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Abstract—We introduce context-based pairing protocols that
integrate into common distributed device encryption schemes for
device management and access control. In particular, we suggest
three pairing protocols that integrate implicit proximity-based
device pairing to increase convenience and security. From these
protocols, we implemented a secure device pairing approach
conditioned on natural, unconstrained spoken interaction in a
smart environment. In particular, our approach exploits speech
recognition to identify devices to pair from free-form spoken
interaction and restricts the pairing to the right device in
proximity by generating secure keys from audio fingerprints of
the same spoken interaction.

I. INTRODUCTION

Recent decades have witnessed the proliferation of mobile
systems that can be carried by users, such as smartphones,
tablets, and laptops. These systems are equipped with sensing,
computational, and networking capability. With increasing
device penetration on-body and in the environment, there
is a demand to establish secure spontaneous networks of
unprecedented devices. For example, imagine a person arriving
at a building, where she has not been before. Her smartphone
can connect to the local wireless network. She would like to
securely access a printer or connect to a projector she observes
in the same room with her. Since the location is new to the
user, she does not know specific device name or identity. One
solution is to leverage environmental information in order to
facilitate the secure connection [1, 2, 3, 4].

In this paper, we propose a secure key generation protocol
which is based on the surrounding context of partner devices.
Specifically, secure keys are generated from ambient audio
recorded by embedded microphones. Our approach allows
proximate devices to derive shared cryptographic keys without
any key distribution center. As depicted in Figure 1, we
envision the following use case. In order to connect to a device
in proximity of a specific device class, a user will express the
desired connection by speaking out loud the pairing intention.
In this interaction, the user is not restricted to any format
or convention but needs to mention the name of the intended
device-class in the request. We then exploit speech recognition
in order to extract the device class as the first unique identifier
and, in addition, generate an implicit secure key from the
same spoken audio command as the second unique identifier.
Only the devices in proximity and in the correct device class

Fig. 1. Proposed concept: Voice command for secure spontaneous device
pairing

match both unique identifiers and are thus identified for device
pairing by a remote device manager.

In the following sections, after introducing the related work
in section II we first briefly introduce contextual data and fuzzy
cryptography concepts (section III). Then, we describe key
generation methods for audio data in section IV. In particular,
an audio fingerprinting algorithm is used to extract contextual
characteristics of ambient sounds. We design a communication
protocol to derive shared secret keys among proximate devices.
In section V, we discuss a case study conducted with an
Android application we developed to implement the proposed
speech recognition and audio-fingerprinting-based device pair-
ing mechanism. Section VI concludes our discussion.

II. RELATED WORK

With increasing density of mobile and smart device deploy-
ment, spontaneous interaction patterns in which environmental
devices or services are accessed ad-hoc in the context of
use are expected to increase. Since manual pairing for this
multitude of interactions is not feasible, co-presence based
pairing in the same context can be exploited to generate
common secrets among devices [5].

In recent work, a popular sensor to detect co-presence has
been the accelerometer. For instance, [6] present a process to
generate shared keys based on shaking processes. A similar
approach has been followed by Mayrhofer et al. [7], who
demonstrated that an authentication is possible when devices



are shaken simultaneously by a single person. However, si-
multaneous shaking of devices is limited to lightweight device
classes that can be easily lifted and carried by individuals.

For authentication based on sensor data from arbitrary
co-aligned devices, [8] propose the candidate key protocol,
which interactively exchanges hashes from feature sequences
as short secrets and concatenates the key from the secrets
with matching hashes. An alternative related protocol has been
proposed in [3]. Sensor modalities suited for unattended co-
presence-based device pairing include magnetometer [9], RF-
signals [10, 11] luminosity [12] or audio [2]. The authors
of [13] investigated the performance of four commonly avail-
able sensor modalities (WiFi, Bluetooth, GPS, and audio) for
co-presence detection and find that WiFi is better than the
rest. Also, they show that, compared to any single modality,
fusing multiple modalities improves resilience while retaining
a high level of usability. In our case, however, we decide for
audio over WiFi and Bluetooth, since it features better room-
level recognition due to the longer wavelength and hence less
drastically changing environment of the channel. GPS is not
feasible in our case since it ceases to work indoors. Miettinen
et al. [12] use co-presence and a continuous authentication
scheme to pair devices. Their underlying assumption states
that only devices that are worn together or are located nearby
will in the long run measure the same luminosity or ambient
audio. A further example of proximity-based device pairing
related to our work but which requires manual user interaction
is presented in [14]. The system uses fuzzy cryptography
to generate a shared secret on two devices from correlated
drawings on the devices’ displays [15].

