
Secure Computation Without Authentication

Boaz Barak1, Ran Canetti2, Yehuda Lindell3, Rafael Pass4?, and Tal Rabin2

1 IAS. E:mail: boaz@ias.edu
2 IBM Research. E-mail: {canetti,talr}@watson.ibm.com
3 Bar-Ilan University, Israel E-mail: lindell@cs.biu.ac.il

4 MIT. E-mail: pass@csail.mit.edu

Abstract. In the setting of secure multiparty computation, a set of
parties wish to jointly compute some function of their inputs. Such a
computation must preserve certain security properties, like privacy and
correctness, even if some of the participating parties or an external adver-
sary collude to attack the honest parties. Until this paper, all protocols
for general secure computation assumed that the parties can communi-
cate reliably via authenticated channels. In this paper, we consider the
feasibility of secure computation without any setup assumption.
We consider a completely unauthenticated setting, where all messages
sent by the parties may be tampered with and modified by the adver-
sary (without the honest parties being able to detect this fact). In this
model, it is not possible to achieve the same level of security as in the
authenticated-channel setting. Nevertheless, we show that meaningful
security guarantees can be provided. In particular, we define a relaxed
notion of what it means to “securely compute” a function in the unau-
thenticated setting. Then, we construct protocols for securely realizing
any functionality in the stand-alone model, with no setup assumptions
whatsoever. In addition, we construct universally composable protocols
for securely realizing any functionality in the common reference string
model (while still in an unauthenticated network). We also show that
our protocols can be used to provide conceptually simple and unified so-
lutions to a number of problems that were studied separately in the past,
including password-based authenticated key exchange and non-malleable
commitments.

1 Introduction

In the setting of secure multiparty computation, a set of parties with private
inputs wish to jointly compute some function of their inputs in a secure way.
Loosely speaking, the security requirements are that nothing is learned from the
protocol other than the output (privacy), and that the output is distributed ac-
cording to the prescribed functionality (correctness). These security properties
must be guaranteed even when some subset of the parties and/or an external
adversary maliciously and actively attack the protocol with the aim of compro-
mising the honest parties’ security.

Since the introduction of this problem in the 1980’s [25, 17, 2, 10], the research
in this area has not subsided. The area has produced hundreds of papers that deal
?

Research supported by an Akamai Presidential Fellowship.

with many aspects of the problem. Works have included the definitional issues
of secure computation, protocols with low round and communication complex-
ity, protocols that rely on a wide variety of computational assumptions, lower
bounds, security under composition and much much more.

Interestingly, one assumption that has appeared in all of the works in the
field of secure computation until now is that authenticated channels exist between
the parties. That is, it has always been assumed that the participating parties
can communicate reliably with each other, without adversarial interference. In
particular, the adversary is unable to send messages in the name of honest par-
ties, or modify messages that the honest parties send to each other. There seem
to be two main reasons that this assumption was always considered. First, the
common belief was that these channels can easily be achieved, either through
a physical designated channel connecting every pair of parties, or more realis-
tically, via the deployment of a public-key infrastructure that can be used for
implementing secure digital signatures. Second, it was assumed that no mean-
ingful security guarantees can be provided in a distributed setting, unless honest
parties can reliably communicate with each other.

Despite the above common belief, in real life the assumption that authenti-
cated channels can be easily achieved is actually very problematic. It is clear that
physical channels are generally unrealistic. In addition, a fully deployed public-
key infrastructure is also far from reach. That is, although we can typically
expect that most servers have an appropriate certificate for digital signatures,
it is unreasonable today to require every participant (client) to also have one.
This observation leads us to the following natural question:

What security can be obtained in a network without any authentication
mechanism?

As we have seen, this question has important ramifications regarding the use-
fulness of secure multiparty protocols in real-world settings. However, it is also
of great theoretical interest. In general, the theory of cryptography aims at un-
derstanding what tasks can be securely solved and under what (complexity and
other) assumptions. Considered in this light, it is most natural to examine what
security can be achieved in a setting with no setup assumptions whatsoever.
In addition to highlighting the borders of feasibility and infeasibility for secure
computation, answering this question enhances our understanding of the role of
authentication in secure computation (detailed discussion follows).

Security without authenticated channels. For simplicity, we begin by con-
sidering the important case of two-party protocols in an unauthenticated net-
work. An immediate but important observation is that an adversary in such a
network can simply “disconnect” the honest parties completely, and engage in
separate executions with each of the two parties. Such an attack is unavoidable
since there is no authentication between the parties. Therefore, the parties have
no way of distinguishing the case that they interact with each other from the
case that they each interact separately with a third party (in this case, the ad-
versary). Given that this is an inherent limitation, our aim is to guarantee that
this is the only attack that the adversary can carry out. More specifically, our

notion of security guarantees that the adversary is limited to pursuing one of
the two following strategies:

1. Message relaying: In this strategy, the adversary honestly relays the commu-
nication between the two parties, allowing them to perform their computa-
tion as if they were communicating over an authenticated channel.

2. Independent executions: In this strategy, the adversary intercepts the com-
munication between the parties and engages in “independent” executions
with each of them. That is, for parties A and B, the adversary can run an
execution with A while playing B’s role, and an execution with B while
playing A’s role. The security guarantee here is that the adversary is unable
to make one execution depend on the other. Rather, the adversary must es-
sentially choose an input for each execution and then run each execution as
if it was running by itself. We remark that such “full” independence is actu-
ally impossible to achieve because the adversary can always run a complete
execution with one of the parties, and then subsequently use the output it
already received in order to choose its input for the execution with the other
party. Therefore, our security definition guarantees that the only dependence
the adversary can achieve is due to running the executions sequentially and
choosing its input in the second execution after receiving its output from the
first.

