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Abstract

At present, due to limited computational power and energy resources of sensor
nodes, aggregation of data from multiple sensor nodes done at the aggregating
node is usually accomplished by simple methods such as averaging. However,
such aggregation has been known to be highly vulnerable to node compromis-
ing attacks. Since WSN are usually unattended and without tamper resistant
hardware, they are highly susceptible to such attacks. Thus, ascertaining trust-
worthiness of data and reputation of sensor nodes has become crucially impor-
tant for WSN. As the performance of very low power processors dramatically
improves and their cost is drastically reduced, future aggregator nodes will be
capable of performing more sophisticated data aggregation algorithms, which
will make WSN less vulnerable to severe impact of compromised nodes. Itera-
tive filtering algorithms hold great promise for such a purpose. Such algorithms
simultaneously aggregate data from multiple sources and provide trust assess-
ment of these sources, usually in a form of corresponding weight factors assigned
to data provided by each source. In this paper we demonstrate that a number
of existing iterative filtering algorithms, while significantly more robust against
collusion attacks than the simple averaging methods, are nevertheless susceptive
to a novel sophisticated collusion attack we introduce. To address this security
issue, we propose an improvement for iterative filtering techniques by providing
an initial approximation for such algorithms which makes them not only collu-
sion robust, but also more accurate and faster converging. We believe that so
modified iterative filtering algorithms have a great potential for deployment in
the future WSN.



1 Introduction

Due to a need for robustness of monitoring, wireless sensor networks (WSN) are
usually redundant. Data from multiple sensors is aggregated at an aggregator
node which then forwards to the base station only the aggregate values. At
present, due to limitations of the computing power and energy resource of sensor
nodes, data is aggregated by extremely simple algorithms such as averaging.
However, such aggregation is known to be very vulnerable to faults, and more
importantly, malicious attacks [1]. This cannot be remedied by cryptographic
methods, because the attackers generally gain complete access to information
stored in the compromised nodes. For that reason data aggregation at the
aggregator node has to be accompanied by an assessment of trustworthiness of
data from individual sensor nodes. Thus, better, more sophisticated algorithms
are needed for data aggregation in the future WSN. Such an algorithm should
have two important features.

1. In the presence of stochastic errors such algorithm should produce esti-
mates which are close to the optimal ones in information theoretic sense.
Thus, for example, if the noise present in each sensor is a Gaussian inde-
pendently distributed noise with a zero mean, then the estimate produced
by such an aggregation algorithm should have a variance close to the
Cramer - Rao bound, i.e, it should be close to the variance of the Maxi-
mum Likelihood Estimator. However, such estimation should be achieved
without supplying to the algorithm the variances of the sensors.

2. The algorithm should also be robust in the presence of non-stochastic
errors, such as faults and malicious attacks, and, besides aggregating data,
such algorithm should also provide an assessment of the reliability and
trustworthiness of the data received from the individual sensor nodes.

Trust and reputation systems have a significant role in supporting opera-
tion of a wide range of distributed systems, from wireless sensor networks and
e-commerce infrastructure to social networks, by providing an assessment of
trustworthiness of participants in such distributed systems. A trustworthiness
assessment at any given moment represents an aggregate of the behaviour of
the participants up to that moment and has to be robust in the presence of var-
ious types of faults and malicious behaviour. There are a number of incentives
for attackers to manipulate the trust and reputation scores of participants in a
distributed system, and such manipulation can severely impair the performance
of such a system [2]. The main target of malicious attackers are aggregation
algorithms of trust and reputation systems [3].

Trust and reputation have been recently suggested as an effective security
mechanism for Wireless Sensor Networks (WSNs) [4]. Although sensor networks
are being increasingly deployed in many application domains, assessing trust-
worthiness of reported data from distributed sensors has remained a challenging
issue. Sensors deployed in hostile environments may be subject to node compro-
mising attacks by adversaries who intend to inject false data into the system.
In this context, assessing the trustworthiness of the collected data and making
decision makers aware of the trustworthiness of data becomes a challenging task
[5].

As the computational power of very low power processors dramatically in-
creases, mostly driven by demands of mobile computing, and as the cost of such
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technology drops, WSNs will be able to afford hardware which can implement
both more sophisticated data aggregation and trustworthiness assessment algo-
rithms; an example is the recent emergence of multi-core and multi-processor
systems in sensor nodes [6].

Iterative Filtering (IF) algorithms are an attractive option for WSNs because
they solve both problems - data aggregation and data trustworthiness assess-
ment - using a single iterative procedure [7]. Such trustworthiness estimate of
each sensor is based on the distance of the readings of such a sensor from the
estimate of the correct values, obtained in the previous round of iteration by
some form of aggregation of the readings of all sensors. Such aggregation is
usually a weighted average; sensors whose readings significantly differ from such
estimate are assigned less trustworthiness and consequently in the aggregation
process in the present round of iteration their readings are given a lower weight.

In recent years, there has been an increasing amount of literature on IF al-
gorithms for trust and reputation systems [8, 7, 9, 10, 11, 12, 13, 14, 15]. The
performance of IF algorithms in the presence of different types of faults and
simple false data injection attacks has been studied, for example in [16] where
it was applied to compressive sensing data in WSNs. In the past literature
it was found that these algorithms exhibit better robustness compared to the
simple averaging techniques; however, the past research did not take into ac-
count more sophisticated collusion attack scenarios. If the attackers have a high
level of knowledge about the aggregation algorithm and its parameters, they
can conduct sophisticated attacks on WSNs by exploiting false data injection
through a number of compromised nodes. This paper presents a new sophisti-
cated collusion attack scenario against a number of existing IF algorithms based
on the false data injection. In such an attack scenario, colluders attempt to skew
the aggregate value by forcing such IF algorithms to converge to skewed values
provided by one of the attackers.

Although such proposed attack is applicable to a broad range of distributed
systems, it is particularly dangerous once launched against WSNs for two rea-
sons. First, trust and reputation systems play critical role in WSNs as a method
of resolving a number of important problems, such as secure routing, fault tol-
erance, false data detection, compromised node detection, secure data aggrega-
tion, cluster head election, outlier detection, etc [17]. Second, sensors which are
deployed in hostile and unattended environments are highly susceptible to node
compromising attacks [18]. While offering better protection than the simple av-
eraging, our simulation results demonstrate that indeed current IF algorithms
are vulnerable to such new attack strategy.

As we will see, such vulnerability to sophisticated collusion attacks comes
from the fact that these IF algorithms start the iteration process by giving an
equal trust value to all sensor nodes. In this paper, we propose a solution for
such vulnerability by providing an initial trust estimate which is based on a
robust estimation of errors of individual sensors. When the nature of errors
is stochastic, such errors essentially represent an approximation of the error
parameters of sensor nodes in WSN such as bias and variance. However, such
estimates also proves to be robust in cases when the error is not stochastic
but due to coordinated malicious activities. Such initial estimation makes IF
algorithms robust against such a sophisticated collusion attack, and, we believe,
more robust under significantly more general circumstances; it is also effective in
the presence of complete failure of some of the sensor nodes. This is in contrast
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with the traditional non iterative statistical sample estimation methods which
are not robust against false data injection by a number of compromised nodes
[18] and which can be severely skewed in the presence of complete sensor failure.

Furthermore, we augment IF algorithms with a novel approach for collusion
detection and revocation. Thus, we run our improved IF algorithm to obtain
an initial approximation of the aggregate values; we then consider distribution
of differences of each sensor readings and such approximations, rather than just
the average magnitude of such differences, to identify the compromised nodes
and eliminate them. We finally re-run our method to obtain the final aggregate
values.

Since readings keep streaming into aggregator nodes in WSNs, and since
attacks can be very dynamic (such as orchestrated attacks [3]), in order to
obtain trustworthiness of sensor nodes as well as to identify compromised nodes
we apply our framework on consecutive batches of consecutive readings. Sensors
are deemed compromised only relative to a particular batch; this allows our
framework to handle on-off type of attacks (called orchestrated attacks in [3]).

We validate the performance of our algorithm by simulation on synthetically
generated datasets. Our simulation results illustrate that our robust aggregation
technique is effective in terms of robustness against our novel sophisticated
attack scenario as well as efficient in terms of the computational cost.