A conceptional challenge with all context-based authentica-
tion approaches is that due to sensing inaccuracies, different
hardware and noise the sensed signals are likely not identical
but only similar. Fuzzy cryptography presents a methodol-
ogy to obtain identical keys from similar patterns [16]. In
particular, by mapping the patterns into the codespace of an
error correcting code, mismatches can be mitigated without
disclosing the pattern over a potentially insecure channel.
These approaches have been applied to various noisy data
traces for authentication, such as face biometrics [17].

We propose to utilize ambient audio to pair a mobile device
with an environmental device or service in proximity, such as,
for instance, in the same room. For this, we extract audio
fingerprints from ambient audio to obtain a binary sequence
which is then mapped into the codespace of an error correcting
code. With Fuzzy cryptography, remaining bit errors are then
removed from the bitstring so that devices in proximity,
which observe similar audio and, hence, generate similar audio
fingerprints, arrive at identical secure secrets.

For audio fingerprinting, various approaches have been
proposed in the literature. For instance, [18] presented a robust
audio recognition approach for ambient audio sequences. In
particular, the authors consider 22 daily activities in the bath
and kitchen and distinguish between their audio patterns. After
MFCC computation, the signal is clustered utilising random
forest classifier before applying an ensemble-voting recogni-

tion. [19] presented an audio fingerprinting approach which is
robust to modification of the original audio. The authors detect
salient spectral points and compare these pairwise to other
points in the audio spectrum applying a distance-based tem-
plate on the spectrum graph in order to derive a representative
binary pattern of the audio sequence. A robust audio finger-
printing approach has been proposed in [20], in which the fin-
gerprint is constructed from the vector of characteristic peaks
in the frequency-time domain. [21] enhanced this method by
proposing a scalable and robust audio fingerprinting method
tolerable to time-stretching. Features are, in this approach
considered only with respect to frequency and independent
from the time domain. Similarly, [22] defines representative
feature combinations for audio identification systems. The
algorithm works on translation- and scale-invariant hashes of
combinations of spectral peaks.

The approach to utilize co-presence for the pairing of
devices in a smart office space has been investigated by
other authors before, prominently by [23], who link pervasive
displays to a mobile device. The approach displays a URL
on the screen of the device (alternatively in the form of QR-
Code or NFC) and the mobile phone accesses the device by
accessing the url.

In contrast, in our case, we propose an implicit pairing of
devices and condition the pairing on spoken audio for the
double purpose of (1) identifying the device class to pair with
via speech recognition (e.g. display, printer, cloud storage,
...) and (2) identifying co-presence from identical audio-
fingerprints generated on the respective devices. In particular,
in order to access and pair with a device in proximity, the
user articulates the device-class she would like to access in
arbitrary free-form spoken language. We do not restrict the
spoken text or sentence to any format but require that the
sentence specifies the device class (such as ’I would like to
connect to the printer’, ’please connect me to the beamer’,
’Use the cloud storage for this’, ...). While the device class
is identified via speech recognition, the audio of the spoken
sentence is exploited to generate an audio fingerprint and from
this a secure key on devices in proximity. Only devices in
proximity are thus able to generate the key and our system will
connect the device of the user with the device of the correct
class that can prove proximity by presenting the correct key.

III. BACKGROUND

A. Contextual Data

Proximate mobile devices share similar contexts, such as
ambient audio. Hence, we propose to leverage contextual
data as a source to generate secret keys for ad-hoc device-
to-device communication. To initialize a secure connection,
each device independently record contextual data and extract
characteristics of the data, called fingerprints. Each fingerprint
f is represented as a binary sequence. The entropy of audio
fingerprints (i.e. material to generate keys in our case study)
has been proved to be sufficiently secure for cryptographic
communication [2].



B. Fuzzy Cryptography

To derive unique shared secrets on two participating devices
without exchanging additional information for comparison,
error correcting codes are utilized. Error correcting codes are
normally used to encode messages from the messagespace
m ∈ M into codewords of the (larger) codespace c ∈ C
introducing redundancies

m
Encode−−−−−→ c (1)

This process allows to correct errors introduced when trans-
mitting c over a lossy channel before decoding it back to m
from c:

c
Decode−−−−−→ m (2)

We apply error correcting codes in a different way. In a sense,
our fingerprints f are lossy as they are not entirely equal on
the devices trying to pair. Here, the codespace C is chosen
in a way that we can directly map a fingerprint f into this
codespace and apply the Decode-method f :

Decode−−−−−→ k (3)

to derive a binary key k that is error-corrected. Due to the us-
age of binary fingerprints, we used Reed-Solomon codes [24].
A Reed-Solomon code can be parameterized to correct up to t
errors, which depends on the similarity of audio fingerprints.

IV. AUDIO-BASED SECURE DEVICE PAIRING PROTOCOL

Ambient audio, including human voice, music, and sound
of walking steps, characterizes the contextual information
of a certain location (e.g. meeting room). Originally, audio-
fingerprinting [25] was leveraged in music identification. We
use binary fingerprints from ambient audio in order to establish
secure communication of proximate devices.