When considering the two-party case, the above security notion is a direct ex-
tension of the notion of non-malleability, introduced by Dolev, Dwork and Naor
[11]. The work of [11] considered the specific tasks of encryption, commitments
and zero-knowledge proofs. Here, we generalize these ideas to the more general
concept of two-party (and multiparty) computation.

The same line of reasoning can be applied to analyze what is possible also in
the case of multi-party protocols. Specifically, an adversary can always partition
the honest parties into disjoint subsets. Then, given this partition, the adversary
can run separate (and independent) executions with each subset in the partition,
where in an execution with a given subset of honest parties H, the adversary
plays the roles of all the parties outside of H. We guarantee that this is the only
attack the adversary can carry out. In particular, we consider an adversary who
interacts with a set of parties who are each willing to run a single execution
(with each other). Our definition then states that although the adversary can
actually run many executions with subsets of parties, it is guaranteed that:

1. The subsets of honest parties are disjoint,
2. Once a subset of honest parties is chosen, it is fixed for the duration of the

protocol, and
3. The only dependence between the executions is due to the capability of

the adversary to run the executions sequentially and choose its inputs as a
function of the outputs from executions that have already terminated.

We remark that within each subset of parties, the execution that takes place is
actually the same as when there are authenticated channels.

1.1 The Main Result

Our main result is a general proof of feasibility for stand-alone computation
in the unauthenticated network setting. That is, we show that it is possible to
securely compute any functionality according to the above security guarantees,
even in a network with no setup assumptions whatsoever. This is in contrast
to the widely held belief that authenticated channels, or some other setup, is a
necessity for obtaining meaningful security. As an unusual step, before discussing
the definition in more detail, we will first present the high-level idea behind our
protocol. We feel that presenting the results in this order actually makes them
easier to understand, especially because our protocol is in fact very simple.

It is clear that in order to run any of the known protocols for secure computa-
tion, authenticated channels are required. Our protocol for the unauthenticated
setting is therefore comprised of two stages. In the first stage, some authenti-
cated channels are set up. Then, in the second stage, a secure protocol is run on
top of these authenticated channels. The basic idea of the protocol is:

Stage 1 – link initialization: In this stage, each party Pi generates a pair of
signing and verification keys (si, vi) and sends the signature verification key
vi to all other parties. In addition, after receiving verification keys vj from
all other parties, Pi signs on the series of all keys received (with its secret
signing key si) and sends the signature σi to all other parties. Finally, each Pi

checks that the signature it generated and all the signatures that it received
refer to the same set of verification keys.
The idea behind this step is as follows. Let Pi and Pj be honest parties, let
vi be the verification key sent by Pi to Pj , and let vj be the key sent by Pj

to Pi. Since these keys are sent over unauthenticated channels, there is no
guarantee that Pi will actually receive vi and not some v′i 6= vi generated by
the adversary (and likewise for Pj). However, if Pi and Pj do receive each
other’s real keys, then they can set up a secure channel between them. In
particular Pi has a verification key vj associated with a secret signing-key
known only to Pj , and vice versa. Thus, digital signatures can be used in
a standard way in order to achieve authenticated communication between
Pi and Pj . We note that if Pi received vj (i.e., the key sent by Pj), then it
will only continue if Pj received the exact same set of keys as Pi. This is
guaranteed by the fact that the parties also sign on all the keys that they
received. Thus, if Pj received different keys than Pi, then its signature σj will
not include the same keys Pi received. When Pi receives the signature from
Pj , it will therefore detect that adversarial interference has taken place, and
so will abort. (Note that by our assumption here Pi already received vj as
generated by Pj , and so the adversary cannot hand Pi any other signature
without breaking the signature scheme.)
¿From the above, we have that at the end of this stage, if Pi and Pj received
each other’s keys, then they have a secure bidirectional channel between
them and they received the same set of verification keys. In contrast, if this
is not the case, then we are guaranteed that their views of the verification

keys are different. As we will show, this actually defines a partition of the
honest parties so that (1) within each partition all of the honest parties
hold each others’ verification keys (and so all have mutually authenticated
channels), and (2) the honest parties in different partitions have different
views of the verification keys.

Stage 2 – secure computation using the generated links: In this stage,
the parties run a protocol on top of the authenticated channels generated
in the link initialization phase. The basic idea is to force the executions of
the different subsets of honest parties, as defined by the above partition,
to be independent. In order to do this, we view the series of verification
keys as a session identifier. Then, we run a protocol for the authenticated
channels model that is secure under concurrent composition, and guarantees
independence between executions with different session identifiers. (We need
security under concurrent composition, because different executions with
different subsets may be run concurrently.)

As can be seen from the above protocol, and as we have discussed above, the only
power provided to the adversary here is the ability to partition the honest parties
into disjoint subsets and run separate executions with each set. (This adversarial
“attack” can be carried out on any protocol in the unauthenticated model, and is
not due to a weakness of our protocol.) We therefore model security by allowing
the adversary to carry out such an “attack” in the ideal model as well. However,
rather than modifying the standard ideal model, our basic definition of security
is actually the same as in the standard model with authenticated channels and
no honest majority. Then, the additional power awarded to the adversary here is
modeled by modifying the definition of the functionality that is to be computed.
That is, for any functionality F to be realized by two or more parties, we define
a relaxed version of F called split-F , or sF , which is an interactive functionality
and works as follows. Functionality sF lets the adversary define disjoint sets of
parties, called authentication sets. Then, a separate and independent instance of
the original functionality F is invoked for each authentication set. In an ideal
execution of F for a given authentication set, functionality sF also allows the
adversary to play the roles of all the honest parties not in the set (i.e., providing
their inputs and receiving their outputs). In the two-party case, the adversary
can either choose a single authentication set containing both parties (and then
it cannot do anything more than in the authenticated channels model), or it can
choose two authentication sets, each containing a single party (and so it must
run an independent and separate execution with each party).