Our contributions can be summarized as follows:

1. Identification of a new sophisticated and powerful attack against IF based
reputation systems which reveals a severe vulnerability in iterative filtering
algorithms;

2. A novel method for error estimation of sensors nodes which is effective in
a wide range of sensor faults and not susceptible to the described attack;

3. Design of an efficient and robust aggregation technique inspired by the
Maximum Likelihood Estimation (MLE), which utilises an estimate of
the noise parameters obtained using contribution 2 above;

4. Enhanced IF schemes able to protect against sophisticated collusion at-
tacks by providing an initial estimate of trustworthiness of sensors using
inputs from contributions 2 and 3 above;

5. A novel collusion detection method based on an estimate of normality of
sensor errors in the proposed robust aggregation framework.

We provide a thorough empirical evaluation of effectiveness and efficiency of
our proposed aggregation method. The results show that our method provides
both higher accuracy and better collusion resistance than the existing methods.

The rest of this paper is organized as follows. Section 2 describes the prob-
lem statement and the assumptions. Section 3 presents our novel robust data
aggregation framework. Section 4 describes our experimental results. Section 5
presents the related work. Finally, the paper is concluded in Section 6.
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Figure 2.1: Network model for WSN.

2 Background, Assumptions, Threat Model and
Problem Statement

In this section, we present our assumptions, discuss IF algorithms, describe a
collusion attack scenario against IF algorithms, and state the problems that we
address in this paper.

2.1 Network Model

For the sensor network topology, we consider the abstract model proposed by
Wagner in [19]. Figure 2.1 shows our assumption for network model in WSN.
The sensor nodes are divided into clusters, and each cluster has a cluster head
which acts as an aggregator. Data are periodically collected and aggregated
by the aggregator. In this paper we assume that the aggregator itself is not
compromised and concentrate on algorithms which make aggregation secure
when the individual sensor nodes might be compromised and might be sending
false data to the aggregator. We assume that each data aggregator has enough
computational power to run an iterative filtering algorithm for data aggregation.

2.2 Iterative Filtering in Reputation Systems

Kerchove and Dooren proposed in [7] an IF algorithm for computing reputation
of objects and raters in a rating system. We briefly describe the algorithm in
the context of data aggregation in WSN and explain the vulnerability of the
algorithm for a possible collusion attack. We note that our improvement is
applicable to other IF algorithms as well.

We consider a WSN with N sensors Sp, p = 1, · · · , N . We also assume
that the aggregator works on one block of readings, each block comprising of
readings at T consecutive instants. Therefore, a block of readings is represented
by a matrix X = {xp : p = 1 · · ·N} where xp = {xtp : t = 1 · · ·T}
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is a sequence of readings from sensor Sp. Let r = 〈r1, r2, . . . , rT 〉 denote the
aggregate values at instants t = 1, · · · , T , which authors of [7] call a reputation
vector1, computed iteratively and simultaneously with a sequence of weights
w = 〈w1, w2, · · · , wN 〉 reflecting the trustworthiness of sensors. We denote by
rl, wl the approximations of r, w obtained at lth round of iteration (l ≥ 0).

The iterative procedure starts with giving equal credibility to all sensors,
i.e., with an initial value w0 = 1. The value of the reputation vector rl+1 in
round of iteration l + 1 is obtained from the weights of the sensors obtained in
the round of iteration l as

rl+1 =
X ·wl

N∑
i=1

wli

Consequently, the initial reputation vector is r1 = 1
NX · 1, i.e., r1 is just the

sequence of simple averages of the readings of all sensors at each particular
instant. The new weight vector wl+1 to be used in round of iteration l + 1 is
then computed as a function g(d) of the normalized distance d between the
sensor readings and the reputation vector rl. Thus,

d =

 d1
...
dN

 =
1

T


∥∥x1 − rl+1

∥∥2
2

...∥∥xN − rl+1
∥∥2
2

 .

wl+1 =

 g(d1)
...

g(dN )

 ;

Function g(x) is called the discriminant function and it provides an inverse
relationship of weights and the distances d. Our experiments show that selecting
a discriminant function has a significant role in stability and robustness of IF
algorithms. A number of alternatives for this function are studied in [7]:

• reciprocal: g(d) = d−k;

• exponential: g(d) = e−d;

• affine: g(d) = 1− kld, where kl > 0 is chosen so that g(maxi{dli}) = 0.

Algorithm 1 illustrates the iterative computation of the reputation vector
based on the above formulas. Table 2.1 shows a trace example of this algorithm.
The sensor readings in the first three rows of this table are from sensed temper-
atures in Intel Lab dataset [20] at three different time instants. We executed the
IF algorithm on the readings; the discriminant function in the algorithm was
a reciprocal of the distance between sensor readings and the current computed
reputation. The lower part of the table illustrates the weight vector in each
iteration as well as the obtained reputation values for the three different time
instants (t1, t2, t3) in the last three columns. As can be seen, the algorithm
converges after six iterations.

1We find such terminology confusing, because reputation should pertain to the level of
trustworthiness rather than the aggregate value, but have decided to keep the terminology
which is already in use.
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Algorithm 1: Iterative filtering algorithm.

Input: X,N, T .
Output: The reputation vector r
l← 0;
w0 ← 1;
repeat

Compute rl+1;
Compute d;

Compute wl+1;
l← l + 1;

until reputation has converged ;

Table 2.1: A trace example of iterative filtering algorithm.

sensor readings aggregate values
instant s1 s2 s3 s4 s5 s6 s7 s8

t=1 19.3612 19.42 19.0084 18.5674 17.95 22.153 18.0088 20.4
t=2 19.3612 19.4102 19.0084 18.5478 21.282 21.347 18.0088 20.4098
t=3 19.3612 19.42 19.0084 17.117 21.3408 20.813 21.625 19.7924

round# sensor weights t=1 t=2 t=3
1 1 1 1 1 1 1 1 1 19.3586 19.6719 19.8097
2 1.01E+01 1.34E+01 2.4896 0.3282 0.4335 0.2581 0.3806 1.8413 19.4008 19.439 19.4318
3 2.38E+02 2.24E+03 5.7843 0.4381 0.328 0.2286 0.3412 1.4486 19.4137 19.4052 19.4139
4 4.01E+02 2.96E+04 6.1705 0.446 0.3199 0.2267 0.3404 1.4116 19.4192 19.4095 19.4192
5 3.31E+02 1.59E+06 6.02 0.4433 0.3206 0.2278 0.3403 1.4273 19.42 19.4102 19.42
6 3.22E+02 6.47E+09 5.9971 0.4428 0.3207 0.2279 0.3402 1.4297 19.42 19.4102 19.42

2.3 Adversary Model

For describing the threat model, we assume that sensors are deployed in a
hostile unattended environment. Consequently, some nodes can be physically
compromised. We assume that when a sensor node is compromised, all the
information which is inside the node becomes accessible by the adversary. Thus,
we cannot rely on cryptographic methods for preventing the attacks, since the
adversary may extract cryptographic keys from the compromised nodes. We
assume that through the compromised sensor nodes the adversary can send
false data to the aggregator with a purpose to distort the aggregate values. We
assume that all compromised nodes can be under control of a single adversary or
a colluding group of adversaries, enabling them to launch a sophisticated attack.
We also assume that the adversary has enough knowledge about the aggregation
algorithm and its parameters. Finally, we assume that the base station and
aggregator nodes cannot be compromised in this adversary model; there is an
extensive literature proposing how to deal with the problem of compromised
aggregators; in this paper we limit our attention to the lower layer problem of
false data being sent to the aggregator node by compromised individual sensor
nodes, which has received much less attention in the existing literature.

2.4 Collusion Attack Scenario

Most of the IF algorithms employ simple assumptions about the initial values
of weights for sensors. In case of our adversary model, an attacker is able to
mislead the aggregation system through careful selection of reported data values.
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We use visualisation techniques from [18] to present our attack scenario.
Assume that ten sensors report the values of temperature which are aggre-

gated using Kerchove and Dooren algorithm proposed in [7] with the reciprocal
discriminant function. We consider three possible scenarios; see Figure 2.2.

• In scenario 1, all sensors are reliable and the value estimated by the IF
algorithm is close to the actual value.

