNDMASK,
the start-up values of the RND cells are obtained and then employed as input to a hash
function that outputs the private key. The device BCA address, device, is derived from
the application of a public key generator to the private key. With the application of the
IDMASK, the ID cells are obtained. The Helper Data HDDEV is the result of applying an XOR
operation to the start-up values of the ID cells and the codeword associated to the private
key. Then, the IoT device sends IDMASK, RNDMASK, HDDEV, and device to the manufacturer.
The manufacturer creates the smart NFT with the transaction associated to the function
createToken by indicating the owner and device BCA addresses. Once the smart NFT is
created, the manufacturer receives the tokenId and programs the device.

It is assumed in this work that the SoC (system on a chip) acting as the processing core
of the IoT device contains a small one-time programmable (OTP) memory, e.g., a ROM, and
a larger non-volatile memory (NVM), e.g., a flash or SD card. The manufacturer writes a
very small piece of data and code (the zero-stage bootloader ZSB, the manufacturer public
key PKMAN, and the tokenId) in the OTP memory and most of the data and code (the first-
stage bootloader FSB, the kernel of the operating system OSMAN, and the firmware needed
to interact with the blockchain FWBC, including the IDMASK, RNDMASK, and HDDEV) in
the NVM. Since the NVM is not tamper-proof, all the data stored in it are signed with
the manufacturer private key SKMAN. In the OTP memory, the tokenId is stored, since it
represents the logical and immutable identity of the smart NFT associated with the device.
In addition, the zero-stage bootloader is stored together with the manufacturer public key
PKMAN and the code needed to verify the signatures.

Sensors 2021, 21, 3119 11 of 23

Figure 2. The manufacturer binds the IoT device to its smart NFT.

4.2. Operating Modes of the Device

An IoT device, programmed and bound to a smart NFT by a manufacturer, executes
a thread, herein named FWBC, which consults in the blockchain its token information
and updates the timestamp. Typically, this is scheduled by the operating system kernel
OSMAN provided by the manufacturer. A timeout interruption determines when the device
requests and updates the token information from the blockchain through its BCA address.
The first value of timeout is given by the manufacturer. Then, the owner can change this
value and the device takes it from its smart NFT. The device knows its operating mode
from the state of its smart NFT.

When the smart NFT is created, the operating mode of the device defined in the
state is Waiting for owner. If the state is Waiting for owner, the device saves in its memory
the owner BCA address. Since devices, owners, and users agree on the elliptic curve
employed (secp256k1 in Ethereum) and the primitive element P used on this curve, the
owner generates a pair of keys, a private key (SKOD) and a public key (PKOD), which verify
that PKOD = SKOD·P. The owner proposes K_O = SKOD·PKDEV as secret to share with
the device to establish a secure communication channel. The owner publishes PKOD as
dataEngagement and the hash of K_O as hashK_O with the function startOwnerEngagement.
The owner requests the device to finish engagement. The device validates the owner
request, generates its secret as K_D = SKDEV ·PKOD, using the public data PKOD, and
sends the hash of K_D as hashK_D with the function OwnerEngagement. If everything is
correctly done, K_O and K_D are the same since

K_O = SKOD·PKDEV = SKOD·(SKDEV ·P)= SKDEV ·(SKOD·P)= SKDEV ·PKOD = K_D.

Hence, the function OwnerEngagement changes the state of the token to Engaged with
owner, updates the timestamp, and sends the event OwnerEngaged. Once the device receives
the event, it changes its operation mode to Engaged with owner. This process is shown in
Figure 3. From this moment, the device can be managed by the owner. The owner can
configure and program the device according to the application, uploading the software
SWOWNER. Then, the owner can assign a user to the device, without losing the ownership
of the device. If the owner sends the transaction setUser to the smart contract, this function
changes the state of the token to Waiting for user and sends the event UserAssigned.

Sensors 2021, 21, 3119 12 of 23

Generate secret

K_D = SKDEV*PKOD

 Check if

hashK_O = hashK_D

IoT Device Owner Smart NFT

Get token information from device BCA address

Set operating mode:

Waiting for owner

hashK_D

RequestEngage (PKOD)

Save owner BCA address

Event: OwnerEngagedSet operating mode:

Engaged with owner

Check owner signature

Timeout interrupt

Information

PKOD, hashK_O

Generate the pair (SKOD,PKOD) for

communication, set K_O = SKOD*PKDEV

 If YES, Set state:

Engaged with owner

𝑆𝐾𝑈𝐷 𝑃𝐾𝑈𝐷 𝐾_𝑈 = 𝑆𝐾𝑈𝐷 · 𝑃𝐾𝐷𝐸𝑉𝑃𝐾𝑈𝐷 𝐾_𝑈𝐾_𝐷 = 𝑆𝐾𝐷𝐸𝑉 · 𝑃𝐾𝑈𝐷 𝐾_𝐷𝐾_𝑈 𝐾_𝐷

𝑆𝐾𝑂𝐷 𝑆𝐾𝑈𝐷

Figure 3. Steps in successful owner and device mutual authentication.