Theorem 1 (unauthenticated stand-alone computation): Assume the existence
of collision-resistant hash functions and enhanced trapdoor permutations,5 and
consider the stand-alone model with no setup whatsoever. Then, for any prob-
abilistic polynomial-time multiparty functionality F there exists a protocol that
securely computes the split functionality sF , in the presence of static, malicious
adversaries.
5

See [19, Appendix C.1] for the definition of enhanced trapdoor permutations.

Theorem 1 holds irrespective of the number of corrupted parties. In particular,
this means that no honest majority is assumed (and therefore fairness and output
delivery are not guaranteed, as is standard for this setting). We stress that unlike
the setting of authenticated channels, here it would not help even if we did
assume that a large fraction of the parties are honest. This is due to the fact
that the adversary can always choose all the subsets to be small, thereby ensuring
an honest minority in each execution (and making it impossible to prevent an
adversarial early abort).

We stress that although Theorem 1 constitutes a “general feasibility result”,
the security guarantee obtained is far weaker than that of the authenticated
channels model. For example, agreement-type problems cannot be solved in this
model, and indeed the split-functionality formalization explicitly removes all
flavor of agreement (note that honest parties in different subsets run independent
executions and so clearly cannot agree on anything).

Concurrency in a stand-alone world. As we have seen from the above in-
formal description of our protocol, the stand-alone setting with unauthenticated
channels implicitly enables the adversary to run concurrent executions with dif-
ferent sets of honest parties. Thus, the protocol that is used in the second stage
must be secure under concurrent composition. However, an important obser-
vation here is that when there are n honest parties, the adversary can force
at most n concurrent executions (because the sets are disjoint and each hon-
est party runs only once). It therefore follows that we only need security under
bounded concurrency, which is fortunately much easier to achieve. (See [21] for
impossibility results for the setting of unbounded concurrency, in contrast to
the feasibility results of [20, 24] and specifically for our use [23] for the case of
bounded concurrency.)

Entity authentication versus session authentication. One interesting
corollary of our results is a more explicit distinction between entity authen-
tication and session authentication. Entity authentication relates to a situation
where a party A can verify that messages that it received in the name of party
B were indeed sent by B. In contrast, session authentication relates to the fact
that a party A establishes an authenticated channel with some other fixed party
within a protocol execution or session. Party A does not know the identity of
the party with whom it holds the channel; however, it knows that if the party is
honest, then the adversary cannot interfere with any messages that are sent on
the channel. This distinction is not new, and appears already in [11]. However,
our results make it more explicit. Indeed, in the first stage of our protocol, we
carry out a “session authentication protocol”. Then, in the second stage, secure
computation is carried out on top of this. By including entity authentication
into the secure protocol of the second stage (or equivalently into the functional-
ity being computed), we obtain an explicit separation of session authentication
from entity authentication. This separation enables the entity authentication
to be carried out on top of the session authentication, and in many different
ways. Specifically, within the same execution, different parties may use different

authentication mechanisms like passwords, digital signatures, interactive authen-
tication protocols and so on.

1.2 Additional Results and Applications

The above result is of interest due to the fact that it requires no setup assumption
whatsoever. However, it only holds for the rather limited stand-alone model. In
this section, we briefly discuss some extensions and applications of this result.
Formal statements and proofs of these results will appear in the full version of
this paper.

UC protocols without authenticated channels. Universal composability
(UC) is a definition of security with the property that any protocol that is UC-
secure is guaranteed to remain secure under concurrent general composition [4]
(i.e., when it is run many times concurrently with arbitrary other protocols). As
in the stand-alone model, all UC-secure protocols until today assumed the exis-
tence of authenticated channels. We therefore extend our results to this setting.

We first note that in this setting, there is no hope of succeeding without setup
assumptions. This is due to the fact that broad impossibility results for obtaining
UC security have been demonstrated, even when there are authenticated chan-
nels [5, 4, 7]. We therefore consider the feasibility of obtaining UC-security with-
out authenticated channels, but in the common reference string (CRS) model,
where it is assumed that all parties have access to a single string that was chosen
according to some predetermined distribution. In the CRS model and assuming
authenticated channels, it has been shown that UC-secure protocols exist for
essentially every functionality [8]. We combine our “link-initialization” protocol,
as described above, with the protocol of [8] in order to achieve UC-secure proto-
cols that compute essentially any split functionality sF in the CRS model with
unauthenticated channels.

This combination of setup assumptions may seem strange. However, first note
that at the very least, our result reduces the setup assumptions required for ob-
taining UC-security. More importantly, we argue that the assumption regarding
a CRS is incomparable to that of authenticated channels. On the one hand, the
generation of a CRS requires global trust of a stronger nature than that required
for authenticated channels. On the other hand, it requires that only one string
is generated and posted on some “secure bulletin board”. In contrast, setting up
authenticated channels essentially requires that all parties obtain a certificate for
digital signatures. We also note that a common reference string by itself does not
provide the means for parties to authenticate themselves to each other. Indeed,
it is impossible to construct authenticated channels from unauthenticated ones
even in the CRS model.