• In scenario 2, an adversary compromises two sensor nodes, and alters the
readings of these values such that the simple average of all sensor readings
is skewed towards a lower value. As these two sensor nodes report a lower
value, IF algorithm penalises them and assigns to them lower weights, be-
cause their values are far from the values of other sensors. In other words,
the algorithm is robust against the false data injection in this scenario
because the compromised nodes individually falsify the readings without
any knowledge about the aggregation algorithm. Table 2.2 illustrates a
trace example of the attack scenario on Intel dataset; sensors 9 and 10 are
compromised by an adversary. As one can see, the algorithm assigns very
low weights to these two sensor nodes and consequently their contribu-
tions decrease. Thus, the iterative algorithm is robust against the simple
outlier injection by the compromised nodes.

• In scenario 3, an adversary employs three compromised nodes in order to
launch a collusion attack. It listens to the reports of sensors in the network
and instructs the two compromised sensor nodes to report values far from
the true value of the measured quantity. It then computes the skewed
value of the simple average of all sensor readings and commands the third
compromised sensor to report such skewed average as its readings. In
other words, two compromised nodes distort the simple average of read-
ings, while the third compromised node reports a value very close to such
distorted average thus making such reading appear to the IF algorithm
as a highly reliable reading. As a result, IF algorithms will converge to
the values provided by the third compromised node, because in the first
iteration of the algorithm the third compromised node will achieve the
highest weight, significantly dominating the weights of all other sensors.
This is reinforced in every subsequent iteration; therefore, the algorithm
quickly converges to a reputation which is very close to the initial skewed
simple average, as shown in Figure 2.2. Table 2.3 shows the same attack
scenario on Intel Lab dataset; sensors 8, 9 and 10 are compromised by an
adversary. As one can see, the algorithm converges quickly to the readings
of sensor 10 which is essentially equal to the simple average value of the
sensors.

In the third scenario, how much the aggregate value is skewed directly de-
pends on the number of compromised nodes which distort the sample average
of readings. Moreover, in this scenario, the attacker needs to gain control over
at least two sensor nodes; one which will reports readings which distort the
sample average and another one which reports such distorted average. In our
experiments, we investigate how the behaviour of the IF algorithm depends on
the number of compromised nodes; see Section 4.4.
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Figure 2.2: Attack scenario against iterative filtering algorithm.

Table 2.2: A trace example of a simple attack scenario.

sensor readings
instant s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

t=1 19.7336 19.6160 19.7728 20.2040 20.4196 19.4494 20.1354 19.0084 13.2001 13.5609

round# sensor weights t=1
1 1 1 1 1 1 1 1 1 1 1 18.5097
2 6.68 8.17 6.27 3.48 2.74 11.41 3.78 40.21 0.35 0.41 19.3390
3 64.21 130.29 53.13 13.36 8.56 872.81 15.77 91.52 0.27 0.30 19.4811
4 156.81 549.28 117.50 19.13 11.35 8.1E+3 23.36 44.76 0.25 0.29 19.4676
5 141.35 454.18 107.37 18.44 11.03 2.1E+4 22.42 47.42 0.25 0.29 19.4536
6 127.57 379.24 98.16 17.76 10.72 1.7E+5 21.51 50.45 0.26 0.29 19.4468
7 121.61 349.49 94.12 17.44 10.57 1.4E+7 21.09 52.02 0.26 0.29 19.4460
8 120.91 346.06 93.64 17.40 10.55 1.0E+11 21.04 52.22 0.26 0.29 19.4460

Table 2.3: A trace example of the proposed collusion attack scenario.

sensor readings
instant s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

t=1 19.7336 19.6160 19.7728 20.2040 20.4196 19.4494 20.1354 13.2001 13.5609 18.4546

round# sensor weights t=1
1 1 1 1 1 1 1 1 1 1 1 18.4546
2 0.6113 0.7414 0.5755 0.3268 0.2590 1.0106 0.3540 0.0362 0.0418 6.25E+08 18.4546
3 0.6113 0.7414 0.5755 0.3268 0.2590 1.0105 0.3540 0.0362 0.0418 1.78E+16 18.4546

Clearly, the main source of the above vulnerability comes from the fact that
the algorithm assigns an equal initial weight to all sensor nodes in the first
iteration. Therefore, under an attack, as we have described, the reputation
value of the first iteration is always extremely close to the simple average of
readings, and the second vector of weights is computed based on the distance
of each sensor to the simple average provided by the first iteration. As most of
the IF algorithms in the literature make the same assumption about the initial
trustworthiness of sensors, we argue that an adversary with sufficient knowledge
of such algorithms can launch an attack as we have described and deceive the
aggregator node.

To address the shortcoming of existing IF techniques, we focus on estimating
an initial trust vector based on an estimate of noise (i.e., error) parameters
of sensor nodes. After that, we use the new trust vector as the initial sensor
trustworthiness in order to consolidate the algorithms against an attack scenario
of the type described in this paper.
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Table 3.1: Notation used in this paper.

N number of sensors

T number of readings for each sensor

rt true value of the signal at time t

xts data from sensor s at time t

ets noise (error) of sensor s at time t

bs bias of sensor s

σs standard deviation of noise of sensor s

vs variance of sensor s

3 Robust Data Aggregation

In this section, we present our robust data aggregation method. Table 3.1
contains a summary of notations used in this paper.

3.1 Framework Overview

In order to improve the performance of IF algorithms against the aforementioned
attack scenario, we provide a robust initial estimation of the trustworthiness of
sensor nodes to be used in the first iteration of the IF algorithm. Most of the
traditional statistical estimation methods for variances involve use of the sample
mean. For this reason, proposing a robust variance estimation method in the
case of skewed sample mean is essential part of our methodology.

In the rest of this paper, we assume that the stochastic components of sensor
errors are independent random variables with a Gaussian distribution; however,
our experiments show that our method works quite well for other types of errors
without any modification; however, if error distribution of sensors is known, our
algorithms can be adapted to other random distributions to achieve an optimal
performance.

Figure 3.1 illustrates the stages of our robust aggregation framework and
their interconnections. As we have mentioned, our aggregation method operates
on batches of consecutive readings of sensors, proceeding in several stages. In
the first stage we provide an initial estimate of two noise parameters for sensor
nodes, bias and variance; details of the computations for estimating bias and
variance of sensors are presented in Section 3.2 and 3.3, respectively.

Based on such an estimation of the bias and variance of each sensor, in the
next phase of the proposed framework, we provide an initial estimate of the
reputation vector calculated using the Maximum Likelihood Estimation. The
detailed computation operations of such estimation are described in Section 3.4.

In the third stage of the proposed framework, the initial reputation vector
provided in the second stage is used to estimate the trustworthiness of each
sensor based on the distance of sensor readings to such initial reputation vector.
This idea will be described in Section 3.5.

Although using such initial reputation makes IF algorithm more robust than
its original version with equal weights for all sensors, our experiments show that
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Figure 3.1: Our robust data aggregation framework.

the attacker can still skew the reputation results considerably. Thus, in the
fourth stage we suggest a novel collusion detection mechanism for eliminating
the contributions of the compromised nodes.

The idea behind detection of colluders in a sophisticated collusion attack
is that at least one of the compromised nodes will have highly non stochastic
behaviour; for example, in our attack scenario, one of the compromised nodes is
constrained to reporting values which must be very close to the skewed mean.
On the other hand, the error of non-compromised nodes, even when it is large,
comes from a large number of independent factors, and thus must roughly have a
Gaussian distribution. Consequently, instead of looking just at the Root Mean
Square (RMS) magnitude of errors of each sensor, we look at the statistical
distribution of such errors, assessing the likelihood whether they came from a
normally distributed random variable. Nodes that are highly unlikely to have
come from a normally distributed random variable, possibly with a bias, are
eliminated.

Finally, after revoking the readings of untrusted sensors, we re-run our noise
parameters estimation as well as the MLE with known variances on the remain-
ing readings (stage 1 and 2). The details of our collusion detection method will
be described in Section 3.6.

