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Abstract— The most important task for a Cognitive Radio (CR)
system is to identify the primary licensed users over a wide
range of spectrum. Cooperation among spectrum sensing devices
has been shown to offer various benefits including decrease
in sensitivity requirements of the individual sensing devices.
However, it has been shown in the literature that the performance
of cooperative sensing schemes can be severely degraded due to
presence of malicious users sending false sensing data. In this
paper, we present techniques to identify such malicious users
and mitigate their harmful effect on the performance of the
cooperative sensing system.

I. INTRODUCTION

Radio spectrum is one of the most scarce and valuable
resource for wireless communications. Given this fact, new in-
sights into the use of spectrum have challenged the traditional
approaches to spectrum management. Actual measurements
have shown that most of the allocated spectrum is largely
under-utilized and similar views about the under-utilization
of the allocated spectrum have been reported by Spectrum-
Policy Task Force appointed by Federal Communications
Commission (FCC) [1]. Spectrum efficiency can be increased
significantly by giving opportunistic access of these frequency
bands to a group of potential users for whom the band has not
been licensed. Cognitive Radio (CR) [2] has been proposed
as a way to improve spectrum efficiency by exploiting the
unused spectrum in dynamically changing environments. The
CR design is, therefore, an innovative radio design philosophy
which involves smartly sensing the swaths of spectrum and
then determining the transmission characteristics (e.g., symbol
rate, power, bandwidth, latency) of a group of potential users
based on the primary users behavior.

The most important challenge for a cognitive radio system
is to identify the presence of primary users over wide range
of spectrum. This process is very difficult as we need to
identify various primary users employing different modulation
schemes, data rates and transmission powers in presence of
variable propagation losses, interference generated by other
secondary users and thermal noise. This is especially true in
the case of broadcast TV channels, where the receivers are
passive, and as such it is not possible to detect the presence
of a nearby receiver. For example, if the channel between the
primary transmitter and the sensing device is under a deep
fade, it is possible that the sensing device may not detect the
primary signal. As a result, the cognitive radio might transmit

signal in the corresponding primary user band causing interfer-
ence to the nearby primary receiver. This is called the hidden
terminal problem. To overcome this problem, the sensitivity
of the cognitive radio sensing device has to be at least 20-
30dB more than that of the primary receiver. Moreover, the
sensing process must be very quick in order to scan the entire
wide-band without significant delay. Traditionally, there are
two techniques which are used for spectrum sensing, viz.,
energy detection and cyclostationary feature detection. The
energy detector fails to detect the signal whose power is below
the noise floor and hence, cannot achieve high sensitivity re-
quirements of CR devices. The cyclostationary feature detector
takes advantage of the fact that most of the signals encountered
in wireless communications are cyclostationary whereas the
noise is stationary. However, not all signals exhibit same level
of cyclostationarity. The problem is even more complicated
due to presence of secondary user interference.

The burden on signal processing techniques can be allevi-
ated to a large extent by using cooperative diversity between
cognitive radio spectrum sensors. Few cognitive radio spec-
trum sensors under independent fades can help in reducing
individual sensitivity requirements and essentially help in
overcoming the hidden terminal problem by countering the
shadowing and multi-path effects. Several cooperative sensing
schemes have been proposed in the literature [3], [4], [5].
However, it was shown in [3] that presence of few malfunc-
tioning sensing devices could adversely effect the performance
of cooperative sensing system. In this paper, we investigate
techniques to identify the sensors which provide false sensing
information and nullify their effect on the cooperative spec-
trum sensing system.

The rest of this paper is organized as follows. In Section
II, we define the system model. In Section III, we present the
average combination scheme which is used to combine sensing
data from various sensing devices in this paper. In Section
IV, we propose techniques to identify and tackle malicious
users for the average combination scheme. Simulation results
are presented in Section V. Finally, conclusions are drawn in
Section VI.

II. SYSTEM MODEL

We consider a group of U cognitive users in the presence
of a primary transmitter. We assume a log-normal shadowing
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for the channel between primary transmitter and CR. The
shadowing components of the channels between primary user
and various cognitive users are assumed to be independent of
each other. The area of coverage of the cognitive radio system
is assumed to be small enough so that the variations in path
loss can be neglected. All of the sensing devices use energy
detectors. We assume that the sensing devices can distinguish
the signal of a primary user from a secondary user’s signal.
The sensing devices send their sensing data to an access
point through control channels. We assume perfect channel
conditions for the control channels. Based on the detection
statistics from the sensing devices and its own measurements
the access point makes a decision regarding the presence of
the primary user.