If the device consults the blockchain and the state of its smart NFT is Waiting for user,
the device saves in its memory the user BCA address. Then, a mutual authentication pro-
cess is carried out with the user, as already done with the owner. The user generates a pair
of keys, a private key (SKUD) and a public key (PKUD), proposes K_U = SKUD·PKDEV as
secret to share with the device to establish a secure communication channel, and publishes
PKUD as dataEngagement and the hash of K_U as hashK_U with the function startUserEn-
gagement. The user requests the device to finish engagement. The device validates the
user request, generates its secret as K_D = SKDEV ·PKUD, and sends the hash of K_D as
hashK_D with the function userEngagement. If everything is correctly done, K_U and K_D
are the same, and the function changes the state of the token to Engaged with user, updates
the timestamp, and sends the event UserEngaged. Once the device receives the event, it
changes its operation mode to Engaged with user. This process is shown in Figure 4. From
this moment, the user can employ the device and upload their own software, SWUSER, to
configure and program the device accordingly to its use. If the mutual authentication of
the device with the owner or with the user is not finished with engagement, the owner or
user can publish the private key (SKOD and SKUD, respectively) if they want to show that
the fail was on the side of the device and not on their side.

The shared secrets agreed between devices and owners and between devices and users
are sensitive information since, from them, and using a key derivation function (KDF),
fresh session cryptographic keys can be derived for secure communication. Hence, the
device obfuscates them with its PUF and reconstructs them with helper data stored in its
NVM, in the same way as explained for its private key, SKDEV. Once reconstructed, the
device checks them with the attributes hashK_OD and hashK_UD in its token.

Sensors 2021, 21, 3119 13 of 23

 Check if

hashK_U = hashK_D

 If YES, Set state:

Engaged with user

Generate secret

K_D = SKDEV*PKUD

IoT Device User Smart NFT

Get token information from device BCA address

Set operating mode:

Waiting for user

hashK_D

RequestEngage (PKUD)

Save user BCA address

Event: UserEngagedSet operating mode:

Engaged with user

Check user signature

Timeout interrupt

Information

PKUD, hashK_U

Generate the pair (SKUD,PKUD) for

communication, set K_U = SKUD*PKDEV

Figure 4. Steps in a successful user and device mutual authentication.

4.3. Trusted Software and Hardware of IoT Devices

As commented above, the code to be executed by the IoT device (OSMAN, FWBC,
SWOWNER, and SWUSER) usually resides in the NVM. The problem is that attackers can
manipulate these external non-volatile memories and, thus, change the behavior of the IoT
device. For its proper behavior, all of this code should be trusted. In particular, the owner
and user software, SWOWNER and SWUSER, respectively, as well as the other threads of the
operating system kernel OSMAN, should not be able to interfere with the thread FWBC used
to interact with the blockchain or consult and update the token information. If this is not
accomplished, the link between the device and its token can be broken. A way to ensure the
permanence of this link is by means of a secure boot, which proves the trustworthiness of
the code early at boot time. The code at each boot stage is verified using a digital signature
in a chain-of-trust manner.

In the initial stage, the code called Zero-Stage Bootloader (ZSB), which is located in the
internal OTP memory of the main SoC, is executed. Since this code cannot be modified, it is
considered the Root of Trust (RoT) of the device. We assume a non-leakage chip model [34]
for the main SoC. This means that all the internal components of the main SoC are trusted,
including the on-chip SRAM, which also acts as an SRAM PUF. It is also assumed that the
manufacturer is a trusted entity, which does not introduce any malware or hardware trojan.

We propose to include a secure boot process in the IoT device hardware with the
following steps, shown in Figure 5:

1. The Zero-Stage Bootloader verifies the First-Stage Bootloader (FSB) signed by the man-
ufacturer. The signature SIG(FSB, SKMAN) stored in the external NVM is verified
with the manufacturer public key PKMAN (which is associated with the manufacturer
private key SKMAN). The manufacturer public key is trusted since it is also stored in
the OTP memory. Then, if the verification is successful, the First-Stage Bootloader is
executed.

2. The FSB reads the partition table and verifies the integrity of the operating system
kernel OSMAN using the manufacturer public key PKMAN stored in the internal OTP
memory and the signature SIG(OSMAN, SKMAN) stored in the external non-volatile

Sensors 2021, 21, 3119 14 of 23

memory. If the verification is successful, the kernel of the operating system takes the
control of the IoT device.