Partially authenticated networks. So far, we have discussed the completely
unauthenticated setting, and have contrasted it to the standard completely au-
thenticated setting. However, the most realistic setting is actually that of a
partially authenticated network, where some of the parties have authenticated
links and others do not. In addition, the authentication on these links may be

unidirectional or bidirectional. For example, consider the case that only some of
the parties have certificates for public (signature) keys as part of an implemented
public-key infrastructure. Current protocols guarantee nothing in this setting.
However, this is the real setting of the Internet today. We should be able to use
a secure auction protocol, even if the only party who has a certificate is the auc-
tioneer (in this case, all parties can obtain authenticated communication from
the auctioneer, but that is all). In the full version of this paper, we show how to
use our results in order to obtain secure computation in a partially authenticated
network, while utilizing the authenticated links that do exist.

Password-based authenticated key-exchange. One problem that has re-
ceived much attention, and is cast in the setting without authenticated channels,
is that of password-based key exchange. Our results can also be applied to this
problem. First, note that our definitional framework provides a way of model-
ing the problem easily within the setting of secure computation. Specifically, we
define a functionality F as follows. Each party provides an input; if the inputs
are equal, then F provides each with a long random value; if the inputs are not
equal, then F hands ⊥ to each party. Of course, the inputs we are referring to
here are the parties’ secret passwords.

The functionality F , as defined, does not enable the adversary to make on-
line password guesses, which is possible in password based key-exchange schemes.
However, the transformation of F to its split functionality sF provides this exact
capability. Thus, the problem of securely computing sF is exactly the problem
of obtaining secure password-based authenticated key exchange. In particular,
if the adversary plays a message relay strategy, then the parties will succeed
in obtaining a shared secret key. In contrast, if the adversary runs independent
executions, then the adversary will obtain exactly two password guesses. Fur-
thermore, if the adversary guesses incorrectly, then the parties will obtain ⊥. We
note that this definition is essentially the same as that proposed in [6].

Our result therefore yields a conceptually simple framework and definition for
solving this problem. Furthermore, we improve on previous solutions as follows.
First, applying our first theorem we obtain secure password-based authenticated
key-exchange in a setting with no setup assumptions. The only previously-known
protocols to achieve this (without using random oracles) are [14, 22]. Comparing
our result to [14, 22] we have the following advantages. First, we obtain a stronger
security guarantee for the parties. Specifically, we guarantee exactly two pass-
word guesses per execution, rather than a constant or even polynomial number
of guesses. Furthermore, these guesses are explicit (see [6] for a discussion about
why this is advantageous). Second, our solution directly generalizes to password
authentication protocols for multiple parties (whereas previous solutions only
work for two parties). We note that like [14, 22], our password-based protocol for
the model with no setup assumptions (beyond the passwords themselves) is only
secure if the same password is not used in concurrent executions of the protocol.

In addition to the above, we can apply our UC-secure protocol and obtain
UC-secure password-based authenticated key-exchange in the common reference
string model. This problem was previously considered by [6], who present highly

efficient protocols based on specific assumptions. In contrast, we obtain protocols
less efficient protocols, based on general assumptions. In addition, we can also
extend our result to the setting of adaptive adversaries.

Alternative authentication mechanisms. Passwords are just one mecha-
nism for authenticating parties. Due to the generality of our result which demon-
strates that any function can be securely computed, we can obtain secure proto-
cols for other, non-standard ways for parties to authenticate each other. The only
requirement for accommodating these methods is that they can be described by
an efficient functionality (and thus can be incorporated into stage 2 of the pro-
tocol). For example, we can accommodate “fuzzy” authentication where parties
are authenticated if they pass at least k out of n “authentication tests”, such as
remembering the names of at least three of your childhood friends. Our solutions
can also work in the case where parties are considered authenticated if they can
perform some non-trivial computational task, like the “proof of work” in the
anti-spam work of [12]. Finally, our protocols can be used to obtain “anonymous
authentication” where two or more parties wish to authenticate themselves to
each other based on useful data which they hold, as in the case of peer-to-peer
and overlay networks.

Non-malleable commitments. We remark that non-malleable commitments
[11] can be obtained using our results in a similarly simple manner. Namely, de-
fine F to be a non-interactive (and potentially malleable) commitment function.
Then, a protocol that securely computes sF constitutes a non-malleable com-
mitment. This protocol does not improve on other known results. Nevertheless,
it demonstrates the power of our general framework.

2 Split Functionalities

Due to the lack of space in this abstract, we will not present the definitions
of secure computation. We refer the reader to [19, Chapter 7] for motivation
and definitions. We note that we consider reactive functionalities here; see [4,
Full version] for a formal discussion of this notion. Informally, the setting of
secure computation with reactive functionalities is very similar to that of the
more familiar “secure function evaluation”. In the setting of secure function
evaluation, an ideal model is defined where all parties send there inputs to a
trusted party who computes the output and sends it back. When considering
reactive functionalities, the only difference is that inputs and outputs can be
provided interactively and at different stages. Thus, the trusted party interacts
with the honest parties and the adversary multiple times, as specified by the
code of the functionality.

In this section, we define what it means to realize an ideal functionality in an
unauthenticated network without any setup. Before doing so, we remark that an
unauthenticated network is formally modeled by having all communication go
via the adversary. Thus, when a party Pi wishes to send a message m to Pj , it
essentially just hands the tuple (Pi, Pj ,m) to the adversary. It is then up to the

adversary to deliver whatever message it wishes to Pj . We also remark that in
the ideal model that we consider here, the communication between the honest
parties and the trusted party remains ideally private and authenticated. Thus,
the only change is to the real model.