III. AVERAGE COMBINATION SCHEME

Let efu; k] foru = 1,2, ..., U represent the outputs of energy
detectors at various nodes at time instant k. Let hypothesis H;
denote presence of a signal and hypothesis Hj denote absence
of the signal. Then, the outputs of the energy detectors in
decibels (dB) are given by

T+T—1
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where T' denotes the length of the sensing interval. T}, rep-
resents the time instant at which the k" sensing interval
starts. h[u; (] represents the channel gain between the primary
transmitter and the u** cognitive user. We assume that the
log-normal shadowing component remains constant during the
sensing interval. s[l] represents the primary user transmitted
signal and z[u;l] represents the zero mean additive white
Gaussian noise with variance 2.
The optimum detection scheme based on the energy detector
outputs is given by [6]

p(e[l,k],e[Q,k],...,e[U, k]/Hl)p(Hl) Iél e
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The threshold e can be determined using the cost functions in
case of Bayesian formulation and required probability of false
alarm or probability of detection in case of Neyman-Pearson
formulation.

However, the optimum detection scheme could be quite
cumbersome when individual signal-to-noise ratios (SNRs) are
not known. In this paper, we consider the detection scheme
based on average combining due to its simplicity. In the
average combination scheme, the mean of the energy received
in dB by all the nodes is evaluated at the access point and
passed through a threshold detector.

The average combination based detection scheme is as

follows
U

W)Y elusk] 2 er

0

3)

u=1

In this paper, we consider Neyman-Pearson formulation. The
threshold er is determined so that the probability of false

alarm is fixed at a certain value Py. This threshold is obtained
empirically through Monte Carlo simulations. Note, that for
high SNR, the e[u; k] are approximately Gaussian distributed
at a given time instant k since the channel coefficient is
lognormal distributed.

IV. METHODS TO DETECT MALICIOUS USERS

Presence of malicious nodes can have significant effect on
the performance of the cooperative sensing system [3]. A node
might be malicious due to device malfunctioning or due to
selfish reasons. For example, a node might detect that there is
no signal present. However, it might inform the access point
that a signal is present, so that if the access point makes
a wrong decision that there is a primary signal present, the
malicious node can selfishly transmit its own signal on the
free channel.

We consider different kinds of malicious nodes. We first
consider simple malicious nodes such as an ‘Always Yes’ node
or an ‘Always No’ node. An ‘Always Yes’ node gives a value
above the threshold (i.e., it declares that a primary user is
present) all the time. An always ‘No’ node gives a value below
the threshold (i.e., it declares that a primary user is absent)
all the time. ‘Always Yes’ users increase the probability of
false alarm Py and ‘Always No’ users decrease the probability
of detection Py. Also, there might be malicious nodes which
produce extreme false values once in a while, significantly
affecting the performance of the sensing system during those
particular sensing intervals, and give correct values rest of the
time. The malicious node detection schemes that we propose
in this section can identify any malicious node whose energy
value differs in distribution from the underlying distribution
of the energy values of the legitimate nodes.

A. Pre-filtering of the Sensing Data

Pre-filtering of the sensing data is essential in identifying
and removing the malicious nodes which significantly affect
the final decision at the access point by giving extreme
false values. We apply an outlier detection method to detect
such malicious nodes. An outlier is an observation which
is numerically distant from the rest of the data. There are
several well studied methods to determine such outliers [7].
We implement a simple method commonly used to identify
extreme outliers [7].

We evaluate upper bound e, [k] and lower bound e;[k] for
values e[u; k] as follows

eu[k} =
€] [k} =

eslk] + 3eiqr (K]
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where e [k] and e3[k| represent the first and third quartile of
the values efu; k] and e;q.[k] = es[k] — e1[k] represents the
interquartile range. If a particular value of efu; k] does not
lie in the interval [e;[k], e, [k]], then it is considered as an
outlier and its value is ignored in making the final decision.
This outlier detection technique avoids calculation of the mean
and the standard deviation of the sensing data which might
be affected by the presence of malicious nodes producing
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extreme values. Let S, C {1,2,...,U} represent the set of
users whose energy values lie in the range [¢;[k], e, [k]]. Also,
let the number of users in the set .Sy, be represented by Uglk].
B. Trust Factors