3. The kernel OSMAN launches FWBC, after verifying it, so that the device can interact
with the blockchain using its own BCA address. To do this, the FWBC reconstructs the
private key. The tuple {IDMASK, HDDEV} is read from the external NVM, and the start-
up values of the ID cells determined by the IDMASK are read from the on-chip SRAM.
Later, the start-up values are XORed with the HDDEV, and the repetition error decode
is applied. Once the private key is reconstructed, the public key is derived and the
IoT device is able to generate its BCA address from it. Using the device BCA address,
the device checks if the tokenId saved in its OTP memory is the one associated with
its BCA address in its smart NFT. With this checking, the device proves its hardware
authenticity. Then, the device retrieves the rest of its NFT attributes, such as its owner
and user BCA addresses and its state, and it updates its timestamp. Depending on the
NFT state, the device executes the code associated with the Waiting for owner, Engaged
with owner, Waiting for user, or Engaged with user operating modes. If the device is
already engaged with an owner, the signature SIG(SWOWNER, SKOWNER) is verified
with the owner public key PKOWNER, which is related to the owner BCA address. If
the verification is successful, the application SWOWNER is executed. In addition, if
the device is already engaged with a user, the user application SWUSER is verified
with the retrieved user BCA address and the signature SIG(SWUSER, SKUSER). If the
verification is successful, the application SWUSER is executed. These applications are
executed concurrently to FWBC, which periodically consults and updates the device
token. The shared secrets can be employed to interchange confidential data.

Zero Stage

Bootloader,

ZSB

Smart NFT

First Stage

Bootloader,

FSB Operating

System Kernel,

OSMAN
Blockchain

Firmware,

FWBC
Owner

Software,

SWOWNER
User

Software,

SWUSER

Manufacturer

Figure 5. Proposed secure boot process of the IoT device.

5. Proof of Concept with ESP32-Based IoT Devices and Ethereum Blockchain

A proof of concept was developed on the basis of a Pycom Wipy 3.0 board as IoT
device (which includes an Espressif ESP32 microcontroller as the main SoC) and the
public Ethereum blockchain. ESP-IDF was employed to develop the required device
functionalities, Remix was employed to develop the smart contract of the smart NFT,
and three DApps (Decentralized Applications) were created for the roles of manufacturer,
owner, and user, as detailed below.

5.1. Firmware Verification and Blockchain Account Generation from SRAM PUFs

The proposed secure boot process explained in Section 4.3 lasts longer than a non-
secure process since hash operations and signature verifications introduce some overhead.
We used the verification algorithm with the secp256k1 curve of the micro-ecc library to
verify the manufacturer signatures and the SHA512 function to hash the code to be verified,
taking advantage of the SHA accelerator included in the ESP32 microcontroller. The time it

Sensors 2021, 21, 3119 15 of 23

took to verify a signature was 165.7 ms. The hashing operation that has to be done prior to
the signature verification depends, of course, on the code size of the stage to be verified.
The FSB on the ESP32 can occupy around 15–17 KB [35] and hashing it took around 2.5 ms.
On the other hand, the size of the operating system kernel OSMAN can vary depending on
the features required by the application context. For example, the Moongose OS operating
system [36], with several features for enhanced IoT devices, can occupy at least 113 KB
and hashing a code of that size took 19.5 ms. Therefore, the signature verification was the
slowest operation in the secure boot process.

In previous works [16,37], the internal SRAM of the ESP32 microcontroller was evalu-
ated as a PUF, considering as the most stable (STB) cells the SRAM cells whose start-up
value did not change in 20 consecutive measurements. Table 6 summarizes the experimen-
tal results. Three different boards were used, and the experiments were done in nominal
operation conditions. Note that the majority of SRAM cells are stable cells that do not show
bias. For evaluating PUF uniqueness and reproducibility, the average fractional Hamming
distance was used as follows:

distH

n

]

avg

=
2

n·k·(k − 1)
·

k−1

∑
i=1

k

∑
j=i+1

distH(R i, Rj),

where distH is the Hamming distance, n is the number of bits of the responses, and Ri

and Rj are PUF responses. Inter-Hamming distance (from PUF responses from different
SRAM cells) was used to evaluate PUF uniqueness, and intra-Hamming distance (from
PUF responses from the same SRAM cells) was used for PUF reproducibility. Since the
average inter-Hamming distance was nearly 0.5, this confirmed PUF uniqueness. Since the
average intra-Hamming distance was very close to 0, this showed that PUF reproducibility
was fairly good. It was concluded that a repetition error correcting code of length 8 was
sufficient to properly recover a 256-bit obfuscated secret seed. Hence, 2048 ID (STB) cells
were needed [16].

Table 6. Summary of experimental results of SRAM PUFs and TRNGs in ESP32 [16,37].

Experiment Result

No. SRAM cells evaluated per board 237,320
No. STB cells (min.) 199,514

Bias in STB cells No

No. SRAM cells per PUF response 2048
No. PUF responses 291 (3 × 97)

Avg. intra fract. Hamming dist. 0.0025
Avg. inter fract. Hamming dist. 0.4921

No. RND cells 724
Min. entropy (%) 69.52

The most unstable (or RND) cells of internal SRAM of the ESP32 microcontroller were
also studied. Having performed 20 measurements, those cells had a start-up value of “0”
half of the time and “1” the other half of the time. Since they provided the minimum entropy
shown in Table 6, 369 RND cells were needed to generate a 256-bit random sequence with
full entropy (256/0.6952 cells) [37].