We now proceed to the definition. As we have mentioned above, defining
security in the unauthenticated model essentially involves defining a class of
“split functionalities” that specifies the code of the trusted party in an ideal
execution.6 As we have mentioned, this class of functionalities enables the ideal-
model adversary to split the honest parties into disjoint sets, called authentication
sets, in an adaptive way. The parties in each authentication set H then run a
separate ideal execution with the trusted party. However, each such execution
has the property that the adversary plays the roles of all the parties not in H (i.e.,
the parties that complete H to the full set of parties). Our specific formulation
below provides three important guarantees:

1. An authentication set must be fixed before any computation in the set begins
(and thus an authentication set cannot be chosen on the basis of the inputs
of the honest parties in that set);

2. The computation within each set is secure in the standard sense (as in the
case that authenticated channels are assumed);

3. The computation in a set is independent of the computations in other sets,
except for the inputs provided by the adversary, which can be correlated to
the outputs that it has received from computations with other authentication
sets that have already been completed.

We now proceed to formalize the above. Let F be an ideal functionality. We
define the relaxation of F , called split-F or sF , in Figure 1. We note that the
functionality is slightly more involved than what is needed for the stand-alone
case. The additional complications are included so that the same functionality
will also be useful for the UC setting.

The split functionality sF – explanation. In the initialization stage of
the functionality, the adversary adaptively chooses subsets of honest parties H
(the adaptivity relates to the fact that an authentication set can be chosen and
a full execution completed, before the next authentication set is chosen). The
adversary can choose any subsets that it wishes under the following constraints:
First, the subsets must be disjoint. Second, the adversary must choose a unique
session identifier sidH for each authentication set H.

In the computation stage of the functionality sF , each set H is provided with
a different and independent copy of F . This means that each set H essentially
runs a separate ideal execution of F . In each such execution, the parties Pi ∈ H
provide their own inputs, and the adversary provides the inputs for all Pj /∈ H.
This reflects the fact that in each execution, the roles of the parties outside of
the authentication set are played by the adversary. Similarly, the parties Pi ∈ H

6
As we have mentioned, this set of instructions for the trusted party could be incorporated into the
definition of the ideal model. Equivalently, we have chosen to leave the ideal-model unchanged,
and instead modify the functionality to be realized.

Functionality sF
For parties P1, . . . , Pn and a given F , functionality sF proceeds as follows:

Initialization:

1. Upon receiving a message (Init, sid) from a party Pi, send (Init, Pi) to
the adversary.

2. Upon receiving a message (Init, sid, Pi, H, sidH) from the adversary, ver-
ify that party Pi previously sent (Init,sid), that the list H of party iden-
tities includes Pi, and that for all previously recorded sets H ′, it holds
that either (1) H and H ′ are disjoint and sidH 6= sidH′ , or (2) H = H ′

and sidH = sidH′ . If any condition fails then do nothing. Otherwise,
record the pair (H, sidH), send (Init, sid, sidH) to Pi, and initialize a
new instance of the original functionality F with session identifier sidH .
Let FH denote this instance of F .

Computation:

1. Upon receiving a message (Input, sid, v) from party Pi, find the set H
such that Pi ∈ H, and forward the copy of the functionality FH the
message v from Pi. If no such H is found then ignore the message.

2. Upon receiving a message (Input, sid, H, Pj , v) from the adversary, if FH

is initialized and Pj /∈ H, then forward v to FH as if coming from party
Pj . Otherwise, ignore the message.

3. When a copy FH generates an output v for party Pi ∈ H, functionality
sF sends v to Pi. When the output is for a party Pj /∈ H or for the
adversary, sF sends the output to the adversary.

Fig. 1. The split version of ideal functionality F

all receive their specified outputs as computed by their copy of F . However, the
adversary receives all of its own outputs, as well as the outputs of the parties
Pj /∈ H (as is to be expected, since it plays the role of all of these parties in
the execution). We stress that there is no interaction whatsoever between the
different copies of F run by sF .

The functionality sF – remarks:

1. The requirement that the authentication sets are disjoint guarantees that
all the parties in an authentication set have consistent views of the interac-
tion. In particular, each party participates in only one execution, and this is
consistent with the other parties in its set.

2. sF requires the adversary to provide a unique identifier, sidH for each au-
thentication set. This identifier is used to differentiate between the various
copies of F . Furthermore, this identifier is outputted explicitly to all the par-
ties in this set. This is an important security guarantee: while the parties do
not know, of course, which are the authentication sets, they have “evidence”
of the set they are in. In particular, a global entity that sees the outputs
of all parties can determine the authentication sets from the outputs alone.
In a sense, this forces the adversary in the ideal process to mimic the same
partitioning to authentication sets as in the protocol execution.

3. The above formalization of sF assumes for simplicity that the number and
identities of the parties is known in advance. However, this requirement is
not essential and neither the number of parties nor their identities need to
be known in advance. Furthermore, they can be determined adaptively by
the adversary as the computation proceeds. In this case, the only difference
is that each party needs to receive the set of parties with which it should
interact as part of its first input.

3 Obtaining Split Authentication

In this section, we show how to securely implement a link initialization phase. We
proceed in two steps. First, we present an ideal functionality Fsa that captures
the property of authentication within an authentication set. Next, we present
a simple protocol that UC-securely computes the Fsa functionality in the bare
model, without any setup. In Section 4 we will use the Fsa functionality in order
to obtain secure protocols for any split functionality sF .

3.1 The Split Authentication Functionality Fsa

The split authentication functionality Fsa is essentially a functionality that en-
ables parties in the same authentication set to communicate in a reliable way.
In particular, if the adversary wishes to deliver a message m to a party Pj with
an alleged sender Pi, then Fsa proceeds as follows:

1. If the authentication set H of Pj is not yet determined (i.e., Pj does not
appear in any set H), then the delivery request is ignored. Otherwise:

2. If Pi is not in the same authentication set as Pj , then m is delivered as
requested, regardless of whether it was actually sent by Pi.