We assign a trust factor Au;k] for each user u €
{1,2,...,U} such that

U

> Ausk] =1

u=1
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The trust factor gives a measure of reliability of a particular
user. Trust factors are used as the weighing factors while
calculating the mean of the energy values obtained from
various users. The final decision is made using the trust factors

as follows
U
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The trust factor of a user is calculated based on the past and
present sensing data sent by the user as well as the sensing data
sent by other users. Alu; k] = 0 for the set of users not lying
in S, as we do not consider their energy values in making
the final decision. In the rest of this section, we will discuss
methods to calculate the trust factors of the users.

1) Evaluation of Trust Factors: At the beginning, the trust
factor of 1/Ug[k] is assigned to all the users lying in Sj. At
each sensing iteration k, based on the energy statistics e[u; k],
an instant trust penalty d[u;k] is assigned to each user in
U. These instant trust penalties are used to evaluate the trust
factors Alu; k] and make the final decision.

The instant trust penalties are evaluated as follows

d[u; k‘] _ |€[’U,; kj[[;} ,u[kH

where p[k] and o[k] are the sample mean and variances of
the energies e[u; k] of the users lying in the set Si. These
trust penalties are then summed over certain time period L to
obtain Dfu; k.
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Observing values of D[u; k] would give a clear idea of which
sensing nodes are deviating from the underlying distribution
of e[u; k]. Intuitively, one would expect that D[u;k] for a
malicious node would be different from the rest.

There are different ways in which un-normalized trust
factors A'[u; k] can be obtained from D[u;k]. One approach
is to identify the mild outliers [7] among D]u; k] by defining
upper and lower bounds on D[u; k] as follows

D, [k] Ds[k] 4+ 1.5D;q,[K]
Dy [k] Dy (k] — 1.5D;q,[K] )

where D1 [k] and Ds[k| represent the first and third quartile of
the values Du; k] and D;,,-[k] = D3[k] — D1 [k] represents the
interquartile range. We completely trust all the values which

lie between D,,[k] and D,[k] and assign equal trust factors to
all of them. In this case, un-normalized trust factors X [u; k]
are obtained as follows

i o1 [ 1+ Dluyk] € [Di[k], Dylk]],u € Sk
Nus k] = { 0 Otherwise

Another possible approach is to assign trust factors such that
they are exponentially decreasing according to their distance
from the median mp[k] of the values D[u;k]. In this case,
un-normalized trust factors \'[u; k] are obtained as follows

(10)
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If the sensing data of one of the users (u;) can be completely
trusted, (for example, that of the access point assuming that
its sensing device is not malfunctioning), then one can use
Dluy; k] instead of the median mpl[k] in the above equation
to obtain un-normalized trust factors. The normalized trust
factors are finally obtained from un-normalized trust factors
as follows

u € Sk
Otherwise

(an

N u; k]

Sy N K]

Intuitively, the proposed schemes should be able to identify
all the malicious nodes which produce values that differ in
distribution from rest of the values. Thus, an ‘Always Yes’
and ‘Always No’ nodes must be easily identified using these
schemes. Smaller values of L could be used to identify nodes
which behave maliciously over short periods of time and larger
values of L would help identify nodes which regularly send
false values over larger time periods. In complex scenarios
containing different kinds of malicious users, multiple values
of L could be used to identify the malicious nodes. In such
cases, we can evaluate trust factors using two or more different
values of L and then combine them to obtain a final trust factor
for each user. Also, pre-filtering the data as shown in Section
IV-A helps in nullifying the effect of malicious nodes which
produce extreme false values once in a while and produce true
values rest of the time.

Alus k] = (12)

C. Quantization

Since control channels have limited bandwidth, the energy
values need to be quantized before they are sent to the
access point. The optimal quantization schemes for distributed
detection have been extensively studied [6]. However, finding
the optimal threshold values is, in general, a non-linear opti-
mization problem and is highly complex.

In this section, we consider suboptimal quantization of
the energy values efu;k]. Let b represent the number of
quantization bits. We approximate the energy value of each
user e[u; k] under Hypothesis H; with a Gaussian distribution
with mean and variance obtained numerically using Monte-
Carlo simulations. We then implement the Lloyd-Max quan-
tizer for this Gaussian distribution designed to minimize the
mean square error [8], [9]. At the access point, the mean of
the quantized energy values {e,[u;k]}Y_; is compared to a
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threshold, which is determined so that the probability of false
alarm is fixed at Py.