After 20 readings of SRAM start-up values, the device generates the IDMASK and
RNDMASK. Although this classification process is slow, as shown in Table 7, it is only
executed once previously to use the device and create the token, and this allows accelerating
the processes that should be repeated afterwards. The device uses the RNDMASK to obtain
a secret seed. Using the secret seed and a hash, the IoT device generates its 32-byte private
key. It is encoded with the 8-bit repetition error correction encoder, and the result is XORed
with the start-up values of 2048 ID cells to produce the helper data HDDEV.

Sensors 2021, 21, 3119 16 of 23

Table 7. Execution times of the main operations performed by the IoT device.

Operation
Execution
Time (ms)

Private key obfuscation

SRAM cells classification 3.8 × 105

32-byte private key generation (RND mask and hash application) 0.41

ID mask application, repetition error correction code and XOR operation 2.02

Shared secret generation Product of the private and public keys 166.6

Zero-stage boot
Hashing 15–17 KB 2.5

Signature verification 165.7

Private key reconstruction ID mask application, XOR operation, and repetition error correction code 1.60

BCA address generation
64-byte public key generation (secp256k1 operation) 21.15

20-byte BCA address creation (Keccak256 operation) 0.45

Blockchain transaction
Message preparation (creation of JSON structure and signature) 26.10

Transfer to Infura blockchain API 2.90

Transaction completion 52.65

Once the FWBC is uploaded to the device, the helper data are XORed with the start-up
values of the SRAM cells identified by the IDMASK. Using the 8-bit error repetition decoder,
the private key is recovered. Since our proof of concept uses the Kovan testnet Ethereum
blockchain, the curve secpt256k1 is needed to obtain the 64-byte public key. The Trezor
library was used for the curve secpt256k1 (instead of the micro-ecc library used in the boot
process). This library was used to improve the computing times obtained with the micro-
ecc library (14.08% reductions in the execution times were achieved). This acceleration is
possible because the Trezor library saves precomputed data on Flash memory. This option
is not possible in the boot process because internal OTP memories tend to be small and the
precomputed values require a significant amount of storage. The BCA address is generated
as the rightmost 160 bits of the Keccak hash of the public key. The SHA3 library from
Trezor library was used for the Keccak hash.

An Ethereum API is required by the Wipy board to interact with the blockchain. In
this proof of concept, Infura [38] was employed as the blockchain gateway. In the Infura
free version, the iterations with blockchain are limited to 100,000 requests per day, which is
more than enough for our proof of concept. To use Infura, the gateway should be registered
and configured. Once the Infura project is created, a project ID and a project secret are
generated. Selecting the endpoint as Kovan Ethereum testnet, the URL of the API was
generated using HTTPS. Figure 6 shows the configuration of our proof of concept and the
Wipy board. For security reasons, we modified the project secret and the project ID.

The interaction between the Wipy board and Infura should employ JSON (Java Script
Object Notation) format in the messages. Although this format is a standard derived from
JavaScript exchange messages to minimize data size, it is currently used in any language
indistinctly. In the case of the Wipy boards, the cJSON library was employed to construct
JSON structures in C language. The interaction with the blockchain or smart contract
should use a remote procedure call (RPC) protocol encoded in JSON (JSON-RPC). All the
available methods in Ethereum using JSON-RPC from Infura can be found in [39]. We took
the proper methods from this source.

Table 7 shows the execution times obtained with the Wipy board, concerning private
key obfuscation and reconstruction, BCA address generation, and blockchain transaction.

The transaction completion time, measured as the total time from the private key
reconstruction to the transfer of a message to the blockchain API, can be short enough for
many applications.

Sensors 2021, 21, 3119 17 of 23

Figure 6. Configuration of our proof of concept in Infura. The Pycom Wipy 3.0 board is also shown.

5.2. The Smart NFT-Based Smart Contract

The smart NFT-based smart contract was developed in Solidity language on Remix
IDE [18]. Remix is an official IDE for Ethereum blockchain and has all the assets needed
to code, compile, test, and deploy a smart contract. The code developed is available
publicly on GitHub [40] and can be deployed on the Kovan testnet with the address
0x7eB5A03E7ED70ABf70fee48965D0411d37F335aC.

Saving a transaction on a block of Ethereum has a cost. It depends on the priority and
size of the transaction and the computational cost of the function. In the smart contract
proposed, the functions createToken, transferFrom, startOwnerEngagement, ownerEngagement,
setUser, startUserEngagement, userEngagement, setTimeout, checkTimeout, and updateTimestamp
have transaction costs. The gas consumption of these functions, at the time of writing
this paper, is shown in Table 8. The costliest function is createToken because it saves all the
information to generate a token. Comparisons to other proposals in the literature which
employ NFTs are not included since those smart contract functions are oriented to specific
applications such as accesses to resources and traceability of products. Therefore, gas
consumption results of those functions are not comparable.