A. Audio Fingerprinting

After recording sufficient audio samples, we leverage fre-
quency domain representation of audio to extract audio fin-
gerprints following the approach specified in [2]. An audio
fingerprint is calculated with the following steps. The audio file
is split into short windows of samples. Fast Fourier Transform
is applied on each window to generate the frequency domain
representation. The frequencies are divided into equally-long
bands. The energy of each frequency band is computed. Then,
energy differences of consecutive bands are calculated. We
compare the values of energy variation between short windows
to form the binary audio fingerprint. Figure 2 visualizes the
audio fingerpriting scheme.

However, proximate devices can obtain similar but not
identical fingerprints. Thus, we apply fuzzy cryptography to
generate the shared secret keys. Specifically, if the Ham-
ming distance between two fingerprints satisfies a pre-defined
threshold t, they can be corrected to form the key indepen-
dently on each device. The threshold is parameterized on the
physical distance between the devices (see Section III-B).

Fig. 2. Audio fingerprinting scheme

B. Audio-based Pairing Protocol

We introduce the following scheme. A set of mobile devices
are willing to establish a common secret key extracted from
ambient audio data. Each device records a number of audio
samples and then independently compute an audio fingerprint.
The fingerprints are binary sequences that are designed to
fall into the code-space of a Reed-Solomon error correcting
code. Audio fingerprints generated from similar ambient audio
resemble. However, due to noise and inaccuracy in the audio-
sampling process (i.e. caused by hardware and software diver-
sity), it is unlikely that two fingerprints are identical. Devices
therefore exploit the error correction capabilities of the error
correcting code utilized to map fingerprints to codewords. For
fingerprints with a Hamming distance within the configured
threshold t of the error correcting code, the codewords are
identical and then can be utilized as shared secret keys.

Leveraging the audio-based approach, we can establish a
secure communication session between a user’s device and a
local device with or without a central authority (we will refer
to this as the Device Manager). We assume that both partners
are in the same network, and the approach increases the
connection security with contextual information. Our proposed
mechanism ensures that the devices can instantiate a secure
session if they are proximate to each other (e.g. in a physical
room). We denote KGF () as an audio-based key generation
function which derives one cryptographic key from an audio
fingerprint of ambient sounds. Then, the user’s device D
establishes a secure session with the local device L according
to the following steps (cf. figure 3).

1) D sends the initialization message to L to start the key
generation process

2) D and L start recording a sequence of ambient audio
whose length is specified a priori.

3) D and L locally compute the audio fingerprints fD and
fL, respectively.

4) D transforms fD to the secret key KD = KGF (fD)
while L transforms KL to the secret key KL =
KGF (fL). Using an error correcting code (e.g. Reed-
Solomon scheme [24]), both partners can derive the



Fig. 3. Protocol for key exchange and management without a central authority

Fig. 4. Protocol for device group formation based on context

same secret key K if the Hamming distance between
KD and KL satisfies a predefined threshold t.

This is represented in our basic scenario:
• Scenario 1 (cf. Figure 3): Key exchange and management

without a central authority. In case there is no central
key authority, proximate devices can leverage contextual
information to form ad-hoc device groups. The registra-
tion and de-registration process (i.e. joining and leaving
a group) rely on context-based secret keys only.

The protocol can also be integrated into further scenarios
that may featuer a central authority (e.g. Device Manager):

• Scenario 2 (cf. Figure 4): Device group formation based
on context. Our mechanism adds a fine-grained layer to
the conventional group key management framework. For
example, the users smartphone S is connected with the
printer P1 (at the corridor) and the printer P2 (at the
user’s office) in the local wireless network. That means
S, P1, and P2 share the group key. With our context-
based key generation technique, the framework can issue
a new secret key only for S and P1 (based on proximity).
S does not need to leave the former group. Furthermore,
if attackers compromise P2, they can not access the new
group formed by S and P1.

• Scenario 3 (cf. Figure 5): Context-based device discovery.
A user’s device U is in the same group with multiple local
devices Li, which may belong to different contexts (e.g.
in different rooms). U wants to access an unprecedented
Li in the same room. It can obtain the device information
at a certain location, i.e. Li. After that, U can connect to
the specific Li.

Fig. 5. Protocol for context-based device discovery

These scenarios are appropriate for Intenet-of-Things de-
vices, including mobile and wearable appliances. Moreover,
these mechanisms strengthen the traditional device pairing
mechanisms (e.g. Bluetooth or ad-hoc wireless network) in
terms of security and usability. The configuration of our
proposed protocol (e.g. Reed-Solomon-Code parameters, cryp-
tographic primitives, key length, etc) can be customized de-
pending on specific systems and security policies.