3.2 Estimating Bias

We assume that all sensors in WSN can have some error; such error ets of a
sensor s is modelled by the Gaussian distribution random variable with a sensor
bias bs and sensor variance σs, e

t
s ∼ N (bs, σ

2
s). Let rt denotes the true value of

the signal at time t. Each sensor reading xts can be written as:

xts = rt + ets (3.1)

The main idea is that, since we have no access to the true value rt we
cannot obtain the value of the error ets; however, we can obtain the values of the
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differences of such errors. Thus, if we define δ(i, j) = 1
T

T∑
t=1

(
xti − xtj

)
, we get:

δ(i, j) =
1

T

T∑
t=1

(
xti − xtj

)
=

1

T

T∑
t=1

(
(rt + eti)− (rt + etj)

)
=

1

T

T∑
t=1

(
eti − etj

)
=

1

T

T∑
t=1

eti −
1

T

T∑
t=1

etj

where eti is a random variable with Gaussian distribution eti ∼ N (bi, σ
2
i ). Let

ēi = 1
T

T∑
t=1

eti be the sample mean of this random variable. As the sample mean

is an unbiased estimator of the expected value of a random variable, we have

δ(i, j) = ēi − ēj ≈ bi − bj

Let δ = {δ(i, j) : 1 ≤ i, j ≤ N}; this matrix is an estimator for mutual
difference of sensor bias. In order to obtain the sensor bias from this matrix,
we could solve the following minimization problem.

minimize
b

N∑
i=1

i−1∑
j=1

(bi − bj − δ(i, j))2

subject to

N∑
i=1

bi = 0.

To justify our constraint, it is clear that if the mean of the bias of all sensors
is not zero, then there would be no way to account for it on the basis of sensor
readings. On the other hand, bias of sensors, under normal circumstances,
comes from imperfections in manufacture and calibration of sensors as well as
from the fact that they might be deployed in places with different environmental
circumstances where the sensed scalar might in fact have a slightly different
value. Since by the very nature we are interested in obtaining a most reliable
estimate of an average value of the variable sensed, it is reasonable to assume
that the mean bias of all sensors is zero (without faults or malicious attacks),
as we are looking for a robust average of sensor readings.

If relative magnitudes of bias can vary a lot from sensor to sensor, then it is
better to look at relative errors in bias estimates. Therefore, the following is a
more robust version of the above minimisation problem.

minimize
b

N∑
i=1

i−1∑
j=1

(
bi − bj
δ(i, j)

− 1

)2

subject to

N∑
i=1

bi = 0.

(3.2)
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We introduce a Lagrangian multiplier λ and look at extremal values of the
following function:

F (~b) =

N∑
i=1

i−1∑
j=1

(
bi − bj
δ(i, j)

− 1

)2

+ λ

N∑
i=1

bi

By setting the gradient of F (~b) to zero we obtain a system of linear equations
whose solution is our approximation of the values of the bias of sensors. If we
let

d(i, j) =

{
−δ(j, i) i < j
δ(j, i) i ≥ j

then these equations can be written in the following compact form:



N∑
i=1
i 6=k

2
d(i,k)2

bi −
N∑
i=1
i 6=k

2
d(i,k)2

bk − λ = 2
N∑
i=1
i 6=k

1
d(i,k) , for all k = 1, · · · , N

N∑
i=1

bi = 0.

(3.3)
Note that the obtained value of bi is actually an approximation of the sample

mean of the error of sensor i, which, in turn is an unbiased estimator of the bias
of such a sensor.

3.3 Estimating Variance

In this section, we propose a similar technique for estimating variance of the
sensor noise using the estimated bias from previous section. Given the bias
vector b = [b1, b2, · · · , bN ] and sensor readings {xts}, we can define matrices
{x̂ts} and β = {β(i, j)} as follows:

x̂ts = xts − bs (3.4)

β(i, j) =
1

T − 1

T∑
t=1

(
x̂ti − x̂tj

)2
=

1

T − 1

T∑
t=1

((
xti − bi

)
−
(
xtj − bj

))2
=

1

T − 1

T∑
t=1

((
xti − xtj

)
− (bi − bj)

)2

13



By (3.1) we have xti − xtj = (rt + eti)− (rt + etj) = eti − etj ; thus, we obtain

β(i, j) =
1

T − 1

T∑
t=1

((
eti − etj

)
− (bi − bj)

)2
=

1

T − 1

T∑
t=1

((
eti − bi

)
−
(
etj − bj

))2
=

1

T − 1

T∑
t=1

(
eti − bi

)2
+

1

T − 1

T∑
t=1

(
etj − bj

)2 − 2

T − 1

T∑
t=1

(
eti − bi

) (
etj − bj

)
We assume that the sensors noise is generated by independent random vari-

ables1; as we have mentioned, our approximations of the bias bi are actually
approximations of the sample mean; thus

1

T − 1

T∑
t=1

(
eti − bi

) (
etj − bj

)
≈ 1

T − 1

T∑
t=1

(
eti − ēi

) (
etj − ēj

)
≈ Cov(ei, ej) = 0

and similarly

β(i, j) =
1

T − 1

T∑
t=1

(
eti − bi

)2
+

1

T − 1

T∑
t=1

(
etj − bj

)2
≈ 1

T − 1

T∑
t=1

(
eti − ēi

)2
+

1

T − 1

T∑
t=1

(
etj − ēj

)2
≈ σ2

i + σ2
j

The above formula shows that we can estimate the variance of sensors noise
by computing the matrix β. We also compute the sum of variances of all sensors
using the following Lemma.

Lemma 3.1 (Total Variance). Let x̄t be the mean of readings in time t, then,

using (3.4) and our assumption that
N∑
i=1

bi = 0 , we have

x̄t =
1

N

N∑
j=1

xtj =
1

N

N∑
j=1

x̂tj ,

and the statistic

S(t) =
N

T (N − 1)

N∑
i=1

T∑
t=1

(
x̂ti − x̄t

)2
is an unbiased estimator of the sum of the variances of all sensors,

N∑
i=1

vi.

1We analyze our estimation method with synthetic correlated data and the experimental
results show that the our method produces excellent results even for correlated noise.
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Proof. We define x̂i = {x̂ti : t = 1 · · ·T} as the unbiased readings of sensor
i. Now we form the second central moment of the sum of x̂i for all sensors as
follows:

E

 N∑
i=1

x̂i −
1

N

N∑
j=1

x̂j

2
 =

1

N2
E

 N∑
i=1

 N∑
j=1

(x̂i − x̂j)

2


=
1

N2
E

 N∑
i=1

N∑
j=1

N∑
k=1

(x̂i − x̂j)(x̂i − x̂k)


=

1

N2

N∑
i=1

N∑
j=1

N∑
k=1

(E[x̂2
i ]− E[x̂ix̂k]− E[x̂ix̂j ] + E[x̂jx̂k])

Note that the readings x̂i are unbiased, therefore E[x̂2
i ] is equal to variance

vi of sensor i. In addition, we assume that the sensor noise is generated by
independent random variables, thus

E[x̂ix̂j ] =

{
0 if i 6= j ,

vi if i = j .

Given the above equations, we have:

E

 N∑
i=1

x̂i −
1

N

N∑
j=1

x̂j

2
 =

1

N2

N∑
i=1

(N2 E[x̂2
i ]−N E[x̂2

i ])

=

N∑
i=1

vi −
1

N

N∑
i=1

vi

=
N − 1

N

N∑
i=1

vi

Thus, we obtain

N∑
i=1

vi =
N

N − 1
E

 N∑
i=1

x̂i −
1

N

N∑
j=1

x̂j

2
 .

By approximating the expected value with the sample mean we get

N∑
i=1

vi ≈
N

T (N − 1)

T∑
t=1

N∑
i=1

(
x̂ti − x̄t

)2
.

To obtain an estimation of variances of sensors from the matrix β = {β(i, j)}
we solve the following minimization problem:
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minimize
v

N∑
i=1

i−1∑
j=1

(
vi + vj
β(i, j)

− 1

)2

subject to

N∑
i=1

vi =
N

T (N − 1)

N∑
i=1

T∑
t=1

(
x̂ti − x̄t

)2 (3.5)

Note that the constrain of the minimisation problem comes from theorem 3.1.
We again introduce a Lagrangian multiplier λ and look for the extremal of the
following function:

G(~v) =

N∑
i=1

i−1∑
j=1

(
vi + vj
β(i, j)

− 1

)2

+ λ

(
N∑
i=1

vi −
N

T (N − 1)

N∑
i=1

T∑
t=1

(
x̂ti − x̄t

)2)
(3.6)

The minimum of G is obtained by setting the gradient of G(~v) to zero and
solving the resulting linear equations (3.7), thus obtaining

N∑
i=1
i6=k

1
β(i,k)2

vi +
N∑
i=1
i 6=k

1
β(i,k)2

vk + λ
2 =

N∑
i=1

1
β(i,k) , for all k = 1, · · · , N

N∑
i=1

vi = N
T (N−1)

N∑
i=1

T∑
t=1

(x̂ti − x̄t)
2
.