5.3. DApp Interfaces

In addition to developing the smart contract with Remix and the required device
functionalities with ESP-IDF, DApp (Decentralized Application) interfaces were created
for the roles of manufacturer, owner, and user to have a whole demonstration. On the
one hand, these DApps have a connection with the blockchain using a web interface and
Metamask [19]. On the other hand, they have a physical connection with the device using
UART (Universal Asynchronous Transmitter Receiver) serial communication. UART was
selected for simplicity, but other connections such as Bluetooth or WiFi can be employed.
This is shown in Figure 7.

Sensors 2021, 21, 3119 18 of 23

Table 8. Gas consumption of the main functions implemented.

Function Gas Consumption

createToken() 167,263
transferFrom() 64,556

startOwnerEngagement() 69,216
ownerEngagement() 47,962

setUser() 66,788
startUserEngagement() 69,990

userEngagement() 32,983
setTimeout() 28,874

checkTimeout() 26,429
updateTimestamp() 28,162

IoT Device

UART
Web client using

Metamask

Web server

Middleware

WebSocket

messages

WebSocket

messages

DApp

Figure 7. Structure of the communication between the IoT device and the DApps.

While Infura was used as the gateway between the blockchain and the IoT device,
Metamask was used in the DApps as the gateway between the blockchain and the web
client employed by the manufacturer, owners, and users. Metamask is a browser extension
that lets one sign and interact with the blockchain using a key vault of blockchain accounts.
This software can be considered as an Ethereum wallet and Ethereum API. Metamask can
save one or more blockchain accounts, but only one can be active each time. Hence, it is
important to have activated the correct BCA (manufacturer, owner, or user) when using
the DApps. In this work, we selected the Kovan testnet to work with Metamask. Since
Metamask can be used only with a web client, a Node.js web server was developed [41].
We used the JavaScript runtime environment Node.js due to its simplicity. In order to use
Metamask with a web client, the Web3 library together with a Metamask Legacy Web3
browser extension was employed for the DApps.

The middleware between the DApp web client and the IoT Device was also designed
with Node.js. It connects the UART with the WebSocket protocol, which uses a Transmission
Control Protocol (TCP). When the DApp web client sends a WebSocket message to the
middleware, the header of the message indicates what the middleware should do, such as
requesting the helper data from the IoT device or requesting the hashK_D, among other
functions. On the other hand, when the DApp web client receives a WebSocket message, it
also executes the proper function depending on the message header.

The manufacturer DApp is the one used by the manufacturer to upload, in the IoT
device, the firmware needed for the device registration process. This firmware carries
out the creation of the IDMASK and RNDMASK, the helper data HDDEV, and the BCA of
the device. The DApp creates a UART connection with the IoT Device to obtain this
information. In addition, in the token creation process of the smart contract, the DApp
obtains the tokenId and registers the token in the blockchain with an owner. With all this
information, the manufacturer DApp creates the firmware FWBC of the device and uploads
the OSMAN with the FWBC into the device.

Sensors 2021, 21, 3119 19 of 23

The owner DApp is used for the mutual authentication between the owner and the
IoT device. The DApp requests the hashK_D from the device, uses Metamask to sign this
request with the active BCA, and sends PKOD to the device. The DApp makes the smart
contract execute the function startOwnerEngagement to start the engagement. Once the
owner is engaged (the event OwnerEngaged is received), this DApp allows uploading the
SWOWNER into the device and the assignation of users by the owner.

The user DApp is used for the mutual authentication between the user and the IoT
device, similarly to the mutual authentication with the owner DApp. This DApp makes
the smart contract execute the startUserEngagement function to start the engagement. Once
the user is engaged (the event UserEngaged is received), this DApp allows uploading the
SWUSER into the device. Figure 8 illustrates these DApp interfaces.

5.4. Example of Use Case

The proposed solution can be very efficient in many scenarios. As an illustrative
example, let us consider a certification company in charge of acquiring measurements
(such as levels of noise, radioactivity, or carbon dioxide emissions) that should achieve
regulation compliance to prevent harm to the environment, citizens, and industry workers.
Trusted IoT devices should be used to obtain trusted measurements. The employment
of the proposed smart NFTs in this use case contributes to the security of the IoT device
from manufacturing to operation. The IoT device cannot be replaced by a counterfeit one
and its software cannot be manipulated if it is bound to a smart NFT. The certification
company, acting as owner of the devices, can set inspectors as users. Thanks to the
mutual authentication processes, which are registered in the smart NFT, session keys
can be established to transmit confidential measurements taken by the IoT device to the
certification company or to the inspector. On the other hand, the certification company
and the inspector can load and execute their applications related to measurement setup
or acquisition. The secure boot process checks if the software (from the manufacturer,
the certification company, or the inspector) is the expected one. The IoT device can be
transferred to another certification company or inspector, and the changes are registered
in the smart NFT. The measurements performed by the IoT device can be hashed and
uploaded in the blockchain together with the smart NFT information to provide a complete
traceability of the certification procedure.