3. If Pi and Pj are in the same authentication set, then the message is delivered
to Pj only if it was sent by Pi and not yet delivered.

Formally, Fsa is the split functionality of the functionality Fauth defined in
Figure 2 (we note that Fauth here is a “multiple-session extension” of the Fauth
functionality defined in [4]). In other words, we define Fsa = sFauth.

Functionality Fauth

Fauth interacts with an adversary and parties P1, . . . , Pn as follows:

1. Upon receiving (send, sid, Pi, Pj , m) from Pi, send (Pi, Pj , m) to the ad-
versary and add (Pi, Pj , m) to an (initially empty) list W of waiting mes-
sages. Note that the same entry can appear multiple times in the list.

2. Upon receiving (deliver, sid, Pi, Pj , m) from the adversary, if there
is a message (Pi, Pj , m) ∈ W then remove it from W and send
(received, sid, Pi, Pj , m) to Pj . Otherwise do nothing.

Fig. 2. The authentication functionality Fauth

3.2 Realizing Fsa

In this section, we present a simple protocol for securely computing Fsa in the
bare model without any setup. The protocol that we present is actually UC-
secure. This is important for two reasons. First, it is useful for achieving the
extension of our results to the UC setting. Second, it enables us to claim that
it remains secure even when run concurrently with any other protocol. This will
be important in our final protocol (presented in Section 4) where the protocol
for computing Fsa is run together with the protocol of [23].

Our protocol uses a signature scheme that is existentially unforgeable against
chosen message attacks as in [15] and is reminiscent of the technique used in
[11] to construct non-malleable encryption. On a high-level our protocol also
resembles the Byzantine Agreement protocol of [13] (although the goal and the
actual protocol is very different). The main idea of the protocol has already been
described in the introduction. We therefore proceed directly to its description.

Protocol 1 I. Link initialization: Upon input (Init, sid), each party Pi proceeds

as follows:

1. Pi chooses a key pair (V Ki, SKi) for the signature scheme.
2. Pi sends V Ki to all parties Pj. (Recall that in an unauthenticated network, sending

m to Pj only means that the message (Pi, Pj , m) is given to the adversary.)
3. Pi waits until it receives keys from every Pj, for j ∈ [n], j 6= i. (Recall that these

keys are actually received from the adversary and do not necessarily correspond
to keys sent by other parties.) Denote by V Kij the key that Pi received from
Pj and denote V Kii = V Ki. Now, let V Ki′1

, . . . , V Ki′n
be the same set of keys

V Ki1 , . . . , V Kin arranged in ascending lexicographic order. If there are two keys
that are the same, then Pi halts. Otherwise, Pi defines sidi = 〈V Ki′1

, . . . , V Ki′n
〉.

4. Pi computes σi = SignSKi
(sidi) and sends αi = (sidi, σi) to all parties Pj.

5. Pi waits until it receives an αj message from every Pj, for j ∈ [n], j 6= i. Denote by
αij = (sidij , σij) the pair that Pi received from Pj and denote αii = αi. Then, Pi

checks that for every j, VerifyV Kij
(sidij , σij) = 1 and that sidi1 = sidi2 = · · · =

sidin . If all of these checks pass, then Pi outputs (Init, sid, sidi).

II. Authenticating messages:

1. Pi initializes a counter c to zero.
2. When Pi has input (send, sid, Pi, Pj , m), meaning that it wishes to send a message

m to Pj, then it signs on m together with sidi, the recipient identity, and the
counter value. That is, Pi computes σ = SignSKi

(sidi, m, Pj , c), sends (Pi, m, c, σ)
to Pj, and increments c.

3. Upon receiving a message (Pj , m, c, σ) allegedly from Pj, party Pi first verifies that
c did not appear in a message received from Pj in the past. It then verifies that
σ is a valid signature on (sidi, m, Pi, c), using the verification key V Kij . If the
verification succeeds, then it outputs (received, sid, Pj , Pi, m).

We have the following theorem:

Theorem 2 Assume that the signature scheme used in Protocol 1 is existentially
secure against chosen message attacks. Then, Protocol 1 securely computes the
Fsa functionality under the UC-definition in the presence of malicious, adaptive
adversaries, and in the bare model with no setup whatsoever.

Proof Sketch: We show that for any adversary A there exists an ideal-process
adversary (i.e., a simulator) S such that no environment Z can tell with non-
negligible probability whether it is interacting with parties running Protocol
1 and adversary A, or with Fsa and simulator S. The simulator S internally
invokes A and perfectly simulates the honest parties interacting with A. Then,
when an honest party Pi in the internal simulation by S completes its link
initialization phase and computes sidi, simulator S determines the set H of Pi

to be the set of parties for which sidi contain their “authentic” verification keys.
Next, when A delivers a signed message to some Pi, simulator S asks Fsa to
deliver the message to Pi in the ideal process only if the internally simulated
honest party would accept the signature, according to the protocol specification.
More specifically, S locally runs an interaction between A and simulated copies
of all the parties. In addition:

1. All messages from the external Z to S are forwarded to the internal A, and
all messages that A wishes to send to Z are externally forwarded by S to Z.

2. Whenever S receives a message that an honest party Pi sent an (Init, sid)
message to Fsa, simulator S simulates the actions of an honest Pi in the
link initialization phase of Protocol 1.