(3.7)

3.4 MLE with Known Variance

Given matrix {xts} where xts ∼ rt +N (bs, σ
2
s) and estimated bias and variance

vectors b and σ, we propose to recover rt using (an approximate form of)
the Maximum Likelihood Estimation, treating separately cases of unbiased and
biased sensor errors, respectively.

Unbiased Sensor Errors

In the previous sections, we proposed a novel approach for estimating the bias
and variance of noise for sensors based on their readings. The variance and
the bias of a sensor noise can be interpreted as the distance measures of the
sensor readings to the true value of the signal. In fact, the distance measures
obtained as our estimates of the bias and variances of sensors also make sense
for non-stochastic errors.

From a heuristic point of view, we removed the “systematic component” of
the error by subtracting a quantity which in the case of a stochastic error corre-
sponds to an estimate of bias; this allows us to estimate the variability around
such a systematic component of the error, which, in case of stochastic errors,
corresponds to variance. We can now obtain an estimation which corresponds
to MLE formula for the case of zero mean normally distributed errors, but with
estimated rather than true variances. Therefore, we assume that the expected
value rt of the measurements is the true value of the quantity measured, and is
the only parameter in the likelihood function. Thus, in the expression for the
likelihood function for normally distributed unbiased case,
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LN (rt) =

N∏
i=1

1

σi
√

2π
e
− 1

2

(xti−rt)
2

σ2
i

=

(
N∏
i=1

1

σi
√

2π

)
e
− 1

2

∑N
i=1

(xti−rt)
2

σ2
i

we replace σ2
i by the obtained variance vi from equation (3.7). Moreover, by

differentiating the above formula with respect to rt and setting the derivative
equal to zero we get

∂

∂rt
LN (rt) =

(
N∏
i=1

1√
2πvi

)
e
− 1

2

∑N
i=1

(xti−rt)
2

vi

N∑
i=1

(xti − rt)
vi

and consequently

∂

∂rt
LN (rt) = 0⇔

N∑
i=1

xti
vi
− rt

N∑
j=1

1

vj
= 0⇔ rt =

∑N
i=1

xti
vi∑N

j=1
1
vj

Thus,

rt =

N∑
i=1

1
vi∑N
j=1

1
vj

xti for all t = 1, · · · , T. (3.8)

Equation (3.8) provide an estimate of the true value of the quantity measured
in a form of a weighted average of sensor readings, with the sensor readings given
a weight inversely proportional to the estimation of their error variance provided
by our method:

r =

N∑
s=1

wsxs (3.9)

Instead of using weights from (3.8) , we can include a small regularisation
factor λ which is needed to handle the fact that the reciprocal function has a
pole at zero which can make the calculation unstable if the estimate of one of
the variances is very small:

ws =
1

vs+λ

N∑
i=1

1
vi+λ

for all s = 1, · · · , N (3.10)

This is in fact a technique proposed in [16] for making IF algorithms more
robust.

Note that this method estimates the reputation vector without any iteration.
Thus, the computational complexity of the estimation is considerably less than
the existing IF algorithms.
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Biased Sensor Readings

As the MLE can be only applied to unbiased sensor readings, we eliminate bias
from the biased readings based on the results from the previous bias estimation
process. Thus, we replace equation (3.8) with:

rt =

N∑
i=1

1
vi+λ∑N
j=1

1
vj+λ

(xti − bi) for all t = 1, · · · , T (3.11)

Another method for obtaining an estimate of true values from biased sensor
readings is to estimate the distance of the readings to the true values of the signal
using a combination of bias and variance of the error. Thus, let us represent
the error of sensor s in time t as sum of the errors due to its bias and to its
variance:

ets = bs + êts

where êts ∼ N (0, vs). We now obtain

E[(es)
2] = E[(bs + ês)

2] = E[b2s] + 2bsE[ês] + E[(ês)
2]

From our assumptions we have E[ês] = 0 and E[(ês)
2] = vs. Consequently, the

expected value of the square of the distance of the reading xs satisfies

E[(es)
2] = vs + b2s.

and we obtain an estimator for the true value as a weighted average of the form:

rt =

N∑
i=1

1
vi+b2i+λ∑N
j=1

1
vj+b2j+λ

xti, for all t = 1, · · · , T (3.12)

Our experiment results show that both above approaches (equations (3.11)
and (3.12)) provide similar robustness against faults and attacks for biased
sensor readings.

3.5 Enhanced Iterative Filtering

According to the proposed attack scenario, the attacker exploits the vulnerabil-
ity of the IF algorithms which originates from a wrong assumption about the
initial trustworthiness of sensors. Our contribution to address this shortcom-
ings is to employ the results of the proposed robust data aggregation technique
as the initial reputation for these algorithms. Moreover, the initial weights for
all sensor nodes can be computed based on the distance of sensors readings to
such an initial reputation. Our experimental results illustrate that this idea
not only consolidate the IF algorithms against the proposed attack scenario,
but using this initial reputation improves the efficiency of the IF algorithms by
reducing the number of iterations needed to approach a stationary point within
the prescribed tolerance; see Section 4.2.
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3.6 Collusion Detection and Revocation

Although using the initial reputation results provided by our method makes
IF algorithms more robust than their original version, our experiments show
that the attacker can still alter considerably the reputation results of the IF
algorithms (see Section 4.5). Thus, in this section we propose a novel attacker
detection technique in order to further diminish the impact of the compromised
nodes. We will first describe our proposed collusion detection scheme and then
discuss the proposed compromised nodes revocation approach.

Detection Method

Upon computing the reputation values from the previous consolidated IF ap-
proach, we carry out a collusion detection and revocation method based on an
analysis of the features of error distribution of the sensor nodes. In the exist-
ing approaches, compromised sensor nodes are usually detected as outliers from
some form of average of all readings. Instead, we propose a finer analysis based
on a sequence of sensor readings, by considering how differences between read-
ings of the individual sensor nodes and the estimate obtained by an iterative
filtering technique are distributed. The main idea behind our method is that,
while faulty or compromised sensors might skew the estimate, their action can
only make non-compromised sensor appear biased, but the variability of such
sensors around such a value will still have a distribution close to a normal dis-
tribution; on the other hand, the difference between the values provided by the
compromised nodes will have highly non normal distribution, reflecting their es-
sentially non-stochastic (colluding) behaviour. Accordingly, we assume a sensor
with a non-Gaussian error distribution is likely to be a compromised node.

In order to analyse the error behaviour of sensor nodes, we first compute the
sensors errors based on the distances of each sensor readings to the obtained
reputation from our proposed consolidated version of IF algorithm. After that,
we employ a hypothesis testing method to assess the normality of the obtained
error values for each sensor node.

Thus, let es = {ets : t = 1, · · · ,m} be the vector of error terms for a sensor
s, defined as

es = xs − r

where xs = {xts : t = 1, · · · , T} is a sequence of readings from sensor s
and r = 〈r1, r2, . . . , rT 〉 denote the aggregate values obtained from the previous
phase of our framework.

The problem of deciding whether a sensor node s is compromised can be
formulated as a hypothesis testing problem with null and alternative hypotheses
as follows:

• Null hypothesis H0: The sequence of errors es is drawn from a Normal
distribution.

• Alternative hypothesis H1: The sequence of errors es is not drawn from
a Normal distribution.

In order to judge the compromise sensor nodes, we employ the Kolmogorov-
Smirnov test (K-S test) on sample errors of each sensor. Using the estimates
for the sample mean and the sample variance we normalise the errors; the
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Kolmogorov-Smirnov statistic then quantifies a distance between the empiri-
cal distribution of such normalised samples of sensor errors es and the N (0, 1)
Normal distribution.