Sensors 2021, 21, 3119 20 of 23

𝑃𝐾𝑂𝐷

(a)

(b)

(c)

Figure 8. (a) Manufacturer DApp, (b) owner DApp, and (c) user DApp.

Sensors 2021, 21, 3119 21 of 23

6. Conclusions

The solution proposed in this work guarantees the trustworthiness of the hardware
and software of IoT devices from manufacturing until end-user application. The proposed
smart non-fungible tokens (NFTs) extend the attributes defined by the ERC-721 standard
(token identifier and owner BCA address) to also include the device and user BCA ad-
dresses, the states associated with the operating modes of the device, public data related to
secrets shared with its owner and user, and time information about the last link checked
between the token and the device. The gas consumption of the smart contract functions
defined for the token (developed in Solidity) is given. The function to create the token
is the costliest because it saves all the information to generate the token, while the gas
consumption of the smart contract functions defined for checking and updating the link
with the device is much smaller.

The IoT device is able to generate and recover its BCA in a trusted way from its
hardware through a PUF and executes a secure boot that ensures it consults its smart NFT
periodically. In this way, the device is physically bound to its Smart NFT because the token
identifier stored in its one-time programmable memory matches the device BCA address
recovered and stored in the token. In addition, secure communication channels can be
established between devices, owners, and users. In the proof of concept developed with
a Wipy 3.0 board (which includes an ESP32 microcontroller), the internal SRAM of the
ESP32 microcontroller was employed as a PUF. The time needed to complete a transaction
was 52.65 ms, considering the recovering of the 32-byte private key, the 64-byte public
key regeneration, the 20-byte BCA address for Ethereum, the message preparation, and
the transfer to Infura blockchain API. Concerning the secure boot process of the device
(which is based on hash operations and signature verifications), the time is dominated by
the signature verification (the ESP32 microcontroller has a SHA accelerator). The time to
verify a signature was 165.7 ms (using secp256k1 curve and the micro-ecc library). The time
needed to generate a shared secret was 166.6 ms (using the Trezor library). These times are
good for many applications. In order to complete the demonstrator, DApp (Decentralized
Application) interfaces were created for the roles of manufacturer, owner, and user of
the devices.

Author Contributions: Conceptualization, all authors; methodology, I.B.; software, J.A. and R.R.;

validation, I.B. and R.A.; formal analysis, I.B.; investigation, all authors; resources, J.A. and R.R.; data

curation, all authors; writing—original draft preparation, all authors; writing—review and editing, all

authors; visualization, J.A.; supervision, I.B.; project administration, I.B. and R.A; funding acquisition,

I.B. and R.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by FEDER/Ministerio de Ciencia e Innovación—Agencia

Estatal de Investigación, _TEC2017-83557-R and _RTC-2017-6595-7 and in part by FEDER/Consejería

de Transformación Económica, Industria, Conocimiento y Universidades, de la Junta de Andalucía

under Project AT17_5926_USE and Project US-1265146.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pal, S.; Rabehaja, T.; Mukhopadhyay, S. Security requirements for the internet of things: A systematic approach. Sensors 2020,

20, 5897. [CrossRef]

2. Novo, O. Blockchain meets IoT: An architecture for scalable access management in IoT. IEEE Internet Things J. 2018, 5, 1184–1195.

[CrossRef]

3. Dhananjay, S.; Jong-Hoon, K.; Madhusudan, S. Blockchain Technologies; Springer Nature: New York, NY, USA, 2020.

4. Longo, R.; Podda, A.S.; Saia, R. Analysis of a Consensus Protocol for Extending Consistent Subchains on the Bitcoin Blockchain.

Computation 2020, 8, 67. [CrossRef]

5. Sun, T.; Yu, W. A Formal Verification Framework for Security Issues of Blockchain Smart Contracts. Electronics 2020, 9, 255.

[CrossRef]

6. Al-Rakhami, M.S.; Al-Mashari, M. A Blockchain-Based Trust Model for the Internet of Things Supply Chain Management. Sensors

2021, 21, 1759. [CrossRef]

http://doi.org/10.3390/s20205897
http://doi.org/10.1109/JIOT.2018.2812239
http://doi.org/10.3390/computation8030067
http://doi.org/10.3390/electronics9020255
http://doi.org/10.3390/s21051759

Sensors 2021, 21, 3119 22 of 23

7. Nawaz, A.; Peña Queralta, J.; Guan, J.; Awais, M.; Gia, T.N.; Bashir, A.K.; Kan, H.; Westerlund, T. Edge Computing to Secure IoT

Data Ownership and Trade with the Ethereum Blockchain. Sensors 2020, 20, 3965. [CrossRef]

8. Omar, A.S.; Basor, O. Capability-based non-fungible tokens approach for a decentralized AAA framework in IoT. Blockchain

Cybersecur. Trust. Priv. 2020, 79, 7–31. [CrossRef]

9. Fotiou, N.; Pittaras, I.; Siris, V.A.; Siris, V.A.; Voulgaris, S.; Polyzos, G.C. OAuth 2.0 authorization using blockchain-based tokens.

arXiv 2020, arXiv:2001.10461.