3. Whenever an internally simulated party Pi completes the link initialization
phase with sidi, simulator S determines the set Hi to be the set of honest
parties Pj such that the authentic verification key sent by Pj is included in
sidi. (Recall that S internally runs all the honest parties, so it can do this.)
S then checks that for all previously computed sets H, it holds that either:
– Hi and H are disjoint and sidHi 6= sidH , or
– Hi = H and sidHi = sidH .

If this holds, then S sends (Init, sid, Pi,Hi, sidi) to Fsa. Otherwise, S halts
and outputs fail1.

4. Whenever S receives a message (send, sid, Pi, Pj ,m) from Fsa where Pi is
honest, simulator S simulates the actions of an honest Pi sending a message
m in the authentication phase of Protocol 1.

5. Whenever an internally simulated party Pi outputs (received, sid, Pj , Pi,m)
in the simulation, S works as follows. If Pj is corrupted, then S instructs
Pj to send an appropriate send message to Fsa. Likewise, if Pj is not in the
same authentication set as Pi, then S sends the appropriate send message to
Fsa itself. Then, S sends Fsa the message (deliver, Pj , Pi,m), instructing it
to deliver m to Pi from Pj .7 If the request is not fulfilled then S halts and
outputs fail2.

6. Whenever A corrupts a party Pi, simulator S hands A the state of the
internally simulated Pi.

It is straightforward to verify that as long as S does not output fail1 or fail2,
the view of Z in the ideal-model is identical to its view in a real execution of
Protocol 1. (This is due to the fact that unless a fail occurs, S just mimics the

7
Note that if Pj is honest and is in the same authentication set as Pi then S does not begin with
a send message, but rather immediately sends a deliver message.

actions of the honest parties. In addition, the local outputs of the honest parties
in the internal simulation correspond exactly to the outputs of the actual honest
parties in the ideal model.) It therefore suffices to show that S outputs a fail
message with at most negligible probability.

We first show that S outputs a fail1 message with at most negligible proba-
bility. Below, we refer only to honest parties in the authentication sets because S
never includes corrupted parties in these sets. There are three events that could
cause a fail1 message:

1. There exist two honest parties Pi and Pj for whom S defines sets Hi and Hj

such that Hi = Hj, and yet sidi 6= sidj: In order to see that this event cannot
occur with non-negligible probability, notice that S only defines sets Hi and
Hj for parties that conclude the Link Initialization portion of the protocol
and places Pi and Pj in the same set if they received each others “authentic”
verification keys. By the signatures sent at the end of link initialization phase,
it follows that either at least one of the parties aborts, or the adversary forged
a signature relative to either Pi or Pj ’s verification key, or Pi and Pj both
conclude with the same sid. (We note that the reduction here to the security
of the signature scheme is straightforward.)

2. There exist two sets Hi 6= Hj that are not disjoint: Let Pi ∈ Hi ∩ Hj be
an honest party. Then, using the same arguments as above, except with
negligible probability, Pi must have the same sid as all the honest parties
in Hi and all the honest parties in Hj . Thus, all of the parties in Hi ∪ Hj

have the same sid. Since this sid is comprised of the parties verification
keys, it must hold that all parties in Hi ∪Hj received each other’s authentic
verification keys. By the construction of S, it therefore holds that Hi = Hj .

3. There exist two sets Hi 6= Hj, and yet sidi = sidj: We have already seen
that by the construction of S, if sidi = sidj then Hi = Hj .

It remains to show that S outputs fail2 with at most negligible probability. This
occurs if S sends a (deliver, Pj , Pi,m) message to Fsa where Pi is honest, and
the message is not actually delivered to Pi. By the definition of Fsa (and in
general split functionalities), this can only occur if Pj is honest, and Pi and Pj

are in the same authentication set H. (We ignore trivialities here like the case
that H is not defined.) In order to see this, notice that if Pj is corrupted, then
S first instructs it to send a send message to Fsa and so S’s deliver message
would not be ignored. The same is true in the case that Pi and Pj are not in
the same authentication set (because then S first sends the send message itself).
Now, if Pi and Pj are in the same authentication set, then they both hold each
others “authentic” verification keys (as shown above). Furthermore, the deliver
message of S is only ignored if Pj did not previously send an appropriate send
message to Fsa. This implies that S did not generate a signature on (Pi,m, c) in
the internal simulation (see step 4 of the simulation by S), and yet Pi received
a valid signature on this message. Thus, it follows that A must have forged a
signature relative to the honest Pj ’s key. As above, such an adversary can be
used to break the signature, and the actual reduction is straightforward. We
conclude that the views of Z in the two interactions are statistically close.

4 General Functionalities in the Stand-Alone Model

In this section, we prove the following theorem:

Theorem 3 (Theorem 1 – restated): Assume the existence of collision-resistant
hash functions and enhanced trapdoor permutations, and consider the stand-
alone model with no setup whatsoever. Then, for any probabilistic polynomial-
time multiparty functionality F there exists a protocol that securely computes the
split functionality sF , in the presence of static, malicious adversaries.

Theorem 3 is obtained by combining Protocol 1 for securely computing Fsa
with the protocol of [23] for securely computing any functionality in the setting of
bounded-concurrency. Recall that in this model, there is an a priori bound on the
number of protocol executions that can take place. As we have remarked above,
in the setting considered here, we know that at most n concurrent executions
can take place in a stand-alone execution with n parties in the unauthenticated
model. Therefore, bounded concurrency suffices.