Revocation Method

The proposed collusion detection scheme classifies sensor nodes in two disjoint
sets: the set of the compromised, and the set of the non-compromised nodes.
We can now re-apply our proposed estimation method on non-compromised
sensors readings only to produce a more accurate estimation of the true value
of the signal. Our extensive experiments show that we should re-run both
first and second phase of our framework on readings from non-compromised
sensors; i.e., we should do our variance and bias estimation and then either apply
(3.12), or (3.11), but we do NOT run the IF algorithm again. Our experiments
show that this approach generates more accurate results than those obtained
by subsequently running the IF algorithm again. In fact, when the errors come
from stochastic sources only applying the IF algorithms not only produces no
positive effect on the accuracy, but, in fact, it often degrades it. Thus, IF is
used in the first round because it provides a superior robustness against collusion
attacks; however, after the readings from the compromised nodes are removed,
applying just our non iterative method produces the best results.

4 Simulation Results

In this section, we report on a detailed numerical simulation study that examines
the robustness and efficiency of our data aggregation method. The objective of
our experiments is to evaluate the robustness and efficiency of our approach for
estimating the true values of signal based on the sensor readings in the presence
of faults and collusion attacks. For each experiment, we evaluate the accuracy
based on root mean squared of error (RMS error) metric and efficiency based
on the number of iterations needed to reach the convergence in the iterative
filtering algorithms.

4.1 Experimental Settings

All the experiments have been conducted on an HP PC with 3.30GHz Intel
Core i5-2500 processor with 8Gb RAM running a 64-bit Windows 7 Enterprise.
The program code has been written in MATLAB R2012b. Although there are
a number of real world datasets for evaluating reputation systems and data ag-
gregation in sensor networks such as Intel dataset [20], none of them provides a
clear ground truth. Thus, we conduct our experiments by generating synthetic
datasets. The experiments are based on simulations performed on both corre-
lated and uncorrelated sensor readings. If not mentioned otherwise, we generate
synthetic datasets according to the following parameters for all experiments:

• Each simulation experiment was repeated 200 times and then results were
averaged;

• Number of sensor nodes is N = 20;

• Number of readings for each sensor T = 400;
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• For statistical parameters of the errors (noise) used to corrupt the true
readings, we consider several ranges of values for bias, variance and co-
variance of noise for each experiment.

In all experiments, we compare our robust aggregation method against three
other iterative filtering techniques proposed for reputation systems. For all
parameters of other algorithms used in the experiments, we set the same values
as used in the original papers where they were introduced.

The first IF method considered computes the trustworthiness of sensor nodes
based on the distance of their readings to the current state of the estimated
reputation [7]. We described the details of this approach in Section 2.2. We
investigate two discriminant functions g(d) = d−1 and g(d) = 1−kld in our ex-
periments and call these methods as Kerchove-Reciprocal and Kerchove-Affine,
respectively.

The second IF method we consider is a correlation based ranking algorithm
proposed by Zhou et al. in [8]. In this algorithm, trustworthiness of each sensor
is obtained based on the correlation coefficient between the sensor readings and
the current estimate of the true value of the signal. In other words, this method
gives credit to sensor nodes whose readings correlate well with the estimated
true value of the signal. Based on this idea, the authors proposed an iterative
algorithm for estimating the true value of the signal by applying a weighted
averaging technique. They argued that correlation coefficient is a good way
to quantify the similarity between two vectors. Thus, they employed Pearson
correlation coefficient between sensor readings and the current state of estimate
signal in order to compute the sensor weight. We call this method as Zhou.

The third algorithm considered has been proposed by Laureti et al. in [9]
and is an IF algorithm based on a weighted averaging technique similar to the
algorithm described in Section 2.2. The only difference between these two algo-
rithms is in the discriminant function. The authors in [9] exploited discriminant
function g(d) = d−β and β = 0.5. We call this method as Laureti.

We apply Kerchove-Reciprocal, Kerchove-Affine, Zhou, Laureti and our ro-
bust aggregation approach to synthetically generated data. Although we can
simply apply our robust framework to all existing IF approaches (see ® in Fig-
ure 3.1), in this paper we investigate the improvement which addition of our ini-
tial trustworthiness assessment method produces on the robustness of Kerchove-
Reciprocal and Kerchove-Affine methods (We call them RobustAggregate-Reciprocal
and RobustAggregate-Affine, respectively.).

Table 4.1 shows a summary of aggregation and discriminant functions for all
of the above four different IF methods.

We first conduct experiments by injecting only Gaussian noise into sensor
readings. In the second part of the experiments, we investigate the behaviour of
these approaches by emulating a simple, non-colluding attack scenario presented
in the second case of Figure 2.2. We then evaluate these approaches in the case
of our sophisticated attack scenario. Finally, we investigate the performance of
our collusion detection and sensor revocation method using several evaluation
metrics.
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Table 4.1: Summary of different IF algorithms.

Name Discriminant Function

Kerchove-Reciprocal wl+1
i = ( 1

T

∥∥xi − rl+1
∥∥2
2
)−1

Kerchove-Affine wl+1
i = 1− k 1

T

∥∥xi − rl+1
∥∥2
2

Zhou wl+1
i = 1

T

T∑
i=1

(
xti−x̄t

σxi

)(
rt−r̄
σr

)
Laureti wl+1

i =
√

1
T ‖xi − rl+1‖22

4.2 Accuracy and Efficiency without an Attack

In the first batch of experiments we assume that there are no sensors with
malicious behaviour. Thus, the errors are fully stochastic; we concentrate on
the car of errors of sensors with Gaussian distributions. In order to evaluate
the performance of our algorithm in comparison with the existing algorithms,
we produce the following four different synthetic datasets.

1. Unbiased error with different variances for sensors: In this sce-
nario, we consider unbiased errors with different variances for sensor nodes.
We considered various distributions of the variance across the set of sen-
sors and obtained similar results. We have chosen to present the case with
the error of a sensor s at time t is given by ets ∼ N (0, s× σ2), considering
different values for the baseline sensor variance σ2. Figure 4.1(a) shows
the results of our robust aggregation approach and the information theo-
retic limit for the minimal variance provided by the Cramer - Rao bound,
achieved, for example, using the Maximum Likelihood Estimator with the
actual, exact variances of sensors, which are NOT available to our algo-
rithm. As one can see in this figure, our proposed approach nearly exactly
achieves the minimal possible variance coming from the information theo-
retic lower bound. Furthermore, Figure 4.1(b) illustrates the performance
of our approach for the initial trustworthiness assessment of sensors with
different discriminant functions as well as other IF algorithms. It clearly
shows that our approach outperforms the other methods by having smaller
RMS value of error.

2. Bias error: In this scenario, we inject bias error to sensor readings, gen-
erated by Gaussian distribution with different variances. Therefore, the
error of sensor s in time t is generated by ets ∼ N (N (0, σ2

b ), s × σ2) with
the variance of the bias σ2

b = 4 and increasing values for variances, where
the variance of sensor s is equal to s × σ2. Thus, the sensors bias is
produced by a zero mean Gaussian distribution random variable. Fig-
ure 4.1(c) shows the RMS error for all algorithms in this scenario. As can
be seen in this figure, our proposed approach provides the best accuracy
in terms of the RMS error. Moreover, since all of the IF algorithms, along
with our approach, generate an error close to their errors in the unbiased
scenario, we can conclude that the methods are stable against biased but
fully stochastic noise.
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3. Correlated noise: The heuristics behind our initial variance estimation
assumed that the errors of sensors are uncorrelated. Thus, we tested how
the performance of our method degrades if the noise becomes correlated
and how it compares to the existing methods under the same circum-
stances. So in this scenario, we assume that the errors of sensors are
no longer uncorrelated. Possible covariance functions can be of differ-
ent types, such as Spherical, Power Exponential, Rational Quadratic, and
Matern; see [21]. Although our proposed method can be applied to all
covariance functions, we present here the results for the case of the Power

Exponential function ρ(i, j) = e
−|i−j|
N . Moreover, the variance of a sensor

s is again set to σ2
s = s × σ2. From the corresponding covariance matrix

Σ = {Σij = ρ(i, j)σiσj : i, j = 1 · · ·N}, the noise values of sensors are
generated from multivariate Normal distribution Noise ∼ N (Bias,Σ). In
this scenario, we take into account different values of σ for generating the
noise values of sensors in order to analyse the accuracy of the data aggre-
gation under various levels of noise. Figure 4.1(d) shows the RMS error of
the algorithms for this scenario. As can be seen in this figure, our approach
with reciprocal discriminant function improves Kerchove-Reciprocal algo-
rithm for all different values of variance, although our method with affine
function generates very similar RMS error to the original Kerchove-Affine
algorithm. Moreover, the scale of RMS error is in general larger than in
scenarios with uncorrelated noise, as one would expect. It can be described
by our assumption that the sensors noise is generated by independent ran-
dom variables; see Section 3.3. Thus, the error of our variance estimation
for correlated data is more than the error for uncorrelated data.