10. Hasan, M.; Starly, B. Decentralized cloud manufacturing-as-a-service (CMaaS) platform architecture with configurable digital

assets. J. Manuf. Syst. 2020, 56, 157–174. [CrossRef]

11. Westerkamp, M.; Victor, F.; Küpper, A. Tracing manufacturing processes using blockchain-based token compositions.

Digit. Commun. Netw. 2020, 6, 167–176. [CrossRef]

12. Jesus, V. Blockchain-enhanced Roots-of-Trust. In Proceedings of the IEEE International Conference on Smart Communications

and Networking (SmartNets), Yasmine Hammamet, Tunisia, 16–17 November 2018; pp. 1–7. [CrossRef]

13. Ethereum Improvement Proposals. Available online: https://eips.ethereum.org/erc (accessed on 22 April 2021).

14. Balagurusamy, V.S.; Cabral, C.; Coomaraswamy, S.; Coomaraswamy, S.; Delamarche, E.; Dillenberger, D.; Friedman, D.; Gökce, O.;

Hinds, N.; Jelitto, J.; et al. Crypto anchors. IBM J. Res. Dev. 2019, 63, 4:1–4:12. [CrossRef]

15. Gao, Y.; Al-Sarawi, S.F.; Abbott, D. Physical unclonable functions. Nat. Electron. 2020, 3, 81–91. [CrossRef]

16. Arcenegui, J.; Arjona, R.; Baturone, I. Secure Management of IoT Devices Based on Blockchain Non-fungible Tokens and Physical

Unclonable Functions. In Proceedings of the International Conference on Applied Cryptography and Network Security; Springer:

Berlin/Heidelberg, Germany, 2020; Volume 12418, pp. 24–40. [CrossRef]

17. ESP-IDF Get Starter. Available online: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/ (accessed on

22 April 2021).

18. Remix IDE Online. Available online: https://remix.ethereum.org/ (accessed on 22 April 2021).

19. Metamask Website. Available online: https://metamask.io/ (accessed on 22 April 2021).

20. Pwn the ESP32 Forever: Flash Encryption and Sec. Boot Keys Extraction. Available online: https://limitedresults.com/2019/11/

pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-extraction/ (accessed on 22 April 2021).

21. Negka, L.; Gketsios, G.; Anagnostopoulos, N.A.; Spathoulas, G.; Kakarountas, A.; Katznbeisser, S. Employing blockchain and

physical unclonable functions for counterfeit IoT devices detection. In Proceedings of the International Conference on Omni-Layer

Intelligent Systems (COINS), Crete, Greece, 5–7 May 2019; pp. 172–178. [CrossRef]

22. Islam, M.N.; Kundu, S. Enabling ic traceability via blockchain pegged to embedded puf. ACM Trans. Des. Autom. Electron. Syst.

2019, 24, 1–23. [CrossRef]

23. Xu, X.; Rahman, F.; Shakya, B.; Vassilev, A.; Forte, D.; Tehranipoor, M. Electronics supply chain integrity enabled by blockchain.

ACM Trans. Des. Autom. Electron. Syst. (TODAES) 2019, 24, 1–25. [CrossRef] [PubMed]

24. Cui, P.; Dixon, J.; Guin, U.; Dimase, D. A blockchain-based framework for supply chain provenance. IEEE Access 2019,

7, 157113–157125. [CrossRef]

25. Guin, U.; Cui, P.; Skjellum, A. Ensuring proof-of-authenticity of IoT edge devices using blockchain technology. In Proceedings of

the IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom)

and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Halifax, NS, Canada, 30 July–3

August 2018; pp. 1042–1049. [CrossRef]

26. ISO/IEC DIS 20897-2 Information Security, Cybersecurity and Privacy Protection—Physically Unclonable Functions—Part 2: Test

and Evaluation Methods. Available online: https://www.iso.org/standard/76354.html (accessed on 22 April 2021).

27. Chaintoutis, C.; Akriotou, M.; Mesaritakis, C.; Komnios, I.; Karamitros, D.; Fragkos, A.; Syvridis, D. Optical PUFs as physical root

of trust for blockchain-driven applications. IET Softw. 2018, 13, 182–186. [CrossRef]

28. Prada-Delgado, M.Á.; Baturone, I.; Dittmann, G.; Jelitto, J.; Kind, A. PUF-derived IoT identities in a zero-knowledge protocol for

blockchain. Internet Things 2020, 9, 100057. [CrossRef]

29. Furtak, J. Cryptographic Keys Generating and Renewing System for IoT Network Nodes—A Concept. Sensors 2020, 20, 5012.