V. CASE STUDY AND RESULT

A. Audio Fingerprinting of Vocal Commands

In order to verify and demonstrate the feasibility of the
proposed use case specified in Figure 1, we conducted a case
study in two environments of our university. This case study
implements the protocol specified in figure 5 The case study
shall demonstrate that audio-based pairing based on free-text
input of a user is feasible. For this, we developed an Android
application which extracted and compared audio fingerprints
of proximate devices. In particular, while the subjects specified
the device they want to pair with unconstrained free speech,
the application recorded the ambient audio, extracted audio
fingerprints as specified in [2] and compared the fingerprint
similarity. As detailed in [2], fuzzy cryptography can then
be exploited in order to correct bit errors in the generated
fingerprints.

For the experiment, two android mobile phones running the
audio-based ad-hoc pairing were placed in the same room in
distances of at least one meter. The subject then chose one
out of a given five possible device classes (printer, projector,
monitor, speaker, TV) and spoke out a free form request
containing the name of the particular device (for instance, the
command might be “I would like to connect to the speaker”
if a user wants to pair her smartphone with the Bluetooth
speaker in the room) while the android application was run-
ning, recording the ambient audio to generate the secure keys
separately on the two devices. The users were asked to issue
natural voice commands. Spoken audio sentences have been
in the order of 2-4 seconds depending on speed and length
of the sentence. Users are located at two distinct locations
in a university campus: a meeting room and an office. The
former had more background ambient sounds than the latter.
In each environment, the users have repeated the experiment



TABLE I
AVERAGE SIMILARITY (%) OF AUDIO FINGERPRINTS. VALUES IN

BRACKETS ARE STANDARD DEVIATION.

Meeting room Office
Printer 68.2 (14.8) 60.4 (10.5)
Projector 74.6 (5.2) 67.6 (16.5)
Monitor 69.6 (7.6) 74.2 (4.4)
Speaker 75.0 (13.2) 75.4 (6.6)
TV 73.8 (8.8) 63.6 (9.1)

Fig. 6. Attacking scenario

10 times for each device class. Table I shows the results of the
case study. The table depicts similarity of audio fingerprints
generated for the various sentences containing different device
classes and conducted in different locations. We observe that
the similarity is in most cases above 65% and therefore suggest
to utilize Reed-Solomon codes [24] to correct 35% of the bits
in the generated audio fingerprint in order to arrive at the same
secure key for device pairing.

B. Attacking Scenario

We installed an attacking scenario in which users stayed
inside an office while adversaries were outside (i.e. at the
corridor). The attacker aims to obtain the same shared secret
key with the user, the local device (e.g. monitor), or the device
manager. In this situation, encrypted data can be stolen when
transmitting between these partners.

Figure 6 visualizes the set-up. The user, i.e. source of vocal
commands, and devices were located as in the figure. We
investigated two situations with open and closed door. Table II
summarizes the comparison of audio fingeprints obtained
on the user’s and attacker’s device. Due to different audio
contexts, the fingerprints are less similar than those captured
by devices in the same room (see Table I). Consequently, our
system can be configured (e.g. modifying threshold of the error
correcting code) to derive keys for devices in the same audio
context only. If the adversary tries to sneak into the room,
it is possible for the users to discover. Other strategies such
as stealing contextual data are not in the scope of this paper.
In addition, Schürmann and Sigg [2] performed an extensive
analysis of the audio-based pairing scheme in various locations
and setting distances, which solidifies usability and security of
our proposed approach.

TABLE II
AVERAGE SIMILARITY (%) OF AUDIO FINGERPRINTS BETWEEN THE USER
AND THE ATTACKER. VALUES IN BRACKETS ARE STANDARD DEVIATION.

Open door Closed door
Similarity 51.7 (7.2) 47.6 (11.2)

VI. CONCLUSION

In this paper, we presented three context-based implicit
pairing protocols and described how these can be integrated
into distributed encryption schemes for distributed IoT devices.
In particular, we implemented and evaluated a spontaneous
device pairing protocol based on ambient audio information.
In the protocol, free-form spoken interaction is interpreted
by speech recognition to identify the device class to pair
with while audio-fingerprints are generated from the same
spoken interaction in order to generate secure keys via fuzzy
cryptography. Both, the device class and the secure key are
then utilized as unique identifier to pair a personal device with
a proximate device of the requested class. We performed a case
study in which users select partner devices through natural
voice commands. An Android application was implemented
to evaluate our mechanism in two distinct locations.

ACKNOWLEDGMENT

We appreciate partial funding in the frame of an EIT Digital
HII Active project, as well as from Academy of Finland and
from the German Academic Exchange Service (DAAD).

REFERENCES

[1] D. Schuermann, A. Bruesch, S. Sigg, and L. Wolf, “Ban-
dana body area network device-to-device authentication
using natural gait,” in 2017 IEEE International Confer-
ence on Pervasive Computing and Communication, 2017.
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