The results of our simulations show that the use of our initial variance esti-
mation in the second phase of our proposed framework as the initial reputation
of IF algorithms decreases the number of iterations for the algorithms. We eval-
uate the number of iterations for the IF algorithm proposed in [7] by providing
the initial reputation from the results of the our approach for both unbiased and
biased sensors errors. The results of this experiment show that the proposed
initial reputation for the IF algorithm improves the efficiency of the algorithm
in terms of the number of iterations until the procedure has converged. In other
words, by providing this initial reputation, the number of iterations for IF al-
gorithm decreases approximately 9% for reciprocal and around 8% for affine
discriminant functions in both biased and unbiased circumstances. This can be
explained by the fact that the new initial reputation is close to the true value of
signal and the IF algorithm needs fewer iterations to reach its stationary point.
In the next part of our experiments, we employ this idea for consolidating the
iterative filtering algorithm against the proposed attack scenario.

4.3 Accuracy with Simple Attack Scenario

Lim et al. in [18] introduced an attack scenario against traditional statistical
aggregation approaches. We described the scenario in Section 2.4 and the second
round of Figure 2.2 as a simple attack scenario using a number of compromised
node for skewing the simple average of sensors readings. In this section, we
investigate the behavior of IF algorithms against the simple attack scenario.
Note that the objective of this attack scenario is to skew the sample mean of
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Figure 4.1: Accuracy for No Attack scenarios.

sensors readings through reporting outlier readings by the compromised nodes.
In order to evaluate the accuracy of the IF algorithms against the simple

attack scenario, we assume that the attacker compromises m (m < N) sensor
nodes and reports outlier readings by these nodes. We generate synthetically
datasets for this attack scenario by taking into account different values of vari-
ance for sensors errors as well as employing various number of compromised
nodes. Moreover, we generate biased readings for all sensor nodes with bias
provided by a random variable with a distribution N (0, σ2

b ) with the variance
of bias chosen to be σ2

b = 4.
Figure 4.2 shows the accuracy of the IF algorithms and our approach in

the presence of such simple attack scenario. It can be seen that the estimates
provided by the three approaches, Kerchove-Affine, Zhou and Laureti are signif-
icantly skewed by this attack scenario and their accuracy significantly decreases
by increasing the number of compromised nodes. On the other hand, Kerchove-
Reciprocal provides a reasonable accuracy for all parameter values of this simple
attack scenario (see Figure 4.2(a)). The robustness of this discriminant function
can be explained by the fact that the discriminant function sharply diminishes
the contributions of outlier readings through assigning very low values of weights
to them. In our sophisticated collusion attack scenario, we exploit this property
in order to compromise systems employing such discriminant function.

Interestingly, the results of our approach shows a considerable improvement
on Kerchove-Affine algorithm (see Figure 4.2(f)), while it experiences no nega-
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tive impacts on the accuracy of Kerchove-Reciprocal algorithm.
Moreover, comparing the RMS errors of our approach for this attack scenario

and the previous biased experiments (see Figure 4.1(c)), it can clearly be seen
that our approach achieves the accuracy of without Attack scenario for both
discriminant functions in this attack scenario; thus, this validates the robustness
of our approach against this attack scenario. In next section, we show that
this improvement is stable in the case of proposed collusion attack scenario
as well, while both Kerchove-Affine and Kerchove-Reciprocal algorithms are
compromised against such an attack scenario.
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Figure 4.2: Accuracy with a simple attack scenario.

4.4 Accuracy with a Sophisticated Collusion Attack

In order to illustrate the robustness of the proposed data aggregation method in
the presence of sophisticated attacks, we synthetically generate several datasets
by injecting the proposed collusion attacks. Therefore, we assume that the
adversary employs m (m < N) compromised sensor nodes to launch the sophis-
ticated attack scenario proposed in Section 2.4. The attacker uses the first m−1
compromised nodes to generate outlier readings in order to skew the simple av-
erage of all sensor readings. The adversary then falsifies the last sensor readings
by injecting the values very close to such skewed average. This collusion attack
scenario makes the IF algorithm to converge to a wrong stationary point. In
order to investigate the accuracy of the IF algorithms with this collusion at-
tack scenario, we synthetically generate several datasets with different values
for sensors variances as well as various number of compromised nodes (m).

Figure 4.3 shows the accuracy of the IF algorithms and our approach in
the presence of the collusion attack scenario. It can be seen that the IF al-
gorithms with reciprocal discriminant function are highly vulnerable to such
attack scenario (see Figure 4.3(a) and Figure 4.3(d)), while the affine discrim-
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inant function generates more robust results in this case (see Figure 4.3(b)).
However, the accuracy of the affine discriminant function is still much worse
than the previous experiment without the collusion attack.

This experiment shows that the collusion attack scenario can circumvent all
the IF algorithms we tried. Moreover, the accuracy of the algorithms dramat-
ically decreases by increasing the number of compromised nodes participated
in the attack scenario. As explained before, the algorithms converge to the
readings of one of the compromised nodes, namely, to the readings of the node
which reports values very close to the skewed mean. This demonstrates that an
attacker with enough knowledge about the aggregation algorithm employed can
launch a sophisticated collusion attack scenario which defeats IF aggregation
systems.

Figure 4.3(e) and Figure 4.3(f) show the accuracy of our approach by taking
into account the IF algorithm in [7] with reciprocal and affine discriminant
functions, respectively. As one can see, our proposed approach is superior to
all other algorithms in terms of the accuracy for both discriminant functions.
Moreover, comparing the accuracy of our approach in this experiment with
the results from no attack and simple attack experiments in Figure 4.1 and
Figure 4.2, we can argue that our approach is robust against the collusion attack
scenario. The reason is that our approach not only provides the highest accuracy
for both discriminant functions, it actually approximately reaches the accuracy
of the scenarios without any false data by colluders.

As we described, the main shortcoming of the IF algorithms in the pro-
posed attack scenario is that they quickly converge to the sample mean in the
presence of the attack scenario. In order to investigate the shortcoming, we con-
ducted an experiment by increasing the sensor variances as well as the number
of colluders. In this experiment, we quantified the number of iterations for the
IF algorithm with reciprocal discriminant function (Kerchove-Reciprocal and
RobustAggregate-Reciprocal algorithms). The results obtained from this experi-
ment show that the original version of the IF algorithm quickly converges (after
around five iterations) to the skewed values provided by one of the colluders,
while starting with an initial reputation provided by our approach, the algo-
rithms require around 29 iterations, and, instead of converging to the skewed
values provided by one of the attackers, it provides a reasonable accuracy.

The results of this experiment validate that our sophisticated attack scenario
is caused by the discovered vulnerability in the IF algorithms which sharply
diminishes the contributions of benign sensor nodes when one of the sensor
nodes reports a value very close to the simple average.

4.5 Collusion Detection Performance

As we described, the third module of our robust data aggregation framework is
a novel collusion detection system, which is a binary classification technique for
classifying the sensor nodes in two groups: compromised and non-compromised
nodes. Based on the results of this collusion detection system, we eliminate
the contributions of detected compromised nodes and then re-run the first and
second phases of our framework in order to obtain the final reputation based on
only the readings of non-compromised sensor nodes. Therefore, the performance
of the collusion detection system has a significant role in improving the accuracy
of the proposed robust aggregation framework.
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Figure 4.3: Accuracy with our sophisticated collusion attack.

In order to show how much the collusion detection module improves the
accuracy of the proposed robust aggregation framework, we investigate the RMS
error of the framework in presence of our sophisticated attack scenario. The
number of compromised nodes is set to 8 and the discriminant function is set to
Affine. Figure 4.4 shows the performance of proposed robust framework with the
collusion detection module and without the module. It can be clearly seen that
the collusion detection module dramatically improved the accuracy of our robust
aggregation framework. This is due to that the module can accurately detect
the compromised nodes. Therefore, the next steps of the robust framework only
applied on the benign readings.