Our protocol for securely computing any n-party split functionality sF works
by first running the link initialization stage of Protocol 1, and obtaining a session
identifier sid from this phase. Then, the protocol of [23] for securely computing F
(under n-bounded concurrent composition) is executed, using the identifier sid
and authenticating all messages sent and received as described in Protocol 1.8

The intuition behind the security of this protocol is that Fsa guarantees
that all the honest parties in a given authentication set H are essentially con-
nected via pairwise authenticated channels. Thus, the execution of the protocol
of [23] in our unauthenticated setting is the same as an execution of the protocol
of [23] in the authenticated channels model, where the participating parties are
comprised of the honest parties in H and n − |H| corrupted parties. Now, in
the unauthenticated model (by the definition of sF), the adversary is allowed
to play the role of the n − |H| parties not in H. Therefore, the above protocol
suffices for securely computing the split functionality sF .

We note that the protocol of [23] relies on the existence of collision-resistant
hash functions and enhanced trapdoor permutations. Furthermore, given any
parameter m that is polynomial in the security parameter (and, in particular,
setting m to equal the number of parties n), it is possible to obtain a protocol
that remains secure for up to m concurrent executions, where in each execution
any subset of the parties may participate. We note that these subsets may overlap
in an arbitrary way, and security is still guaranteed. This point is crucial for our
above use of the protocol. Namely, in order to prove security we actually consider
a virtual network of 2n parties P1, . . . , P2n where all parties Pn+1, . . . , P2n are
corrupted. Then, for any authentication set H ⊆ {P1, . . . , Pn} we consider an
execution of the protocol of [23] with the subset of parties comprised of every
Pi ∈ H, and every Pn+j for Pj /∈ H. Note that this defines a subset of exactly n
parties, where every party not in H is controlled by the adversary, as required.
The important point to note now, however, is that some Pn+j may participate in

8
More formally, our protocol works in the Fsa-hybrid model, and uses the authentication mecha-
nism provided by Fsa in order to run the protocol of [23].

many different executions of the protocol of [23]. It is therefore crucial that [23]
remains secure when arbitrary subsets of parties run the protocol.

References

1. B. Barak. How to Go Beyond the Black-box Simulation Barrier. In 42nd FOCS,
pages 106–115, 2001.

2. M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-
cryptographic Fault-Tolerant Distributed Computations. In 20th STOC, pages
1–10, 1988.

3. R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

4. R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136–145, 2001. Full version available
at http://eprint.iacr.org/2000/067.

5. R. Canetti and M. Fischlin. Universally Composable Commitments. In CRYPTO
2001, Springer-Verlag (LNCS 2139), pages 19–40, 2001.

6. R. Canetti, S. Halevi, J. Katz, Y. Lindell and P. MacKenzie. Universally Com-
posable Password-Based Key Exchange. In EUROCRYPT 2005, Springer-Verlag
(LNCS 3494), pages 404–421, 2005.

7. R. Canetti, E. Kushilevitz and Y. Lindell. On the Limitations of Universally Com-
posable Two-Party Computation without Set-up Assumptions . In EUROCRYPT
’03, Springer-Verlag (LNCS 2656), pages 68–86, 2003.

8. R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computation. In 34th STOC, pp. 494–503, 2002.

9. R. Canetti and T. Rabin. Universal Composition with Joint State. In CRYPTO
2003, Springer-Verlag (LNCS 2729), pages 265–281, 2003.

10. D. Chaum, C. Crepeau and I. Damgard. Multiparty Unconditionally Secure Pro-
tocols. In 20th STOC, pages 11–19, 1988.

11. D. Dolev, C. Dwork and M. Naor. Non-malleable Cryptography. SIAM Journal
on Computing, 30(2):391–437, 2000.

12. C. Dwork and M. Naor. Pricing via Processing or Combating Junk Mail. In
CRYPTO’92, Springer-Verlag (LNCS 740), pages 139–147, 1992.

13. M. Fitzi, D. Gottesman, M. Hirt, T. Holenstein and A. Smith. Detectable Byzan-
tine Agreement Secure Against Faulty Majorities. 21st PODC, pp. 118–126, 2002.

14. O. Goldreich and Y. Lindell. Session-Key Generation Using Human Passwords
Only. In CRYPTO 2001, Springer-Verlag (LNCS 2139), pages 408–432, 2001.

15. S. Goldwasser, S. Micali and R. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. on Computing, 17(2):281–308, 1988.

16. S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive
Proof-Systems. SIAM Journal on Computing, 18(1):186–208, 1989.

17. O. Goldreich, S. Micali and A. Wigderson. How to Play Any Mental Game. In
19th STOC, pages 218–229, 1987.

18. O. Goldreich. Foundations of Cryptography – Vol. 1. Cambridge Univ. Press, 2001.

19. O. Goldreich. Foundations of Cryptography – Vol. 2. Cambridge Univ. Press, 2004.

20. Y. Lindell. Bounded-Concurrent Secure Two-Party Computation Without Setup
Assumptions. In 35th STOC, pages 683–692, 2003.

21. Y. Lindell. Lower Bounds for Concurrent Self Composition. In 1st TCC, Springer-
Verlag (LNCS 2951), pages 203–222, 2004.

22. M. Nguyen and S. Vadhan. Simpler Session-Key Generation from Short Random
Passwords. In 1st TCC, Springer-Verlag (LNCS 2951), pages 428–445, 2004.

23. R. Pass. Bounded-Concurrent Secure Multi-Party Computation with a Dishonest
Majority. In 36th STOC, pages 232–241, 2004.

24. R. Pass and A. Rosen Bounded-Concurrent Secure Two-Party Computation in a
Constant Number of Rounds. In 44th FOCS, pages 404–413, 2003.

25. A.C. Yao. How to Generate and Exchange Secrets. 27th FOCS, pp. 162–167, 1986.