For the case in which very few quantization bits are avail-
able, we do not apply the pre-filtering to eliminate extreme
values, since the outlier detection scheme is not very effective
for the data sets with low cardinality. The rest of the detection
procedure remains the same as in case of un-quantized energy
values. We take weighted average of the the quantized energy
values and compare it to the threshold. The instant trust
penalties are evaluated as in (7), but using the quantized energy
values. We study the effect of quantization over our malicious
node detection schemes through simulations.

V. SIMULATION RESULTS

We consider a U = 50 user system. Mean received SNR
of the cognitive radio users is -10dB. The mean and standard
deviation of lognormal shadowing component is 0dB and 4dB
respectively. In the energy detectors, length of the sensing time
interval 7" is chosen to be 50. The time period L over which
instant trust penalties are added to obtain D[u;k] is 50 for
all the sensing systems presented in this section. In all the
malicious node detection schemes used in the simulations, un-
normalized trust factors \'[u; k] are obtained by eliminating
the mild outliers in D|u; k| and completely trusting the rest of
the users in the set Sy as suggested in Section IV-B.

In Fig. 1, we consider a cooperative sensing system in
which 10% of the users are ‘Always Yes’ users, each giving
a value twice the threshold on a linear scale (i.e, a value 3dB
higher than the threshold in dB). We present the probability
of detection F; and probability of false alarm Py for the case
in which no malicious node detection scheme is used and
for the case in which the malicious node detection scheme is
used. From Fig. 1, we can see that using the malicious node
detection scheme, we can easily identify ‘Always Yes’ users
and bring the probability of false alarm of the system close
to that of a cooperative sensing system without a malicious
node. At the same time, the probability of detection of the
system remains close to that of a cooperative sensing system
without a malicious node. In most of our simulations, the
malicious nodes were identified in less than 10 iterations.
In Fig. 2, we consider a system in which 10% of the users
are ‘Always No’ users giving a value half the threshold on a
linear scale. From Fig. 2, we can see that our malicious node
identification scheme successfully identifies the ‘Always No’
nodes and nullifies their effect on the final decision. In Fig.
3, we observe the probability of false alarm as we vary the
percentage of ‘Always Yes’ users in the system. The threshold
er is fixed such that probability of false alarm is 0.01 when
no malicious node is present. From the figure, its easy to see
that the malicious node identification scheme works quite well
for up to 20% malicious nodes, keeping the probability of
false alarm close to 0.01. Also, the effect on probability of
detection, which is not presented in this paper, is marginal
(less than 2%). In Fig. 4, we consider a system in which 10%
of the users produce extreme false values (6dB higher than
the threshold) once in 10 sensing intervals and study their

impact on the system performance. We also show the effect
of our malicious node identification schemes on the system.
The simulation results indicate that our scheme can detect
and eliminate the effect of such malicious nodes. In Fig. 5,
we consider quantized energy values. We fix threshold such
that probability of false alarm is 0.01. We consider cases with
quantization bits b = 1, 2, 3. We see that our detection scheme
still successfully identifies “Always Yes” users in all cases for
up to 20% malicious nodes.

It should be noted that the simulation results presented in
this section do not consider very complex malicious users. In
general, the proposed malicious node detection schemes can
identify any malicious node whose distribution differs from
the underlying distribution of the legitimate nodes.
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Fig. 1.  Performance of malicious node detection scheme for a system
containing 10% ‘Always Yes’ nodes
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Fig. 2.  Performance of malicious node detection scheme for a system
containing 10% ‘Always No’ nodes
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VI. CONCLUSION

In this paper, we have devised schemes to identify and
nullify the effect of malicious nodes for the case where energy
detectors are used by the sensing devices. We employed
a simple and fast average combination scheme to simplify
the decision process at the access point. Using simulations,
we verified that the proposed schemes can identify ‘Always
Yes’ users, ‘Always No’ users and malicious nodes producing
extreme values. We have also studied the performance of our
schemes when quantization is applied to energy values before
transmission. In future work, we will develop malicious node
detection algorithms for the case of sensing devices using
cyclostationary detectors and will consider more complex
scenarios.
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