The detection performance of the module is evaluated by its accuracy, pre-
cision, and recall measurements for each experimental scenario. A higher value
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Figure 4.4: Impact of collusion detection module on the performance of our
aggregation framework.
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Table 4.2: Confusion matrix for collusion detection.

Actual Class
Predicted Class

Colluder Benign

Colluder True Positive (TP) False Negative (FN)
Benign False Positive (FP) True Negative (TN)

shows that the collusion detection module is superior. The accuracy is the pro-
portion of the total number of predictions that were correct; the recall or true
positive rate is the proportion of colluders that were correctly detected; pre-
cision is the proportion of the detected colluders that were correct. Accuracy,
precision and recall measurements are calculated based on a confusion matrix
in Table 4.2 as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (4.1)

Precision =
TP

TP + FP
× 100 (4.2)

Recall =
TP

TP + FN
× 100 (4.3)

For all experiments described in previous sections, we obtained the confusion
matrix as well as the accuracy, precision and recall measurements for collusion
detection module. We first investigate the performance of this module in the
no-attack experimental scenarios described in Section 4.2. Note that we can
only investigate the accuracy metric for those scenarios, because there is no
compromised node for them and therefore TP = 0. Consequently, the precision
and recall measurements are zero for all the cases.

The accuracy results of the collusion detection module for the No Attack sce-
narios are presented in Table 4.3. The table shows that for all experiments, the
collusion detection mechanism generates a very high accuracy. Thus, applying
this mechanism on completely clean readings has no impact on the performance
of data aggregation process. As one can see in this table, the integration of the
collusion detection module with affine discriminant function generates higher ac-
curacy than reciprocal function. The reason is that our data aggregation with
affine function provides more accurate estimation of the true value of the signal
as well (see Figure 4.1(b) and Figure 4.1(c)) and it therefore, leads to more
accurate error values for sensors nodes. As our collusion detection method is
based on the error behaviour of sensor nodes, the more accurate estimation of
the errors are, the more effective the collusion detection module is.

Table 4.4 shows the performance results of the collusion detection module
for described simple and sophisticated collusion attack scenarios based on the
average values of three metrics accuracy, precision and recall for previous exper-
iments. The table shows that for both attack scenarios, the collusion detection
mechanism is able to successfully detect the compromised nodes with high ac-
curacy, precision and recall values.
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Table 4.3: Accuracy of our collusion detection module on No Attack scenarios.

Unbiased Biased Correlated
σ Reciprocal Affine Reciprocal Affine Reciprocal Affine

1.5 95.125 98.675 97.075 99.325 98.65 98.775
2 94.9 98.95 96.95 98.75 98.7 99

2.5 95.5 99 96.55 98.975 98.8 99
3 95.125 98.925 96.9 99.075 98.875 98.65

3.5 95.075 98.825 96.125 99 99 99.175
4 94.85 99.275 96.4 99.1 98.625 98.975

4.5 95.15 98.825 96.2 98.65 98.675 99.025
5 94.925 98.65 96.075 99.1 98.675 99.25

Table 4.4: Performance of our collusion detection module against attack scenar-
ios.

Simple Attack Sophisticated Attack
Metric Reciprocal Affine Reciprocal Affine

Accuracy 96.848 97.662 99.192 99.245
Precision 94.573 96.721 96.725 96.900

Recall 94.852 94.966 100 100

5 Related Work

Robust data aggregation is a serious concern in WSNs and there are a number of
papers investigating malicious data injection by taking into account the various
adversary models. There are three bodies of work related to our research: IF
algorithms, trust and reputation systems for WSNs, and secure data aggregation
with compromised node detection in WSNs.

There are a number of published studies introducing IF algorithms for solv-
ing data aggregation problem [8, 7, 9, 10, 11, 12, 13, 14, 15]. The primary idea
of the algorithm proposed in [8] is to compute correlation coefficients between
users and objects, which gives credit to users which ratings correlate nicely
with the estimated true ratings of objects. Laureti et al. in [9] proposed an
IF algorithm based on a weighted averaging technique which the weights are
computed through a simple reciprocal discriminant function. Li et al. in [11]
proposed six different algorithms, which are all iterative and are very similar.
The only difference among the algorithms is their choice of norm and aggrega-
tion function. Ayday et al. proposed a slight different iterative algorithm in
[12]. Their main differences from the other algorithms are: 1) the ratings have
a time-discount factor, so in time, their importance will fade out; and 2) the
algorithm maintains a black-list of users who are especially bad raters. Liao et
al. in [13] proposed an iterative algorithm which beyond simply using the rating
matrix, also uses the social network of users. The main objective of author in
[14] is to introduce a “Bias-smoothed tensor model”, which is a Bayesian model,
of rather high complexity. Although the existing IF algorithms consider simple
cheating behaviour by adversaries, none of them take into account sophisticated
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malicious scenarios such as collusion attacks.
Our work is also closely related to the trust and reputation systems in WSNs.

Authors in [22] proposed a general reputation framework for sensor networks in
which each node develops a reputation estimation for other nodes by observing
its neighbors which make a trust community for sensor nodes in the network.
Xiao et al. in [23] proposed a trust based framework which employs correlation
to detect faulty readings. Moreover, they introduced a ranking framework to
associate a level of trustworthiness with each sensor node based on the number
of neighboring sensor nodes are supporting the sensor. Li et al. in [24] pro-
posed PRESTO, a model-driven predictive data management architecture for
hierarchical sensor networks. PRESTO is a two tier framework for sensor data
management in sensor networks. The main idea of this framework is to consider
a number of proxy nodes for managing sensed data from sensor nodes. Authors
in [5] proposed an interdependency relationship between network nodes and
data items for assessing their trust scores based on a cyclical framework. The
main contribution of authors in [25] is to propose a combination of trust mech-
anism, data aggregation, and fault tolerance to enhance data trustworthiness in
Wireless Multimedia Sensor Networks (WMSNs) which considers both discrete
and continuous data streams. Tang et al. in [26] proposed a trust framework
for sensor networks in Cyber Physical System (CPS). An example of deploy-
ment of sensors in CPS is a battle-network system in which the sensor nodes
are employed to detect approaching enemies and send alarms to a command
center. Although fault detection problems have been addressed by applying
trust and reputation systems in the above research, none of them take into ac-
count sophisticated malicious scenarios such as collusion attacks in adversarial
environments.

Reputation and trust concepts can be used to overcome the compromised
node detection and secure data aggregation problems in WSNs. Alzaid in [27]
proposed a secure aggregation scheme to address bad mouthing, ballot stuffing,
replay and newcomer attacks; however the scheme is limited to detecting the
On/Off attack launched from only one child cell. Ho et al. in [28] proposed
a framework to detect compromised sensor nodes in WSN and then apply a
software attestation for the detected nodes. They reported that the revocation
of detected compromised nodes can not be performed due to a high risk of false
positive in the proposed scheme. The main idea of false aggregator detection in
the scheme proposed in [29] is to employ a number of monitoring nodes which are
running aggregation operations and providing a MAC value of their aggregation
results as a part of MAC in the value computed by the cluster aggregator. High
computation and transmission cost required for MAC-based integrity checking
in this scheme makes it unsuitable for deployment in WSN. Lim et al. in [18]
proposed a game-theoretical defense strategy to protect sensor nodes and to
guarantee a high level of trustworthiness for sensed data. Although the afore-
mentioned research take into account false data injection for a number of simple
attack scenarios, to the best of our knowledge, no existing work addresses this
issue in the case of a sophisticated attack of colluding adversaries compromising
a number of nodes in a manner which employs high level knowledge about data
aggregation algorithm used.
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6 Conclusions

In this paper, we introduced a novel sophisticated collusion attack scenario
against a number of existing IF algorithms. We also showed how an attacker
with enough knowledge about aggregation algorithm can distort the aggrega-
tion process by compromising a number of sensor nodes in a WSN. Moreover,
we proposed an improvement for the IF algorithms by providing an initial ap-
proximation of the trustworthiness of sensor nodes which makes the algorithms
not only collusion robust, but also more accurate and faster converging. We also
extended the IF algorithms with a novel approach for collusion detection and
revocation based on an initial approximation of the aggregate values as well as
distribution of differences of each sensor readings and such an approximation.
In future work, we will extend the proposed robust aggregation framework for
WSNs in the presence of correlated noise. We also plan to deploy our approach
in a deployed sensor network.
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