[CrossRef] [PubMed]

30. Pirker, D.; Fischer, T.; Witschnig, H.; Steger, C. velink-A Blockchain-based Shared Mobility Platform for Private and Commercial

Vehicles utilizing ERC-721 Tokens. In Proceedings of the IEEE 5th International Conference on Cryptography, Security and

Privacy (CSP), Zhuhai, China, 8–10 January 2021; pp. 62–67. [CrossRef]

31. ERC-721 Website. Available online: http://www.erc721.org/ (accessed on 22 April 2021).

32. Arjona, R.; Prada-Delgado, M.A.; Arcenegui, J.; Baturone, I. Trusted Cameras on Mobile Devices Based on SRAM Physically

Unclonable Functions. Sensors 2018, 18, 3352. [CrossRef]

33. Baturone, I.; Prada-Delgado, M.A.; Eiroa, S. Improved generation of identifiers, secret keys, and random numbers from SRAMs.

IEEE Trans. Inf. Forensics Secur. 2015, 10, 2653–2668. [CrossRef]

34. Unterluggauer, T.; Werner, M.; Mangard, S. MEAS: Memory encryption and authentication secure against side-channel attacks.

J. Cryptogr. Eng. 2019, 9, 137–158. [CrossRef] [PubMed]

35. Secure Boot on ESP32. Available online: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v1

.html (accessed on 22 April 2021).

36. Mongoose OS Website. Available online: https://mongoose-os.com/ (accessed on 22 April 2021).

http://doi.org/10.3390/s20143965
http://doi.org/10.1007/978-3-030-38181-3_2
http://doi.org/10.1016/j.jmsy.2020.05.017
http://doi.org/10.1016/j.dcan.2019.01.007
http://doi.org/10.1109/SMARTNETS.2018.8707434
https://eips.ethereum.org/erc
http://doi.org/10.1147/JRD.2019.2900651
http://doi.org/10.1038/s41928-020-0372-5
http://doi.org/10.1007/978-3-030-61638-0_2
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
https://remix.ethereum.org/
https://metamask.io/
https://limitedresults.com/2019/11/pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-extraction/
https://limitedresults.com/2019/11/pwn-the-esp32-forever-flash-encryption-and-sec-boot-keys-extraction/
http://doi.org/10.1145/3312614.3312650
http://doi.org/10.1145/3315669
http://doi.org/10.1145/3315571
http://www.ncbi.nlm.nih.gov/pubmed/32116465
http://doi.org/10.1109/ACCESS.2019.2949951
http://doi.org/10.1109/Cybermatics_2018.2018.00193
https://www.iso.org/standard/76354.html
http://doi.org/10.1049/iet-sen.2018.5291
http://doi.org/10.1016/j.iot.2019.100057
http://doi.org/10.3390/s20175012
http://www.ncbi.nlm.nih.gov/pubmed/32899380
http://doi.org/10.1109/CSP51677.2021.9357605
http://www.erc721.org/
http://doi.org/10.3390/s18103352
http://doi.org/10.1109/TIFS.2015.2471279
http://doi.org/10.1007/s13389-018-0180-2
http://www.ncbi.nlm.nih.gov/pubmed/31231603
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v1.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/security/secure-boot-v1.html
https://mongoose-os.com/

Sensors 2021, 21, 3119 23 of 23

37. Román, R.; Arjona, R.; Arcenegui, A.; Baturone, I. Hardware Security for eXtended Merkle Signature Scheme Using SRAM-based

PUFs and TRNGs. In Proceedings of the 32nd International Conference on Microelectronics (ICM), Online, 14–17 December 2020;

pp. 1–4. [CrossRef]

38. Infura Website. Available online: https://infura.io/ (accessed on 22 April 2021).

39. Infura JSON Methods. Available online: https://infura.io/docs/ethereum#tag/JSON-RPC-Methods (accessed on 22 April 2021).

40. Smart Contract of Smart-Non-Fungible-Token. Available online: https://github.com/Hardblock-IMSE/Smart-Non-Fungible-

Token (accessed on 22 April 2021).

41. NodeJS Website. Available online: https://nodejs.org/ (accessed on 22 April 2021).

http://doi.org/10.1109/ICM50269.2020.9331821
https://infura.io/
https://infura.io/docs/ethereum#tag/JSON-RPC-Methods
https://github.com/Hardblock-IMSE/Smart-Non-Fungible-Token
https://github.com/Hardblock-IMSE/Smart-Non-Fungible-Token
https://nodejs.org/

	Introduction
	Related Work
	Proposal of Smart Non-Fungible Tokens (NFTs) to Represent IoT Devices
	Attributes of Smart NFTs
	Functions and Events of Smart NFTs

	Proposal of Physically Binding IoT Devices to Smart NFTs Using PUFs
	Creation of Smart NFTs
	Operating Modes of the Device
	Trusted Software and Hardware of IoT Devices

	Proof of Concept with ESP32-Based IoT Devices and Ethereum Blockchain
	Firmware Verification and Blockchain Account Generation from SRAM PUFs
	The Smart NFT-Based Smart Contract
	DApp Interfaces
	Example of Use Case

	Conclusions
	References

